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Abstract: Information security is a fast-growing discipline, and relies on continued improvement of
security measures to protect sensitive information. Human operators are one of the weakest links in the
security chain as they are highly susceptible to manipulation. A social engineering attack targets this
weakness by using various manipulation techniques to elicit individuals to perform sensitive requests.
The field of social engineering is still in its infancy with respect to formal definitions, attack frameworks,
and examples of attacks and detection models. In order to formally address social engineering
in a broad context, this paper proposes the underlying abstract finite state machine of the Social
Engineering Attack Detection Model (SEADM). The model has been shown to successfully thwart
social engineering attacks utilising either bidirectional communication, unidirectional communication
or indirect communication. Proposing and exploring the underlying finite state machine of the model
allows one to have a clearer overview of the mental processing performed within the model. While
the current model provides a general procedural template for implementing detection mechanisms for
social engineering attacks, the finite state machine provides a more abstract and extensible model that
highlights the inter-connections between task categories associated with different scenarios. The finite
state machine is intended to help facilitate the incorporation of organisation specific extensions by
grouping similar activities into distinct categories, subdivided into one or more states. The finite state
machine is then verified by applying it to representative social engineering attack scenarios from all
three streams of possible communication. This verifies that all the capabilities of the SEADM are kept
in tact, whilst being improved, by the proposed finite state machine.
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1. INTRODUCTION

Protection of sensitive information is of vital importance
to organisations and governments, and the development
of measures to counter illegal access to such information
is an area that continues to receive increasing attention.
Organisations and governments have a vested interest in
securing sensitive information and the trust of clients
or citizens. Technology on its own is not a sufficient
safeguard against information theft; staff members —
often the weak link in an information security system
— can be influenced or manipulated to divulge sensitive
information that allows unauthorised individuals to gain
access to protected systems.

The ‘art’ of influencing people to divulge sensitive
information is known as social engineering, and the
process of doing so is known as a social engineering
attack (SEA). There are various definitions of social
engineering, and a number of different models of social
engineering attacks exist [1–5]. The authors of this
paper considered different definitions of social engineering
and social engineering attack taxonomies in a previous
paper, Towards an Ontological Model Defining the Social

Engineering Domain [6], and formulated a definition for
both social engineering and a social engineering attack. In
addition, the authors proposed an ontological model for a
social engineering attack and defined social engineering
as “the science of using social interaction as a means
to persuade an individual or an organisation to comply
with a specific request from an attacker where either the
social interaction, the persuasion, or the request involves a
computer-related entity” [6].

As clearly stated by various authors [7–10], the human
component is one of the most vulnerable elements within
security systems. Unfortunately it is the tendency
towards cooperation and helpfulness in human nature that
make people vulnerable to the techniques used by social
engineers, as social engineering attacks exploit various
psychological vulnerabilities to manipulate the individual
to disclose the requested information [7, 10]. It is also
the case that more and more individuals are exposed to
electronic computing devices as the costs of these devices
are decreasing drastically. Electronic computing devices
have become significantly more affordable during the past
few years and due to this nearly everyone has access to
these devices. This provides the social engineer with more
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victims to target using skillfully crafted social engineering
attacks.

The authors have previously performed research within
the field of social engineering that focused on formalising
and expanding upon concepts in the field. This research
included proposing a social engineering attack framework,
providing social engineering attack examples, considering
ethical questions relating to social engineering, and both
developing and revising the Social Engineering Attack
Detection Model (SEADM) [11–14]. The previous
iteration of the SEADM focused on covering all three
different types of communication mediums for social
engineering attacks [14]. Whilst using the SEADM
to determine whether it is effective to detect social
engineering attacks, it was noted that each set of questions
focuses on a specific context. Also, the current iteration
of the SEADM indicates that additional questions can be
added to the model to address different implementation
environments, but does not explicitly state how this should
be done.

This paper focuses on addressing this problem by
formalising the latest iteration of the SEADM into
an abstracted deterministic finite state automata. The
authors are not aware of similar approaches by other
researchers. In its original form, SEADM was constructed
as a non-deterministic flow chart that relied on general,
qualitative sub-procedures to provide a model for detecting
social engineering attacks. While effective as a procedure
for reducing risk, the model made no provision and
provided no guidance on how additional actions relevant
in specific contexts and domains could be included, and at
what points in the model these inclusions should be placed.
Due to the inclusion of cycles in the SEADM model,
the process was also non-deterministic, which added
additional and unnecessary complexity in implementing
the process.

