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Abstract

A new deterministic model for the transmission dynamics of feline immunode-

ficiency virus (FIV) and bovine tuberculosis (BTB) in lion-buffalo population

is designed and used to gain insight into the transmission dynamics of the two

diseases in the population. The model is shown to undergo a backward bifur-

cation (a dynamic phenomenon characterized by the co-existence of the stable

disease-free equilibrium and a stable endemic equilibrium when the associated

reproduction number of the model is less than unity). Two sources for this dy-

namic phenomenon, namely the BTB re-infection of exposed buffalos and the

BTB-FIV co-infection of lions, have been identified. It is shown that, for the

special case of the model when backward bifurcation does not occur, the disease-

free equilibrium of the resulting model is globally-asymptotically stable when

the associated reproduction number is less than unity. Numerical simulations

of the model, using initial and demographic data relevant to the BTB-FIV dy-

namics in Kruger National Park [6], show that control strategies, such as the

isolation of lions with FIV symptoms or the treatment of lions and buffalos with

BTB symptoms, can lead to the effective control or elimination of the disease in

the lion-buffalo population if their effectiveness level is high enough. The time to

elimination of any of the two diseases is significantly reduced if the two strategies

are combined.
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1 Introduction

Feline immunodeficiency virus (FIV), a lentivirus that affects cats worldwide, is an

endemic pathogen in many African lion (Panthela leo) populations in eastern and

southern Africa [9, 14, 43, 45, 49, 53, 55, 59]. In particular, FIV has been found in the

lion population at the Kruger National Park (KNP) of South Africa, dating back to the

late 1980s [53]. The geographical distribution of FIV in all felines varies dramatically,

with rates of prevalence of 2-5% in North America, 30% in Italy, Australia, and Japan,

and up to over 80% in South Africa’s KNP [15, 30, 50]. The high FIV prevalence in

Africa can be attributed to a higher population density of free-roaming felines in Africa

(FIV has been reported in leopards and cheetahs in South Africa [15, 30, 50, 62]), as well

as variation among viral subtypes [15, 30, 50]. There are roughly 3,000 lions in South

Africa, and approximately 2,000 lions roam KNP, a 7,253 square mile game reserve in

northeastern South Africa. Antibody tests for FIV revealed that over 80% of the lions

in KNP are infected with FIV, with a prevalence of 41% in the northern part and 80% in

the southern part [43]. This disparity can be attributed to a higher population density

of lions in the southern part of KNP [6]. Despite the high prevalence of FIV among

felines, zoonotic transmission of FIV to humans remains doubtful [15]. Bovine

tuberculosis (BTB) is a chronic bacterial disease, classified amongst the closely-related

species that form the M. tuberculosis complex (MTBC) [20]. BTB, caused by bovine

bacillus (M. bovis) [35], affects a wide range of hosts, including domestic livestock (such

as cattle, goats, sheep, etc), wildlife (such as badgers, deer, bison, African buffalo, lion,

etc) which can either be reservoir or spill-over, and humans [28]. BTB remains a

major problem for animal health in many developing countries [31], and its widespread

distribution has drastic negative socio-economic development in terms of public health,

international trade, tourism, animal mortality and milk production [21]. For example,

in Argentina, the annual economic loss due to BTB is estimated to be US$ 63 million

[11]. A cost benefit analysis of BTB eradication in the United States showed an actual

cost of US$ 538 million between 1917-1992 (current programs cost approximately US$

3.5-4.0 million per year [31]).

The African lion population is at an all-time low, with current estimate as low

as 16,500 [22]. In fact, the lion population of Northern Africa has gone extinct [16,

22]. This certainly heightens the urgent need to monitor, conserve and protect the

South African lion population. In addition to the laudable effort to preserve and

conserve the lion species from extinction, the lion population (and other wildlife) at

KNP serves as a major source of (and boost for) the South African economy, through

tourism. Tourism has played a significant role in many African economies, and lions

remain one of the premier attractions [59]. In fact, a number of South Africa’s most

impoverished communities remain reliant on the revenue generated through tourism,

and would experience severe economic consequences if lions were no longer a part of
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the safari experience for tourists [8]. For this, and numerous other reasons (e.g., the

aforementioned ecological need for the preservation of the ecosystem), it is crucial that

the lion population (one of world’s treasured animal species) in South Africa is not

allowed to go extinct.

The principal mode of FIV transmission is through horizontal transfer, usually

through saliva from the bite of an infected feline [37, 42]. Other reported modes

of horizontal transfer are oral, transrectal and transvaginal (although these routes of

transmission are not significant enough to be considered as secondary [50]). Vertical

transmission through transplacental transfer has been reported as a potential mode of

transmission (although transmission rate depends largely on the viral subtype present,

and the likelihood of transmission in utero is reduced significantly in mothers producing

FIV antibodies before conception) [13, 15]. Older, free-roaming lions are also the most

likely to be infected with FIV, as they are more likely to engage in aggressive territorial

fights, which increases the likelihood of transmitting the virus through a bite wound

in the skin [13, 15]. Similar to the human immunodeficiency virus (HIV), FIV infects

the target CD4+ T cells of the feline host, thereby compromising the host’s immune

system and, subsequently, making the host to be vulnerable to opportunistic infections

[5, 47]. As in cattle, the main source of BTB transmission in buffalo and lion is by

direct contact, aerosol, oral, through a bite or contamination of a skin wound [28]

(other means of transmission, such as vertical and pseudo-vertical [60], also occur).

A number of mathematical models have been developed in the literature and used

to gain insight into the transmission dynamics of BTB in buffalo, human or lion popu-

lations (see, for instance, [7, 10, 25, 36, 38, 57, 60] and some of the references therein).

However, none of these studies incorporate lions in the transmission dynamics of BTB.

The objective of the current study is to gain insight into the qualitative dynamics of

the two diseases (BTB and FIV) in a buffalo-lion population. The aim is to design

and analyse a new realistic model (which extends some of the aforementioned studies

in the literature) for BTB-FIV transmission dynamics in the lion-buffalo population

at the KNP. The paper is organized as follows. The new model for the transmission

dynamics of BTB-FIV in lion and buffalo population is formulated in Section 2 and

rigorously analysed in Section 3. Sensitivity analysis is carried out in Section 4, and

the effectiveness of control strategies are numerical-assessed in Section 5.

2 Model Formulation

The model is based on the transmission dynamics of FIV and BTB in the lion-buffalo

population of South Africa’s Kruger National Park. The total lion population, at time

t, denoted by NL, is sub-divided into eleven mutually-exclusive compartments of sus-

ceptible lions (SL(t)), lions infected with FIV only at early-stage of infection (ELF1(t)),

lions infected with FIV only at advanced-stage of infection (ELF2(t)), lions infected with
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FIV only that are isolated (and/or treated) (JF (t)), lions infected with BTB only at

early-stage of infection (ELB1(t)), lions infected with BTB only at advanced-stage of

infection (ELB2(t)), infected lions with clinical symptoms of BTB (ILB(t)), lions with

BTB only that are treated against BTB (WLB(t)), dually-infected lions with FIV and

advanced-exposed to BTB (DL1(t)), dually-infected lions with symptoms of both FIV

and BTB (DL2(t)) and treated/isolated dually-infected lions with symptoms of both

diseases (JFB(t)), so that

NL(t) = SL(t) + ELF1(t) + ELF2(t) + JF (t) + ELB1(t) + ELB2(t) + ILB(t) +WLB(t)

+ DL1(t) +DL2(t) + JFB(t).

Similarly, the total buffalo population in the herd at time t, denoted by NB(t), is

divided into susceptible buffalos (SB(t)), buffalos exposed to BTB infection (EBB(t)),

buffalos with BTB symptoms (IBB(t)) and infected buffalos who recovered from BTB

infection (RBB(t)). Thus,

NB(t) = SB(t) + EBB(t) + IBB(t) +RBB(t).

The susceptible lion population is generated via recruitment of lions (by birth or re-

stocking) into the park (at a constant rate, ΠL per year). This population is decreased

following the acquisition of infection with FIV, which can be acquired via effective

contact with an infectious lion at a rate (λF + fλFB), or infection with BTB, following

effective contact with BTB-infectious lion or buffalo, at a rate [λB + (1 − f)λFB] or

θBBλBB, respectively, where

λF =
βF (ELF2 + ηF1JF )

NL

, λB =
βB(ηB1ELB1 + ηB2ELB2 + ILB)

NL

,

λFB =
βFB(ηFBDL1 +DL2)

NL

, λBB =
βBBIBB
NB

.

