Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs

Jennifer Firn[®]^{1*}, James M. McGree¹, Eric Harvey[®]², Habacuc Flores-Moreno[®]³, Martin Schütz⁴, Yvonne M. Buckley[®]⁵, Elizabeth T. Borer[®]³, Eric W. Seabloom[®]³, Kimberly J. La Pierre[®]⁶, Andrew M. MacDougall⁷, Suzanne M. Prober⁸, Carly J. Stevens⁹, Lauren L. Sullivan³, Erica Porter¹, Emma Ladouceur[®]^{10,11}, Charlotte Allen¹, Karine H. Moromizato¹, John W. Morgan¹², W. Stanley Harpole[®]^{10,11,13}, Yann Hautier[®]¹⁴, Nico Eisenhauer[®]^{10,15}, Justin P. Wright¹⁶, Peter B. Adler¹⁷, Carlos Alberto Arnillas¹⁸, Jonathan D. Bakker¹⁹, Lori Biederman²⁰, Arthur A. D. Broadbent^{9,21}, Cynthia S. Brown²², Miguel N. Bugalho²³, Maria C. Caldeira²⁴, Elsa E. Cleland²⁵, Anne Ebeling²⁶, Philip A. Fay[®]²⁷, Nicole Hagenah²⁸, Andrew R. Kleinhesselink²⁹, Rachel Mitchell³⁰, Joslin L. Moore³¹, Carla Nogueira²⁴, Pablo Luis Peri³², Christiane Roscher^{10,11}, Melinda D. Smith[®]³³, Peter D. Wragg³ and Anita C. Risch[®]⁴

¹Queensland University of Technology, Brisbane 4000 Queensland, Australia. ²Département de Sciences Biologiques, Université de Montréal, Montréal, Quebec, Canada. ³Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA. ⁴Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland. 5 School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland. 6 Smithsonian Environmental Research Center, Edgewater, MD, USA. ⁷Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada. ⁸CSIRO Land and Water, Floreat, Western Australia, Australia. PLancaster Environment Centre, Lancaster University, Lancaster, UK. ¹⁰German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. 1Department of Physiological Diversity, Helmholtz Center for Environmental Research, Leipzig, Germany. ¹²Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia. ¹³Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany. 14 Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands. ¹⁵Institute of Biology, Leipzig University, Leipzig, Germany. ¹⁶Department of Biology, Duke University, Durham, NC, USA. ¹⁷Department of Wildland Resources/Ecology Center, Utah State University, Logan, UT, USA. ¹⁸Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada. 19 School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA. 20 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA. ²¹School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Manchester, UK. ²²Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA. ²³Centre for Applied Ecology (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal. ²⁴Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal. 25 Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. 26 Institute of Ecology and Evolution, University of Jena, Jena, Germany. ²⁷Agricultural Research Service, United States Department of Agriculture, Grassland Soil and Water Research Laboratory, Temple, TX, USA.²⁸Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa. ²⁹Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA. ³⁰School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA. ³¹School of Biological Sciences, Monash University, Melbourne, Victoria, Australia. ³²Department of Forestry, Agriculture and Water, National University-INTA-CONICET, Rio Gallegos, Santa Cruz, Patagonia, Argentina. 33Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA. *e-mail: jennifer.firn@qut.edu.au

Fig. 1: Directed acyclic graph (DAG) used to represent the multilevel regression models in a hierarchical Bayesian framework for the overall model networks that were developed for both the nutrient addition experiment, and the nutrient addition and herbivore exclusion experiment.

Structural Equation Modelling

Description of the model processes stages

The difficulty in building meaningful meta-models increases with the number of predictors involved because the number of potential links among variables increases exponentially. As a consequence, drawing a causal link between any two variables can have implications that are challenging to predict based on *a priori* knowledge (e.g., indirect effects). To reduce this level of complexity, we separated our predictors into two layers; the first one representing the experimental treatments, which are the core of the present study, and the second one representing external abiotic factors related to initial edaphic conditions, temperature and precipitation (see Methods section of the main text). We first built a meta-model that included effects from only the experimental treatments (see Supplementary Fig. 2) that we tested using structural equation modelling, and then as a second step, from the knowledge gained from the first step, we built a second meta-model that integrated the effects of external abiotic factors (see Supplementary Fig. 3). This sequential approach allowed us to gain sufficient insight into the system to reach a level of confidence and complexity in the final model that would otherwise have been difficult to achieve.