This research aims to improve the extensibility of the
SEADM, and to reduce its implementation complexity by
restructuring the process to be cycle-free and deterministic.
The extensibility of the model is addressed by replacing
the qualitative sub-procedures with generalised states that
better define the role of each sub-process, while treating
questions posed in each state as general examples that
may be expanded or removed, and not as a definitive
collection of necessary queries. Organising the model
as a finite set of generalised states provides a more
concise representation of the process that encapsulates
the broad set of questions into distinct units of related,
deterministic, context specific states. This adjustment
is intended to improve extensibilty, while simultaneously
reducing the complexity of implementing the model as an
organisational process or in software.

The remainder of the paper is structured as follows.
Section II provides background information on the
previous social engineering model and discusses the
authors’ previous work. Section III proposes the
underlying deterministic finite state machine of the

SEADM. Section IV provides a discussion on how each
of the states were derived from the SEADM. Section
V introduces the reader to social engineering attack
templates, and evaluates the improved version of the
SEADM against these templates. Section VI concludes the
paper.

2. PREVIOUS ITERATIONS OF THE SOCIAL
ENGINEERING ATTACK DETECTION MODEL

Many models and taxonomies have been proposed for
social engineering attacks [1–6, 11]. The authors’
ontological model depicts that a social engineering
attack “employs either direct communication or indirect
communication, and has a social engineer, a target, a
medium, a goal, one or more compliance principles and
one or more techniques” [6]. The ontological model
clearly splits social engineering into three categories,
namely bidirectional communication, unidirectional com-
munication and indirect communication.

The initial SEADM was designed to cater specifically
for social engineering attacks utilising bidirectional
communication such as a call centre environment [13, 15].
This research was the first attempt to develop a detection
model for social engineering attacks, as at the time of
publishing the article there was still only limited research
available in this field. Most of the research in this
domain still centres around the training of users [7,16,17].
During the revision of the SEADM, the steps have been
generalised to cater for all three communication categories,
namely bidirectional communication, unidirectional com-
munication and indirect communication. It has also been
shown that the model is effective in detecting social
engineering attacks by testing the model against known
social engineering attack examples [14]. The previous
iteration of the SEADM is depicted in Figure 1.

The following section discusses the representation of the
SEADM as an abstracted finite state machine and provides
a short discussion on each of the states.

3. UNDERLYING FINITE STATE MACHINE OF THE
SEADM

A finite state machine (also known as finite state
automaton) is an imaginary machine that embodies the
idea of a sequential circuit. It has a finite set of states with a
start state and accepting states, and a set of state transitions
[18]. Finite state machines are commonly employed in
the design and implementation of modern software and
electronics, and range from simple and highly abstract
models of computation or processing to complex and
concrete executable mechanisms and physical circuitry.

Finite state machines can be deterministic or
non-deterministic. A deterministic machine has exactly
one path for every input-state pair. In a non-deterministic
machine there may be multiple valid transitions for every
input-state pair, and the chosen transition is not defined;
any transition can be followed. A deterministic finite
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Figure 1: Social Engineering Attack Detection Model
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state machine is a state machine that is guaranteed to
complete for all inputs in a finite amount of time, while
a non-deterministic finite state machine may execute
indefinitely or fail to progress toward completion for
certain input sets. A finite state machine is provably
deterministic if and only if it is both free of cycles (that is,
no state is ever revisited after being processed once) and
defines a transition to a new state for each potential input
in every state (that is, any valid input into a state results in
a transition to a new state). These two properties together
preclude the possibility of the state machine entering an
infinite loop, either within a single state or between a
collection of states, thereby ensuring that processing will
always complete within a finite number of steps.

The finite state automaton described in this paper is an
abstract or general model, and is intended to provide a
structured but flexible deterministic high-level overview
of the steps taken to mitigate a social engineering attack,
improving upon the original SEADM flow-chart approach.
While the SEADM flow-chart provides a static procedural
template for implementing detection mechanisms for
social engineering attacks, the finite state diagram
provides a more accessible, abstract and extensible
model that highlights the inter-connections between task
categories associated with different scenarios. The
abstract state-based model is intended to help facilitate the
incorporation of domain, system or organisation specific
extensions by grouping related activities into distinct
categories, subdivided into one or more generalised nodes.
Should a specific task, necessary in a particular domain,
systems or organisational context not be included in
the flow-chart, the state diagram may be used to infer
the correct location within the model to incorporate the
task. It further facilitates additional analysis on state
transitions that are difficult to extract from the more
verbose flow-chart.

The current iteration of the SEADM, as depicted in Figure
1, utilised four different state categories: the request,
receiver, requester and third party. The request states,
indicated in yellow, assesses information about the request
itself. The receiver state, indicated in blue, considers
the person handling the request and whether this person
(the receiver) understands and is allowed to perform the
request. The requester states, indicated in green, considers
the requester and whether any information about the
requester can be verified. The third party state, indicated
in red, considers the involvement of a third party to
support external verification of information supplied by the
requester.