(2.1)

In (2.1), λF is the rate at which infected lions in advanced stage (ELF2) of FIV infec-

tion and isolated lions with FIV (JF )transmit FIV to susceptible lions or BTB-infected

lions in the ELB2 and ILB classes, and λB is the rate at which lions infected with BTB

in the early (ELB1) and late stage (ELB2), as well as those with clinical symptoms of

BTB (ILB), transmit BTB to susceptible or exposed lions. Similarly, λFB is the rate at

which dually-infected lions (in the DL1 and DL2 classes) transmit either BTB or FIV

to susceptible lions or BTB-infected lions in the ELB2 and ILB classes. Finally, λBB is

the rate at which infected buffalos with clinical symptoms of BTB transmit BTB to

susceptible buffalos or susceptible lions. The parameters βF , βB, βFB and βBB are the

effective contact rates (contacts capable of leading to BTB or FIV infection) for the
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transmission of FIV by infected lions, BTB by infected lions, BTB or FIV by dually-

infected lions and BTB by infected buffalos, respectively. Furthermore, 0 ≤ ηF1 < 1

is a modification parameter accounting for the assumed reduction in infectiousness of

isolated lions, in comparison to lions infected with FIV only at advanced-stage of in-

fection. The modification parameters 0 ≤ ηB1 < 1 and 0 ≤ ηB2 < 1 account for the

assumed reduction in infectiousness of exposed lions, in the ELB1 and ELB2 classes in

comparison to infected lions in the ILB class. Similarly, ηFB accounts for the assumed

reduction of the infectiousness of dually-infected lions in the DL1 class in comparison

to those in the DL2 class. The parameter 0 < f < 1 is the proportion of susceptible

lions that are infected with FIV by dually-infected lions with both diseases. Natural

death is assumed to occur in all lion compartments at a rate µL. Thus, the rate of

change of the susceptible lion population is given by

dSL
dt

= ΠL − (λF + λB + λFB + θBBλBB)SL − µLSL,

where 0 ≤ θBB < 1 accounts for the expected reduced likelihood of infectious buffalos

(in the ILB class) transmitting BTB to susceptible lions (in comparison to BTB trans-

mission from infected buffalo to a susceptible buffalo).

The population of lions infected with FIV only at early-stage of infection (ELF1(t)) is

generated by the infection of susceptible lions with FIV (at the rate λF +fλFB), and is

decreased by the development of clinical symptoms of FIV (at a rate σF ), co-infection

with BTB (at a rate θB(λB + λFB); where 0 ≤ θB < 1 accounts for the assumption

that co-infection of FIV infected lions with BTB occurs at a rate lower than primary

infection of susceptible lions with BTB) and natural death, so that (the authors have

found no evidence for BTB exogenous re-infection in the lion population, hence not

included in this study):

dELF1

dt
= (λF + fλFB)SL − θB(λB + λFB)ELF1 − (σF + µL)ELF1.

The population of lions infected with FIV only at advanced-stage of infection (ELF2(t))

increases following the development of clinical symptoms of FIV by lions in ELF1 class

(at the rate σF ). This population is decreased by co-infection with BTB (at the rates

θB(λB + λFB)), isolation (at a rate ξF ) and natural death, this gives,

dELF2

dt
= σFELF1 − θB(λB + λFB)ELF2 − (ξF + µL)ELF2.

The population of lions infected with FIV only that are isolated (and/or treated)

(JF (t)) is generated by the isolations of lion with clinical symptoms of FIV (at the rate

ξF ). It is decreased by natural death. Hence,

dJF
dt

= ξFELF2 − µLJF .
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Similarly, the population of lions infected with BTB only at early-stage of infection

(ELB1(t)) is generated by the infection of susceptible lions with BTB (at the rates

λB + (1− f)λFB + θBBλBB), and is decreased by progressing to the advanced stage of

infection with BTB (at a rate σB1) and natural death, so that

dELB1

dt
= [λB + (1− f)λFB + θBBλBB]SL − (σB1 + µL)ELB1.

The population of lions infected with BTB only at advanced-stage of infection (ELB2(t))

increases following the progression of lions infected with BTB only at early-stage of

infection to advanced-stage (at the rate σB1). This population is decreased by FIV

co-infection (at a rate θF (λF + λFB); where 0 ≤ θF < 1 accounts for the assumption

that co-infection of BTB infected lions with FIV occurs at a rate lower than primary

infection of susceptible lions with FIV), detection and isolation (at a rate ξF ), devel-

opment of clinical symptoms of BTB (at a rate σB2) and natural death, so that (it is

assumed that FIV-infected lions placed in isolation are treated against FIV)

dELB2

dt
= σB1ELB1 − θF (λF + λFB)ELB2 − (σB2 + µL)ELB2.

The population of lions with clinical symptoms of BTB (ILB(t)) increases following

the development of clinical symptoms of BTB by lions infected with BTB only at the

advanced-stage of infection (at the rate σB2). This population is decreased by co-

infection with FIV (at the rate θF (λF +λFB)), treatment (at a rate ξB), natural death

and BTB-induced death (at a rate δB), so that

dILB
dt

= σB2ELB2 − θF (λF + λFB)ILB − (ξB + µL + δB)ILB.

The population of lions with BTB only that are treated against BTB (WLB(t)) is

generated by the treatment of lions with clinical symptoms of BTB (at the rate ξB).

It is decreased by natural death. Hence,

dWLB

dt
= ξBILB − µLWLB.

The population of dually-infected lions with FIV and advanced-exposed to BTB (DL1)

is generated by the co-infection of lions in the ELF1 class with BTB (at the rate

θB(λB + λFB)) and lions in ELB2 class with FIV (at the rate θF (λF + λFB)). This

population is decreased by the progression to the class of dually-infected lions with

symptoms of both FIV and BTB (at a rate σD) and by natural death, so that

dDL1

dt
= θB(λB + λFB)ELF1 + θF (λF + λFB)ELB2 − (σD + µL)DL1.

The population of dually-infected lions with symptoms of both FIV and BTB (DL2)

is generated by the development of symptoms of both FIV and BTB by lions in DL1
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class and co-infection of lion in ELF2 class with BTB (at the rate θB(λB + λFB)) and

lions in ILB class with FIV (at the rate θF (λF + λFB)). It is decreased by treatment

(at a rate ξD) and natural death, this gives

dDL2

dt
= σDDL1 + θB(λB + λFB)ELF2 + θF (λF + λFB)ILB − (ξD + µL)DL2.

The population of treated lions population (JFB) is increased by the treatment of lions

with symptoms of both diseases (at the rate ξD) and decreased due to natural death.

Hence,

dJFB
dt

= ξDDL2 − µLJFB.

Similarly, the population of susceptible buffalos (SB(t)) is generated by the recruitment

of buffalos (either by birth or re-stocking from other herds) at a rate ΠB. The popula-

tion of susceptible buffalos is decreased by the acquisition of BTB infection (following

effective contact with buffalos infected with BTB), at the rate λBB, and by natural

death (at a rate µB; buffalos in each epidemiological compartment are assumed to

suffer natural death at this rate). Thus,

dSB
dt

= ΠB − λBBSB − µBSB.

The population of buffalos exposed to BTB (EBB(t)) is increased by the infection of

susceptible buffalos with BTB (at the rate λBB). This population is decreased by

exogenous re-infection with BTB (at a rate θEBλBB; with 0 ≤ θEB < 1 accounting

for the assumption that re-infection of exposed buffalos with BTB occurs at a rate

lower than primary infection of susceptible buffalos with BTB), development of clinical

symptoms of BTB (at a rate σBB) and natural death, so that

dEBB
dt

= λBBSB − θEBλBBEBB − (σBB + µB)EBB.

The population of buffalos with clinical symptoms of BTB (IBB(t)) is increased by the

development of clinical symptoms of exposed buffalos with BTB (at the rate σBB) and

by the exogenous re-infection of exposed buffalos (at the rate θEBλBB). It is decreased

by recovery (at a rate ξBB), natural death and by BTB-induced mortality (at a rate

δBB). Thus,

dIBB
dt

= σBBEBB + θEBλBBEBB − (ξBB + µB + δBB)IBB.

Finally, the recovered buffalos population (RBB) is generated by the recovery of buffalos

with symptoms of BTB (at the rate ξBB) and decrease by natural death. Hence,

dRBB

dt
= ξBBIBB − µBRBB.
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In summary, the BTB-FIV transmission model is given by the following system of non-

linear differential equations (a flow diagram of the model is given in Figure 1 and the

associated variables and parameters are described in Tables 1 and 2, respectively):

L
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dSL
dt

= ΠL − (λF + λB + λFB + θBBλBB)SL − µLSL,

dELF1

dt
= (λF + fλFB)SL − θB(λB + λFB)ELF1 − (σF + µL)ELF1,

dELF2

dt
= σFELF1 − θB(λB + λFB)ELF2 − (ξF + µL)ELF2,

dJF
dt

= ξFELF2 − µLJF ,

dELB1

dt
= [λB + (1− f)λFB + θBBλBB]SL − (σB1 + µL)ELB1,

dELB2

dt
= σB1ELB1 − θF (λF + λFB)ELB2 − (σB2 + µL)ELB2,

dILB
dt

= σB2ELB2 − θF (λF + λFB)ILB − (ξB + µL + δB)ILB,

dWLB

dt
= ξBILB − µLWLB,

dDL1

dt
= θB(λB + λFB)ELF1 + θF (λF + λFB)ELB2 − (σD + µL)DL1,

dDL2

dt
= σDDL1 + θB(λB + λFB)ELF2 + θF (λF + λFB)ILB − (ξD + µL)DL2,

dJFB
dt

= ξDDL2 − µLJFB,

(2.2)
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dSB
dt

= ΠB − λBBSB − µBSB,

dEBB
dt

= λBBSB − θEBλBBEBB − (σBB + µB)EBB,

dIBB
dt

= σBBEBB + θEBλBBEBB − (ξBB + µB + δBB)IBB,

dRBB

dt
= ξBBIBB − µBRBB.