In both SEM analytical steps, we started with the relevant initial meta-model and used modification indices to standardize our decisions of adding missing paths to the model. We used the "modindices" function in the lavaan package, which provides a list of all missing path regressions between two variables in the model, as well as the expected effect of the addition on the model data fit (Chi-square value)¹. We used the modification indices in a stepwise approach, adding only one path at a time, until no modification indices were higher than 2. Modification indices can be constructed between any two variables in the model, and thus we only added a suggested path

when it made ecological sense to do so (e.g., a path suggesting that nitrogen addition is caused by leaf nutrient concentration is not a sensible consideration ecologically). Once this incremental approach was finished, we scanned the path regressions and pruned all non-significant ones (based on p < 0.05), generating a final more parsimonious candidate model. We then compared all candidate models using the Akaike information criterion². This general approach ensured that, starting from the simplified meta-model, any important paths (i.e., with modification indices higher than two) between two variables would be considered and that the final selected model would represent a satisfactory information-parsimony trade-off.

For all models, we corrected for the nested experimental design by including a stratified independent design with blocks nested within sites as stratified variables. Using the lavaan.survey package¹, we extracted a robust test statistic, the pseudo maximum likelihood (PML), for each model¹.

Initial step – experimental treatments only

Our initial meta-model was built based on expectations from the experimental treatments (Supplementary Fig. 2), because of the results found using the Bayesian multilevel regressions. We predicted that nutrient additions would affect the leaf nutrient concentrations and SLA directly, showing evidence of plasticity in trait expression, or through an effect on temporal species turnover, suggesting that community-level processes dominate observed effects on leaf traits (³⁻⁶ and see Supplementary Fig. 2). Temporal turnover was calculated as the Bray-Curtis dissimilarity in each plot at each site between time t0 and time x+n, which corresponded to the time of the leaf trait measurement.

We started with the meta-model (Supplementary Fig. 3) and followed the incremental process outlined above, which led to the creation of 3 candidate models,

from which we identified the best model with an AICc difference >13 compared with the closest model and an AICc weight of 1 (Supplementary Fig. 3). The selected model showed a very good model-data fit (PML = 5.75, 15 model degrees of freedom and p = 0.98). The model showed positive effects of each soil nutrient addition on the leaf nutrient concentrations, while only phosphorus affected plant species temporal turnover. It is noteworthy that none of the treatments had detectable impacts on SLA (Supplementary Fig. 4).

Final step – integration with external abiotic predictors

Based on the insights gained during the initial step when determining the effects of the experimental treatments on the leaf traits, we built a final meta-model and integrated the effects of external abiotic factors (Supplementary Fig. 3). In this model, we assumed that if SLA was not affected by the experimental treatments then it was likely more sensitive to external abiotic factors (Supplementary Fig. 3). We also assumed that the initial soil nutrient content would affect the leaf nutrient concentrations and that temperature- and precipitation-related variables would likely influence leaf nutrients via an effect on plant species turnover (Supplementary Fig. 3). This latter assumption is a simplification that allowed us to build a final meta-model that was not saturated, while integrating all predictors. Given our general approach with the modification indices, we believe that it is more appropriate to start with a simplified model, assuming that all important paths (i.e., modification indices higher than 2) will be identified during the incremental process rather than starting with a saturated model where there is no space for path addition and where we have to make ad hoc decisions on which path to remove. The selected best model had an AICc difference >5 with respect to the closest model and an AICc weight of 0.77. Using the lavaan.survey package, we extracted a robust test statistic (PML $= 23.35, 32 \mod 1$

degrees of freedom, and P = 0.867), indicating a good model-data fit. The results from the incremental process starting with the meta-model shown in Supplementary Fig. 3 are presented in Supplementary Fig. 5 and in the Results section of the main text in Fig. 4.

Fig. 2. Meta-model including only effects from the experimental treatments.

Fig. 3. Meta-model including effects from both the experimental treatments and external abiotic factors. MAT: mean annual temperature, TEMP_VAR: annual variation in temperature, MAP: mean annual precipitation, MAP_VAR: annual

variation in precipitation, soil_N: initial soil nitrogen content, soil_P: initial soil phosphorus content, soil_K: initial soil potassium content.

