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Abstract

In this work we consider the Hodgkin Huxley model in the form of a coupled system of

one singularly perturbed partial differential equation and three ordinary differential equations.

The existence of a small parameter, the nonlinearity and the coupling makes the numerical

approximations using explicit finite difference schemes very difficult. In particular, spurious

oscillations have been observed to exist. Here we propose the use of nonstandard finite differ-

ence to improve on the existing time step restrictions. In addition, we prove that the proposed

scheme preserve positivity and is elementary stable. Numerical simulations will be given to

support the performance of the proposed scheme.
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1 Introduction

Response to external impulses is one of the main characteristics of living organisms. This con-

stitutes a series of neuronal activities in the body of the organism which are related to passage of

electrical current through an electrical cable. The axon serves as the conductor for impulses from

the receptor organ to the brain. A model that has served as the bedrock for the transference of these

impulses via the squid giant axon was proposed by Hodgkin and Huxley [13]. Their observation

is modeled by a coupled system of a reaction diffusion equation and three ordinary differential

equations [17],

ǫ
∂u

∂t
= µ∂2u

∂x2
− (gnam3h (u −Ena) + gkn4 (u −Ek) + gl (u −El)) + I,

dm

dt
= (1 −m)αm(u) −mβm(u),

dh

dt
= (1 − h)αh(u) − hβh(u),

dn

dt
= (1 − n)αn(u) − nβn(u),

(1.1)
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where u(x, t) is the electrical potential across the cell membrane, Ei, (i = na, k, l) are the equi-

librium potentials of the sodium, potassium and leakage currents, gm ≥ 0, (i = na, k, l) models

membrane conductivities. The parameters m, h, n are gating variables where m, andh control the

sodium current while n controls the potassium current. In addition, αj , βj ≥ 0, (j = m, h, n) are

specified nonnegative functions and given by [16, 17], as follows

αm = 25 − u
10(exp ( 25−u

10
) − 1) , βm = 4 exp (− u

18
) , αh = 0.07 exp(− u

20
) ,

βh = 1

exp (30−u
10
) + 1 , αn = 10 − u

100(exp ( 10−u
10
) − 1) , βn = 0.125 exp(− u

80
) .

(1.2)

The mathematical analysis of this system of equations is challenging since it is strongly coupled,

nonlinear and it is a four dimensional system. Various authors have considered the reduction of this

system of equations to a system of two equations in order to reduce the challenges in its mathemat-

ical analysis. Following a series of papers on this subject, the first formal mathematical model was

presented in [12]. Later, the same authors performed experiments to support the formulated model

in [13]. It is in this work that they observed Ena, Ek and El can be assumed constants. FitzHugh

[9] reduced the system (1.1) to a system of two singularly perturbed differential equations in u and

m with h and n held constant. Later, a step by step and mathematically explicit reduction from a

four dimensional system to a two dimensional one and finally to a single equation was proposed in

[1]. Recently, equation (1.1) has been reduced to a single variable equation when it was approxi-

mated by a response kernel expansion in terms of the membrane voltage in [14]. It was generally

documented by these authors that based on the assumptions leading to the reduction, some vital

information might have been lost.

It is essential, if possible, to study the equation in its original form. The well-posedness, ex-

istence and uniqueness of solution of system (1.1) and (1.2) was discussed in [16]. The author in

[17] later proposed and analysed a backward Euler scheme for the approximation of the system.

The scheme is implicit and follows some iterative processes that needs more computer memory for

storage as compared to explicit schemes. Recently, an explicit finite difference scheme that satisfies

a maximum principle was designed and analysed in [10]. A major challenge they observed and re-

ported is the emergence of spurious oscillation at some point in time during the integration of one of

the gate variables as a result of instability in the scheme that approximates the membrane potential.

This is due to the fact that the system (1.1) is singularly perturbed as the model is valid for µ, ǫ≪ 1.

It has also been proposed that the singular perturbation theory is a plausible tool to analyze (1.1)

and (1.2). We also highlight the work [6] where the use of an exponential finite difference scheme

for (1.1) was investigated. They observed that for standard schemes, stable computations of the

rapid rising phase of action potential, forces the time steps to be very small.