Some of the main assumptions made in the formulation of the model (2.2) include:

(i) Homogeneous mixing is assumed within and between the two (lion and buffalo)

populations [43]. This assumption may not be entirely realistic in the lion popu-

lation (since lions typically live in patches). However, the current study consider

the study area (KNP) to be a single herd (the authors plan to extend this study

by using a multi-patch modeling approach which accounts for the non-uniform

mixing of the lion population).
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(ii) Infectious buffalos can transmit BTB to susceptible lions (via lions predating on

buffalos infected with BTB), but infectious lion do not transmit FIV to suscep-

tible buffalos (this is owing to the fact that contact between lion and buffalo

resulted in the death of buffalo [6]).

(iii) Susceptible lions acquire FIV infection only through contacts with FIV infectious

lions (ELF2 and JF ) [56].

(iv) Exposed buffalos can experience exogenous re-infection with BTB (following ef-

fective contact with symptomatic buffalos) [36].

(v) No BTB exogenous re-infection in the lion population is assumed (the authors

could not find any evidence for this at the current time).

For mathematical tractability, other FIV transmission pathways in the lion population

(such as vertical transmission and infection acquired via lion-to-lion fights for terri-

tory/resources [55]) are not considered in this study. The model (2.2), to the authors’

knowledge, is the first to incorporate buffalos and lions in the transmission dynam-

ics of BTB and FIV. The model (2.2) extends numerous models for FIV and BTB

transmission in the literature, such as those in [10, 36, 38, 39, 43, 57, 60], by, inter alia,

(i) Including the dynamics of early- and advanced- infected lions with FIV (this was

not considered in [39, 43]).

(ii) Allowing for BTB and FIV transmission by exposed and lions (this was not

considered in [38, 57, 60]).

(iii) Allowing for the re-infection of exposed buffalos (this was not considered in [10,

38, 39, 60]).

(iv) Allowing for the co-infection of BTB and FIV in lion populations (this was not

considered in [39, 43]).

3 Analysis of the Model

3.1 Basic Properties

For the model (2.2) to be epidemiologically meaningful, it is important to prove that

all its solutions remain non-negative for all non-negative initial data (i.e., its state

variables remain non-negative for all time t, since it monitors animal populations).

Lemma 1 Let the initial data SL(0) > 0, ELF1(0) ≥ 0, ELF2(0) ≥ 0, JF (0) ≥ 0, ELB1(0) ≥
0, ELB2(0) ≥ 0, ILB(0) ≥ 0, WLB(0) ≥ 0, DL1(0) ≥ 0, DL2(0) ≥ 0, JFB(0) ≥ 0, SB(0) >

0, EBB(0) ≥ 0, IBB(0) ≥ 0, RBB(0) ≥ 0, then the solutions SL(t), ELF1(t), ELF2(t)
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JF (t), ELB1(t), ELB2(t), ILB(t), WLB(t), DL1(t), DL2(t), JFB(t), SB(t), EBB(t), IBB(t)

and RBB(t) of the model (2.2) are positive for all t ≥ 0.

Proof. Consider the first equation in model (2.2), given by

dSL
dt

= ΠL − (λF + λB + λFB + θBBλBB)SL − µLSL,

which is equivalent to

dSL
dt

+ [(λF + λB + λFB + θBBλBB) + µL]SL = ΠL > 0. (3.1)

Consider the integrating factor

ρ(t) = exp

{
µLt+

∫ t

0

[λF (τ) + λB(τ) + λFB(τ) + θBBλBB(τ)]dτ

}
> 0.

Multiplying both sides of equation (3.1) by ρ(t) gives

ρ(t)

[
dSL
dt

+ {(λF + λB + λFB + θBBλBB) + µL}SL
]

=
d(ρ(t)SL(t))

dt
= ρ(t)ΠL,

so that

d(ρ(t)SL(t))

dt
= ρ(t)ΠL,

from which it follows that,

SL(t) =
1

ρ(t)

[
SL(0) + ΠL

∫ t

0

ρ(τ)dτ

]
≥ 0.

Thus, SL(t) > 0 for all t ≥ 0. Similarly, it can be shown that ELF1(t) ≥ 0, ELF2(t) ≥
0, JF (t) ≥ 0, ELB1(t) ≥ 0, ELB2(t) ≥ 0, ILB(t) ≥ 0, WLB(t) ≥ 0, DL1(t) ≥ 0, DL2(t) ≥
0, JFB(t) ≥ 0, SB > 0, EBB ≥ 0, IBB ≥ 0, RBB ≥ 0. �

Lemma 2 The following biologically-feasible region of the model (2.2) is positively-

invariant.

Γ =

{
(SL, ELF1, ELF2, JF , ELB1, ELB2, ILB,WLB, DL1, DL2, JFB, SB, EBB, IBB, RBB)

∈ R15
+ : NL ≤

ΠL

µL
, NB ≤

ΠB

µB

}
.

Proof. The equations for the lion and buffalo components of the model (2.2) gives
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dNL(t)

dt
= ΠL − µLNL − δBILB and

dNB(t)

dt
= ΠB − µBNB − δBBIBB, (3.2)

so that,

dNL(t)

dt
≤ ΠL − µLNL and

dNB(t)

dt
≤ ΠB − µBNB. (3.3)

Thus, dNL/dt < 0 if NL(t) > ΠL/µL and dNB/dt < 0 if NB(t) > ΠB/µB. It follows

from the inequalities in (3.3), and the Gronwall lemma [40], that

NL(t) ≤ NL(0)e−µLt +
ΠL

µL

[
1− e−µLt

]
and NB(t) ≤ NB(0)e−µBt +

ΠB

µB

[
1− e−µBt

]
.

In particular, NL(t) ≤ ΠL/µL ifNL(0)≤ ΠL/µL andNB(t) ≤ ΠB/µB ifNB(0)≤ ΠB/µB.

Thus, the region Γ is positively-invariant with respect to the model (2.2). �

3.2 Local Asymptotic Stability of Disease-free Equilibrium

(DFE)

The DFE of the model (2.2) is given by

E0 = (S∗L, E
∗
LF1, E

∗
LF2, J

∗
F , E

∗
LB1, E

∗
LB2, I

∗
LB,W

∗
LB, D

∗
L1, D

∗
L2, J

∗
FB, S

∗
B, E

∗
BB, I

∗
BB, R

∗
BB)

=

(
ΠL

µL
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

ΠB

µB
, 0, 0, 0

)
.

The linear stability of E0 can be established using the next generation operator

on the system (2.2). Using the notation in [58], the matrices F and V , for the new

infection terms and the remaining transfer terms, are, respectively, given by

F =

(
F

(11)
4×6 F

(12)
4×6

08×11 F
(22)
8×1

)
and V =

(
V

(1)
7×6 06×6

05×6 V
(2)
6×6

)
,

where F (22) = (0, 0, 0, 0, 0, 0, βBB, 0)T ,

F (11) =


0 βF βFηF1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 βBηB1 βBηB2 βB

 ,

F (12) =


0 fβFBηFB fβFB 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 (1− f)βFBηFB (1− f)βFB 0 0
θBBβBBS

∗
L

N∗B

,
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V (1) =



K1 0 0 0 0 0

−σF K2 0 0 0 0

0 −ξF µL 0 0 0

0 0 0 K3 0 0

0 0 0 −σB1 K4 0

0 0 0 0 −σB2 K5

0 0 0 0 0 −ξB


and,

V (2) =



µL 0 0 0 0 0

0 K6 0 0 0 0

0 −σD K7 0 0 0

0 0 −ξD µL 0 0

0 0 0 0 K8 0

0 0 0 0 −ξBB K9


,

with K1 = σF + µL, K2 = ξF + µL, K3 = σB1 + µL, K4 = σB2 + µL, K5 = ξB + µL +

δB, K6 = σD + µL, K7 = ξD + µL, K8 = σBB + µB and K9 = ξBB + µB + δBB. Thus,

the associated (overall) reproduction number of the model (denoted by R0) is given by

R0 = ρ(FV −1) = max{R1, R2, R3}, (3.4)

where

R1 =
βFσF (ηF1ξF + µL)

µLK1K2

, (3.5)

R2 =
βB[σB1(K5ηB2 + σB2) + ηB1K4K5]

K3K4K5

, (3.6)

R3 =
βBBσBB
K8K9

. (3.7)

are the constituent reproduction threshold quantities associated with FIV transmission

in the lion population, BTB transmission in the lion population and BTB transmission

in the buffalo population, respectively. The result below follows from Theorem 2 of

[58]:

Theorem 1 The disease-free equilibrium, E0, of the model (2.2), is locally-asymptotically

stable (LAS) if R0 < 1, and unstable if R0 > 1.