Fig. 4. Final model from the initial step including experimental treatments only. Path values are standardized coefficients.

Fig. 5. Structural equation model diagram representing connections between leaf traits, experimental nutrient addition treatments, site-level average climatic and pretreatment edaphic conditions, as well as species turnover. Values in boxes represent correlations and R² values. Only significant connections are shown. Diagram by Evidently So. Please follow this link to see an interactive visualisation of this figure: http://evidentlyso.com.au/clients/qut/functionalTraits0120/

Table 1

Description of the 27 sites including habitat type; latitude (from -90 [S] TO +90 [N] in decimal degrees); longitude (from -180 [W] to +180 [E)]in decimal degrees); experimental year when leaves were collected at each site, mean elevation (m); MAT (mean annual temperature, °C); Temperature variation (temperature seasonality calculated as the standard deviation of temperature x 100); MAP (mean annual precipitation, mm); variation in mean annual precipitation (precipitation seasonality calculated as the coefficient of variation of precipitation); N (pre-treatment soil nitrogen in percent by mass); P (pre-treatment soil phosphorus in ppm); K (pre-treatment soil potassium in ppm); current domestic grazing (based on biomass consumed estimated qualitatively or comparing inside and outside of grazing exclosures); current ratio of native to exotic herbivores (all mammals); years since last domestic grazing at the time the experiment was established. ma-not available.

Site code	Countr y	Grassl and type	Experim ental year when leaves were collected	elev atio n	latitude	longitude	MA T	Temp variat ion	MA P	MAP variat ion	Soil N (%)	Soil P (pp m)	S oi 1 K (p p m)	Cur rent Nati ve: Exo tic Her bivo res	Years since llast domestic grazing
		shortgr	3										-		
bldr.us	USA	ass prairie		1633	39.9720	-105.2335	9.7	79.52	425	42	0.09	20	8	2:0	Never
		montan	4										8		
bnch.us	USA	е		1318	44.2766	-121.9680	5.5	60.55	1647	65	0.68	15	7	2:0	96
			2										2		
bogong.	Australı	-1-1		17(0	26.974	1 47 25 4	57	17 50	1502	26	0.51	71	1	0.4	NT A
au	a A a li	alpine	2	1/60	-36.8/4	147.254	5.7	47.59	1592	26	0.51	/1	1	0:4	NA
burrawa n au	Australi	d	3	425	-27 7348	151 1395	18.4	50 49	683	36	0.11	35	0	4.2	0
11.00	u	tallgras	3	125	27.7510	10111070	10.1	50.17	005		0.11	55	U	1.2	0
		S						108.4					9		
cbgb.us	USA	prairie		275	41.7850	-93.3853	9	6	855	46	0.06	72	5	3:0	20
			2										7		
comp.pt	Portugal	annual		200	38	-8	16.5	49.77	554	61	0.14	52	4	1:0	1
	~	old	4										8	• •	
cowi.ca	Canada	field		50	48.46	-123.38	9.8	40.44	764	64	0.43	47	8	3:0	6
			3			-							3		
elliot.us	USA	annual		200	32.875	3	17.2	35.93	331	87	0.17	15	∠ 7	3:0	40

1	1	1		1	1		1		1	1	1	1	1		1
			3										1		
	Switzerl												6		
frue.ch	and	pasture		995	47.1131	8.5418	6.5	59.89	1355	23	0.44	57	1	3:0	2
			2										1		
	South	montan											0		
gilb.za	Africa	e		1748	-29.2842	30.2917	13.1	34.19	926	67	1.26	17	8	3:0	Never
			4										Ν		
hopl.us	USA	annual		598	39.0127	-123.0603	12.3	52.78	1127	87	NA	NA	Α	2:0	23
•			2										1		
													3		
	German												4		
jena.de	у	Mesic		320	50.9333	11.53333	8	62.51	610	27	0.55	155	0	1:0	Never
			4										3		
	Australi	semiari											1		
kiny.au	a	d		90	-36.2	143.75	15.5	49.26	426	21	0.09	9	5	1:1	2
		tallgras	4												
		S											Ν		
konz.us	USA	prairie		440	39.0708	-96.5828	11.9	99.32	877	50	NA	NA	Α	2:0	38
lancaste			3										9		
r.uk	UK	mesic		180	53.9856	-2.6284	8	45.42	1322	23	1.55	21	0	2:0	0
			4										1		
		montan											8		
look.us	USA	e		1500	44.2051	-122.1284	4.8	58.66	1898	65	1.14	75	1	3:0	86
			4										Ν		
mcla.us	USA	annual		642	38.8642	-122.4064	13.5	59.94	867	88	NA	NA	Α	2:0	24
			3												0,
															removed
	Australi												Ν		Septembe
mtca.au	а	savanna		285	-31.7821	117.6108	17.3	52.55	330	55	NA	NA	Α	1:1	r 2015

