SUPPLEMENTARY MATERIAL

Potential of South African Medicinal plants targeting the reduction of Aβ42 Protein as a treatment of Alzheimer's disease

TABLE S1: ¹H NMR and ¹³C NMR data for Crotoxigenin-3-*O*- β -digitalopyranosyl-(1-4)-*O*- β *digitoxopyanoside* [A] in methanol-d4 compared to those reported by (Rakotondramanga et al., 2016) in DMSO-d6

Position	δH (observed ppm),	δH (literature ppm),	δC (observed ppm)	δC (literature ppm)	
	J(Hz)	J (Hz)		(
Aglycone			I	I	
1	2.2 (2H, m)	2.42 (2H, dt, I-13 5 3 5 3 5)	31.3	31.4	
2	1.86, 1.63 (2H, m)	J = 13.3, 3.3, 3.3, 3.3	28.7	32.5	
3	4.08(1H br s)	4.02(1H br s)	72.09	76.0	
4	1 44 (2H m)	1 44 (2H)	20.6	35.6	
5	1.86 (1H m)	1 66 (1H)	34.5	42.83	
6	1.84, 1.53 (2H, m)	1.88, 1.25 (2H)	27.9	30.3	
7	1.83, 1.59 (2H, m)	1.71, 1.22 (2H)	24.6	28.2	
8	1.88 (1H, m)	1.65 (1H)	41.61	48.5	
9	2.20 (1H, m)	1.74 (1H)	29.5	42.79	
10	-	-	50.8	51.36	
11	1.61 (2H, m)	1.46,1.19 (2H)	21.4	21.7	
12	1.54, 1.63 (2H, m)	1.49, 1.35 (2H)	39.4	39.4	
13	-	-	49.68	49.4	
14	-	-	84.7	85.0	
15	1.77 (2H, m)	2.41, 1.62 (2H)	21.7	26.8	
16	2.2, 1.9 (2H, m)	2.11, 1.87 (2H)	26.5	27.7	
17	2.8 (1H, dd, J=8.7, 5.9)	2.76 (1H, dd, J=9.4,5.4)	50.8	50.9	
18	0.98 (3H, s)	0.87 (3H,s)	14.8	15.6	
19	9.44 (1H, s)	9.97 (1H,s)	206.7	208.3	
20	-	-	176.0	174.4	
21	5.06 (1H, dd, J=18.4,	5.01 (1H, dd, J=18.2,1.8)	73.9	73.5	
	1.68), 4.9 (1H, dd, J=	4.80 (1H, dd, J=18.2,1.8)			
	18.2, 1.79)				
22	5.94 (1H, br.s)	5.89 (1H, br.s)	116.4	117.8	
23	-	-	177.2	174.6	
Sugar Moie	eties				
Digitoxose			055	05.0	
1'	4.95 (1H, m)	4.94 (1H, br.dd, I-1, 0, 1, 2)	95.7	95.3	
21	$1.00 \ 1.77 \ (2 H m)$	J=1.9,1.2	27.5	27.2	
2	1.99, 1.77 (2H, III)	1.97, 1.73 (2H)	57.5	66.8	
	4.50(111, q, J=0.17, 5.0)	4.24 (111, q, J=0.4, 5.2)	827	87.8	
4 5'	3.20 (111, ud, J=9.4, 2.0)	3.22 (111, ud, J=9.3, 2.9)	67.1	67.0	
6'	1.30(3H d I - 6.2)	1.36(3H d I - 6.5)	15.5	16.5	
Digitalose	1.50 (511, d, J=0.2)	1.50 (511, d, J =0.5)	15.5	10.5	
1"	1 27 (21 d L-7 8)	4.22(111 + 1 - 7.8)	104.7		
2"	4.37 (3H, d, J = 7.8)	4.52 (IH, d, J=7.8)	60.0	70.3	
-	7.7)	<i>J. (</i> (111, uu, J–7. <i>J</i> , <i>1</i> .0)	07.7		
3"	3.15 (1H, dd, J=9.6, 3.1)	3.27 (1H, dd, J=9.5,3.3)	82.9	83.4	
4"	3.89 (1H)	3.22 (1H)	68.3	67.8	
5"	3.66 (1H, dd, J=12.5, 67)	3.63 (1H, dd, J=6.1,1.4)	70.09	70.6	
6"	1.32 (3H. d. J=6.2)	1.32 (3H. d. J=6.2)	17.13	18.2	
3"-OCH3	3.48 (3H, s)	3.52(3H, s)	55.9	57.7	
	- \- 7 - 7	N= 7 7 /			

