Supplementary Information

Synthesis and properties of Fischer carbene complexes of N,N-dimethylaniline and anisole π -coordinated to chromium tricarbonyl

Nora-ann Weststrate^a, Shalane Bouwer^a, Cristopher Hassenrück^b, Nina A. van Jaarsveld^a, David C. Liles^a, Rainer F. Winter^{b*} and Simon Lotz^{a*}

^aDepartment of Chemistry, University of Pretoria, Pretoria, 0002, South Africa ^bFachbereich Chemie, Universität Konstanz, Konstanz, 78457, Germany

Contents

The synthesis of <i>o</i> - and <i>m</i> -bromoanisole Cr(CO) ₃ complexes and subsequent reaction with <i>t</i> BuLi, W(CO) ₀ and Et ₃ OBF ₄
Scheme S-1. <i>Halogen dancing</i> affording π -anisole Cr(CO) ₃ and <i>o</i> -carbene product (5)S.1
Figure S-1. ¹ H NMR spectrum in CDCl ₃ of π -anisole Cr(CO) ₃ (A) after an early stage of litigation and reaction with W(CO) ₆ and Et ₃ OBF ₄ S.2
Figure S-2. ¹³ C NMR spectrum in CDCl ₃ of π -anisole Cr(CO) ₃ (A) after an early stage of litigation and reaction with W(CO) ₆ and Et ₃ OBF ₄ S.2
Figure S-3. ¹ H NMR spectrum in CDCl ₃ of the reaction mixture of A and 5 (1:1)S.3
Figure S-4. ¹³ C NMR spectrum in CDCl ₃ of the mixture of A and 5S.3
¹ H and ¹³ C NMR spectraS.4
Figure S-5. ¹ H NMR spectrum of 1 in CDCl ₃ S.4
Figure S-6. ¹³ C NMR spectrum of 1 in CDCl ₃ S.4
Figure S-7. ¹ H NMR spectrum of 2 in CDCl ₃
Figure S-8. ¹³ C NMR spectrum of 2 in CDCl ₃ S.5
Figure S-9. ¹ H NMR spectrum of 3 in CDCl ₃ S.6
Figure S-10. ¹³ C NMR spectrum of 3 in CDCl ₃ S.6
Figure S-11. ¹ H NMR spectrum of 4 in CDCl ₃ S.7
Figure S-12. ¹³ C NMR spectrum of 4 in CDCl ₃ S.7
Figure S-13. ¹ H NMR spectrum of 5 in CDCl ₃ S.8
Figure S-14. ¹³ C NMR spectrum of 5 in CDCl ₃ S.8
Figure S-15. ¹ H NMR spectrum of 7 in CDCl ₃ S.9
Figure S-16. ¹³ C NMR spectrum of 7 in CDCl ₃ S.9
IR Spectroscopy
Figure S-17. FT-IR spectra of 2 (left) and 3 (right) in the carbonyl region. Recorded in hexane at 298 KS.10
Figure S-18. FT-IR spectra of 5 (top, left), 6 (top, right) and 7 (bottom, left) in the carbonyl region. Recorded in hexane at 298 K
Table S-1. FT-IR assignments of complexes 1-4 and 5-7 in the carbonyl region in hexane at 298 K S. 10
X-Ray Crystallography
Table S-2. Selected bond lengths (Å) and bond angles (°) of the solid-state structures of 1-4S.11
Table S-3. Selected bond lengths (Å) and bond angles (°) of the solid-state structures of 5-7
Figure S-19. $Cr(CO)_3$ tripod conformations for 1-7. $E = eclipsed$, $S = staggered$ S.13
Table S-4. Crystal data and structure refinement for complexes 1-4
Table S-5. Crystal data and structure refinement for complexes 5-7

Cyclic voltammetryS.16
Table S-6. Peak currents and peak current ratios for the oxidation of 1 and 2 at different scan rates in $CH_2Cl_2/0.1$ M NBu ₄ PF ₆ buffer against a FeCp ₂ ^{0/+} internal standardS. 16
Table S-7. Peak currents and peak current ratios for the oxidation of 3 and 4 , and the reduction of 4 at different scan rates in $CH_2Cl_2/0.1$ M NBu ₄ PF ₆ buffer against a $FeCp_2^{0/+}$ internal standardS. 16
Figure S-20. Oxidation of 1 in CH ₂ Cl ₂ /0.1 M NBu ₄ PF ₆ at scan rates of 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against $FeCp_2^{0/4}$
Figure S-21. Oxidation of 2 in CH ₂ Cl ₂ /0.1 M NBu ₄ PF ₆ at scan rates of 60, 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against $FeCp_2^{0/+}$
Figure S-22. Oxidation of 3 in CH ₂ Cl ₂ /0.1 M NBu ₄ PF ₆ at scan rates of 40, 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against $FeCp_2^{0/+}$
Figure S-23. Oxidation of 4 in CH ₂ Cl ₂ /0.1 M NBu ₄ PF ₆ at scan rates of 50, 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against $\text{FeCp}_2^{0/+}$ S.16
Figure S-24. Reduction of 4 in CH ₂ Cl ₂ /0.1 M NBu ₄ PF ₆ at scan rates of 50, 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against $FeCp_2^{0/+}$
Figure S-25. Cyclovoltammograms of 5-7 in CH ₂ Cl ₂ /0.1 M NBu ₄ PF ₆ against the ferrocene/ ferrocenium standard at 100 mV/sS.17
Figure S-26. Cyclovoltammograms of 5 (left) and 7 (right) in CH ₂ Cl ₂ /0.1 M NBu ₄ PF ₆ against the ferrocene/ ferrocenium standard at multiple scan rates and 100 mV/s, respectivelyS.17
IR-Spectroelectrochemistry
Figure S-27. IR spectroscopic changes upon the oxidation of complex 1 inside an OTTLE cell (1,2-C ₂ H ₄ Cl ₂ /NBu ₄ PF ₆ , 298 K)S.18
Figure S-28. IR spectroscopic changes upon the oxidation of complex 3 inside an OTTLE cell (1,2-C ₂ H ₄ Cl ₂ /NBu ₄ PF ₆ , 298 K)S.18
Figure S-29. Deconvoluted IR spectra of the carbonyl region of the neutral (top) and oxidised (bottom) state of 1 and 2 inside an OTTLE cell $(1,2-C_2H_4Cl_2 / NBuPF_6, r.t.)$. * Residual peaksS.19
Figure S-30. Deconvoluted IR spectra of the carbonyl region of the neutral (top) and oxidised (bottom) state of 4 inside an OTTLE cell (1,2-C ₂ H ₄ Cl ₂ / NBuPF ₆ , r.t.). * Residual peaksS.20
Table S-8. Deconvoluted IR spectra of the carbonyl region of the neutral and oxidised states of 1, 2 and $4 (1,2-C_2H_4Cl_2 / NBuPF_6, r.t.)$ S.20
DFT calculationsS.21
Figure S-31. Contour plots of the calculated HOMO and LUMO orbitals of the neutral complexes for 5-7
Table S-9. Potential energy (eV) of the calculated HOMO and LUMOs of the oxidized species of 1-7
Figure S-32. Contour plots and spin densities of the calculated HOMO and LUMO orbitals of the oxidised complexes 1 ⁺ -4 ⁺
Figure S-33. Contour plots and spin densities of the calculated HOMO and LUMO orbitals of the oxidised complexes 5 ⁺ -7 ⁺

Table S-10. Computed IR frequencies (cm ⁻¹) and intensity [counts] of the carbonyl region a	is
determined from TD-DFT calculations of the neutral and oxidised species of 1-7	S.21
References	S.40

The synthesis of o- and m-bromoanisole Cr(CO)₃ complexes and subsequent reaction with tBuLi, W(CO)₆ and Et₃OBF₄

While only *o*-lithiation resulted from the deprotonation of $\{\eta^6\text{-anisole}\}Cr(CO)_3$ it was clear that this method could not be considered as a viable route to prepare *m*- and *p*-carbene isomers of anisole π -coordinated to $Cr(CO)_3$. To produce the *m*- or *p*-analogues without additional ring directing groups, it was envisaged to start with a bromo substituent on the anisole ring in either the *m*- or *p*-position. This method was used by us successfully to activate less reactive sites on thiophene when not coordinated to $Cr(CO)_3$.¹ Support of this approach came from Fischer and co-workers who showed that lithium-bromine exchange reactions could be effectively used to prepare *m*- and *p*-isomers of M{C(OMe)C₆H₄OMe}(CO)₅.² A challenging assignment however was to find an effective method to either (i) coordinate *m*- and *p*-bromoanisole to Cr(CO)₃ and thereafter introduce the carbene functionality afterwards or (ii) to prepare the *m*- or *p*-carbene complexes of anisole prior to coordination to Cr(CO)₃. Efforts to coordinate the *m*- or *p*-isomers of W{C(OEt)C₆H₄OMe}CO)₅ to Cr(CO)₃ by thermolysis or amine substitution failed and only decomposition products could be isolated.