The same four categories and colour schemas are
maintained in the state machine as they depict the primary
topic that each specific state deals with, allowing one
to better understand the attack detection model. The
state machine is depicted in Figure 2. Each state has an
associated letter which explains which condition needs to
be met before the transition can be performed. As an
example, a state can have an alphabet of Y and ¬Y . The
symbol ¬ indicates negation, so ¬Y is Not Y , or more

accurately, the opposite of Y .

The states in Figure 2 are explained as follows:

• S1 deals with the receiver’s understanding the request.
The request is either ‘understood’ (U) or ‘not
understood’ (¬U) by the receiver.

• S2 deals with requesting more information from the
requester by the receiver in an effort to properly
understand the request. There is either ‘sufficient
information’ (I) or ‘insufficient information’ (¬I)
for the receiver to understand and thus perform the
request.

• S3 deals with the capability of the receiver to perform
the request. The receiver is either ‘capable’ (C) or
‘incapable’ (¬C) of performing the request.

• S4 deals with further verification requirements
that may need to be met. The request either
has further ‘verification requirements’ (R) or has
‘no verification requirements’ (¬R). Additional
verification requirements may be necessary in
sensitive or secure contexts.

• S5 deals with whether the receiver can verify and trust
the identity of the requester, and how many of the
verification steps hold. The verification steps hold to
either a ‘high amount’ (VH ) where all or nearly all of
the supplied information can be verified, a ‘medium
amount’ (VM) where the majority of information can
be verified, or ‘low amount’ (VL) where the majority
of supplied information cannot be verified. These
levels can be calibrated to be more or less restrictive,
depending on the operating environment, and govern
how the receiver should proceed.

• S6 deals with trusted third party verification of
information supplied by the requester. The requester
is either ‘verified’ (T ) by a third party or is ‘not
verified’ (¬T ).

• S7 deals with the authority of the requester. The
requester either has ‘sufficient authority’ (A) or
‘insufficient authority’ (¬A) for the particular request.

• SF is an end state. This state indicates the failure state.
The request should not be performed by the receiver,
and should either be denied outright, or referred to a
receiver with more knowledge or authority.

• SS is an end state. This state indicates the success
state. The request should be performed by the
receiver.

The states are elaborated further in Section 4. A description
of the full state machine in mathematical notation follows.
The finite state machine is a 5-tuple consisting of the finite
set of input alphabet characters Σ, the finite set of states Q,
the start state S0, a set of accepting states F , and a set of
state transitions δ that contains 3-tuples representing state
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Figure 2: Underlying Finite State Machine of the SEADM
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transitions. A 3-tuple in δ consists of a current state, a
current input and the next state.

Σ = {U,¬U, I,¬I,C,¬C,R,¬R,VL,VM,VH ,T,¬T,A,¬A}
Q = {S1,S2,S3,S4,S5,S6,S7,SS,SF}
S0 = S1

δ = {
(S1,U,S3),(S1,¬U,S2)

(S2, I,S3),(S2,¬I,SF)

(S3,C,S4),(S3,¬C,SF)

(S4,R,S5),(S4,¬R,SS)

(S5,VL,SF),(S5,VM,S6),(S5,VH ,S7)

(S6,T,S7),(S6,¬T,SF)

(S7,A,SS),(S7,¬A,SF)

}
F = {SS,SF}

Using both Figure 2 and the provided mathematical model
it is straightforward to infer a state transition table.
Table 1 depicts all the possible state transitions given a
specific input for each state. For all input states, the
output is either a terminal node or a node with a higher
state index. This illustrates that the state machine is
deterministic, eliminating cycles present in the original
SEADM flowchart.

Table 1: State Transition Table for the SEADM
�������

Input
State

S1 S2 S3 S4 S5 S6 S7

U S3 — — — — — —
¬U S2 — — — — — —

I — S3 — — — — —
¬I — SF — — — — —
C — — S4 — — — —
¬C — — SF — — — —
R — — — S5 — — —
¬R — — — SS — — —
VL — — — — SF — —
VM — — — — S6 — —
VH — — — — S7 — —
T — — — — — S7 —
¬T — — — — — SF —
A — — — — — — SS
¬A — — — — — — SF

To further show that the state machine model is
deterministic, resulting in a valid outcome of either success
or failure for all given alphabet sequences, a transition
table indicating all possible input alphabet sequences
(paths) and their corresponding results are shown in Table
2. Each row in the table represents a path. Σi indicates the
input character is the i-th character in the path. The symbol

∀ indicates no transition occurred in the i-th position of
the path in the case of shorter paths. This table shows
that for all possible paths, the state machine returns either
success or failure in a finite number of steps, and is thus
deterministic.