The threshold quantityR0 measures the average number of new infections generated by

a single infected lion or buffalo in a completely susceptible lions and buffalos population

[58]. Thus, Theorem 1 implies that both BTB and FIV can be eliminated from the

lions and buffalos population (when R0 < 1) if the initial sizes of the sub-populations

of the model (2.2) are in the basin of attraction of the DFE (E0).

12



3.2.1 Interpretation of reproduction number

The reproduction threshold (R0) can be epidemiologically interpreted as follows. Sus-

ceptible lions can acquire FIV infection following effective contacts with FIV-infectious

lions either at the advanced-stage of FIV infection (ELF2) or those that are iso-

lated/treated for FIV (i.e., those in the JF class).

Interpretation of R1

(i) New FIV cases generated by FIV-infected lions in the ELF2 class:

The average number of new FIV cases in lion population generated by an FIV-infectious

lion in the ELF2 class (near the DFE) is the product of the infection rate of infected

lions in the ELF2 class (βF
S∗L
N∗L

= βF , since S∗L/N
∗
L = 1), the probability that a lion in the

ELF2 class survived the ELF1 class and moved to the advanced (ELF2) stage (σF/K1)

and the average duration in the ELF2 class (1/K2). Thus, the average number of new

cases generated by a lion in the ELF2 class is given by

R01 = βF

(
σF
K1

)(
1

K2

)
(3.8)

(ii) New FIV cases generated by lions in the JF class:

Similarly, the average number of new FIV cases in the lion population by an infected

lion in the JF class (near the DFE) is the product of the infection rate of lion in the JF

class (βFηF1
S∗L
N∗L

= βFηF1), the probability that an FIV-infected lion survives the ELF1

and ELF2 stages and moved to the isolated class JF (
σF
K1

ξF
K2

) and the average duration

in the JF class (
1

µL
). Thus, the average number of new FIV infections generated by a

lion in the JF class is given by:

R02 = (βFηF1)

(
σF
K1

)(
ξF
K2

)(
1

µL

)
. (3.9)

The sum of the expressions in Equations (3.8) and (3.9) gives R1.

Interpretation of R2

Susceptible lions can acquire BTB infection following effective contacts with BTB-

infected lions in either the early (ELB1) or advanced (ELB2) stage of BTB infection or

BTB-infectious lions with clinical symptoms of BTB (i.e., lions in the ILB class).

(i) New BTB cases generated by lions in the ELB1 class:

13



The average number of new BTB-infected lions generated by an infected lion in the

ELB1 class is the product of the infection rate of an infected lion in the early-stage

(ELB1) of BTB infection (βBηB1
S∗L
N∗L

= βBηB1) and the average duration in the ELB1

class (
1

K3

). Thus, the number of new BTB cases in lions generated by a BTB-infected

lion in the ELB1 class is given by

R(01)
2 = (βBηB1)

(
1

K3

)
. (3.10)

(ii) New BTB cases generated by lions in the ELB2 class:

This is given by the product of the infection rate of BTB-infected lions in the advanced

(ELB2) stage of BTB infection (βBηB2
S∗L
N∗L

= βBηB2), the probability that an infected

lion with BTB survived the early-stage of infection and moved to the advanced-stage

(
σB1

K3

) and the average duration in the ELB2 stage (
1

K4

). Thus, the average number of

BTB infections in the lion population generated by an infected lion in the ELB2 class

is given by:

R(02)
2 = (βBηB2)

(
σB1

K3

)(
1

K4

)
. (3.11)

(iii) New BTB cases generated by lions in the ILB class:

Finally, the average number of new BTB-infected lions generated by an infectious lions

with clinical symptoms of BTB (in the ILB class) is the product of the infection rate

of infectious lions in the ILB class (βB
S∗L
N∗L

= βB), the probability that an infected lion

survived the early (ELB1) and advanced (ELB2) stages and moved to the infectious

(ILB) stage (
σB1

K3

σB2

K4

) and the average duration in the infectious (ILB) stage (
1

K5

).

Thus, the average number of new BTB infections in lions generated by lions in the ILB
class is given by:

R(03)
2 = (βB)

(
σB1

K3

)(
σB2

K4

)(
1

K5

)
. (3.12)

The sum of the expressions in Equations (3.10), (3.11) and (3.12) gives R2.

It should be noted that lions in the dually-infected classes DL1 and DL2 do not

contribute to R0 (since the two classes are populated via secondary, and not primary,

infection).

14



3.2.2 Interpretation of R3

Susceptible buffalos can acquire BTB infection following effective contacts with infec-

tious buffalos in the IBB class. The average number of new BTB infections in the

buffalo population generated by an infectious buffalo (near the DFE) is given by the

product of the BTB infection rate of buffalos (βBB
S∗B
N∗B

= βBB, since
S∗B
N∗B

= 1), the

probability that an exposed buffalo survived the exposed (EBB) class and moved to

the infectious (IBB) class (
σBB
K8

) and the average duration in the IBB class (
1

K9

). Hence,

the average number of new BTB cases generated by an infected buffalo is given by:

R3 = (βBB)

(
σBB
K8

)(
1

K9

)
. (3.13)

The maximum of R1, R2 and R3 gives R0.

3.3 Backward Bifurcation Analysis

Some models for disease transmission, particularly those that include the re-infection

of exposed individuals (such as model (2.2)), are known to exhibit the phenomenon of

backward bifurcation (where the stable DFE co-exists with at least one stable endemic

equilibrium when the associated reproduction threshold of the model is less than unity;

see, for instance, [19, 33, 46]). It is, therefore, instructive, to explore the possibility of

the existence of such phenomenon in the model (2.2). This is explored below.

3.3.1 Existence

Let,

Ee = (S∗∗L , E
∗∗
LF1, E

∗∗
LF2, J

∗∗
F , E

∗∗
LB1, E

∗∗
LB2, I

∗∗
LB,W

∗∗
LB, D

∗∗
L1, D

∗∗
L2, J

∗∗
FB, S

∗∗
L , E

∗∗
BB, I

∗∗
BB, R

∗∗
BB)

represents any arbitrary endemic equilibrium of the model (2.2) (that is, an equilibrium

in which at least one of the infected components is non-zero). We claim the following

result (the proof, based on using center manifold theory [19], is given in Appendix A):

Theorem 2 The model (2.2) exhibits backward bifurcation at R0 = 1 whenever the

bifurcation coefficient, ã, given by Equation (A.2) in Appendix A, is positive.

The phenomenon of backward bifurcation of the model (2.2) is numerically illustrated

(Figure 2) (using a set of arbitrarily-chosen parameter values that satisfy the conditions

for the existence of the backward bifurcation specified in Appendix A). The epidemi-

ological implication of the phenomenon of backward bifurcation is that the classical

requirement of R0 < 1 is, although necessary, no longer sufficient for the effective con-

trol of the BTB-FIV in the lion-buffalo population. Hence, the presence of backward
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bifurcation makes the feasibility of the effective control of BTB and FIV in the lion-

buffalo population difficult. To the authors’ knowledge, this is the first time such a

dynamic phenomenon is established in the transmission dynamics of BTB-FIV. The

possible cause(s) of this phenomenon is(are) explored below.

3.3.2 Non-existence

Consider the model (2.2) for the case where BTB-infected lions do not acquire FIV

infection (i.e., θF = 0), FIV-infected lions do not acquire BTB infection (i.e., θB = 0),

and exposed buffalos with BTB do not acquire BTB re-infection (θEB = 0). It follows,

by substituting θB = θF = θBB = 0 into the expression for the backward bifurcation

coefficient (ã), given by Equation (A.2) in Appendix A (and simplifying), that the

associated backward bifurcation coefficient (ã) reduces to (noting, from Appendix A,

that the eigenvectors w1, ..., w8, w13, w14, w15 and v1, ..., v15 are all positive):

ã = −2µBµL
ΠBΠL

[
ΠB

µB
β∗F (ηF1w4 + w3)

(
v2

8∑
i=2

wi

)
+

ΠB

µB
βB(ηB1w5 + ηB2w6 + w7)

(
v5

8∑
i=2

wi

)
+

ΠL

µL
βBBw14[v13(w13 + w14 + w15)]

]
< 0.

(3.14)

Thus, it follows from Theorem 4.1 of [19], that the model (2.2) does not undergo a

backward bifurcation at R0 = 1 in the absence of BTB-FIV co-infection in lions and

re-infection of exposed buffalos (this result is consistent with that in [19, 36, 51], on the

transmission dynamics of mycobacterium tuberculosis and BTB in human and buffalo

populations).

It is worth stating, however, that the backward bifurcation phenomenon persists

even if the aforementioned co-infection assumption is relaxed. In other words, backward

bifurcation still occurs in the FIV-BTB dynamics even if θF = θB = 0, provided that

θEB 6= 0. Hence, this study identifies two sufficient conditions for the existence of

backward bifurcation in the model (2.2), namely the FIV-BTB co-infection in lions

and the re-infection of exposed buffalos. To further confirm the absence of backward

bifurcation in the model (2.2) for the aforementioned special case (i.e, the model (2.2)

with θF = θB = θEB = 0), a global asymptotic stability of the DFE is established for

this case below.