Position	δH (observed	δH (literature	δC (observed	δC (literature ppm)	
	ppm),	ppm), <i>J</i> (Hz)	ppm)		
	J (Hz)			,	
1	1.07, 1.82 m	0.92,1.75 m	34.6	36.67	
2	1.65, 1.89 m	1.75 m	33.9	29.07	
3	3.80 m	3.05 m	78.2	76.41	
4	1.77 m	1.14, 1.63 m	32.1	33.97	
5	1.45 m	0.95 m	41.6	43.77	
6	1.41 m	1.13, 1.23 m	26.9	28.53	
7	1.91 m	0.92, 1.94 m	26.6	27.27	
8	1.67 m	1.42 td (J=2.93)	41.8	40.81	
9	1.83 m	0.87 td (J=2.93)	36.2	49.41	
10	-	-	34.7	35.46	
11	1.49, 1.83 m	1.18, 1.4 m	20.8	20.82	
12	1.54 m	1.3, 1.42 m	39.6	38.89	
13	-	-	49.8	48.64	
14	-	-	85.3	83.69	
15	1.79, 2.2 m	1.55t, 1.92t	31.9	32.18	
16	2.22 m	1.75, 1.96 m	26.4	26.38	
17	2.88 dd (J=9.1, 5.9)	2.72 dd (J=9.6, 5.4)	50.8	50.15	
18	0.96 s	0.72 s	22.3	15.73	
19	0.92 s	0.75 s	15.1	12.01	
20	-	-	177.1	176.46	
21	4.95 , 5.01 dd,	4.88 m, 4.95 dd	73.7	73.2	
	J=1.49, 18.4	(J=1.47, 18.32)			
22	5.92 s	5.89 s	116.8	116.26	
23	-	-	176.1	173.96	
1'	4.4 d (J=7.80)	4.2 d (J=8.06)	100.8	100.68	
2'	3.18 m	2.85 m	73.9	73.51	
3'	3.31 m	3.10 m	76.7	76.80	
4'	3.32 m	3.01 m	70.2	70.15	
5'	3.39 m	3.50 m	76.5	76.41	
6'	3.90 m, 3.67 dd (J=5.2, 12)	3.35 m, 3.65 ddd (J=2, 5.4, 12)	61.3	61.15	

TABLE S2: ¹H NMR and ¹³C NMR data for desglucouzarin [B] in methanol-d4 compared to those reported by (Gohar et al., 2000) in DMSO-d6

¹ s: singlet, d: doublet, m: multiplet, dd: doublet-doublet, Chemical shifts are interchangeable due to the different solvents used.

Peak	RT (min)	Acquired [M-H]-	Formula of Possible	Theoretical [M-H]- m/z	Calculated accurate	Possible structure	Mass error	MS/MS Data (Fragments)	Confirmation with a standard		Reference
		m/z	structure		mass (Da)		(ppm)		RT (min)	[M-H]- m/z	
1'	5.60	609.1469	C ₂₇ H ₃₀ O ₁₆	609.1455	610.1533	Rutin	-2.2	301.0353, 300.0292, 271.0259	5.60	609.1454	(Sousa et al., 2014)
2'	10.15	987.5145	$C_{49}H_{80}O_{20}$	987.5164	988.5243	Clethroidoside B	1.9	471.3481, 469.1565	-	-	http://www.ebi.ac.uk/che bi/
3'	10.36	1029.5261	C ₅₁ H ₈₂ O ₂₁	1029.5270	1030.5348	Pseudoprostodi oscin	0.8	471.3488, 469.1578	-	-	http://www.ebi.ac.uk/che bi/
4'	10.82	793.4369	$C_{42}H_{66}O_{14}$	793.4374	794.4452	Spinasaponin A	0.6	631.3863	-	-	http://www.ebi.ac.uk/che bi/

Table S3: Tentative identification of compounds obtained from ESI-MS negative mode of DCM:MeOH extract of Cussonia paniculata (leaf)

Table S4: Tentative identification of compounds obtained from ESI-MS negative mode of DCM:MeOH extract of Schotia brachypetala (leaf)