Table 2: State Transition Table for all Input Alphabets
Input Alphabet Output

No Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 SS SF
1 U ∀ C R VH ∀ A � —
2 U ∀ C R VM T A � —
3 U ∀ C R VM T ¬A — �
4 U ∀ C ¬R ∀ ∀ ∀ � —
5 U ∀ C R VH ∀ ¬A — �
6 U ∀ C R VM ¬T ∀ — �
7 U ∀ C R VL ∀ ∀ — �
8 U ∀ ¬C ∀ ∀ ∀ ∀ — �
9 ¬U ¬I ∀ ∀ ∀ ∀ ∀ — �

10 ¬U I C R VH ∀ A � —
11 ¬U I C R VM T A � —
12 ¬U I C R VM T ¬A — �
13 ¬U ∀ C ¬R ∀ ∀ ∀ � —
14 ¬U I C R VH ∀ ¬A — �
15 ¬U I C R VM ¬T ∀ — �
16 ¬U I C R VL ∀ ∀ — �
17 ¬U I ¬C ∀ ∀ ∀ ∀ — �

Having considered the high-level state-based model for the
SEADM, the following section elaborates on the purpose
of each state and exactly how it was derived from the
SEADM.

4. DISCUSSION OF EACH STATE

This sections explains how each of the states has
been designed and integrated from the SEADM model.
Throughout this discussion the alphabet of the states are
provided. During the discussion on the states, it is also
shown how each state relates to the SEADM. Each state
has been generalised to such an extent that it can contain
any number of questions required to achieve a specific
transition result. This provides a rough guide for flexibility
and extensibility, depending on the particular context the
model is applied to.

4.1 State S1: Understanding the Request

This state considers whether the receiver of the request
fully understands the request in its entirety. This means
that the requester should have provided all the information
required to enable the receiver to perform the request in
full. The question that was provided in the SEADM was
“Do you understand what is requested?”

In the SEADM there was only one question asked here.
This has been created as the start state as it is still important
to fully understand what is requested before the request can
be processed any further. In this state the alphabet is as
follows:
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• U represents that the request is understood in its
entirety and that the receiver has all the necessary
information in order to be able to perform the request.

• ¬U represents that the request is not fully understood
and that the receiver requires more information about
the request.

This state can only transition in one of two ways and is
depicted as follows:

• (S1,U,S3) if the request is fully understood.

• (S1,¬U,S2) if more information is required.

4.2 State S2: Requesting information to fully understand
the request

In the SEADM this state was previously grouped together
with the previous question. This resulted in a loop, as
the receiver could always ask the requester to elaborate
further. At some point the requester would no longer
be able to elaborate on the request as there would be no
more additional information available, and the loop would
terminate. At what point the loop would terminate was
unclear, and could not be formalised into a deterministic
state machine without additional complexity.

Representing this task as a distinct state more clearly
defines this, as it deals directly with the information that is
required to complete the request and not whether one can
request more information. This state considers whether
the requester can provide information to such an extent
that the receiver is able to fully understand the request. A
state transition occurs when either sufficient information
is provided, or it is determined that the requester cannot
provide sufficient information. Previously the question that
was asked was as follows, “Can you ask the requester to
elaborate further on the request?” In this state all questions
should be aligned with whether the requested information,
in the case that additional information is provided, allows
the receiver to understand the request in full or not. In this
state the alphabet is as follows:

• I represents that the requester can and has provided
enough information for the request to be understood
in its entirety by the receiver.

• ¬I represents that the receiver is unable to understand
the request in full. This may be because the
requester could not provide more information, the
requester could not be reached (in the case of remote
communication), or that the information provided by
the requester was insufficient or incomplete.

This state can only transition in one of two ways and is
depicted as follows:

• (S2, I,S3) if the requester can provide sufficient
information to understand the request.

• (S2,¬I,SF) if the requester is unable to provide
sufficient information to understand the request, or
cannot be reached.

4.3 State S3: Does the receiver meet the requirements to
perform the request?

State S3 is used to determine whether the receiver meets
all the requirements to perform the request. This state
is associated with three questions in the SEADM. The
questions are as follows:

• “Do you understand how to perform the request?”

• “Are you capable of performing or providing the
request?”

• “Do you have the authority to perform the request?”

The goal of this state is to ensure that the individual who
deals with the specific request has the necessary skill level
and has the required authority to perform the request.
Each question in this state deals directly with the role of
the receiver and determines whether the request has been
issued to the correct receiver. In this state the alphabet is
as follows:

• C represents that the receiver has met all the re-
quirements to be capable of performing the requested
action or to provide the requested information.

• ¬C represents that the receiver does not meet the
requirements to be capable of dealing with the
request.

This state can only transition in one of two ways and is
depicted as follows:

• (S3,C,S4) if the receiver is able to service the request.