	1	1													
			4										2		
		montan											1		
sage.us	USA	e		1920	39.43	-120.24	5.7	65.39	882	69	0.39	28	2	6:0	12
0		mixedg	4												
saline.u		rass						100.3					Ν		
s	USA	prairie		440	39.05	-99.1	11.8	3	607	53	NA	NA	A	2:0	0
5	0.011	shortor	4		07100	,,,,,	1110		007				2	210	
													6		
SØS.11S	USA	prairie		1650	40.8166	-104.7666	8.4	84.82	365	59	0.09	74	3	9:0	8
555.45	0.011	prunte	4	1050	10.0100	101.7000	0.1	01.02	505	57	0.07	, 1	6	2.0	0
		chruh											1		
abra ua	TICA	stoppo		010	44 2420	112 1083	55	05 57	262	27	0.22	20	1	2.1	0
sups.us	USA	steppe	4	910	44.2429	-112.1903	5.5	95.57	202	57	0.22	29	1	2.1	0
			4												
				105	20 2255	101 000 0	1	< 1 -		0.4	0.01		6	•	
sier.us	USA	annual		197	39.2355	-121.2836	15.6	64.7	935	84	0.21	22	3	2:0	2
			4										1		
													9		
smith.us	USA	mesic		62	48.2065	-122.6247	9.8	42.14	597	36	0.57	64	5	1:1	unknown
summ.z	South		2										8		
а	Africa	mesic		679	-29.8116	30.7157	18.2	25.51	939	55	0.32	13	8	2:1	>14
			4										1		
		old											0		
unc.us	USA	field		141	36.0082	-79.0204	14.6	76.18	1163	11	0.19	38	9	1:0	unknown
	German		3										_		
valm.ch	v	alpine	5	2320	46.6313	10.3722	0.3	54.23	1098	29	0.43			4:0	40

	Leaf P	Leaf K	SLA
			<u> </u>
Leaf N	0.401	0.341	0.192
Leaf P		0.462	0.224
Leaf K			0.153

_

Table 2: Co-variances between leaf traits based on the structural equation model.

_

		Developed		~		~		
C 1		and framed		Contributed	Wrote	Contributed	C */	Nutrient
Co-author	·	research	Analysed	to data	the	to paper	Site	Network
name	Institution	question(s)	data	analyses	paper	writing	coordinator	coordinator
	Queensland							
	University of							
	Technology (QUT),							
	Brisbane, QLD,							
Jennifer Firn	Australia	Х	Х		Х		Х	
	Queensland							
	University of							
	Technology (QUT),							
James	Brisbane, QLD,							
McGree	Australia		Х			Х		
	Department of							
	Ecology and							
	Evolutionary							
	Biology, University							
	Of Toronto, Toronto							
	Ontario Canada M5S							
Eric Harvey	3B2.	х	х			х		
	Dept. of Ecology,							
Habacuc	Evolution, and							
Flores-	Behavior, University							
Moreno	of MN. St. Paul. MN							
	55108		х			х		
	Swiss Federal							
	Institute for Forest.							
	Snow and Landscape							
Martin Schütz	Research,	х		х		x	x	

Table 3. Details of author contributions. The rubric for authorship roles is shown at the end of this table

	Community Ecology					
	School of Natural					
	Sciences, Zoology,					
Varana M	Dublin Dublin 2					
Y vonne M.	Dublin, Dublin 2,					
Buckley	Ireland	X		X	X	
	Dept. of Ecology,					
	Evolution, and					
F1. 1 (1 T	Behavior, University					
Elizabeth I.	of MN, St. Paul, MN					
Borer	55108			 X	X	Х
	Dept. of Ecology,					
	Evolution, and					
	Behavior, University					
	of MN, St. Paul, MN					
Eric Seabloom	55108			 X	X	X
	Smithsonian					
	Environmental					
	Reseach Center, 647					
	Contees Wharf Road,					
Kimberly J La	Edgewater, MD					
Pierre	21037 USA		 	Х	Х	
	Department of					
	Integrative Biology,					
	University of					
	Guelph, Guelph,					
Andrew M.	Ontario, N1G 2W1,					
MacDougall	Canada		X	Х	X	
	CSIRO Land and					
Suzanne	Water, Private Bag 5,					
Prober	Wembley WA, 6913,	Х		Х	Х	