While the synthesis of $Cr(\pi-ArX)(CO)_3$ for X = F and Cl is readily achieved by refluxing the halobenzene in dibutyl ether, the synthesis with X = Br and I is complicated due to instability during the thermolysis and purification procedures of the haloarene complexes. Öfele found that $Cr(\pi-C_6H_5X)(CO)_3$, X = Br, I) could be synthesized in low yields (28%) by amine ligand substitution from $Cr(N(picoline)_3)_3(CO)_3$ by C_6H_5X . In our case this method resulted in far smaller yields and was difficult to reproduce. Purification of the complexes required treatment with BF₃, rapid aqueous work-up and isolation by column chromatography and led to varied yields on repetition of the synthesis.³ The procedure was modified by replacing the aqueous quenching by an extraction and filtration process through silica gel with hexane/Et₂O, affording the desired new bromoanisole complexes *m*- or $p - \{\eta^6 - C_6H_4(OMe)Br\}Cr(CO)_3$ in less than 10% yields. The formation of the bromo percursors were confirmed by comparison of ¹H NMR spectra with literature.⁴ We ascribe the low yields of the *m*- and *p*-isomers of $\{\eta^6-C_6H_4(OMe)Br\}Cr(CO)_3$ to the fact that much of the product was lost during the work-up and π -coordination by the Öfele method of treating the reaction mixture with BF₃-etherate and extracting with ether.³ Hence, the lithiation was performed with *t*BuLi instead of *n*BuLi to try and improve the lithium-bromine exchange reaction.^{5,6} Reaction of the lithiated anisole with $W(CO)_6$ and $[Et_3O][BF_4]$ did not give the *m*-or *p*-isomers but afforded only the *o*-isomer (5) in high yield. The reactions were studied by NMR spectroscopy and abandoned, as the desired *m*- or *p*-carbene isomers did not form as a result of transmetallation leading to *o*-lithiation.

Scheme S-1. Halogen dancing affording π -anisole Cr(CO)₃ and *o*-carbene product (5)

Figure S-1. ¹H NMR spectrum in CDCl₃ of π -anisole Cr(CO)₃ (**A**) after an early stage of litigation and reaction with W(CO)₆ and Et₃OBF₄

Figure S-2. ¹³C NMR spectrum in CDCl₃ of π -anisole Cr(CO)₃ (**A**) after an early stage of litigation and reaction with W(CO)₆ and Et₃OBF₄.

Figure S-3. ¹H NMR spectrum in CDCl₃ of the reaction mixture of A and 5 (1:1)

Figure S-4. $^{\rm 13}{\rm C}$ NMR spectrum in CDCl3 of the mixture of A and 5

Figure S-5. ¹H NMR spectrum of 1 in CDCl₃

Figure S-6. ¹³C NMR spectrum of 1 in CDCl₃

Figure S-7. ¹H NMR spectrum of 2 in CDCl₃

Figure S-8. ¹³C NMR spectrum of 2 in CDCl₃

Figure S-9. ¹H NMR spectrum of 3 in CDCl₃

Figure S-10. ¹³C NMR spectrum of 3 in CDCl₃

Figure S-11. ¹H NMR spectrum of 4 in CDCl₃

Figure S-12. ¹³C NMR spectrum of 4 in CDCl₃

Figure S-13. ¹H NMR spectrum of 5 in CDCl₃

Figure S-14. ¹³C NMR spectrum of 5 in CDCl₃

Figure S-15. ¹H NMR spectrum of 7 in CDCl₃

Figure S-16. ¹³C NMR spectrum of 7 in CDCl₃

Figure S-17. FT-IR spectra of 2 (left) and 3 (right) in the carbonyl region. Recorded in hexane at 298 K

Figure S-18. FT-IR spectra of 5 (top, left), 6 (top, right) and 7 (bottom, left) in the carbonyl region. Recorded in hexane at 298 K

X-Ray Crystallography

OEt	EtO			OEt
$(OC)_5W \Rightarrow$)=W(C	O) ₅		
2=3	∖ <u>2</u> =3′	, <u>2</u> =3	W(CO) ₅	
N-1 4	N-1, 4	N-1, . ,4-	$-\langle \langle \rangle$	$\frac{1}{N-1} = \frac{1}{2}$
6-5	6-5		ÒEt	6-5
Ćr(CO)) ₃	Ḗr(C	O) ₃	Čr(CO) ₃
1	2	3		4
Bond lengths (Å)	1	2*	3	4
N-C _{Ph}	1.387(3)	1.357(5)	1.354(3)	1.466(3)
C _{Carb} –W	2.165(2)	2.186(3)	2.193(3)	2.137(2)
C _{Carb} –O	1.318(2)	1.305(4)	1.327(4)	1.313(3)
C _{Carb} –C _{Ph}	1.494(3)	1.502(5)	1.485(3)	1.482(3)
C1–C2	1.420(3)	1.425(5)	1.418(3)	1.418(3)
C2–C3	1.437(3)	1.411(5)	1.399(3)	1.429(3)
C3–C4	1.399(3)	1.429(5)	1.420(3)	1.395(3)
C4–C5	1.406(4)	1.393(5)	1.415(3)	1.418(3)
C5–C6	1.403(4)	1.417(5)	1.398(3)	1.401(3)
C6C1	1.431(3)	1.419(5)	1.422(3)	1.412(3)
$W-CO_{(ax)}$	2.039(2)	2.029(3)	2.024(4)	2.025(2)
W-CO _(eq) *	2.046	2.044	2.038	
Cr–CO*	1.844	1.840	1.841	1.857
Ph-Cr	1.710	1.722	1.715	1.698
Angles (°)				
Me1-N-Me2	111.7(2)	115.9(4)	117.8(3)	107.1(2)
Me1-N-C1	118.2(2)	119.3(3)	120.4(2)	105.3(2)
Me2-N-C1	117.3(2)	119.2(3)	120.4(2)	112.6(2)
C _{Ph} -C _{carb} -W	119.5(1)	123.6(2)	124.7(2)	116.8(1)
C _{Ph} -C _{carb} -O	106.5(2)	105.2(3)	105.4(2)	107.4(2)
W-C _{carb} -O	131.7(2)	130.9(3)	129.1(2)	135.7(2)
Ccarb-W-CO(ax)	170.51(9)	174.0(1)	174.2(1)	168.14(9)
C_{carb} -W- $CO_{(eq)}$ *	91.4(9)	92.6(9)	91.7(8)	_
C6C1C2	117.9(2)	116.4(3)	116.4(2)	120.3(2)
C1C2C3	119.1(2)	122.9(3)	121.1(2)	118.9(2)
C2C3C4	121.9(2)	118.6(3)	122.1(2)	120.7(2)
C3C4C5	118.8(2)	119.3(3)	116.2(2)	119.6(2)
C4C5C6	120.4(2)	121.3(3)	121.9(2)	120.6(2)
C5-C6-C1	121.8(2)	120.8(3)	121.5(2)	120.0
Torsion angles (°)				
Me1-N-C1-C2	-50.1(3)	4.9(5)	6.5(4)	98.2(2)
Me2-N-C1-C6	-8.8(3)	-18.2(5)	-3.2(4)	40.9(3)
W-C _{carb} -C _{Ph} -Ca1	100.8(2)	32.0(5)	29.0(3)	4.2(3)
O-C _{carb} -C _{Ph} -Ca2	126.7(2)	26.4(4)	14.7(3)	7.7(3)

Table S-1. Selected bond lengths (Å) and bond angles (°) of the solid-state structures of 1-4

* One of the two independent molecules of the unit cell is listed.