In this work we propose the use of nonstandard finite difference (NSFD) method for the nu-

merical solution of system (1.1). The approach, first introduced by Mickens [18], has been shown

recently to be dynamically consistent [5] and accurate in approximating systems of differential

equations [7] and singularly perturbed differential equations [2, 15]. We will design, apply and

compare some nonstandard finite difference schemes for (1.1).

The structure of this work is as follow. Section 2 is devoted to developing and qualitative

analysis of nonstandard numerical schemes to approximate the equation. The better performance

of the schemes were shown through some numerical experiments in Section 3. We discuss our

observation and give some idea on further research in Section 4.
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2 Numerical Schemes

In this section we will present preliminaries in the derivation of nonstandard explicit finite differ-

ence schemes to approximate the solutions of equations (1.1) and (1.2). Following [10], the model

(1.1) can be formulated mathematically as follows. Let Ω ⊂ R be a bounded interval, then we

summarise the equations as

ǫ
∂u

∂t
= µ∂2u

∂x2
−

q

∑
i=1
gi(y1,⋯, yp)(u −Ei) + I,

∂yℓ

∂t
= (1 − yℓ)αℓ(u) − yℓβℓ(u),

(2.1)

where (x, t) ∈ Ω×(0, T ), Emin are the electric potentials and ℓ = 1,⋯, p. Without loss of generality,

we will take µ = ǫ, unless otherwise stated. The appropriate initial conditions are u(x,0) = u0(x)
and yℓ(x,0) = yℓ0(x). Further, by the maximum principle,

Emin ≤ u(x, t) ≤ Emax, and 0 ≤ yℓ ≤ 1, (2.2)

wheneverEi ≤ u0(x) ≤ Emax and 0 ≤ yℓ0(x) ≤ 1 respectively, whereEmin = min
1≤i≤q

Ei andEmax =max
1≤i≤q

Ei.

Throughout the paper, a numerical approximation of the unknown variables w(x, t) on a uniform

grid will be written as wn
m at time tn = n∆t and spatial point xm = m∆x, where m = 0,1,2,⋯,M

and n = 0,1,2,⋯.

2.1 Temporal models and mathematical preliminaries

Consider an autonomous differential equation

dw

dt
= f(w,a) (2.3)

where a represent any scalar constant, with a finite difference scheme

wn+1 = F (wn,∆t, a). (2.4)

Definition 1 ([8]). A difference method is called NSFD method if at least one of the following

properties is satisfied,

• In the first order discrete derivative, the denominator ∆t is replaced by a (carefully chosen)

nonnegative function φ(∆t) satisfying φ(∆t) =∆t +O[(∆t)2], e.g., φ(∆t) = 1 − e−∆t.

• In the expression f , nonlinear terms are approximated in a nonlocal way. E.g., w2 ≈ wn+1wn.

Definition 2 ([18]). An exact difference scheme is one for which the solution to the difference

scheme has the same general solution as the associated equation.

Definition 3 ([4]). The finite difference scheme (2.4) is stable with respect to monotone dependence

on initial values if
∂F

∂y
(∆t;y) ≥ 0, y ∈ R, ∆x > 0.
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Notice that using Definition 2, if the solution of (2.3) and (2.4) have the same general solution,

then scheme (2.4) is an exact scheme. To illustrate the ideas presented in the above definitions we

consider the following subequation of (1.1).

ǫ
dw

dt
= λ − γw. (2.5)

In particular, equation (2.5) is motivated by observing that all the equations in (1.1) have this struc-

ture in their reaction terms. Assuming γ and λ are positive, then (2.5) has exactly one positive

equilibrium which is asymptotically stable. Following the procedure highlighted in [18], and refer-

ences therein, we propose the following exact scheme

ǫ
wn+1 −wn

φ(∆t) = λ − γwn+1, (2.6)

which can also be written as

wn+1 = λφ(∆t) + ǫwn

ǫ + φ(∆t)γ , (2.7)

where φ(∆t) takes the form

φ(∆t) = exp((γ/ǫ)∆t) − 1(γ/ǫ) ,

and satisfies φ(∆t) = ∆t + O([∆t]2). As indicated, scheme (2.6) is exact, hence it preserves all

the qualitative properties of (2.5). Some properties possessed by any scheme of type (2.6) will be

discussed next. In particular, scheme (2.7) clearly preserves the following:

P1 Positivity: given that wn > 0, then wn+1 > 0.