• (S3,¬C,SF) if the receiver is unable or incapable of
servicing the request.

4.4 State S4: Does the request have any further
requirements that need to be met before the request
can be serviced?

State S4 deals with the the request itself and whether there
are any special conditions or requirements, such as policies
and procedures that need to be followed, associated with
the request. Examples of special conditions include
whether the request relates to information already in the
public domain and is accessible to all, or whether the
request is a life threatening emergency. If the request is
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already in the public domain, for instance, there are no
further requirements that need to be met. In the event
of a life threatening emergency, the outcome depends on
whether there are set policies in place to deal with such
contingencies. For instance, if there is a policy in place
that allows medical personnel to rather err on the side
of caution in order to save an individuals life, there will
be no further requirements that need to be met and the
request may take place. The previous model dealt with
these examples using the following questions:

• “Is the requested action or information available to the
public?”

• “Is this a pre-approved request that can be performed
to avoid a life-threatening emergency?”

In addition, this state also deals with any further
requirements that need to be met. Examples of such
requirements are any policies or procedures that are in
place that require further verification of the identity or
authority of the requester. This state can also cater for
unusual requests. An unusual request is a request that is
new to the receiver and/or is a request that the receiver
does not usually deal with on a regular basis. By following
the rest of the model, the receiver ensures that adequate
information about the requester is obtained before the
request is performed. It also allows the receiver time to
think about the request and whether the request should be
performed for the receiver. The previous model dealt with
these examples using the following questions:

• “Are there any administrative reasons for refusal?”

• “Are there any procedural reasons for refusal?”

• “Is this an unusual or new type of request?”

• “Are there any other reasons for refusal?”

The goal of this state is to ensure that any request
which is already public information should be immediately
performed and that any request that requires verification
should result in further interrogation of the requester. In
this state the alphabet is as follows:

• R represents that the request has further verification
requirements that need to be met in order to be able
to perform the requested action or to provide the
requested information.

• ¬R represents that the request has no further
verification requirements and that the requested
action can be performed or that the requested
information can be provided.

This state can only transition in one of two ways and is
depicted as follows:

• (S4,R,S5) if further verification is required.

• (S4,¬R,SS) if no further verification is required.

4.5 State S5: To what extent is the requester’s identity
verifiable?

State S5 aims to address the question of the extent of
verifiability of the requester’s identity. The identity of
the requester is determined to ensure that the requester
has sufficient privileges to request the specific action or
information. It is not always possible to verify the identity
of the requester in full. The type of communication
medium that is utilised by the requester usually will dictate
to what extent the identity of the requester can be verified.
Typically, if the requester makes the request in person one
is able to verify significantly more information about the
requester than would be possible over an e-mail or postal
mail. It may also be the case that the request is performed
over unidirectional communication and that the receiver
is unable to receive any further communication from the
requester.

The previous model provided a fourth question as to
whether the requester’s identity is verifiable at all. The
state machine has combined not being verifiable and
having a low level of verification as the same transition
as both states lead to SF . The questions that were
previously used to perform the verification requirements
are as follows:

• “Can the authority level of the requester be verified?”

• “Can the credibility of the requester be verified?”

• “Did you have a previous interaction with the
requester?”

• “Are you aware of the existence of the requester?”

All of the questions catered for a single point of
verification. It was also noted in the previous model that
the level of verification required to transition to different
states should be based on what type of environment the
model is applied to. The state machine makes this more
generalised by having three possible transitions where
there is a low, medium or high level of verification.
The threshold for low, medium and high must still be
determined based on the environment or context, but the
state diagram is more flexible when more questions are
added. In this state the alphabet is as follows:

• VL represents that there is a low level of verification
as only a few of the verification elements could be
verified.

• VM represents that there is a medium level of
verification as some of the verification elements could
be verified, but not all of them.

• VH represents that there is a high level of verification
as all or most of the verification elements could be
verified. Note that edge VH should not be followed if
any information provided in a request is inconsistent
with, or differs substantially from, established or
generally available information.



Vol.109 (2) June 2018 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 141

This state can only transition in one of three ways and is
depicted as follows:

• (S5,VL,SF) if only a few verification elements hold.

• (S5,VM,S6) if a moderate amount of verification
elements hold.

• (S5,VH ,S7) if all or most verification elements hold.

4.6 State S6: Can you verify the requester’s identity from
a third party source?

State S6 is only entered when there is a medium level
of verification requirements that have been met. If the
requester could not be fully verified directly, the third party
source is utilised to determine whether the information
provided by the requester was indeed truthful. The
previous model did not elaborate much on the third party
verification and only had two questions associated with it,
as follows:

• “Can you verify the requester through a third party
source?”

• “Does the verification process reflect the same
information as the verification requirements?”