	OEt	OEt	OEt
	$(OC)_5W \Rightarrow$		$(OC)_5W \Longrightarrow$
	2=3	$(00)_4 $ $V > \sqrt{2=3}$	2=3
	0-1' , 4	$\dot{0}_{-1}$	O-1 , 4
	6-5	6-5	6-5
	$Cr(CO)_3$	$Cr(CO)_3$	$(UC)_5 VV \rightarrow Cr(UC)_3$
			OEt
	5	6	7
Bond lengths (Å)	5	6	7
	1 350(3)	1 364(4)	1 354(3)
$C_{Corb1} = W1$	2 168(2)	2 133(3)	2 142(2)
$C_{C_{c_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_$	1 316(3)	1 318(3)	1301(3)
	1.513(3)	1.310(3) 1 473(4)	1 504(3)
$C_{arb1} = W^2$			2 144(3)
$C_{arb2} - 0Et(2)$			1.308(3)
$C_{arb2} OE(2)$			1.505(3)
W-CO	2.034(3)	2 026(3)	2.048(3)
W CO *	2.034(3)	2.020(3)	2.048(3)
W CO	2.040(30)	—	2.040(20)
$W = CO_{(ax)}$	—	—	2.040(4) 2.045(28)
$W - CO_{(eq)}$	- 1 429(2)	-	2.043(28) 1 420(2)
C1-C2	1.428(3)	1.414(4) 1.422(4)	1.429(3)
$C_2 = C_3$	1.422(3)	1.422(4)	1.398(3)
C3-C4	1.406(3)	1.395(5)	1.408(3)
C4-C5	1.398(4)	1.398(5)	1.390(3)
C_{3}	1.401(4)	1.406(4)	1.422(3)
	1.409(3)	1.401(4)	1.411(3)
Cr-CO*	1.846(11)	1.385(14)	1.847(15)
Ph–Cr	1.693	1.700	
Angles (°)	100.4/1	11 < 0 (0)	115.0/1
$C_{Ph}-C_{carb1}-WI$	122.4(1)	116.9(2)	117.9(1)
C _{Ph} –C _{carb1} –O1	105.1(2)	108.2(2)	107.0(2)
$W1-C_{carb1}-O1$	131.3(1)	134.7(2)	134.8(2)
C_{Ph} – C_{carb2} – $W2$	—	—	119.5(2)
C_{Ph} – C_{carb2} – $O2$	—	—	106.6(2)
W2–C _{carb2} –O2	—	—	133.5(2)
C_{carb1} -W1-CO _(ax)	173.23(9)	166.7(1)	174.5(1)
C_{carb1} -W1-CO _(eq) *	92.6(12.3)	—	90.7(13.5)
C_{carb2} -W2-CO _(ax)	—	—	175.0(1)
C_{carb2} -W2-CO _(eq) *	_	—	92.1(5.1)
C6C1C2	120.4(2)	121.9(3)	120.3(2)
C1–C2–C3	117.7(2)	117.8(3)	119.7(2)
C2–C3–C4	121.7(2)	120.9(3)	120.4(2)
C3–C4–C5	119.0(2)	119.5(4)	119.6(2)
C4–C5–C6	121.1(2)	121.5(3)	121.6(2)
C5-C6-C1	119.9(2)	121.9(3)	118.2(2)
Torsion angles (°)			
W1-C _{carb1} -C _{Ph} -Ca1	60.5(3)	6.1(4)	102.3(2)
$O1-C_{carb1}-C_{Ph}-C\alpha 2$	54.1(2)	0.5(4)	114.0(2)
W2-C _{carb2} -C _{Ph} -Ca1	-	-	-78.2(3)
$O2-C_{carb2}-C_{Ph}-C\alpha 2$	_		-76.9(3)

Table S-2. Selected bond lengths (Å) and bond angles (°) of the solid-state structures of 5-7

Figure S-19. Cr(CO)₃ tripod conformations for **1-7**. E = eclipsed, S = staggered.

	1	2	3	4
Empirical formula	C ₁₉ H ₁₅ CrNO ₉ W	C ₁₉ H ₁₅ CrNO ₉ W	C ₁₉ H ₁₅ CrNO ₉ W	$C_{18}H_{15}CrNO_8W$
Formula weight	637.17	637.17	637.17	609.16
Temperature	150(2) K	150(2) K	296(2) K	150(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	triclinic	monoclinic	triclinic	monoclinic
Space group	P -1	P 21/n	P -1	P 21/c
Unit cell dimensions	a = 6.8755(2) Å	a = 12.5295(6) Å	$a = 6.9470(2) \text{ Å}_{2}$	$a = 7.8622(4) \text{ Å}_{2}$
	b = 8.5877(3) Å	b = 15.9703(7) Å	b = 12.4222(3) Å	b = 15.4482(7) Å
	c = 18.8128(6) Å	c = 22.0120(11) Å	c = 12.8729(3) Å	c = 16.4718(7) Å
	$\alpha = 100.8285(11)^{\circ}$	$\alpha = 90.00^{\circ}$	$\alpha = 85.6900(9)^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 92.1596(10)^{\circ}$	$\beta = 103.166(2)^{\circ}$	$\beta = 84.1773(8)^{\circ}$	$\beta = 94.0186(17)^{\circ}$
	$\gamma = 106.1381(11)^{\circ}$	$\gamma = 90.00^{\circ}$	$\gamma = 86.7838(8)^{\circ}$	$\gamma = 90^{\circ}$
Volume	1043.25(5) Å ³	4288.8(4) Å ³	1100.72(5) Å ³	1995.69(16) Å ³
Z	2	8	2	4
Density (calculated)	2.028 Mg/m^3	1.974 Mg/m^3	1.922 Mg/m^3	2.027 Mg/m^3
Absorption coefficient	6.081 mm ⁻¹	5.917 mm ⁻¹	5.763 mm ⁻¹	6.349 mm ⁻¹
F(000)	612	2448	612	1168
Crystal size	0.240 x 0.209 x	0.333 x 0.095 x	0.300 x 0.191 x	0.191 x 0.146 x
	0.101 mm^3	0.035 mm^{3}	0.152 mm^{3}	0.099 mm^{3}
Theta range for data	2.994 to 27.097°	2.457 to 28.320°	2.210 to 27.101°	2.479 to 28.415°
collection				
Index ranges	-8<=h<=8,	-16<=h<=16,	-8<=h<=8,	-10<=h<=10,
	-10<=k<=10,	-20<=k<=20,	-15<=k<=15,	-20<=k<=20,
	-24<=l<=24	-28<=1<=28	-16<=l<=16	-22<=l<=22
Reflections collected	4579	9441	4848	5013
Independent	4534	8537	4699	4360
reflections	[R(int) = 0.0366]	[R(int) = 0.0350]	[R(int) = 0.0288]	[R(int) = 0.0481]
Completeness to theta	99.8 %	99.9 %	99.9 %	99.8 %
$= 2/.41^{\circ}$	G	G	0	0
Absorption correction	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
	from equivalents	from equivalents	from equivalents	from equivalents
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-
Data / maturinta /	squares on F^2	squares on F^2	squares on F ²	squares on F^2
Data / restraints /	45/9/0/285	9441/0/303	4848 / 0 / 294	5015 / 1 / 281
parameters Coodness of fit on Σ^2	1 102	1 205	1 167	1 000
Goodness-of-fit on F ⁻	1.103 D1 = 0.0165	1.263 $P_1 = 0.0224$	1.107 $P_{1} = 0.0102$	1.090 $P_1 = 0.0242$
Final K indices	KI = 0.0103 WD2 = 0.0412	KI = 0.0254 WD2 = 0.0512	KI = 0.0195 WD2 = 0.0402	KI = 0.0242 wD2 = 0.0225
[1>2Sigilia(1)] B indiana (all data)	WKZ = 0.041Z P1 = 0.0281	WKZ = 0.0315 P1 = 0.0282	WKZ = 0.0492 P1 = 0.0201	WK2 = 0.0555 P1 = 0.0165
R marces (an data)	$K_1 = 0.0281$ WP2 = 0.0412	$K_1 = 0.0282$ WP2 = 0.0527	$K_1 = 0.0201$ WP2 = 0.0407	K1 = 0.0103 WD2 = 0.0210
Lorgast diff masters -	WKZ = 0.041Z	WKZ = 0.0327	wKZ = 0.0497	WKZ = 0.0319 0.402 and 0.722
holo				0.405 and -0.725
note				c.A