Theorem 3 The DFE, E0, of the model (2.2) with θF = θB = θEB = 0 is globally-

asymptotically stable (GAS) in Γ if R0 ≤ 1.

Proof. Consider the BTB-FIV model (2.2) in the absence of FIV-BTB co-infection

in the lion population (i.e., θF = θB = 0) and re-infection of exposed buffalos (i.e.,

θEB = 0). It follows first of all, by setting θF = θB = θEB = 0 in the model (2.2),

that DL1(t) → 0, DL2(t) → 0 and JFB(t) → 0, as t → ∞ (i.e., the equations for
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DL1(t), DL2(t) and JFB(t) decouple from the model). Furthermore, consider the fol-

lowing linear Lyapunov function

F = R1ELF1 +
K1

σF
ELF2 +

ηF1βF
µL

JF +R2ELB1 +
βB(K5ηB2 + σB2)

K4K5

ELB2 +
βB
K5

ILB

+R3EBB +
βBB
K9

IBB,

with Lyapunov derivative given by (where a dot represents differentiation with respect

to t)
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Ḟ = R1ĖLF1 +
K1

σF
ĖLF2 +

ηF1βF
µL

J̇F +R2ĖLB1 +
βB(K5ηB2 + σB2)

K4K5

ĖLB2 +
βB
K5

İLB

+R3ĖBB +
βBB
K9

İBB,

= R1

(
λFSL −K1ELF1

)
+
K1

σF

(
σFELF1 −K2ELF2

)
+
ηF1βF
µL

(
ξFELF2 − µLJF

)
+R2

(
λBSL −K3ELB1

)
+
βB(K5ηB2 + σB2)

K4K5

(
σB1ELB1 −K4ELB2

)
+
βB
K5

(
σB2ELB2 −K5ILB

)
+R3

(
λBBSB −K8EBB

)
+
βBB
K9

(
σBBEBB −K9IBB

)
,

= R1

[
βF (ELF2 + ηF1JF )

NL

SL −K1ELF1

]
+
K1

σF
R1

(
σFELF1 −K2ELF2

)
+
ηF1βF
µL

(
ξFELF2 − µLJF

)
+R2

[
βB(ηB1ELB1 + ηB2ELB2 + ILB)

NL

SL −K3ELB1

]
+
βB(K5ηB2 + σB2)

K4K5

(
σB1ELB1 −K4ELB2

)
+
βB
K5

(
σB2ELB2 −K5ILB

)
+R3

[
βBBIBB
NB

SB −K8EBB

]
+
βBB
K9

(
σBBEBB −K9IBB

)
,

= βF

(
R1

SL
NL

− 1

)
ELF2 + βFηB2

(
R1

SL
NL

− 1

)
JF + βBηB1

(
R2

SL
NL

− 1

)
ELB1

+ βBηB2

(
R2

SL
NL

− 1

)
ELB2 + βB

(
R2

SL
NL

− 1

)
ILB + βBB

(
R3

SB
NB

− 1

)
IBB,

≤ βF (ELF2 + ηF1JF )(R1 − 1) + βB(ηB1ELB1 + ηB2ELB2 + ILB)(R2 − 1)

+ βBBIBB(R3 − 1), since SL(t) ≤ NL(t) and SB(t) ≤ NB(t) for all t ≥ 0 in Γ.

≤ 0, for R0 = max{R1,R2,R3} ≤ 1.

Thus, Ḟ ≤ 0 if R0 = max{R1,R2,R3} ≤ 1 with Ḟ = 0 if and only if ELF1(t) =

ELF2(t) = JF (t) = ELB1(t) = ELB2(t) = ILB(t) = EBB(t) = IBB(t) = 0. Sub-

stituting ELF1(t) = ELF2(t) = JF (t) = ELB1(t) = ELB2(t) = ILB(t) = EBB(t) =

IBB(t) = 0 in the equations for ṠL, ẆLB, ṠB, ṘBB in the model (2.2) shows that

SL(t) → ΠL/µL, SB(t) → ΠB/µB, WLB(t) → 0 and RBB(t) → 0, as t → ∞. Fur-

thermore, noting that DL1(t) → 0, DL2(t) → 0 and JFB(t) → 0, as t → ∞ (when
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θF = θB = θEB = 0), the largest compact invariant set in

{(SL, ELF1, ELF2, JF , ELB1, ELB2, ILB,WLB, DL1, DL1, JFB, SB, EBB, IBB, RBB) ∈ Γ :

dF/dt = 0} is the singleton {E0}. It follows, from the LaSalle’s Invariance Principle

[41], that every solution to the equations in the model (2.2), with initial conditions in

Γ, converges to the DFE (E0) as t→∞. �

This result shows that, in the absence of BTB-FIV co-infection in lions and the re-

infection of exposed buffalos, the DFE of the model (2.2) is GAS (thus, both FIV and

BTB will be effectively controlled or eliminated from the lion and buffalo population

if R0 ≤ 1).

4 Uncertainty and Sensitivity Analysis

The expression for the reproduction number (R0) of the model (2.2), given by the

equations in (3.5), contains numerous parameters, and uncertainties in the estimates

of these parameters (hence, uncertainties in the estimate for R0) are expected to occur.

The effect of such uncertainties on the numerical simulation results obtained will be

assessed using Latin Hypercube Sampling (LHS). Furthermore, sensitivity analysis (us-

ing Partial Rank Correlation Coefficients (PRCC)) will be carried out to determine the

parameters that have the most effect (positive or negative) onR0 [4]. The reproduction

number R0 is chosen as the response function for these (uncertainty and sensitivity)

analyses because the dynamics of the model (2.2) is governed by the value of R0( the

diseases can be effectively controlled, in the absence of backward bifurcation, if R0 is

less than unity, and they will persist if the threshold quantity exceeds unity). LHS,

a statistical method for generating a sample of plausible collections of parameter val-

ues from a multidimensional distribution [4], treats the model’s inputs (i.e., the model

parameters) as random variables. Thus, appropriate probability distributions (such as

uniform, normal, gamma, triangular etc.) are chosen for each parameter. The LHS

procedure is implemented by dividing the range of values for each given parameter into

equally-probable intervals, and one selected at random from each interval with the ob-

jective of uniformly filling the input space [4]. On the other hand, as noted by Marino

et al. [3], “PRCC is a robust sensitivity measure for nonlinear but monotonic relation-

ships between input and output, as long as little to no correlation exists between the

inputs” (in other words, PRCC is considered to be more powerful at determining the

sensitivity of a parameter that is strongly monotonic yet highly nonlinear [1]). The

magnitude, as well as the statistical significance, of the PRCC value of a parameter

indicates that parameter’s contribution to the model’s prediction imprecision [4]. The

parameters with large PRCC values (typically ≥ 0.5 or ≤ −0.5) are considered to be

the most important (in determining the value/size of the chosen response function) [2].

Thus, a PRCC approaching −1 or +1 indicates a strong effect of the corresponding
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parameter to the response function (R0 in this case). The sign indicates the qualitative

relationship between the parameter inputs and R0 (a negative sign indicates that the

LHS parameter is inversely proportional to R0, while a positive sign shows that the

response function increases with increasing values of that parameter).

The aforementioned analyses are implemented on the model (2.2) by, first of all,

drawing 10,000 parameter samples (for the 19 parameters in the expressions for R0)

from the range of parameter values tabulated in Table 3. Boxplots for the constituent

reproduction numbers, R1, R2 and R3, as functions of the LHS runs carried out, are

depicted in Figures 3(a), 3(b) and 4(a), respectively, from which the following mean

values of the constituent reproduction numbers were obtained: R1 ≈ 1.2735 with 95%

CI (0.7121, 1.9760), R2 ≈ 0.7129 with 95% CI (0.3690, 1.4884) and R3 ≈ 1.1972 with

95% CI (0.4538, 3.5986)). Similarly, a boxplot of R0, depicted in Figure 4(b), shows

that the mean value of the overall reproduction number (R0) is R0 ≈ 1.5961 with 95%

CI (0.8009, 3.5986). The epidemiological implication of these simulation results is that,

based on the assumptions made in the study and the current levels of control strategies

implemented, the two diseases will persist in the Kruger National Park (since the mean

value of R0 is above unity). Furthermore, Table 4 depicts the results of the sensitivity

analyses carried out, using the constituent reproduction thresholds R1R2 and R3, and

the overall reproduction number R0 = max{R1, R2, R3}, as the response functions.