The supplied questions did not mention specifically which
verification requirements needed to be verified. Utilising
the extensibility and generality of the state machine,
one could build intelligence into the model to only ask
such questions when the verification requirements were
obtained directly from the requester. In this state the
alphabet is as follows:

• T represents that the verification requirements, as
obtained from the requester, fully corresponds to the
information that was obtained from the third party
source.

• ¬T represents that the verification requirements, as
obtained from the requester, do not fully correspond
to the information that was obtained from the third
party source.

This state can only transition in one of two ways and is
depicted as follows:

• (S6,T,S7) if information supplied by the requester is
fully verified by the third party source.

• (S6,¬T,SF) if information supplied by the requester
is not fully verified by the third party source.

4.7 State S7: Does the authority level of the requester
provide them with sufficient rights to request the
action or information?

State S7 utilises all the information obtained throughout
the model and asks the receiver questions based on
the information obtained. This state aims to determine
whether the requester has the necessary authority and
rights to request the action or the information. The
previous model only asked “Does the requester have
the necessary authority to request the action or the
information?” This state elaborates on this by allowing
the receiver to verify whether the requester has sufficient
authority to gain access to the request or the information.
In this state the alphabet is as follows:

• A represents that the requester has sufficient authority
to be allowed to request the receiver to perform the
action or to provide the information.

• ¬A represents that the requester does not have
sufficient authority and is thus not allowed to request
the receiver to perform the action or to provide the
information.

This state can only transition in one of two ways and is
depicted as follows:

• (S7,A,SS) if the requester has sufficient authority for
the request to be processed.

• (S7,¬A,SF) if the requester does not have sufficient
authority for the request to be processed.

4.8 State SF : Halt the request

This is the negative result state. In this state the request
will be halted. In some environments one could opt to
rather defer the request to a more authoritative receiver.
Deferring the request may lead to the request never being
performed, and can be considered as the request having
been halted. In the case where the receiver is part of
an organisation, there is the option to refer the request
to a more authoritative person in the same organisation.
This will allow someone else who may be better suited to
determine whether to perform or halt the request.

4.9 State SS: Perform the request

This is the positive result state of the model. In this state
the receiver is allowed to perform the single request from
the requester.

The next section briefly discusses social engineering
attack templates, which are then tested against the social
engineering attack detection model.
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5. APPLICATION OF THE SOCIAL ENGINEERING
ATTACK DETECTION MODEL

Previously, social engineering attack templates have been
proposed to provide researchers with a set of social
engineering attack examples that can be used to verify
and make comparisons between models, processes and
frameworks within social engineering [12]. All of the
templates were derived from real-world social engineering
attacks that have been documented in either news articles,
technical reports, research reports, films or blogs. The
news articles, technical reports, research reports or blogs
did not always contain all of the information regarding
the social engineering attack. This lack of information
was addressed by proposing the templates as a more
generalised form of the social engineering attacks provided
in the literature [12].

Each template contains the full description of every
phase and associated steps of the social engineering
attack framework in such a way that each template will
provide repeatable results when used for verification and
comparison purposes. The templates are also kept as
simple as possible so that they can be expanded upon
to create more elaborate scenarios with similar principal
structures. The templates can also be used to verify or
compare other models, processes and frameworks without
having to physically perform the attack and potentially
cause harm to innocent targets [19]. The rest of this
section is dedicated to testing the SEADM against the
social engineering attack templates.

In the first scenario, a bidirectional communication
template, the social engineer pretends to be someone who
works on the management floor and has to convince a
cleaner that he is indeed an employee [12]. He requests
the cleaner to give him access to the management floor.
In the second scenario, a unidirectional communication
template, the social engineer attempts to obtain financial
gain by sending out paper mail in which the letter requests
a group of individuals to make a small deposit into a bank
account owned by the attacker [12]. In the third scenario,
an indirect communication template, the social engineer
attempts to gain unauthorised access to a workstation in an
organisation by using a storage medium device [12].

In each scenario the reader is provided with a generic
description of the attack as taken from social engineering
attack templates. This generic description is then
populated with elements, both subjects and objects,
from real-world examples of social engineering attacks,
as provided in the discussion of the specific social
engineering attack template. Using the generic description,
the elements from the real-world examples and the fully
detailed flow of the attack as provided in each phase and
step of the social engineering attack framework, one is
able to devise a social engineering attack scenario. This
scenario is then reflective of a real-world example of which
every phase and step is fully documented as per the social
engineering attack framework. Using the proposed social
engineering attack templates, one is able to formulate a

social engineering attack scenario that always follows the
same process, with regards to phases and steps, whilst
the social engineering attack is still representative of a
real-world scenario.