Table S-3. Crystal data and structure refinement for complexes 1-4

	5	6	7
Empirical formula	$C_{18}H_{12}O_{10}CrW$	$C_{17}H_{12}CrO_9W$	$C_{26}H_{16}CrO_{16}W_2$
Formula weight	624.13	596.12	1004.09
Temperature	296(2) K	296(2) K	296(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	triclinic	Monoclinic	monoclinic
Space group	P -1	P 21/c	P 21/n
Unit cell dimensions	a = 6.9051(2) Å	a = 6.9908(2) Å	a = 18.0230(6) Å
	b = 9.6216(2) Å	b = 18.3716(6) Å	b = 10.1401(4) Å
	c = 15.2248(4) Å	c = 14.9192(5) Å	c = 18.2221(6) Å
	$\alpha = 91.5572(8)^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 96.2400(8)^{\circ}$	$\beta = 97.9160(10)^{\circ}$	$\beta = 108.2440(10)^{\circ}$
	$\gamma = 95.4673(8)^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume	1000.22(4) Å ³	1897.85(10) Å ³	3162.78(19) Å ³
Z	2	4	4
Density (calculated)	2.072 Mg/m ³	2.086 Mg/m ³	2.109 Mg/m ³
Absorption coefficient	6.343 mm ⁻¹	6.676 mm ⁻¹	7.665 mm ⁻¹
F(000)	596	1136	1888
Crystal size	0.148 x 0.137 x	0.204 x 0.114 x	0.218 x 0.209 x
	0.115 mm^3	0.013 mm ³	0.119 mm ³
Theta range for data	2.475 to 25.242°	2.217 to 28.274°	2.328 to 30.506°
collection			
Index ranges	-9<=h<=9,	-9<=h<=9,	-25<=h<=25,
	-12<=k<=12,	-24<=k<=24,	-14<=k<=14,
	-20<=l<=20	-19<=l<=19	-26<=l<=26
Reflections collected	4968	4708	9656
Independent	4919	4203	8378
reflections	[R(int) = 0.0271]	[R(int) = 0.0446]	[R(int) = 0.0478]
Completeness to theta	99.9 %	100 %	100 %
= 27.41°			
Absorption correction	Semi-empirical	Semi-empirical	Semi-empirical
	from equivalents	from equivalents	from equivalents
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F ²	squares on F ²
Data / restraints /	4968 / 0 / 273	4708 / 0 / 255	9656 / 0 / 409
parameters			
Goodness-of-fit on F ²	1.260	1.127	1.065
Final R indices	R1 = 0.0157	R1 = 0.0239	R1 = 0.0206
[I>2sigma(I)]	wR2 = 0.0410	wR2 = 0.0566	wR2 = 0.0449
R indices (all data)	R1 = 0.0159	R1 = 0.0290	R1 = 0.0279
	wR2 = 0.0411	wR2 = 0.0584	wR2 = 0.0473
Largest diff. peak and	1.287 and -0.339	1.809 and -0.321	1.314 and -0.485
hole	e.Ă- ³	e.Ă- ³	e.Ă- ³

Table S-4. Crystal data and structure refinement for complexes 5-7

Cyclic voltammetry

Figure S-20. Oxidation of **1** in CH₂Cl₂/0.1 M NBu₄PF₆ at scan rates of 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against FeCp₂^{0/+}</sup>

Figure S-22. Oxidation of **3** in CH₂Cl₂/0.1 M NBu₄PF₆ at scan rates of 40, 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against $FeCp_2^{0/+}$

Figure S-21. Oxidation of **2** in CH₂Cl₂/0.1 M NBu₄PF₆ at scan rates of 60, 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against $FeCp_2^{0/+}$

Figure S-23. Oxidation of 4 in $CH_2Cl_2/0.1$ M NBu_4PF_6 at scan rates of 50, 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against $FeCp_2^{0/+}$

Figure S-24. Reduction of 4 in $CH_2Cl_2/0.1$ M NBu₄PF₆ at scan rates of 50, 100, 200, 400, 600, 800, 1000, 1500 and 2000 mV/s referenced against FeCp₂^{0/+}

Figure S-25. Cyclovoltammograms of 5-7 in CH₂Cl₂/0.1 M NBu₄PF₆ against the ferrocene/ ferrocenium standard at 100 mV/s

Figure S-26. Cyclovoltammograms of 5 (left) and 7 (right) in $CH_2Cl_2/0.1$ M NBu₄PF₆ against the ferrocene/ ferrocenium standard at multiple scan rates and 100 mV/s, respectively

Figure S-27. IR spectroscopic changes upon the oxidation of complex 1 inside an OTTLE cell (1,2-C₂H₄Cl₂/NBu₄PF₆, 298 K)

Figure S-28. IR spectroscopic changes upon the oxidation of complex 3 inside an OTTLE cell (1,2-C₂H₄Cl₂/NBu₄PF₆, 298 K)

Figure S-29. Deconvoluted IR spectra of the carbonyl region of the neutral (top) and oxidised (bottom) state of 1 and 2 inside an OTTLE cell $(1, 2-C_2H_4Cl_2 / NBuPF_6, r.t.)$. * Residual peaks

Figure S-30. Deconvoluted IR spectra of the carbonyl region of the neutral (top) and oxidised (bottom) state of 4 inside an OTTLE cell $(1, 2-C_2H_4Cl_2 / NBuPF_6, r.t.)$. * Residual peaks5

Table S-5. Deconvoluted IR spectra of the carbonyl region of the neutral and oxidised states of 1, 2 and 4 $(1,2-C_2H_4Cl_2 / NBuPF_6, r.t.)$

Complex	Bands (cm ⁻¹)
1	2072, 1988, 1955, 1942, 1879
1+	2080, 2072 (residual from neutral form), 1994, 1971, 1951, 1934
2	2067, 1972, 1959, 1931, 1888, 1863
2^{+}	2069, 1998, 1979, 1946, 1934
4	2020, 1973, 1912, 1846
4+	1935, 1974, 1993, 2009, 2051

Figure S-31. Contour plots of the calculated HOMO and LUMO orbitals of the neutral complexes for 5-7

Table S-6. Computed IR frequencies (cm⁻¹) and intensity [counts] of the carbonyl region as determined from DFT calculations of the neutral and oxidised species of 1-7

Complex	Bands (cm ⁻¹ [intensity])
1	2129 [560] (br), 2041 [1784], 2010 [2050], 1976 [729] (br)
1+	2152 [198] (br), 2138 [1650], 2037 [1705], 2033 [1390] (br)
2	2128 [499] (br), 2038 [1737], 2010 [2201], 1979 [511] (br)
2+	2150 [383] (br), 2133 [1637], 2075 [776], 2024 [1518] (br)
3	2128 [565] (br), 2050 [639] (br), 2040 [1354], 2009 [1810], 1990 [625], 1978 [964] (br)
3+	2152 [369] (br), 2134 [1863], 2070 [786], 2029 [1627] (br)
4	2091 [608] (br), 2050 [1994], 2000 [1493], 1953 [1114] (br)
4 ⁺	2153 [510] (br), 2095 [878], 2088 [1923], 2056 [1235], 2030 [420] (br)
5	2170 [415] (br), 2066 [1570], 2042 [2502], 2031 [557] (br)
5 ⁺	2192 [164] (br), 2174 [1867], 2121 [876], 2097 [1496], 2056 [1713] (br)
6	2134 [560] (br), 2089 [2127], 2041 [1149], 1992 [1155] (br)
6+	2199 [404] (br), 2131 [795], 2128 [2079], 2090 [580], 2065 [414] (br)
7	2178 [580] (br), 2102 [403], 2078 [2472], 2069 [2034], 2043 [3962], 2021 [414] (br)
7+	2194 [420] (br), 2163 [1982], 2113 [1235], 2108 [1312], 2093 [1115], 2054 [2810] (br)