The results obtained show that three parameters have the highest effect on the overall

reproduction number R0 (hence, the burden of the two diseases), namely the rate of

FIV transmission by infected lions (βF ), the modification parameter accounting for the

assumed reduction in infectiousness of isolated/treated lions, in comparison to infected

lions with clinical symptoms of FIV (ηF1) and the natural death of lions (µL) (these

same parameters also have the highest impact on the constituent reproduction number,

R1, for FIV transmission by lions; this is due to the fact, for the choice of parameter

values and ranges in Table 3, R1 is the maximum of the three constituent reproduction

numbers. Hence, R0 = R1; and the dynamics of the model is governed by the size of

R1). Thus, this study identifies the parameters that have the greatest influence on the

FIV-BTB dynamics in the Kruger National Park, and controlling the impact of these

parameters will play a major role in determining the outcome (persistence or effective

control of the two diseases in the lion-buffalo population). In other words, this study

shows that the two diseases can be effectively controlled by implementing a strategy

that minimizes βF and ηF1. The parameter βF can be reduced by minimizing contact

between FIV-infected and susceptible lions or by, perhaps, vaccinating susceptible lions

against FIV infection (when such a vaccine becomes available). Similarly, the param-

eter βF can be reduced by the rapid detection, isolation and treatment of lions with

symptoms of FIV. The parameter µL is important in the sense that susceptible lions

form a pool of target for FIV (and BTB) infection. Hence, depleting them (by increas-

ing their natural death rate, µL) will invariably reduce FIV transmission (hence, reduce
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the size of R1). Table 4 further shows that BTB dynamics within the lion population

(governed by the size of the constituent reproduction number R2) is most affected

by the parameters associated with BTB transmission in lions (βB), progression rate

of advanced-exposed lions with BTB only to symptomatic stage (σB2) and the mod-

ification parameters accounting for the assumed reduction in infectiousness of early

and advanced exposed lions, in comparison to infected lions with clinical symptoms of

BTB (ηB1 and ηB2, respectively). Here, too, a strategy based on minimizing contacts

between BTB-infected lions and susceptible lions (i.e., minimize βB), rapid detection

and treatment of BTB-infected lions in the early and advanced-exposed stages (i.e.,

reduce σB2, ηB1 and ηB2) will be very effective in controlling the BTB burden in the

lion population. Finally, it is shown (as expected) that the BTB burden in the buffalo

population is most affected by the contact rate of infected buffalos with susceptible

buffalos (βBB). Here, too, a strategy that minimizes contacts between BTB-infected

and susceptible buffalos (such as quarantine, isolation and treatment of infected cases)

will curb the burden of BTB among the buffalo population in the herd.

5 Assessment of Control Strategies

Control strategies against the spread of the two diseases in the buffalo-lion population

are typically based on two main strategies, namely

(a) detecting and isolating lions with FIV symptoms (it is assumed that when lions

with FIV are detected and isolated, they are given relevant treatment against

FIV);

(b) detecting and treating lions and buffalos with BTB symptoms;

(c) detecting and treating dually-infected lions with symptoms of both diseases.

The model (2.2) will now be simulated, using the data in Table 3 (unless otherwise

stated) to assess the effectiveness of these strategies (implemented singly or in combi-

nation). Since we are interested in exploring the feasibility of disease elimination, these

simulations are carried out for the special case of the model where backward bifurca-

tion does not occur (i.e., the special case where reinfection and co-infection rates are

negligible (θB = θF = θED ≈ 0); so that (by Theorem 3) the disease-free equilibrium

of the model is globally-asymptotically stable, when the reproduction number (R0) is

less than unity).

5.1 Effect of isolation of lions with FIV symptoms

Here, the singular effect of the detection and isolation of lions with FIV symptoms is

assessed. Numerical simulations of the model, in the absence of intervention against
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BTB (i.e., in the absence of the treatment of lions and buffalos with symptoms of BTB;

so that, ξB = ξBB = 0), are carried out for the following three arbitrarily-chosen (but

plausible) effectiveness levels of the isolation-only strategy against FIV infection in the

lion population:

(I) low effectiveness level: ξF = 0.1 (i.e., it takes 10 days on average to detect and

isolate a lion symptomatic with FIV), so that R1 = 1.6957;

(II) moderate effectiveness level: ξF = 0.2 (i.e., it takes 5 days on average to detect

and isolate a lion symptomatic with FIV), so that R1 = 1.2529;

(III) high effectiveness level: ξF = 0.5 (i.e., it takes 2 days on average to detect and

isolate a lion symptomatic with FIV), R1 = 0.8691.

The simulation results obtained, depicted in Figure 5A, show that an increase in the

isolation rate of lions with FIV symptoms (ξF ) leads to a decrease in the associated

reproduction number (R1). This, consequently, results in a decrease in the FIV burden

in the lion population. Although the low and moderate effectiveness levels fail to reduce

R1 to a value less than unity, the high effectiveness level of this strategy reduces

R1 = 0.8691 < 1. Thus, the implementing the high effectiveness level of this strategy

can lead to the effective control of FIV in the lion population. In fact, elimination of

the disease is feasible (in the absence of backward bifurcation) in this case (Figure 5B

shows that such elimination can be achieved in about 100 years).

5.2 Effect of treatment of lions and buffalos against BTB

The singular effect of the treatment of BTB-infected lions and buffalos with symptoms

of BTB (i.e., ξB 6= 0 and ξBB 6= 0, respectively) is monitored by simulating the model

under the following three effectiveness levels of the treatment-only strategy (for these

simulations, the parameter associated with the isolation of lions with FIV symptoms,

ξF , is set to zero):

(I) low effectiveness level: ξB = ξBB = 0.1 (i.e., it takes 10 days on average to detect

and treat a lion or buffalo with symptoms of BTB), so that R2 = 2.3084 and

R3 = 1.5638;

(II) moderate effectiveness level: ξB = ξBB = 0.2 (i.e., it takes 5 days on average to

detect and treat a lion or buffalo with symptoms of BTB), so that R2 = 1.5821

and R3 = 0.9135;

(III) high effectiveness level: ξB = ξBB = 0.5 (i.e., it takes 2 days on average to detect

and treat a lion or buffalo with symptoms of BTB), so that R2 = 0.9470 and

R3 = 0.4064.
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These simulations (depicted in Figures 6A and 6B) show that, while the low and

moderate effectiveness levels of this strategy fail to bring the associated reproduction

numbers (R2 and R3) to values less than unity, the high effectiveness level of this

strategy reduces R2 and R3 to values less than unity. Thus, BTB can be effectively

controlled in (or eliminated from) the buffalo-lion population in the herd using the

high effectiveness level of this strategy (Figure 7 shows that such elimination can be

achieved in about 140 years).

5.3 Effect of hybrid isolation-treatment strategy against both

diseases

Here, the impact of a hybrid strategy, that combines the above two singular strategies,

is assessed. In particular, it entails the isolation of lions with symptoms of FIV, the

treatment of lions and buffalos with symptoms of BTB and dually-infected lions with

symptoms of both diseases. The following effectiveness levels of the hybrid strategy

are considered:

(I) low effectiveness level: ξF = ξB = ξD = ξBB = 0.1 (so that R1 = 1.6957, R2 =

2.3020, R3 = 1.5638 and R0 = R2 = 2.3084);

(II) moderate effectiveness level: ξF = ξB = ξD = ξBB = 0.2 (so that R1 =

1.2529, R2 = 1.5821, R3 = 0.9135 and R0 = R2 = 1.5821);

(III) high effectiveness level: ξF = ξB = ξD = ξBB = 0.5 (so that R1 = 0.8691, R2 =

0.9470, R3 = 0.4064 and R0 = R2 = 0.9470).

As expected, this strategy fares much better than any of the singular strategies dis-

cussed above (Figure 8A). In particular, Figure 8 shows that the high effectiveness

level of this (hybrid) strategy can lead to the elimination of the two diseases in a much

sooner duration (80 years), in comparison to time to elimination using any of the two

singular strategies.

Conclusions

A new model for the transmission dynamics of FIV and BTB in a herd, consisting of

lions and buffalos, is constructed and analysed. Some of the main findings of this study

are summarized below:

(i) The BTB-FIV model undergoes the phenomenon of backward bifurcation (a

dynamic phenomenon characterized by the co-existence of two stable attrac-

tors when the associated reproduction number of the model is less than unity).
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Two sufficient conditions for the emergence of this phenomenon (namely the co-

infection with the two diseases and the BTB re-infection of exposed buffalos)

have been identified.

(ii) In the absence of the BTB-FIV co-infection of lions and the re-infection of ex-

posed buffalos (i.e., in the absence of the backward bifurcation phenomenon), the

disease-free equilibrium of the resulting model is shown to be globally-asymptotically

stable, whenever the associated reproduction number is less than unity.

(iii) Numerical simulations of the model (2.2), using data relevant to BTB-FIV dy-

namics in South Africa’s Kruger National Park, show that (for the case where

backward bifurcation does not occur) the highest effectiveness levels of the afore-

mentioned singular strategies (i.e., the isolation of lions against FIV or the treat-

ment of buffalos and lions against BTB) can lead to the effective control or

elimination of the respective disease (FIV elimination in about 100 years; and

elimination of BTB in about 140 years). The hybrid strategy, which combines

both singular strategies, as well as the treatment/isolation of dually-infected lions

with symptoms of both diseases, eliminates both diseases in about 80 years. In

other words, each of the three strategies considered in this study can lead to the

elimination of the respective disease or diseases it targets, and such elimination

can be achieved much sooner if the hybrid strategy is implemented.