	Australia					
	Lancaster					
	Environment Centre,					
	Lancaster University,					
Carly Stevens	Lancaster, LA1 4YQ			X	X	
	Dept. of Ecology,					
	Evolution, and					
тт	Behavior, University					
Lauren L.	of MIN, St. Paul, MIN					
Sumvan	Oucencland			X	X	
	University of					
	Technology (OUT)					
	Brishane OLD					
Erica porter	Australia		x	х		
	2German Centre for					
	Integrative					
	Biodiversity					
	Research (iDiv),					
	Deutscher Platz 5e,					
Emma	04103 Leipzig,					
Ladouceur	Germany.		Х	Х		
	Queensland					
	University of					
	Technology (QUT),					
Charlotte	Brisbane, QLD,					
Allen	Australia		X	X		
	Queensland					
Varina II	University of					
Moromizato	Prishana OLD		v	v		
woromizato	Disbane, QLD,		X	Х		

	Australia					
John W.						
Morgan	La Trobe University			х	х	
	1Helmholtz Center					
	for Environmental					
	Research – UFZ,					
	Department of					
	Physiological					
	Diversity,					
	Permoserstrasse 15,					
	04318 Leipzig,					
	Germany. 2German					
	Centre for Integrative					
	Biodiversity					
	Research (iDiv),					
	Deutscher Platz 5e,					
	04103 Leipzig,					
	Germany. 3Martin					
	Luther University					
	Halle-Wittenberg,					
	am Kirchtor 1, 06108					
W. Stanley	Halle (Saale),					
Harpole	Germany.			X	X	X
	Ecology and					
	Biodiversity Group,					
	Department of					
	Biology, Utrecht					
	University,					
	Padualaan 8, 3584					
	CH Utrecht, The					
Yann Hautier	Netherlands.			Х	Х	

	German Centre for					
	Integrative					
	Biodiversity					
	Research (iDiv)					
	Deutscher Platz 5e					
Nico	04103 Leinzig					
Fisenhauer	Germany			x	x	
Liseiniduer Justin Whight	Dulto University			<u>х</u>	<u>л</u>	
Justin Wright	Duke University			X	X	
	Department of					
	Wildland Resources					
	and the Ecology					
	Center, Utah State					
	University, Logan,					
Peter B. Adler	UT, 84322			X	X	
	University of					
Carlos Alberto	Toronto -					
Arnillas	Scarborough			X	X	
	School of					
	Environmental and					
	Forest Sciences,					
	University of					
	Washington, Box					
Jonathan D.	354115, Seattle, WA					
Bakker	98195			х	х	
Lori	Iowa State					
Biederman	University			х	х	
	1 - School of Earth					
	and Environmental					
	Sciences, Michael					
	Smith Building, The					
Arthur A.D.	University of					
Broadbent	Manchester, Oxford			x		

1		I	l	I	I	I	I	
	Road, Manchester,							
	M13 9PT, UK; 2 -							
	Lancaster							
	Environment Centre,							
	Lancaster University,							
	Lancaster, LA1							
	4YW. UK							
	Department of							
	Bioagricultural							
	Sciences and Pest							
	Management, 1177							
	Campus Delivery.							
	Colorado State							
Cynthia S.	University, Fort							
Brown	Collins, CO 80523					х	х	
	Centre for Applied							
	Ecology (CEABN-							
	InBIO), School of							
	Agriculture,							
Miguel N.	University of Lisbon,							
Bugalho	Portugal					х	х	
	Forest Research							
	Centre, School of							
	Agriculture,							
Maria C	University of Lisbon,							
Caldeira	Portugal					x	х	
	Division of							
	Biological Sciences,							
	University of							
	California San							
	Diego, La Jolla CA							
Elso Clolond	02103					x	x	