The remainder of this section is dedicated to mapping
the social engineering attack templates to the states of
the SEADM and verifying whether the social engineering
attack detection model can assist in detecting these attacks.
The following discussions will highlight at which points
the SEADM could prevent the success of the social
engineering attack if it were properly followed, but will
make allowances for failure in following the SEADM to
fully explore each scenario. Note that the discussion
of each state makes implicit reference to the subsidiary
questions defined and described for the state in Section 4.

5.1 Bidirectional Communication Scenario

The generic description for this scenario reads as follows:
“This template illustrates an SEA where the attacker
attempts to gain physical access to a computerised terminal
at the premises of an organisation. The assumption is
that when the attacker has once gained access to the
computerised terminal, he/she is deemed to have been
successful. The attacker is now able to install a backdoor
onto the computerised terminal for future and further
access from the outside.” This scenario is populated
with elements from a real-world example where the social
engineer pretends to be someone who works on the
management floor and convinces a cleaner of his supposed
role. The goal of the attacker is to manipulate the cleaner
into granting the social engineer access to the management
floor. This allows the social engineer to gain physical
access to the computerised terminals on the management
floor [20, 21].

In this scenario a social engineer has to convince the
cleaner, the receiver, to believe that he is indeed a staff
member. In this scenario, the cleaners have full access to
the building, yet, their security awareness is typically quite
low. They are not trained to respond to unusual requests
such as giving other employees access to the management
floor. If the request is successful, access has been gained
to the management floor, and a key logger is deployed onto
a workstation. This attack is performed using bidirectional
communication because the social engineer communicates
with the cleaner and convinces him that the social engineer
is allowed to have access to the management floor and the
workstations.

S1 – Understanding the Request: The request from the
social engineer should clearly state that access needs to
be gained to the management floor. The social engineer
can also justify to the receiver why access is required to
further allow the receiver to understand the request. If the
receiver understands the request, edge U is followed to S3.
If the receiver does not initially understand the request, the
SEADM would move to state S2 via edge ¬U .

S2 – Requesting information to fully understand the



Vol.109 (2) June 2018 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 143

request: In the unlikely event that the request is not
initially understood, the social engineer would explain
his/her request in more detail. As the request itself
is straightforward, if unusual, it is assumed that it
will ultimately be understood, resulting in a transition
(S2, I,S3).

S3 – Does the receiver meet the requirements to
perform the request?: In this scenario, the receiver does
not have the authority to grant access to the management
floor. If the SEADM were followed, appropriate security
policy were in place, and the cleaner had sufficient
knowledge of said policy, the cleaner would decline the
request and refer the social engineer to a more qualified
individual, thwarting the attack. This would be reflected
in the SEADM by a transition via edge ¬C to the failure
state, SF . For the purposes of discussion, and assuming
the cleaner is not properly trained and fears reprisals
from a more senior employee, the transition (S3,C,S4) is
followed.

S4 – Does the request have any further requirements
that need to be met before the request can be serviced?:
In the scenario, only management and cleaners should have
access to the management floor. The requested action is
thus not available to the public, or in service of a medical
emergency, and is subject to further verification of the
requester’s identity. If the SEADM were followed at this
point, this would result in the transition (S4,R,S5).

S5 – To what extent is the requester’s identity
verifiable?: As bidirectional communication is utilised, it
allows for the receiver to communicate back via face to
face communication and ask more questions to verify the
requester. In this case, the authority principle is utilised
and the social engineer mimics an authoritative figure who
should have access to the management floor. The pretext
utilised during this attack is that the social engineer is part
of management and that he or she should have access to
the management floor. The receiver is only able to verify
the falsified authority level from the social engineer in this
scenario. Since only a single verification requirement is
met, transition (S5,VL,SF ) would be the most appropriate,
resulting in the request being deferred to an individual
with more authority, thus thwarting the attack. If the
social engineer can provide additional false information,
and the cleaner decides to err on the side of caution, the
transition (S5,VM,S6) may be followed instead. As the
social engineer is not known to the cleaner and is not an
actual employee, edge VH should not be followed.

S6 – Can you verify the requester’s identity from a
third party source?: The receiver will now have the
ability to verify the information from another employee
on the management floor. In the case that there are no
other employees on the management floor, the transition
(S6,¬T,SF) will be taken and the social engineering attack
will be thwarted. If it is assumed that there are other
employees on the management floor who can be contacted
to verify the information, the receiver will be able to
ask whether the authority level of the social engineer is

indeed true. The other employee will deny this and thus
the verification process will show that the information
provided is not the same as the verification requirements.
Consequently, the transition (S6,¬T,SF) will still be taken,
and the social engineering attack will be thwarted.

S7 – Does the authority level of the requester provide
them with sufficient rights to request the action or
information? Assuming the receiver is untrained, the
SEADM is not followed, and the requester’s identity
is incorrectly assumed to be verified, their presumed
authority would grant them access to the management
floor, resulting in transition (S7,A,SS). If the SEADM
were followed, however, the attack would move to the
failure state SF twice before this state is first reached.