	α-ΗΟΜΟ	β-ΗΟΜΟ	α-LUMO	β-LUMO
1+	-8.825	-8.816	-5.483	-7.180
2+	-8.771	-8.765	-5.953	-7.159
3+	-8.638	-8.623	-5.656	-7.169
4 ⁺	-9.116	-9.086	-6.184	-7.700
5+	-9.133	-9.115	-5.37	-7.314
6+	-9.573	-9.550	-6.137	-7.736
7 ⁺	-8.980	-8.954	-5.390	-7.172

 Table S-7. Energy (eV) of the calculated HOMO and LUMOs of the oxidized species of 1-7

Figure S-32. Contour plots and spin densities of the calculated HOMO and LUMO orbitals of the oxidised complexes 1+-4+

Figure S-33. Contour plots and spin densities of the calculated HOMO and LUMO orbitals of the oxidised complexes 5+-7+

DFT calculated Structural Coordinates

Complex 1:

W	0.8595	2.14264	16.19429
С	1.4671	3.28851	17.77774
0	1.80495	3.9192	18.67765
С	-1.05852	2.25632	16.96979
0	-2.08763	2.39083	17.45535
С	0.51745	3.91686	15.17075
0	0.36246	4.94435	14.69212
С	2.81648	2.19239	15.51955
0	3.91098	2.27154	15.19223
С	1.30374	0.49347	17.36801
0	1.58597	-0.37871	18.0543
С	0.31824	0.78271	14.50217
0	-0.49129	-0.23409	14.4465
С	-1.39195	-0.60845	15.53755
Н	-2.11279	0.199	15.64894
Н	-0.80282	-0.70104	16.44664
С	-2.05531	-1.90903	15.15735
Н	-2.63388	-1.80232	14.23921
Н	-2.73394	-2.20168	15.96041
Н	-1.318	-2.70124	15.02342
С	1.14532	0.78764	13.2475
С	1.1298	1.80915	12.24935
С	2.14795	1.75026	11.24727
Н	2.13504	2.46004	10.43642
С	3.17956	0.8046	11.28904
Н	3.94373	0.82543	10.52495
С	3.20514	-0.18442	12.28725
Н	3.9856	-0.92986	12.31896
С	2.15502	-0.21151	13.21219
Н	2.14345	-0.97732	13.97582
Cr	1.24332	-0.36258	11.17237
С	-0.30934	0.04719	10.27929
0	-1.28225	0.29282	9.69861
С	1.86667	-1.14332	9.64122
0	2.26433	-1.64973	8.67591
С	0.51573	-1.98297	11.6413
0	0.06406	-3.01184	11.9228
Ν	0.19096	2.80678	12.21869

С	-1.21497	2.56961	12.54229
Н	-1.81868	2.66825	11.63527
Н	-1.57686	3.29524	13.27195
Н	-1.36953	1.56932	12.9299
С	0.38749	3.95967	11.34737
Н	1.4165	4.31061	11.39535
Н	-0.25944	4.76232	11.69887
Н	0.12767	3.74566	10.30355

Complex 1⁺

W	0.93683	2.12125	16.2514
С	1.52105	3.29283	17.88573
0	1.83782	3.92316	18.77813
С	-1.03877	2.41044	16.85393
0	-2.09923	2.6153	17.22112
С	0.89545	3.872	15.14387
0	0.90645	4.86412	14.57596
С	2.94071	1.96926	15.75761
0	4.05181	1.91402	15.49468
С	1.10545	0.48365	17.53531
0	1.23588	-0.38068	18.26715
С	0.3965	0.84261	14.57716
0	-0.45905	-0.14891	14.42978
С	-1.39934	-0.54171	15.4789
Н	-2.07397	0.29754	15.64312
Н	-0.83237	-0.72574	16.38876
С	-2.13327	-1.77421	15.00892
Н	-2.69057	-1.5812	14.09166
Н	-2.84488	-2.07678	15.77872
Н	-1.44727	-2.60421	14.83874
С	1.22919	0.894	13.31002
С	1.11729	1.87491	12.26175
С	2.09477	1.78461	11.21243
Н	1.99194	2.42189	10.34905
С	3.23087	0.96527	11.29916
Н	3.97297	1.00376	10.51344
С	3.37342	0.0754	12.36725
Н	4.2257	-0.58505	12.44012
С	2.34377	0.01987	13.31578
Н	2.42247	-0.68309	14.13435
Cr	1.40958	-0.41356	11.29856
С	-0.34646	-0.20759	10.59689

0	-1.39749	-0.08201	10.17694
С	1.87461	-0.99386	9.52708
0	2.15659	-1.32106	8.47789
С	0.78348	-2.1145	11.9533
0	0.41238	-3.10816	12.35597
Ν	0.13384	2.7951	12.16675
С	-1.20877	2.63683	12.72616
Н	-1.93527	2.82347	11.93238
Н	-1.39084	3.34707	13.53303
Н	-1.36721	1.62834	13.08787
С	0.25701	3.93044	11.25098
Н	1.28016	4.29866	11.22436
Н	-0.37365	4.73408	11.62626
Н	-0.07195	3.67984	10.23707

W	0.07417	13.87056	7.77252
С	-0.47188	15.57956	8.77602
0	-0.76705	16.53667	9.33329
С	1.68388	13.7272	9.07186
0	2.56284	13.68696	9.80421
С	1.2057	15.08292	6.53794
0	1.8108	15.80169	5.88261
С	-1.59281	14.11636	6.56062
0	-2.524	14.29292	5.9196
С	-1.12687	12.82846	9.10428
0	-1.81574	12.34049	9.87805
С	0.82034	12.0758	6.64653
0	1.14464	10.89659	7.13125
С	0.86131	10.46099	8.48194
Н	-0.22043	10.44501	8.60345
Н	1.28906	11.1787	9.17988
С	1.45811	9.08287	8.65271
Н	1.03086	8.38223	7.93517
Н	1.23969	8.72168	9.65933
Н	2.54156	9.10349	8.52621
С	1.24819	12.07491	5.21554
С	0.66132	12.94614	4.26982
Н	-0.13818	13.58223	4.60146
С	1.11079	13.04613	2.91608
С	2.03567	12.06532	2.48662
Н	2.3368	12.00652	1.45383

С	2.62397	11.17398	3.41503
Н	3.35446	10.46012	3.06041
С	2.25569	11.16882	4.75659
Н	2.70762	10.47336	5.44437
Ν	0.61562	13.99884	2.0689
С	-0.47451	14.86705	2.49657
Н	-1.41842	14.32695	2.6306
Н	-0.62324	15.63342	1.73979
Н	-0.22184	15.37393	3.42773
С	0.84272	13.86655	0.63758
Н	1.90998	13.83603	0.41201
Н	0.42569	14.73507	0.1343
Н	0.37115	12.96691	0.22377
Cr	0.40113	10.84059	3.54195
С	-0.27795	9.56203	4.70003
0	-0.69286	8.76491	5.42004
С	-1.33079	11.20143	2.99439
0	-2.40426	11.44433	2.65258
С	0.52416	9.54622	2.20674
0	0.62518	8.75611	1.37754

Complex 2⁺

W	0.16068	13.8909	7.79597
С	-0.27203	15.66872	8.81042
0	-0.50255	16.63948	9.35787
С	1.83171	13.69614	9.04091
0	2.73512	13.61614	9.72948
С	1.24921	15.02285	6.45798
0	1.81904	15.68231	5.71523
С	-1.54281	14.21081	6.6606
0	-2.47839	14.41088	6.03379
С	-1.01161	12.91643	9.22251
0	-1.67459	12.4617	10.0311
С	0.69732	12.07791	6.70459
0	0.8956	10.84095	7.11658
С	0.71899	10.4081	8.49666
Н	-0.35283	10.36933	8.68804
Н	1.17337	11.1503	9.14938
С	1.36667	9.052	8.64759
Н	0.9142	8.31736	7.98141
Н	1.22968	8.70759	9.67384
Н	2.43833	9.10045	8.45005