Peak	RT (min)	Acquired [M-H]-	Formula of Possible	Theoretical [M-H]- m/z	Calculated accurate	Possible structure	Mass error	MS/MS Data (Fragments)	Confirmation with a standard		Reference
		m/z	structure		mass (Da)		(ppm)		RT (min)	[M-H]- m/z	
1	5.37	463.0875	$C_{21}H_{20}O_{12}$	463.0876	464.0954	Myricetin-3- O-alpha-L- rhamnopyrano side	2.1	317.0262, 271.0243, 179.0014			(Saldanha et al., 2013)
2	5.64	463.0872	$C_{21}H_{20}O_{12}$	463.0876	464.0954	Isoquercetin	0.8	301.0344, 300.0272, 271.0257	5.67	463.0872	(Sánchez-Rabaneda et al., 2003), (Zhou et al., 2011)
3	6.22	447.0946	C ₂₁ H ₂₀ O ₁₁	447.0927	448.1005	Quercetin-3- O- rhamnoside	-4.2	301.0352, 300.0436, 271.0420, 255.0608			(Soong & Barlow, 2005), (Sánchez- Rabaneda et al., 2003)
4	7.12	301.0356	C ₁₅ H ₁₀ O ₇	301.0348	302.0426	Quercetin	-2.6	151.0066, 121.0306, 107.0152	7.09	301.0384	(Sánchez-Rabaneda et al., 2003)

Fig. S1: Galantamine did not change the level of A β 42. APPsw-transfected HeLa cells were incubated with indicated concentrations of galantamine for 8 h. The level of A β 42 was measured from the conditioned media by using specific ELISA methods. The level of A β 42 was not changed by galantamine (n = 6).

Fig. S2: Effect of fractions on the production of A β 42 in APPsw-transfected HeLa cells. 15 Fractions were obtained from leaves of X. undulatum by HPLC. Cells were incubated with 50 µg/ml extract and 10 µg/ml fractions for 8 h, and the level of A β 42 was measured from the conditioned media by specific ELISA methods. The two fractions, AT-1-49N and AT-1-49O, potently decreased the secreted level of A β 42 (n = 2). *, P<0.05; **, P<0.01; ***, P<0.001.

Fig. S4: HPLC chromatogram of Compound [B] isolated from fraction AT-1-49O of X.undulatum extract

Fig. S5: Compound A and B decreased cell viability. APPsw-transfected HeLa cells were incubated with 10 μ M of compound A or B for 8 h. Cell viability was measured using an EZ-Cytox kit. Compound A and B at high concentration (10 μ M) induced cytotoxicity (n = 6). **, P<0.01.

Fig. S6: Comparison of the accurate mass, retention time and the mass fragmentation pattern of the pure standard (a) and identified compound Rutin (b) from *Cussonia paniculata* leaf extracts

Fig. S7: Comparison of the accurate mass, retention time and the mass fragmentation pattern of the pure standard (a) and identified compound Isoqurcetin (b) from *Schotia brachypetala* leaf extract

Fig. S8: Comparison of the accurate mass, retention time and the mass fragmentation pattern of the pure standard (a) and identified compound Quercetin (b) from *Schotia brachypetala* leaf extract

References

- Gohar, A. A., El-Olemy, M., Abdel-Sattar, E., El-Said, M., & Niwa, M. (2000). Cardenolides and β-sitosterol glucoside from Pergularia tomentosa L. *Nat Prod Sci*, *6*, 142-146.
- Rakotondramanga, M., Raharisololalao, A., Rakotoarimanga, J., Krebs, H. C., Rasoanaivo, L., Razakarivony, A., & Randrianasolo, R. (2016). Cardenolide and Steroid Glycosides from Alafia sp., an Antimalarial Plant from Madagascar. *Chemistry of natural compounds*, 52(5), 865-869.
- Saldanha, L. L., Vilegas, W., & Dokkedal, A. L. (2013). Characterization of flavonoids and phenolic acids in Myrcia bella cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. *Molecules*, 18(7), 8402-8416.
- Sánchez-Rabaneda, F., Jáuregui, O., Casals, I., Andrés-Lacueva, C., Izquierdo-Pulido, M., & Lamuela-Raventós, R. M. (2003). Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). *Journal of mass spectrometry*, 38(1), 35-42.
- Soong, Y. Y., & Barlow, P. J. (2005). Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus longan Lour.) seed by high-performance liquid chromatography–electrospray ionization mass spectrometry. *Journal of Chromatography A*, 1085(2), 270-277.
- Sousa, E. A. d., Da Silva, A. A., Cavalheiro, A. J., Lago, J. H. G., & Chaves, M. H. (2014). A new flavonoid derivative from leaves of Oxandra Sessiliflora RE Fries. *Journal of the Brazilian Chemical Society*, 25(4), 704-708.
- Zhou, C., Liu, Y., Su, D., Gao, G., Zhou, X., Sun, L., ... Bi, K. (2011). A sensitive LC–MS– MS method for simultaneous quantification of two structural isomers, hyperoside and isoquercitrin: application to pharmacokinetic studies. *Chromatographia*, 73(3-4), 353-359.