	Institute of Ecology					
	and Evolution,					
	University of Jena,					
	Dornburger Str. 159,					
	07743 Jena,					
Anne Ebeling	Germany			Х	X	
	USDA ARS					
	Grassland, Soil, and					
Philip A. Fay	Water Lab			Х	Х	
	Mammal Research					
	Institute, Department					
	of Zoology and					
	Entomology,					
	University of					
Nicole	Pretoria, Pretoria,					
Hagenah	South Africa			х	Х	
	Department of					
	Ecology and					
	Evolutionary Biology					
	621 Charles E.					
	Young Drive South					
	Box 951606					
	Los Angeles CA					
Andrew R.	90095					
Kleinhesselink	United States			х	х	
	School of Earth					
	Sciences and					
	Environmental					
	Sustainability,					
	Northern Arizona					
Rachel	University, 525 S.					
Mitchell	Beaver St, Box 5694,			х	х	

	Flagsta , AZ 86011, USA					
	School of Biological					
Te ell'a T	Sciences, Monash					
Josiin L.	University VIC 3800					
Moore	Australia			X	X	
	Forest Research					
	Centre, School of					
Certe	Agriculture,					
Carla	University of Lisbon,					
Nogueira	Portugal		-	X	X	
	Universidad					
	Nacional de la					
	Patagonia Austral					
	(UNPA)-INTA-					
	$\begin{array}{c} \text{CONICE1, CC 332,} \\ \text{(CD 0400), P'} \end{array}$					
D 11 T	(CP 9400), Rio					
Pablo Luis	Gallegos, Santa					
Peri	Cruz, Argentina			X	X	
	IHelmholtz Center					
	for Environmental					
	Research – UFZ,					
	Department of					
	Physiological					
	Diversity,					
	Permoserstrasse 15,					
	04318 Leipzig,					
	Germany. 2German					
	Centre for Integrative					
Christiane	Biodiversity					
Roscher	Research (iDiv),			Х	Х	

	Deutscher Platz 5e, 04103 Leipzig, Germany.					
	Department of					
	Biology, Colorado					
Melinda	State University, Fort					
Smith	Collins, CO 80523			Х	Х	Х
	Dept. of Ecology,					
	Evolution, and					
	Behavior, University					
Peter D.	of MN, St. Paul, MN					
Wragg	55108			Х	Х	
	Swiss Federal					
	Institute for Forest,					
	Snow and Landscape					
	Research,					
Anita C. Risch	Community Ecology	Х	Х	Х	Х	

Rubric item	Example contribution meriting a checked box			
Developed and framed research question(s)	Originated idea for current analysis of Nutrient Network data;			
	contributed significantly to framing the ideas in this analysis at early			
	stage of manuscript preparations			
Analyzed data	Generated models (conceptual, statistical and/or mathematical),			
	figures, tables, etc.			
Contributed to data analyses	Provided comments, suggestions, and code for data analysis			
Wrote the paper	Wrote the majority of at least one of the sections of the paper			
Contributed to paper writing	Provided suggestions such as restructuring ideas, text, and citations			
	linking to new literature areas, copy editing			
Site level coordinator	Coordinated data collection, proofing, and submission of data for at			
	least one site implementing the experiment			
Nutrient Network Coordinators	Contributed substantially (i.e., more than 300 hours per year) to			
	network level activities such as management of network data,			
	recruiting and assisting new sites, finding funding for network level			
	management activities.			

References

- 1 Rosseel, Y. lavaan: An R package for structural equation modelling,. *Journal of Statistical Software* **48**, 1-36 (2012).
- 2 Burnham, K. P. & Anderson, D. R. *Model selection and mult-model inference: a practical information-theoretic* (Springer, 2002).
- 3 Funk, J. L. *et al.* Revisiting the Holy Grail: using plant functional traits to understand ecological processes. *Biological Reviews* **1153-1176**, 1-18 (2017).
- Firn, J., Schuetz, M., Nguyen, H. & Risch, A. C. Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories.
 Ecology 98, 239-252 (2017).
- 5 Firn, J., Prober, S. M. & Buckley, Y. M. Plastic traits of an exotic grass contribute to its abundance but are not always favourable. *PLoS One* **7**, e35870 (2012).
- 6 Cingolani, A. M., Posse, G. & Collantes, M. B. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. *Journal of Applied Ecology* **42**, 50-59 (2005).