С	1.1124	12.08566	5.24672
С	0.4691	12.89152	4.28615
Н	-0.38921	13.46159	4.59409
С	0.9939	13.08434	2.9618
С	1.97624	12.13614	2.54718
Н	2.31818	12.1123	1.52518
С	2.61539	11.31194	3.49571
Н	3.41738	10.66421	3.16784
С	2.21029	11.28497	4.82855
Н	2.70835	10.64349	5.53836
Ν	0.50539	14.02101	2.13565
С	-0.56529	14.92233	2.5689
Н	-1.51618	14.39612	2.68812
Н	-0.69558	15.69454	1.81742
Н	-0.30331	15.40944	3.50792
С	0.96726	14.10058	0.74846
Н	2.05439	14.17847	0.70482
Н	0.54847	14.99067	0.29016
Н	0.64648	13.23175	0.16688
Cr	0.40414	10.7445	3.51914
С	-0.1426	9.28042	4.64923
0	-0.46181	8.40813	5.2998
С	-1.2654	10.97063	2.61072
0	-2.24915	11.12824	2.06363
С	0.7399	9.40217	2.20639
0	0.93978	8.60992	1.41571

W	2.27187	-0.42716	0.13177
С	3.92248	-1.51666	0.61236
0	4.85625	-2.13785	0.87718
С	3.13477	-0.07941	-1.71896
0	3.64661	0.06958	-2.73326
С	1.47852	-2.17825	-0.62928
0	1.1077	-3.1827	-1.03874
С	1.5196	-0.83452	2.01898
0	1.15828	-1.08013	3.07796
С	3.25326	1.20138	0.95018
0	3.8771	2.03221	1.43623
С	0.40784	0.70882	-0.51526
С	-0.94477	0.12045	-0.61744
С	-1.94723	0.69104	-1.45713

Н	-1.72357	1.58815	-2.01245
С	-3.21014	0.11784	-1.60814
Н	-3.91281	0.60319	-2.2659
С	-3.55617	-1.10753	-0.95728
С	-2.61895	-1.58458	0.00923
Н	-2.85904	-2.42833	0.63502
С	-1.35235	-1.00858	0.13764
Н	-0.67937	-1.44065	0.85959
Ν	-4.72098	-1.73746	-1.19416
С	-5.7228	-1.14401	-2.07756
Н	-6.16565	-0.24339	-1.64195
Н	-6.51163	-1.87136	-2.24378
Н	-5.28707	-0.88997	-3.04382
С	-5.10222	-2.90986	-0.40964
Н	-4.31219	-3.66081	-0.42626
Н	-5.99354	-3.34676	-0.84921
Н	-5.3192	-2.64912	0.63076
Cr	-2.77746	0.65985	0.61696
С	-2.7315	2.49555	0.65854
0	-2.69232	3.65202	0.69997
С	-4.51687	0.69766	1.21032
0	-5.61294	0.7212	1.58326
С	-2.21259	0.66103	2.36625
0	-1.8696	0.6812	3.47191
0	0.34675	1.92077	-1.00979
С	1.4667	2.84076	-1.09143
Н	1.73527	3.11909	-0.07366
Н	2.30502	2.33242	-1.5614
С	1.01712	4.03786	-1.89497
Н	1.83913	4.75364	-1.95132
Н	0.74311	3.74901	-2.91064
Н	0.16543	4.5293	-1.42316

Complex 3⁺

W	2.29386	-0.48531	0.04289
С	3.95094	-1.74685	0.24341
0	4.84949	-2.43734	0.34957
С	3.01494	0.01893	-1.85203
0	3.42595	0.27466	-2.88357
С	1.2775	-2.10507	-0.74172
0	0.73846	-3.02539	-1.15619
С	1.71674	-1.05795	1.95277

0	1.40813	-1.3875	3.00237
С	3.46722	1.02253	0.87731
0	4.16846	1.79035	1.34627
С	0.52725	0.75838	-0.25483
С	-0.85167	0.16802	-0.36033
С	-1.75657	0.61734	-1.35205
Н	-1.47019	1.44255	-1.98769
С	-3.01144	0.01844	-1.55202
Н	-3.63873	0.40045	-2.34171
С	-3.39857	-1.15099	-0.82332
С	-2.60123	-1.42392	0.3342
Н	-2.91268	-2.17195	1.04566
С	-1.34011	-0.83001	0.50724
Н	-0.74367	-1.14335	1.34999
Ν	-4.49114	-1.86224	-1.12977
С	-5.36061	-1.45652	-2.2365
Н	-5.89124	-0.52695	-2.01235
Н	-6.09645	-2.23601	-2.40693
Н	-4.78616	-1.32925	-3.15448
С	-4.91259	-2.98712	-0.29142
Н	-4.07782	-3.6622	-0.10379
Н	-5.68184	-3.54499	-0.81631
Н	-5.32405	-2.64824	0.66358
Cr	-2.85555	0.85644	0.59722
С	-3.05411	2.74046	0.24746
0	-3.16991	3.84688	0.0248
С	-4.70906	0.88182	1.03129
0	-5.81834	0.89189	1.28598
С	-2.55943	1.00584	2.4964
0	-2.38641	1.07571	3.61513
0	0.38483	2.04244	-0.53423
С	1.50396	2.96937	-0.62711
Н	1.89027	3.11471	0.38105
Н	2.27608	2.51404	-1.2443
С	0.99197	4.25911	-1.22348
Н	1.81434	4.97368	-1.28324
Н	0.607	4.10444	-2.23228
Н	0.20678	4.69879	-0.60765

W	-1.77827	-0.25109	0.11615
Cr	2.90111	-0.03972	0.07545
0	-3.58247	-2.78282	0.85707
0	-3.62684	0.19172	-2.46764
0	-3.8831	1.687	1.39609
0	-0.6018	-0.29244	3.10163
0	-0.1373	2.41634	-0.65822
0	2.67973	-1.95245	2.37475
0	2.57996	2.20198	2.04946
0	5.8418	-0.04944	0.65323
Ν	-0.07394	-1.67689	-0.88976
С	-2.9393	-1.85939	0.59408
С	-2.90773	-0.00417	-1.59106
С	-3.09622	0.97038	0.91831
С	-0.95964	-0.32046	2.00959
С	-0.23077	1.11332	-0.57569
С	2.73384	-1.22662	1.47737
С	2.69988	1.34202	1.29102
С	4.7089	-0.04765	0.43276
С	1.01852	0.51601	-1.10569
С	2.12126	1.30605	-1.55979
Н	2.04506	2.38132	-1.52539
С	3.28192	0.70522	-2.03899
Н	4.10887	1.3147	-2.37354
С	3.39817	-0.70381	-2.02419
Н	4.31152	-1.17799	-2.35293
С	2.32831	-1.49457	-1.5902
Н	2.43161	-2.5686	-1.60028
С	1.12606	-0.89046	-1.15568
С	0.1868	-2.87565	-0.04461
Н	0.51994	-2.57089	0.94137
Н	0.92908	-3.53697	-0.49588
Н	-0.74293	-3.42892	0.05277
С	-0.567	-2.1604	-2.22416
Н	-1.50914	-2.68212	-2.07542
Н	0.15488	-2.84594	-2.67521
Н	-0.7208	-1.31335	-2.88779
С	-1.21463	3.29022	-0.2141
Н	-2.11688	3.00734	-0.75453
Н	-1.3636	3.11704	0.85066
С	-0.80139	4.71267	-0.50535

