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Fig. 1: Directed acyclic graph (DAG) used to represent the multilevel regression  

models in a hierarchical Bayesian framework for the overall model networks that  

were developed for both the nutrient addition experiment, and the nutrient addition  

and herbivore exclusion experiment.  
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Structural Equation Modelling  

Description of the model processes stages  

The difficulty in building meaningful meta-models increases with the number of  

predictors involved because the number of potential links among variables increases  

exponentially. As a consequence, drawing a causal link between any two variables  

can have implications that are challenging to predict based on a priori knowledge  

(e.g., indirect effects). To reduce this level of complexity, we separated our predictors  

into two layers; the first one representing the experimental treatments, which are the  

core of the present study, and the second one representing external abiotic factors  

related to initial edaphic conditions, temperature and precipitation (see Methods  

section of the main text). We first built a meta-model that included effects from only  

the experimental treatments (see Supplementary Fig. 2) that we tested using structural  

equation modelling, and then as a second step, from the knowledge gained from the  

first step, we built a second meta-model that integrated the effects of external abiotic  

factors (see Supplementary Fig. 3). This sequential approach allowed us to gain  

sufficient insight into the system to reach a level of confidence and complexity in the  

final model that would otherwise have been difficult to achieve.    

In both SEM analytical steps, we started with the relevant initial meta-model and  

used modification indices to standardize our decisions of adding missing paths to the  

model. We used the “modindices” function in the lavaan package, which provides a  

list of all missing path regressions between two variables in the model, as well as the  

expected effect of the addition on the model data fit (Chi-square value)1.  We used the  

modification indices in a stepwise approach, adding only one path at a time, until no  

modification indices were higher than 2. Modification indices can be constructed  

between any two variables in the model, and thus we only added a suggested path  
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when it made ecological sense to do so (e.g., a path suggesting that nitrogen addition  

is caused by leaf nutrient concentration is not a sensible consideration ecologically).  

Once this incremental approach was finished, we scanned the path regressions and  

pruned all non-significant ones (based on p < 0.05), generating a final more  

parsimonious candidate model. We then compared all candidate models using the  

Akaike information criterion2. This general approach ensured that, starting from the  

simplified meta-model, any important paths (i.e., with modification indices higher  

than two) between two variables would be considered and that the final selected  

model would represent a satisfactory information-parsimony trade-off.   

For all models, we corrected for the nested experimental design by including a  

stratified independent design with blocks nested within sites as stratified variables.  

Using the lavaan.survey package1, we extracted a robust test statistic, the pseudo  

maximum likelihood (PML), for each model1.  

Initial step – experimental treatments only  

Our initial meta-model was built based on expectations from the experimental  

treatments (Supplementary Fig. 2), because of the results found using the Bayesian  

multilevel regressions. We predicted that nutrient additions would affect the leaf  

nutrient concentrations and SLA directly, showing evidence of plasticity in trait  

expression, or through an effect on temporal species turnover, suggesting that  

community-level processes dominate observed effects on leaf traits (3-6 and see  

Supplementary Fig. 2). Temporal turnover was calculated as the Bray-Curtis  

dissimilarity in each plot at each site between time t0 and time x+n, which  

corresponded to the time of the leaf trait measurement.   

We started with the meta-model (Supplementary Fig. 3) and followed the  

incremental process outlined above, which led to the creation of 3 candidate models,  
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from which we identified the best model with an AICc difference >13 compared with  

the closest model and an AICc weight of 1 (Supplementary Fig. 3). The selected  

model showed a very good model-data fit (PML = 5.75, 15 model degrees of freedom  

and p = 0.98). The model showed positive effects of each soil nutrient addition on the  

leaf nutrient concentrations, while only phosphorus affected plant species temporal  

turnover. It is noteworthy that none of the treatments had detectable impacts on SLA  

(Supplementary Fig. 4).   

Final step – integration with external abiotic predictors  

Based on the insights gained during the initial step when determining the effects of  

the experimental treatments on the leaf traits, we built a final meta-model and  

integrated the effects of external abiotic factors (Supplementary Fig. 3). In this model,  

we assumed that if SLA was not affected by the experimental treatments then it was  

likely more sensitive to external abiotic factors (Supplementary Fig. 3). We also  

assumed that the initial soil nutrient content would affect the leaf nutrient  

concentrations and that temperature- and precipitation-related variables would likely  

influence leaf nutrients via an effect on plant species turnover (Supplementary Fig. 3).  