P2 Boundedness: given that wn ∈ (0, λ
γ
), then wn+1 ∈ (0, λ

γ
).

P3 Preservation of fixed points.

2.1.1 Discretization of the gating equations

Motivated by the discussion above, we propose the following scheme for equations (2.1)2,

yn+1ℓ − ynℓ
φ

= (1 − yn+1ℓ )αℓ(un) − yn+1ℓ βℓ(un). (2.8)

We rewrite scheme (2.8) to get

yn+1ℓ = F ∶= ynℓ + φαℓ(un)
1 + φ(αℓ(un) + βℓ(un)) . (2.9)

Now
∂F

∂ynℓ
= 1

1 + φ(αℓ(un) + βℓ(un)) > 0,
since αℓ(un) > 0 and βℓ(un)) > 0. We also notice that if 0 ≤ ynℓ ≤ 1 then 0 ≤ yn+1ℓ ≤ 1, hence

the discrete solution is bounded. In particular, (2.8) is topologically dynamically consistent with

system (2.5) on the subinterval [0,∞).
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2.1.2 Discretization of the full temporal model

In this section we are interested in

ǫ
∂u

∂t
= −

q

∑
i=1
gi(y1,⋯, yp)(u −Ei) + I,

∂yℓ

∂t
= (1 − yℓ)αℓ(u) − yℓβℓ(u),

(2.10)

Putting together the ideas above, we can present a full difference scheme for the temporal model

(2.10), i.e.,

ǫ
un+1m − unm

φ
= −

q

∑
i=1
gi(yn1 ,⋯, ynp )(un+1m −Ei) + I,

yn+1ℓ − ynℓ
φ

= (1 − yn+1ℓ )αℓ(un) − yn+1ℓ βℓ(un).
(2.11)

Scheme (2.11) preserves the positivity and boundedness of the solutions.

Numerical simulations will be given here to support the properties of system (2.11). For the

purpose of comparison, we will also consider the following standard foward Euler scheme.

ǫ
un+1m − unm

∆t
= −

q

∑
i=1
gi(yn1 ,⋯, ynp )(unm −Ei) + I,

yn+1
ℓ
− yn

ℓ

∆t
= (1 − ynℓ )αℓ(un) − ynℓ βℓ(un).

(2.12)

Example 1. Solve the temporal model (2.10) subject to initial conditions m(0) = 0.1, h(0) =
0.4, n(0) = 0.4, ν(0) = −15. We choose parameters as follows: ǫ = 0.5 and ǫ = 1, I = 6.9, (Ena, gna) =(115,120), (Ek, gk) = (−12,36), (El, gl) = (10.6,0.3).
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(a) Standard finite difference scheme (2.12). (b) NSFD scheme (2.11).

Figure 1: Simulations for (2.10) when ǫ = 0.5 with various number of grids showing convergence

of the numerical approximation

These simulations show that the proposed scheme, (2.11) is stable independently of the value

or relationship between temporal step size and ǫ. The standard scheme breaks down at some points

during the simulation because its stability depends on the temporal step size.
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(a) Standard finite difference scheme (2.12). (b) NSFD scheme (2.11).

Figure 2: Simulations for (2.10) when ǫ = 1 with various number of grids showing convergence of

the numerical approximation
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(a) Comparison of schemes (2.11) and (2.12). (b) Scheme (2.11) with integration time T = 100.

Figure 3: Simulation of the action potential for (2.10) when ǫ = 1 with 200 grid points

2.2 The spatial models

Given that the model under investigation is a reaction diffusion system, a natural example to con-

sider is the following partial differential equation

ǫ
∂w

∂t
= ε∂2w

∂x2
+ λ − γw. (2.13)

In particular, equation (2.13) is a constant coefficient version of equation (1.1)1. The procedure

listed in [5] allows us to design a NSFD scheme for equation (2.13) by considering the schemes for

its sub equations. The temporal sub equation is given by (2.5), while the spatial sub equation is

d2w

dx2
− γ̄w + λ̄ = 0, (2.14)

where γ̄ = γ

ǫ
, λ̄ = λ

ǫ
. We, here design scheme for equation (2.14) which is a singularly per-

turbed ordinary differential equation. We give a brief description on the derivation of a nonstandard
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(a) ǫ = 0.5, n = 200 grid points (b) ǫ = 1.0, n = 100 grid points
Figure 4: Simulations of the action potential for (2.10) when ǫ = 1 and ǫ = 0.5

scheme for (2.14). Interested readers can consult [3] for a more general and detailed explanation.