Н	-1.59761	5.38521	-0.18125
Н	0.10978	4.97654	0.03384
Н	-0.63833	4.86375	-1.57347

Complex 4⁺

W	-1.78104	-0.23873	0.05872
Cr	2.83319	-0.01785	0.00978
0	-3.66323	-2.83337	0.66147
0	-3.2905	0.17459	-2.7441
0	-4.03829	1.6027	1.35096
0	-0.4997	-0.32048	3.00681
0	-0.13177	2.42331	-0.62602
0	2.4405	-1.76314	2.43893
0	2.68882	2.4242	1.79766
0	5.7799	-0.2924	0.63145
Ν	-0.09937	-1.6871	-0.88139
С	-3.00898	-1.92808	0.46348
С	-2.73045	-0.0018	-1.76725
С	-3.22389	0.95534	0.8836
С	-0.9202	-0.32951	1.94995
С	-0.2065	1.12182	-0.5912
С	2.56514	-1.10207	1.51196
С	2.75883	1.49667	1.13564
С	4.66616	-0.19009	0.40617
С	0.99609	0.5182	-1.1541
С	2.10201	1.2982	-1.63175
Н	2.02478	2.3742	-1.61659
С	3.26237	0.68512	-2.09391
Н	4.09484	1.28469	-2.43296
С	3.38208	-0.72378	-2.02913
Н	4.30269	-1.20334	-2.32959
С	2.30284	-1.51288	-1.60324
Н	2.41179	-2.58654	-1.58752
С	1.11352	-0.89905	-1.16042
С	0.1583	-2.86453	0.00376
Н	0.48011	-2.53932	0.98568
Н	0.91202	-3.5269	-0.4237
Н	-0.76404	-3.43215	0.09926
С	-0.56593	-2.22303	-2.20905
Н	-1.51874	-2.72912	-2.07258
Н	0.15908	-2.93492	-2.60826
Н	-0.6869	-1.40663	-2.91582

С	-1.19434	3.28182	-0.10288
Н	-2.11478	3.02199	-0.62652
Н	-1.29739	3.06206	0.96016
С	-0.79559	4.71611	-0.34597
Н	-1.57546	5.37229	0.04364
Н	0.13719	4.95688	0.16408
Н	-0.68285	4.91823	-1.41141

W	3.48327	5.08619	11.97831
С	3.92316	7.06568	11.97351
0	4.15977	8.1882	11.9743
С	2.37347	5.36199	13.68269
0	1.76807	5.52775	14.637
С	1.87432	5.59428	10.81126
0	1.00898	5.96939	10.16514
С	4.65853	4.81604	10.30308
0	5.33355	4.69318	9.3932
С	5.16708	4.87569	13.12158
0	6.12403	4.88263	13.75007
С	2.81079	2.98452	11.96623
0	3.11727	1.98704	12.73257
Cr	0.87564	0.5741	10.41073
С	2.45724	-0.0786	9.78122
0	3.45855	-0.49513	9.38869
С	0.01746	-0.75219	9.50606
0	-0.52376	-1.59885	8.93916
С	1.02769	-0.57222	11.81703
0	1.12256	-1.30868	12.69959
С	1.63947	2.56113	11.14387
С	1.59337	2.63052	9.72189
С	0.41164	2.28331	9.04428
Н	0.3815	2.27749	7.9651
С	-0.74152	1.92191	9.76931
Н	-1.63868	1.65256	9.2278
С	-0.73339	1.90254	11.16778
Н	-1.61511	1.61749	11.7241
С	0.4709	2.17108	11.83853
Н	0.5081	2.10677	12.91816
0	2.71966	2.98249	9.10357
С	2.75507	2.95671	7.68116
Н	3.76305	3.25717	7.40689

Н	2.03484	3.66025	7.25824
Н	2.55821	1.9492	7.30691
С	4.12671	2.07704	13.76289
Н	3.87138	2.91478	14.41263
Н	5.08005	2.27178	13.27092
С	4.13636	0.77199	14.50713
Н	3.17116	0.58192	14.97954
Н	4.89814	0.8188	15.28792
Н	4.37603	-0.05847	13.84114

Complex 5⁺

W	3.3283	5.18771	12.10223
С	3.65885	7.23856	12.15434
0	3.83376	8.35943	12.17631
С	2.08496	5.36622	13.74649
0	1.39713	5.44636	14.64813
С	1.76984	5.5997	10.8445
0	0.91726	5.87811	10.13601
С	4.60016	5.03629	10.47616
0	5.2894	4.9372	9.57806
С	4.95394	5.03301	13.36082
0	5.86289	5.04527	14.04642
С	2.89997	3.10182	11.97805
0	3.40047	1.99671	12.46367
Cr	0.76522	0.65228	10.75523
С	2.40099	-0.2546	10.43646
0	3.37914	-0.78365	10.22205
С	0.01733	-0.73999	9.72562
0	-0.42456	-1.58437	9.11133
С	0.17976	-0.39308	12.2319
0	-0.18749	-1.008	13.108
С	1.68235	2.71211	11.18982
С	1.72917	2.55575	9.777
С	0.56335	2.15573	9.09348
Н	0.59695	1.96256	8.03069
С	-0.6745	2.08872	9.77171
Н	-1.56752	1.82849	9.21737
С	-0.74018	2.30347	11.14224
Н	-1.68194	2.21999	11.66873
С	0.45116	2.55289	11.85187
Н	0.42094	2.66884	12.92857
0	2.90352	2.736	9.20377

С	3.03323	2.59669	7.78892
Н	4.06601	2.85141	7.56816
Н	2.36576	3.28814	7.27084
Н	2.83572	1.56712	7.48147
С	4.56792	2.01288	13.32019
Н	4.33111	2.62896	14.18886
Н	5.38144	2.47809	12.76167
С	4.88211	0.5945	13.70359
Н	4.05401	0.1377	14.24833
Н	5.75695	0.58891	14.35601
Н	5.11158	-0.01374	12.82737

W	1.80093	-0.29483	0.02483
С	2.99616	-1.87994	0.39257
0	3.67174	-2.79044	0.5983
С	3.26849	0.8993	0.45066
0	4.15045	1.61334	0.70663
С	2.55655	-0.24089	-1.87458
0	3.08202	-0.15075	-2.88902
С	1.41175	-0.2014	2.03147
0	1.31857	-0.08706	3.1679
С	0.19347	1.05135	-0.52619
0	0.07196	2.34659	-0.55377
Cr	-2.90684	-0.07822	0.0316
С	-2.32246	-0.87142	1.57731
0	-1.96403	-1.36744	2.55115
С	-4.60091	-0.5751	0.49174
0	-5.67144	-0.87882	0.78682
С	-3.18121	1.4677	0.97441
0	-3.35927	2.43476	1.57041
С	-1.02781	0.4345	-1.05492
0	-0.04747	-1.62286	-0.5323
С	-1.12932	-0.9784	-1.02332
С	-2.28956	-1.63815	-1.45139
Н	-2.38787	-2.71044	-1.37752
С	-3.35444	-0.87552	-1.96438
Н	-4.25565	-1.38424	-2.27942
С	-3.25691	0.52126	-2.08284
Н	-4.08409	1.09497	-2.47732
С	-2.12348	1.16892	-1.5864
Н	-2.06155	2.24773	-1.60781

С	-0.11462	-3.05517	-0.39766
Н	-0.93451	-3.32433	0.2684
Н	0.83097	-3.35895	0.03702
Н	-0.24092	-3.51062	-1.37922
С	1.14476	3.18838	-0.08317
Н	2.00314	3.02902	-0.73757
Н	1.40305	2.86822	0.92729
С	0.66438	4.61171	-0.12072
Н	0.40344	4.91277	-1.13693
Н	1.46295	5.26493	0.23639
Н	-0.20519	4.74978	0.52452

Complex 6⁺

W	1.80888	-0.23785	0.02916
С	3.07412	-1.87384	0.4007
0	3.7515	-2.75632	0.60887
С	3.39816	0.94006	0.37982
0	4.30598	1.60102	0.56841
С	2.33935	-0.15094	-1.95645
0	2.66118	-0.06204	-3.04121
С	1.32718	-0.24859	2.044
0	1.11684	-0.22062	3.15701
С	0.18327	1.09279	-0.52006
0	0.08358	2.3842	-0.54837
Cr	-2.83	-0.07772	-0.0022
С	-2.29287	-0.90076	1.57037
0	-1.95276	-1.42338	2.52822
С	-4.56724	-0.56246	0.45108
0	-5.63361	-0.85941	0.7182
С	-3.08754	1.51071	0.94564
0	-3.22298	2.48746	1.51501
С	-0.99134	0.45456	-1.07387
0	0.00611	-1.5852	-0.4552
С	-1.0884	-0.96103	-0.99791
С	-2.22044	-1.65091	-1.44472
Н	-2.30536	-2.72318	-1.35296
С	-3.3002	-0.90667	-1.95908
Н	-4.198	-1.43028	-2.25987
С	-3.22069	0.49124	-2.10608
Н	-4.06123	1.0443	-2.50214
С	-2.10225	1.16722	-1.62029
Н	-2.05681	2.24682	-1.6527