This latter assumption is a simplification that allowed us to build a final meta-model  

that was not saturated, while integrating all predictors. Given our general approach  

with the modification indices, we believe that it is more appropriate to start with a  

simplified model, assuming that all important paths (i.e., modification indices higher  

than 2) will be identified during the incremental process rather than starting with a  

saturated model where there is no space for path addition and where we have to make  

ad hoc decisions on which path to remove. The selected best model had an AICc  

difference >5 with respect to the closest model and an AICc weight of 0.77. Using the  

lavaan.survey package, we extracted a robust test statistic (PML  = 23.35, 32 model  
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degrees of freedom, and P = 0.867), indicating a good model-data fit. The results from  

the incremental process starting with the meta-model shown in Supplementary Fig. 3  

are presented in Supplementary Fig. 5 and in the Results section of the main text in  

Fig. 4.   

  

Fig. 2. Meta-model including only effects from the experimental treatments.   

  

Fig. 3. Meta-model including effects from both the experimental treatments and  

external abiotic factors. MAT: mean annual temperature, TEMP_VAR: annual  

variation in temperature, MAP: mean annual precipitation, MAP_VAR: annual  
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variation in precipitation, soil_N: initial soil nitrogen content, soil_P: initial soil  

phosphorus content, soil_K: initial soil potassium content.   

  

  

Fig. 4. Final model from the initial step including experimental treatments only. Path  

values are standardized coefficients.   
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Fig. 5. Structural equation model diagram representing connections between leaf  

traits, experimental nutrient addition treatments, site-level average climatic and pre- 

treatment edaphic conditions, as well as species turnover. Values in boxes represent  

correlations and R2 values. Only significant connections are shown. Diagram by  

Evidently So. Please follow this link to see an interactive visualisation of this figure:  

http://evidentlyso.com.au/clients/qut/functionalTraits0120/  
  

   

https://urldefense.proofpoint.com/v2/url?u=http-3A__evidentlyso.com.au_clients_qut_functionalTraits0120_&d=DwMF-g&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=F8YTIPm9ae54DpMkvU9OeFlgwjbkY6twouFeh2zYgVY&m=b86NLpb7Pl8IywbredEtCmbN_Mxi9KLICYHb_C7DLRs&s=ufPd0j4pjNrog48QpxkQUEBRS0vdFx-7zFGcR6-c79I&e=


Table 1  

Description of the 27 sites including habitat type; latitude (from -90 [S] TO +90 [N] in decimal degrees); longitude (from -180 [W] to +180  

[E)]in decimal degrees); experimental year when leaves were collected at each site, mean elevation (m); MAT (mean annual temperature, C);  

Temperature variation (temperature seasonality calculated as the standard deviation of temperature x 100); MAP (mean annual precipitation,  

mm); variation in mean annual precipitation (precipitation seasonality calculated as the coefficient of variation of precipitation); N (pre- 

treatment soil nitrogen in percent by mass); P (pre-treatment soil phosphorus in ppm);  K (pre-treatment soil potassium in ppm); current  

domestic grazing (based on biomass consumed estimated qualitatively or comparing inside and outside of grazing exclosures); current ratio of  

native to exotic herbivores (all mammals); years since last domestic grazing at the time the experiment was established. ma-not available.  
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p

p

m
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Cur

rent 

Nati

ve: 

Exo

tic 

Her

bivo

res 

Years 

since llast 

domestic 

grazing  

bldr.us USA 

shortgr

ass 

prairie 

3 

1633 39.9720 -105.2335 9.7 79.52 425 42 0.09 20 

7

8  2:0 Never 

bnch.us USA 

montan

e  

4 

1318 44.2766 -121.9680 5.5 60.55 1647 65 0.68 15 

8

7  2:0 96 

bogong.