The homogenous part of equation (2.14) has two linearly independent solutions exp(√γ̄x) and

exp(−√γ̄x) implying that

RRRRRRRRRRRRRR

wm em
√
γ̄∆x e−m

√
γ̄∆x

wm+1 e(m+1)
√
γ̄∆x e−(m+1)

√
γ̄∆x

wm+2 e(m+2)
√
γ̄∆x e−(m+2)

√
γ̄∆x

RRRRRRRRRRRRRR
= 0

and with γ̄ = γ/ε, this leads to

ε
wm+1 − 2wm +wm−1

ψ2(∆x) − γwm = 0, ψ(∆x) = 2√
γ/ε sinh

⎛
⎝
√
γ/ε
2

∆x
⎞
⎠ , (2.15)

where ψ(∆x) satisfies ψ(∆x) =∆x +O([∆x]2). In particular we see that

ψ(∆x) ≈∆x + γ̃
4

∆x3

3!
+⋯,

making the scheme consistant with the differential equation. Hence the exact scheme for the ho-

mogeneous part of equation (2.14) is therefore given as

ǫ
wm+1 − 2wm +wm−1

ψ2(∆x) − γwm + λ = 0. (2.16)

Combining schemes (2.7) with (2.16), the ideas suggested in [5], we have a scheme for equation

(2.13) as follows.

ǫ
wn+1

m −wn
m

φ(∆t) = ǫwn
m+1 − 2wn

m +wn
m−1

ψ2(∆x) + (λ − γwn+1
m ) . (2.17)

2.2.1 Discretization of the electrical potential equation

Taking motivation from the above derivation we propose the following scheme for equation (2.1)2,

ǫ
un+1m − unm

φ
= ǫunm−1 − 2unm + unm+1

ψ2(∆x) −
q

∑
i=1
gi(yn1 ,⋯, ynp )(un+1m −Ei). (2.18)
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Assuming
φ(∆t)
ψ2(∆x) =

1

2
, scheme (2.18) can be written in the form

un+1m = G ∶=
1

2
(unm−1 + unm+1) + φ

q

∑
i=1
gi(yn1 ,⋯, ynp )Ei

1 + φ
q

∑
i=1
gi(yn1 ,⋯, ynp )

. (2.19)

Clearly if unm ≥ 0, then un+1m ≥ 0. In addition,

∂G

∂unm−1
> 0, and

∂G

∂unm+1
> 0,

since gk > 0. Let unm ≤ Emax, then

un+1m ≤
Emax + φ

q

∑
i=1
gi(yn1 ,⋯, ynp )Ei

1 + φ
q

∑
i=1
gi(yn1 ,⋯, ynp )

≤
Emax + φEmax

q

∑
i=1
gi(yn1 ,⋯, ynp )

1 + φ
q

∑
i=1
gi(yn1 ,⋯, ynp )

= Emax.

That is un+1m ≤ Emax. A lower bound is obtained in the same manner so that un+1m ∈ [Emin,Emax].
We have the following result.

Theorem 1. For any initial condition u0m ∈ [Emin,Emax], the discrete solution generated by scheme

(2.18) is positive, elementary stable and bounded on [Emin,Emax] provided
φ(∆t)
ψ2(∆x) =

1

2
.

2.3 The discretisation of the full model

In this section we propose two schemes for the Hodgkin-Huxley model (2.1). The first scheme

follows the ideas above, i.e., combining ideas in scheme (2.8) and (2.18), while the second scheme

follows from the work of [10]. That is,

ǫ
un+1m − unm
φn(∆t) =ǫ

unm−1 − 2unm + unm+1
ψ2
n(∆x) −

q

∑
i=1
gi(yn1 ,⋯, ynp )(un+1m −Ei),

yn+1ℓ − ynℓ
φn(∆t) =(1 − y

n+1
ℓ )αℓ(un) − yn+1ℓ βℓ(un),

(2.20)

where

φn(∆t) = exp((ḡn/ǫ)∆t) − 1
(ḡn/ǫ) , ψn(∆x) = 2√

ḡn/ǫ sinh
⎛
⎝
√
ḡn/ǫ
2

∆x
⎞
⎠ ,

and ḡn =
q

∑
i=1
gi(yn1 ,⋯, ynp ). The scheme is explicit and for implementation, we use the corresponding

versions (2.9) and (2.19) above. The performance of scheme (2.20) can be improved by introducing
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the Dufort-Frankel simplification