(iv) The effect of uncertainties in the estimates of the parameters of the model, on the

numerical simulation results obtained, were assessed using Latin Hypercube Sam-

pling on the reproduction number, R0 (as the response function). These analyses

reveal that the mean value of the reproduction number (R0) is R0 ≈ 1.5961 with

95% CI (0.8009, 3.5986). This result shows that, based on the parameter values

and ranges used in the simulation of the novel model developed in this study,

the current levels of control strategies implemented in the Kruger National Park

are insufficient to lead to the effective control of the two diseases in the buffalo-

lion population (although, since the mean value of R0 ≈ 1.6, it seems that not

much extra control efforts will be needed to bring the reproduction number to a

value less than unity, thereby enhancing the prospect of the effective control, or

elimination, of both diseases). It is further shown, via sensitivity analysis, that

the transmission dynamics of the two diseases in the herd (as measured in terms

of the size of the overall reproduction number, R0) is most affected by changes

in three parameters of the model. These parameters are the rate of FIV trans-

mission by infected lions (βF ), the modification parameter accounting for the

assumed reduction in infectiousness of isolated/treated lions, in comparison to

infected lions with clinical symptoms of FIV (ηF1) and the natural death of lions

(µL). Thus, a control strategy that focuses on minimizing βF and ηF1 (such as
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minimizing contacts between FIV-infected and susceptible lions, rapid detection,

quarantine, isolation and effective treatment of FIV-infected lions) will lead to

the effective control of both diseases in the herd.
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Appendix A: Proof of Theorem 2

Proof. The existence of backward bifurcation will be explored using the Centre Mani-

fold theory [18, 19, 58]. To apply this theory, it is convenient to carry out the following

change of variables. Consider the model (2.2). Let SL = x1, ELF1 = x2, ELF2 =

x3, JF = x4, ELB1 = x5, ELB2 = x6, ILB = x7, WLB = x8, DL1 = x9, DL2 =

x10, JFB = x11 SB = x12, EBB = x13, IBB = x14 and RBB = x15. Thus, NL =
15∑
i=1

xi.

Further, by using the vector notation

X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15)
T , the model (2.2) can be

written in the form
dX

dt
= (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15)

T , as
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follows

dx1
dt

= ΠL − (λF + λB + λFB)x1 − µLx1 = f1,

dx2
dt

= (λF + fλFB)x1 − θB(λB + λFB)x2 − (σF + µL)x2 = f2,

dx3
dt

= σFx2 − θB(λB + λFB)x3 − (ξF + µL)x3 = f3,

dx4
dt

= ξFx3 − µLx4 = f4,

dx5
dt

= [λB + (1− f)λFB]x1 − (σB1 + µL)x5 = f5,

dx6
dt

= σB1x5 − θF (λF + λFB)x6 − (σB2 + µL)x6 = f6,

dx7
dt

= σB2x6 − θF (λF + λFB)x7 − (ξB + µL + δB)x7 = f7,

dx8
dt

= ξBx7 − µLx8 = f8,

dx9
dt

= θB(λB + λFB)x2 + θF (λF + λFB)x6 − (σD + µL)x9 = f9,

dx10
dt

= σDx9 + θB(λB + λFB)x3 + θF (λF + λFB)x7 − (ξD + µL)x10 = f10,

dx11
dt

= ξDx10 − µLx11 = f11,

dx12
dt

= ΠB − λBBx12 − µBx12 = f12,

dx13
dt

= λBBx12 − θEBλBBx13 − (σBB + µB)x13 = f13,

dI14
dt

= σBBx13 + θEBλBBx13 − (ξBB + µB + δBB)x14 = f14,

dx15
dt

= ξBBx14 − µBx15 = f15,

(A.1)

with the associated forces of infection given by

λF =
βF (x3 + ηF1x4)

11∑
i=1

xi

, λB =
βB(ηB1x5 + ηB2x6 + x7)

11∑
i=1

xi

,

λFB =
βFB(ηFBx9 + x10)

11∑
i=1

xi

and λBB =
βBBx14
15∑
i=12

xi

.
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Consider the case withR0 = 1. Choose, without loss of generality, β∗F as the bifurcation

parameter. Solving for βF from R0 = 1 gives

βF = β∗F =
µLK1K2

σF (ηF1ξF + µL)
,

be chosen as a bifurcation parameter. The Jacobian of the system (A.1), evaluated at

the DFE (E0) with βF = β∗F (denoted by J∗), is given by

J∗ =

[
q1 q2

0 q3

]
,

where,

q1 =



−µL 0 −βF −βFηF1 −βBηB1 −βBηB2 −βB 0

0 −K1 βF βFηF1 0 0 0 0

0 σF −K2 0 0 0 0 0

0 0 ξF −µL 0 0 0 0

0 0 0 0 βBηB1 −K3 βBηB2 βB 0

0 0 0 0 σB1 −K4 0 0

0 0 0 0 0 σB2 −K5 0

0 0 0 0 0 0 ξB −µL



,

q2 =



−βFBηFB −βFB 0 0 0 −A1 0

fβFBηFB fβFB 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

qβFBηFB qβFB 0 0 0 A1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,

and,
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q3 =



−K6 0 0 0 0 0 0

σD −K7 0 0 0 0 0

0 ξD −µ 0 0 0 0

0 0 0 −µB −βBBηηFB
−βBB 0

0 0 0 0 βBBηηFB
−K8 βBB 0

0 0 0 0 σBB −K9 0

0 0 0 0 0 ξBB −µB


,

with, A1 =
ΠLµBθBBβBB

µLΠB

. The Jacobian (J∗) of the linearized system has a simple

zero eigenvalue (with all other eigenvalues having negative real part). Hence, the cen-

tre manifold theory [19, 58] can be used to analyse the dynamics of the system (A.1)

around βF = β∗F . Using the notation in [19], the following computations are carried

out.

Eigenvectors of J∗
∣∣∣∣
βF=β∗

F

For the case when R0 = 1, it can be shown that the Jacobian, J∗, has a right eigen-

vector (corresponding to the simple zero eigenvalue), given by

w = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15]
T , where,

w1 = −β
∗
F (w3 + ηF1w4) + βB(ηB1w5 + ηB2w6 + w7) + A1w14

µL
, w2 = w2, w3 =

σFw2

K2

,

w4 =
ξFσFw2

µLK2

, w5 = w5, w6 =
σB1w5

K4

, w7 =
σB1σB2w5

K4K5

, w8 =
ξBσB1σB2w5

µLK4K5

,

w9 = w10 = w11 = 0, w12 =
−βBBw14

µB
, w14 =

σBBw13

K9

, w13 = w13, w15 =
ξBBσBBw13

µBK9

.

Similarly, the components of the left eigenvector of J∗ (corresponding to the simple

zero eigenvalue), denoted by v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15],

are given by,

v3 =
K1v2
σF

, v4 =
β∗FηF1v2
µL

, v5 =
K5v7
βB

, v6 =
βBηB2v5 + σB2v7

K4

, v14 =
A1v5 + βBBv13

K9

,

v1 = v8 = v11 = v12 = v15 = 0, v2 > 0, v7 > 0, v13 > 0.

It is worth mentioning that the free right eigenvectors, w2, and w5, and left eigenvectors,

v2 and v7, are chosen to be
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w2 =
µ2
LK1

2µ2
LK1 + βFηF1σF

, w5 =
βBK

2
4K5

K2
5(K2

4 + ηB2βBσB1) + βBσB1σB2(K4 +K5)
, w13 = 1,

v2 =
1

4
, v7 =

1

4
and v13 =

1

2
, so that v.w = 1 (in line with [19]).

It can be shown, by computing the non-zero partial derivatives of the right-hand side

functions of the model (A.1), fi(i = 1, ..., 15), that the associated backward bifurcation

coefficients, a and b, are given, respectively, by (see Theorem 4.1 in [19]):

ã =
15∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

= −2µBµL
ΠBΠL

[
ΠB

µB
β∗F (ηF1w4 + w3)

{
θF [(w6(v6 − v9) + w7(v7 − v10)] + v2

8∑
i=2

wi

}

+
ΠB

µB
βB(ηB1w5 + ηB2w6 + w7)

{
θB[w2(v2 − v9) + w3(v3 − v10)] + v5

8∑
i=2

wi

}
+

ΠL

µL
βBBw14[θEBw13(v13 − v14) + v13(w13 + w14 + w15)]

]
,

(A.2)

and,

b =
15∑

k,i=1

vkwi
∂2fk
∂xi∂β∗B

(0, 0) = v2(ηF1w4 + w3) > 0.