au 

Australi

a alpine  

2 

1760 -36.874 147.254 5.7 47.59 1592 26 0.51 71 

2

1

1  0:4 NA 

burrawa

n.au 

Australi

a 

semiari

d  

3 

425 -27.7348 151.1395 18.4 50.49 683 36 0.11 35 

7

0  4:2 0 

cbgb.us USA 

tallgras

s 

prairie 

3 

275 41.7850 -93.3853 9 

108.4

6 855 46 0.06 72 

9

5  3:0 20 

comp.pt Portugal annual  

2 

200 38 -8 16.5 49.77 554 61 0.14 52 

7

4  1:0 1 

cowi.ca Canada 

old 

field 

4 

50 48.46 -123.38 9.8 40.44 764 64 0.43 47 

8

8  3:0 6 

elliot.us USA annual  

3 

200 32.875 

-

117.05224

3 17.2 35.93 331 87 0.17 15 

3

2

7  3:0 40 
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frue.ch 

Switzerl

and pasture 

3 

995 47.1131 8.5418 6.5 59.89 1355 23 0.44 57 

1

6

1  3:0 2 

gilb.za 

South 

Africa 

montan

e  

2 

1748 -29.2842 30.2917 13.1 34.19 926 67 1.26 17 

1

0

8  3:0 Never 

hopl.us USA annual  

4 

598 39.0127 -123.0603 12.3 52.78 1127 87 NA NA 

N

A  2:0 23 

jena.de 

German

y Mesic 

2 

320 50.9333 11.53333 8 62.51 610 27 0.55 155 

1

3

4

0  1:0 Never 

kiny.au 

Australi

a 

semiari

d  

4 

90 -36.2 143.75 15.5 49.26 426 21 0.09 9 

3

1

5  1:1 2 

konz.us USA 

tallgras

s 

prairie 

4 

440 39.0708 -96.5828 11.9 99.32 877 50 NA NA 

N

A  2:0 38 

lancaste

r.uk UK mesic  

3 

180 53.9856 -2.6284 8 45.42 1322 23 1.55 21 

9

0  2:0 0 

look.us USA 

montan

e  

4 

1500 44.2051 -122.1284 4.8 58.66 1898 65 1.14 75 

1

8

1  3:0 86 

mcla.us USA annual  

4 

642 38.8642 -122.4064 13.5 59.94 867 88 NA NA 

N

A  2:0 24 

mtca.au 

Australi

a savanna 

3 

285 -31.7821 117.6108 17.3 52.55 330 55 NA NA 

N

A  1:1 

0, 

removed 

Septembe

r 2015 
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sage.us USA 

montan

e  

4 

1920 39.43 -120.24 5.7 65.39 882 69 0.39 28 

2

1

2  6:0 12 

saline.u

s USA 

mixedg

rass 

prairie 

4 

440 39.05 -99.1 11.8 

100.3

3 607 53 NA NA 

N

A  2:0 0 

sgs.us USA 

shortgr

ass 

prairie 

4 

1650 40.8166 -104.7666 8.4 84.82 365 59 0.09 74 

2

6

3  9:0 8 

shps.us USA 

shrub 

steppe 

4 

910 44.2429 -112.1983 5.5 95.57 262 37 0.22 29 

6

1

6  2:1 0 

sier.us USA annual  

4 

197 39.2355 -121.2836 15.6 64.7 935 84 0.21 22 

1

6

3  2:0 2 

smith.us USA mesic  

4 

62 48.2065 -122.6247 9.8 42.14 597 36 0.57 64 

1

9

5  1:1 unknown 

summ.z

a 

South 

Africa mesic  

2 

679 -29.8116 30.7157 18.2 25.51 939 55 0.32 13 

8

8  2:1 >14 

unc.us USA 

old 

field 

4 

141 36.0082 -79.0204 14.6 76.18 1163 11 0.19 38 

1

0

9  1:0 unknown 

valm.ch 

German

y alpine  

3 

2320 46.6313 10.3722 0.3 54.23 1098 29 0.43      4:0 40 

 120 

 121 



  
Table 2: Co-variances between leaf traits based on the structural equation model.  

 

 

Leaf P Leaf K SLA 

Leaf N 0.401 0.341 0.192 

Leaf P  0.462 0.224 

Leaf K   0.153 
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