ǫ(1 − α)νn+1m − νnm
φn(∆t) + ǫα

νn+1m − νn−1m

2φ
=ǫνnm+1 − 2νavem + νnm−1

ψ2
n(∆x)

−
q

∑
i=1
gi(yn1 ,⋯, ynp )(uavem −Ei),

yn+1ℓ − ynℓ
φn(∆t) =(1 − y

n+1
ℓ )αℓ(un) − yn+1ℓ βℓ(un),

(2.21)

where νavem = νn+1m + νn−1m

2
and 0 < α < 1. ν1m is approximated by the standard Euler scheme. For

completeness we state the scheme from [10] as follows

ǫ
un+1m − unm

∆t
=ǫunm−1 − 2unm + unm+1(∆x)2 −

q

∑
i=1
gi(yn1 ,⋯, ynp )(un+1m −Ei),

yn+1ℓ − ynℓ
∆t

=(1 − ynℓ )αℓ(un) − ynℓ βℓ(un).
(2.22)

3 Numerical experiments

This section is devoted to the illustration of the performance of the derived scheme for the Hodgkin

Huxley model. We will present results for schemes (2.20) and (2.22). The choice of param-

eters is motivated by the work of [10]. In particular, the values, (Emin, gm), of the equilib-

rium potentials and membrane conductivities used here are (Ena, gna) = (115,120), (Ek, gk) =(−12,36), (El, gl) = (10.6,0.3).
Example 2. Solve the nonlinear equation (1.1) with variable coefficients subject to initial condi-

tions yℓ(x,0) = {0.1,0.4,0.4}, and

u(x,0) =
⎧⎪⎪⎨⎪⎪⎩
30, x ∈ [0,0.2]
−8.0, otherwise

and homogeneous Neumann boundary conditions at both ends with µ = 5

396
, ǫ = 1.

The comparison between the simulations using schemes (2.20) and (2.21) are shown in Figures

5 and 6.

4 Conclusion

The Hodgkin-Huxley equation models excitation due to conduction of impulses through the squid

large axon. This, being a biomedical model, needs a reliable approximation technique. Schemes

are designed here for both the temporal model and also the spatial-temporal model of the Hodgkin-

Huxley equation. The schemes are shown to be dynamically consistent in that they preserve the

qualitative properties of the continuous model. In addition to these, several numerical experiment
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Figure 5: Comparison of schemes with ∆x = 0.05, ∆t = 0.12, µ = 0.0126, ǫ = 1
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Figure 6: Simulation for various values of µ with ǫ = 1 with scheme (2.21)

are performed to show the accuracy and convergence of the proposed schemes and their ability to

produce non oscillatory solutions.

The proposed scheme (2.11), for the temporal model was shown to converge consistently to

the solution of the Hodgkin-Huxley model (2.10) for ǫ = 0.5 and ǫ = 1.0. As shown in Figure 1

to Figure 4 the standard scheme gives reliable results within some stability boundary as expected

for classical schemes while the stability of scheme (2.11) is independent of number of grid points

chosen. In addition to these, the oscillations reported by [10] in their simulation is removed by

scheme (2.21) both in the simulation of the gating variable and in the potential as shown in Figure 5.

Our simulation, shown in Figure 6, reveals that the value of the small parameter does not necessarily

affect the convergence of the scheme.

We observe that traveling wave solution will serve as a good standard of comparison of nu-

merical schemes. We are, presently, investigating the existence of traveling wave solution for the

Hodgkin-Huxley model (1.1). Another interesting model in neuroscience is the model of defibril-

lation. It is a strongly nonlinear partial differential equation. The main challenge in its numerical

10



analysis is the presence of negative concentration in the solution of one of the equations in the sys-

tem [11]. This abnormality can be eliminated by the ideas proposed here. This will be investigated

as part of our on going work.
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