С	-0.10227	-2.98862	-0.14745
Н	-0.97541	-3.16057	0.4811
Н	0.79613	-3.25448	0.40045
Н	-0.15804	-3.56371	-1.07159
С	1.14541	3.22111	-0.02903
Н	2.00695	3.1032	-0.6901
Н	1.39676	2.85658	0.9703
С	0.65269	4.63916	-0.002
Н	0.39585	4.9843	-1.0044
Н	1.44265	5.28433	0.38631
Н	-0.21958	4.74102	0.64484

W	4.75199	4.43593	4.47135
С	2.87268	4.69917	5.20691
0	1.8143	4.84627	5.61827
С	4.79661	2.6307	5.4561
0	4.7587	1.64587	6.03309
С	5.40712	5.39687	6.16753
0	5.67016	5.94432	7.13365
С	4.55694	6.26438	3.55352
0	4.40034	7.28308	3.06437
С	3.85024	3.52871	2.86284
0	3.26346	3.05044	2.00771
С	6.77429	4.25243	3.64952
0	7.37219	3.30925	2.99926
W	9.0511	9.2662	7.0657
С	8.12235	10.75567	8.0933
0	7.59282	11.59209	8.67051
С	10.71835	9.7366	8.15831
0	11.58563	10.08379	8.81873
С	8.49023	7.9249	8.52657
0	8.1821	7.19618	9.34752
С	7.25779	9.01431	6.09739
0	6.22945	8.9475	5.60418
С	9.65211	10.63619	5.65476
0	9.99251	11.41143	4.88923
С	9.90213	7.61166	5.90394
0	10.9408	6.8668	6.07195
Cr	9.75416	5.93785	2.89592
С	9.76841	4.85416	1.42877
0	9.78777	4.1768	0.49714

С	10.93124	4.77301	3.66899
0	11.69832	4.03896	4.11693
С	11.20269	6.79489	2.20035
0	12.12008	7.33248	1.75465
С	7.68048	5.44964	3.6673
0	8.58934	5.2253	5.92673
С	8.47164	5.87148	4.76022
С	9.15536	7.12438	4.70068
С	9.03746	7.92257	3.55248
Н	9.56942	8.86363	3.50649
С	8.26612	7.51065	2.45379
Н	8.20699	8.12025	1.5634
С	7.63629	6.26432	2.50485
Н	7.06341	5.9189	1.6534
С	8.57147	3.80334	5.97882
Н	7.55212	3.41828	5.91679
Н	8.99476	3.53606	6.94466
Н	9.18079	3.38086	5.17855
С	6.73372	2.04003	2.72184
Н	6.32094	1.6582	3.6552
Н	5.92284	2.23174	2.01946
С	7.77099	1.12281	2.14003
Н	8.18482	1.53553	1.21886
Н	7.30125	0.16525	1.9078
Н	8.58235	0.94447	2.84752
С	11.8363	7.03697	7.19517
Н	12.34504	7.99207	7.06106
Н	11.23441	7.06748	8.10404
С	12.79979	5.88463	7.19337
Н	12.27668	4.93431	7.31012
Н	13.48958	6.00405	8.03087
Н	13.37977	5.85935	6.26971

Complex 7⁺

W	4.75171	4.51036	4.35886
С	2.77882	4.79002	4.93625
0	1.69901	4.93734	5.25265
С	4.65581	2.68282	5.31152
0	4.54127	1.69291	5.86261
С	5.28082	5.44329	6.11644
0	5.52692	5.9616	7.09988

С	4.64709	6.36649	3.48009
0	4.55267	7.39811	3.00642
С	4.00219	3.62205	2.64812
0	3.53874	3.14981	1.72312
С	6.79399	4.26928	3.7524
0	7.49606	3.27206	3.27764
W	9.05358	9.17656	7.14434
С	8.0742	10.6037	8.29298
0	7.53423	11.37832	8.92254
С	10.74719	9.68304	8.20741
0	11.62898	10.02948	8.83901
С	8.59603	7.74397	8.57034
0	8.35569	6.94617	9.34232
С	7.25797	8.88907	6.20358
0	6.24138	8.78762	5.69358
С	9.50255	10.63273	5.75343
0	9.74633	11.42485	4.97324
С	9.96175	7.65689	5.95178
0	11.06107	6.95396	5.99931
Cr	9.82415	5.93468	2.95288
С	9.7575	4.66159	1.57097
0	9.74015	3.90008	0.72922
С	10.95274	4.66475	3.78612
0	11.61672	3.88642	4.27612
С	11.14051	6.7443	1.86085
0	11.91186	7.23982	1.19535
С	7.69433	5.48188	3.75899
0	8.59885	5.32625	6.03639
С	8.47084	5.92948	4.86362
С	9.17051	7.16923	4.77222
С	9.09715	7.9346	3.59907
Н	9.65036	8.8634	3.54036
С	8.29043	7.52471	2.52242
Н	8.22408	8.12243	1.62305
С	7.62341	6.30953	2.61101
Н	7.02883	5.96338	1.77386
С	8.42169	3.92323	6.21943
Н	7.37507	3.64025	6.10923
Η	8.7477	3.72719	7.23786
Η	9.04182	3.36517	5.51649
C	6.91416	1.9596	3.10449
Η	6.67054	1.5749	4.09625
Н	5.99077	2.07133	2.5361

С	7.91522	1.09177	2.39535
Н	8.15599	1.48682	1.4077
Н	7.49094	0.09448	2.26692
Н	8.83725	0.99357	2.97047
С	12.02158	7.14044	7.06466
Н	12.45371	8.13534	6.94709
Н	11.48257	7.09508	8.0121
С	13.06046	6.06051	6.95217
Н	12.61753	5.06938	7.0599
Н	13.79517	6.1911	7.74853
Н	13.58655	6.11099	5.99761

References

- (1) van Jaarsveld, N. A.; Liles, D. C.; Lotz, S. Thiophene Decorated with Fischer Carbene Ligands. *Dalton Trans.* **2010**, *39*, 5777–5779.
- (2) Fischer, E. O.; Kreiter, C. G.; Kollmeier, H. J.; Müller, J.; Fischer, R. D. Übergangsmetall-Carben-Komplexe XXVII. Ringsubstituierte (Methoxyphenylcarben)-Pentacarbonylchrom(o)-Komplexe. J. Organomet. Chem. 1971, 28 (2), 237–258.
- (3) Öfele, K. Ein Neuer Weg Zur Darstellung von Aromaten-Metall-Carbonylen. *Chem. Ber.* 1966, 99 (5), 1732–1736.
- (4) Mahaffy, C. A. L.; Pauson, P. L.; Rausch, M. D.; Lee, W. (η6-Arene)Tricarbonylchromium Complexes, in Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses, Volume 28; Angelici, R. J., Ed.; John Wiley & Sons, Inc., 1990.
- (5) McGarrity, J. F.; Ogle, C. A.; Brich, Z.; Loosli, H. R. A Rapid-Injection (RI) NMR Study of the Reactivity of Butyllithium Aggregates in Tetrahydrofuran. J. Am. Chem. Soc. 1985, 107 (7), 1810–1815.
- (6) Bauer, W.; Winchester, W. R.; Schleyer, P. von R. Monomeric Organolithium Compounds in Tetrahydrofuran: Tert-Butyllithium, Sec-Butyllithium, Supermesityllithium, Mesityllithium, and Phenyllithium. Carbon-Lithium Coupling Constants and the Nature of Carbon-Lithium Bonding. Organometallics 1987, 6 (11), 2371–2379.