Since the bifurcation coefficient, b, is automatically positive, it follows from Theorem

4.1 of [19] that the model (2.2) (or its transformed equivalent, given by model (A.1))

will undergo a backward bifurcation at R0 = 1 whenever the bifurcation coefficient, ã,

given by Equation (A.2), is positive. �
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Variable Interpretation

SL Population of susceptible lions

ELF1 Population of lions infected with FIV only at early-stage of infection

ELF2 Population of lions infected with FIV only at advanced-stage of infection

JF Population of lions infected with FIV only that are isolated (and/or treated)

ELB1 Population of lions infected with BTB only at early-stage of infection

ELB2 Population of lions infected with BTB only at advanced-stage of infection

ILB Population of lions Infected with clinical symptom of BTB

WLB Population of lions with BTB only that are treated against BTB

DL1 Population of dually-infected lions with FIV and advanced-exposed to BTB

DL2 Population of dually-infected lions with symptoms of both FIV and BTB

JFB Population of treated/isolated dually-infected lions with symptoms of

FIV and BTB

SB Population of susceptible buffalos

EBB Population of buffalos exposed (infected but not yet show a symptoms)

to BTB infection

IBB Population of buffalos with clinical symptoms of BTB

RBB Population of buffalos who recovered from BTB infection

Table 1: Description of state variables of the model (2.2).
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Parameter Interpretation

ΠL Recruitment rate of lions

ΠB Recruitment rate of buffalos
1
µL

Average lifespan of lions
1
µB

Average lifespan of buffalos

βB (βF ) Effective contact rates for BTB (FIV) transmission

βFB Effective contact rate for FIV or BTB transmission from dually infected lions to

susceptible lions or BTB transmission from infected buffalos to infected lions

βBB Effective contact rate for BTB transmission from infected buffalos to susceptible buffalos

σF Progression rate of early-exposed lions with FIV only to advanced-exposed stage

σB1 Progression rate of early-exposed lions with BTB only to advanced-exposed stage

σB2 Progression rate of advanced-exposed lions with BTB only to symptomatic stage

σBB Progression rate of exposed buffalos with BTB infectious stage

σD Progression rate of dually-infected lions with FIV and advanced-exposed with BTB

to symptomatic stage of both FIV and BTB

f Proportion of lions that are infected with FIV by dually-infected lions with both diseases

ξF Isolation rate of advanced-exposed lions with FIV

ξB Treatment rate of infected lions with BTB

ξBB Treatment rate of infected buffalos with BTB

ξD Treatment rate of dually-infected lions with clinical symptoms of both diseases

ηF1 Modification parameter accounting for the assumed reduction in infectiousness of isolated

lions with FIV, in comparison to infected lions at advanced-stage of FIV infection

ηB1 (ηB2) Modification parameter accounting for the assumed reduction in infectiousness

of early (advanced) exposed lions, in comparison to infected lions with clinical symptoms of BTB

ηFB Modification parameter accounting for the assumed reduction in infectiousness

of dually-infected lions, in comparison to dually-infected lions with symptoms of FIV and BTB

θF (θB) Modification parameter accounting for the assumption that co-infection of BTB (FIV)

infected lions with FIV (BTB) occurs at a rate lower than primary infection of

susceptible lions with FIV (BTB)

θBB Modification parameter accounting for the assumed reduced likelihood of BTB transmission

from buffalos to lions in relation to BTB transmission from a buffalo to buffalo

θEB Modification parameter accounting for the assumed reduced likelihood of exogenous

reinfection for buffalos in the exposed class in relation to the primary infection of buffalos

in the susceptible class

δB BTB-induced death rate of lions

δBB BTB-induced death rate of buffalos

Table 2: Description of parameters of the model (2.2).
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Parameter Range (day−1) Baseline (day−1) Distribution Reference

ΠL [0.5, 0.8] 0.6 Uniform [62]

ΠB [2, 2.7] 2.3 Uniform [36, 52]

µL [0.0002, 0.000274] 0.00025 Uniform [62]

µB [0.0001, 0.00015] 0.00013 Uniform [61]

βF [0.0003, 0.0007] 0.0005 Uniform [62]

βB [0.1, 0.2] 0.15 Uniform [62]

βFB [0.4, 0.6] 0.5 Not in R0 [62]

βBB [0.4, 0.6] 0.5 Uniform [25, 36]

σF [0.4, 0.5] 0.45 Uniform [62]

σB1 [0.45, 0.55] 0.5 Uniform [62]

σB2 [0.25, 0.35] 0.3 Uniform [62]

σBB [0.25, 0.44] 0.4 Uniform [36, 48]

σD [0.30, 0.40] 0.35 Uniform Assumed

ηF1 [0.5, 0.7] (dimensionless) 0.6 Uniform Assumed

ηB1 [0.01, 0.03] (dimensionless) 0.5 Uniform Assumed

ηB2 [0.6, 0.8](dimensionless) 0.7 Uniform Assumed

ηFB [0.01, 0.03] (dimensionless) 0.7 Not in R0 Assumed

f [0.01, 0.1] (dimensionless) 0.5 Not in R0 Assumed

ξF [0.1, 1] 0.7 Uniform Assumed

ξB [0.1, 1] 0.7 Uniform Assumed

ξBB [0.1, 1] 0.75 Uniform Assumed

ξD [0.1, 1] 0.7 Uniform Assumed

θF [0.01, 0.022] (dimensionless) 0.02 Not in R0 Assumed

θB [0.01, 0.022] (dimensionless) 0.02 Not in R0 Assumed

θBB [0.025, 0.05] (dimensionless) 0.03 Not in R0 [62]

θEB [0.024, 0.030] (dimensionless) 0.0271 Not in R0 [23, 36]

δB [0.018, 0.022] 0.02 Uniform [27]

δBB [0.018, 0.022] 0.02 Uniform [17, 23, 36]

Table 3: Ranges and baseline values for parameters of the model (2.2).
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Parameter R1 R2 R3 R0 = max{R1,R2,R3}
µL -0.9191 -0.0059 -0.0067 -0.8518

µB 0.0120 0.0085 -0.0051 0.0069

βF 0.9884 0.0041 0.0031 0.9773

βB 0.0053 0.9931 -0.0027 0.0965

βBB -0.0015 0.0010 0.9703 0.0575

σF 0.0144 0.0145 -0.0115 0.0075

σB1 0.0041 -0.4355 0.0001 -0.0089

σB2 0.0046 -0.8884 -0.0110 -0.0398

σBB -0.0157 -0.0117 0.0103 -0.0240

σD 0.0148 -0.0061 0.0034 0.0159

ηF1 0.9290 0.0071 -0.0011 0.8687

ηB1 -0.0004 0.7004 -0.0067 0.0167

ηB2 -0.0180 0.8565 -0.0042 0.0201

ξF -0.0173 -0.0078 0.0206 -0.0098

ξB -0.0024 -0.8926 -0.0107 -0.0405

ξBB -0.0131 -0.0106 -0.9856 -0.0995

ξD -0.0066 0.0043 0.0112 -0.0094

δB 0.0075 -0.0287 0.0111 0.0031

δBB 0.0074 0.0052 -0.0572 -0.0023

Table 4: PRCC plots of the various parameters of the model, using the various repro-

duction thresholds ( R1,R2,R3 and R0) as the response functions. Parameter values

and ranges used are as given in Table 3.
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Figure 1: Schematic diagram of the model
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Figure 2: Backward bifurcation diagram of the model (2.2). Parameter values used

are: ΠL = 20,ΠB = 40, ηF1 = 0.05, ηB1 = 0.6, ηB2 = 0.4, ηFB = 0.5, σF = 0.5, σB1 =

0.4, σB2 = 0.53, σD = 0.4, σBB = 0.63, θBB = 0.2, θB = 0.3, θF = 0.25, θEB = 0.22, δB =

0.1, δBB = 0.1, µL = 0.94, µB = 10.94, ξF = 0.002, ξB = 0.25, ξD = 0.3, ξBB =

0.22, βFB = 100, f = 0.994, βB = 0.6019422435β∗F and βBB = 76.23141982β∗F ,

β∗F = 2.712671416 (so that, R1 = R2 = R3 = 1 and ã = 4.053619135× 1037 > 0).
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Figure 3: Boxplots of constituent reproduction numbers R1 and R2. Parameter values

and ranges used are as given in Table 3.
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Figure 4: Boxplots of the reproduction numbers R3 and R0. Parameter values and

ranges used are as given in Table 3.
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Figure 5: Simulations of the model (2.2), showing the (A) cumulative number of lions

infected with FIV (B) time to FIV elimination using the high effectiveness level of

the isolation-only strategy. Parameter values used are as given in Table 3, with (A)

various values of ξF and (B) ξF = 0.5, ξB = ξBB = ξD = 0 (so that, R1 = 0.8691 < 1),

θF = θB = θEB = 0.
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Figure 6: Simulations of the model (2.2), showing the cumulative number of (A) buf-

falos infected with BTB (B) lions infected with BTB. Parameter values used are as

given in Table 3, with various values of (A) ξBB and (B) ξB.
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Figure 7: Simulations of the model (2.2), showing the time to BTB elimination using

the high effectiveness level of the treatment-only strategy. Parameter values used are

as given in Table 3 with θF = θB = θEB = 0, ξF = 0, ξB = ξBB = ξD = 0.5 (so that,

R2 = 0.9470 < 1 and R3 = 0.4064 < 1).
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Figure 8: Simulations of the model (2.2) showing the (A) cumulative number of lions

infected with BTB (B) time to FIV and BTB elimination using the high effectiveness

level of the combined isolation-treatment strategy. Parameter values used are as given

in Table 3, with θF = θB = θEB = 0, ξF = ξB = ξBB = ξD = 0.5 (so that, R0 =

0.9470 < 1).
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