In this scenario, the SEADM would have detected and
thwarted the social engineering attack at two separate
points before reaching the final state, S7, in the model.

5.2 Unidirectional Communication Scenario

The generic description for this scenario reads as follows:
“This template illustrates an SEA in which the attacker
attempts to obtain financial gain by sending out paper mail.
This letter requests a group of individuals to make a small
deposit into a bank account owned by the attacker. In
this template, the attacker develops a phishing letter that
masks the attacker as a charity organisation requesting
donations. Once the attacker has received the small deposit
from the targeted individual, the SEA is deemed to be
successful.” This scenario is populated with elements from
the real-world example where the social engineer performs
a pretext using postal letters. The social engineer pretends
to be various officials, internal employees, employees of
trading partners, customers, utility companies or financial
institutions, and the social engineer solicits confidential
information by using a wide range of persuasive techniques
[22].

In this scenario, the attacker will develop a phishing
letter that masks the attacker as a charity organisation
requesting donations. The phishing letter contains the
contact details, the logo and the purpose of the charity
to improve the authenticity of the letter. This attack uses
unidirectional communication and thus the receiver is not
able to communicate with the attacker. The rest of this
section maps the scenario to the model.

S1 – Understanding the Request: The letter from the
social engineer should clearly state that a receiver is
requested to make a donation to the specific charity. The
letter will include all the required details because this
receiver cannot communicate with the social engineer. In
the SEADM, this should result in the transition (S1,U,S3).
In the unlikely event that the receiver does not understand
the request, the transition (S1,¬U,S2) will be followed.

S2 – Requesting information to fully understand the
request: The social engineer would have tried to ensure
that the targeted individual fully understands the request.
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As the attack uses unidirectional communication, the
receiver is unable to request further information. As a
result, in the SEADM, the only available state transition
is (S2,¬I,SF), thwarting the attack.

S3 – Does the receiver meet the requirements to
perform the request?: The receiver is the owner of their
bank account and has the required information to make
the deposit. Given that their understanding of the request
has been ascertained, and assuming they have a bank
account with an available balance and are both capable
and authorised to deposit their money into another bank
account, the transition (S3,C,S4) will be followed.

S4 – Does the request have any further requirements
that need to be met before the request can be serviced?:
The requested action is to make a deposit into the
bank account of the requester. This action is only
available to receiver, and is not in service of preventing a
life-threatening emergency. Furthermore, this request can
be seen as either unusual or new as the requester would
not usually receive this specific type of letter from the
charity. It is additionally likely that the requester feels
uneasy about, or suspicious of, the request, which is itself
a reason for refusal. The transition S3,R,S4 should thus be
followed.

S5 – To what extent is the requester’s identity
verifiable?: Since unidirectional communication is
utilised, the receiver can only verify the identity of the
requester using the information provided in the received
letter. While the receiver may be aware of the existence
of the charity organisation, if the letter provides no
additional information for verification purposes (such
as contact details), or if information in the charity’s
official correspondence or online presence is inconsistent
with information provided in the fabricated request, the
SEADM indicates that the transition (S5,VL,SF) should
be followed, thwarting the attack. If the letter contains
the actual contact details of the charity organisation,
thereby providing some additional verifiable information,
the transition (S5,VM,S6) may be followed instead. As the
request is unidirectional and does not specify the charity’s
actual bank details, the transition (S5,VH ,S7) should not be
followed; edge VH indicates very high confidence, which
should not be followed when a request is unusual and
provides limited verifiable information.

S6 – Can you verify the requester’s identity from a third
party source?: As the charity is a well known charity, the
request may be verified by contacting the charity directly.
The receiver will make a phone call to the charity to
verify the information. If the charity cannot be reached,
the transition (S6,¬T,SF) should be followed, thwarting
the attack. If the receiver is able to contact the charity
directly, the receiver will be able to ask the organisation
whether such a letter has in fact been sent out. The charity
organisation will deny this and thus the verification process
will show that the information provided is not the same as
the verification requirements. Consequently, the transition
(S6,¬T,SF) will be followed and the social engineering

attack will be thwarted.

S7 – Does the authority level of the requester provide
them with sufficient rights to request the action or
information? Assuming that the SEADM was not
followed up to this point, and the receiver believes the
information provided in the fabricated request, the receiver
may consider the requester to have sufficient authority
to make the request. If this is the case, the transition
(S7,A,SS) may be followed, allowing the attack to succeed.
If the SEADM was followed, however, state S7 would
not have been reached, preventing this transition from
occurring.

While thwarting this form of attack requires some
diligence on the part of the receiver, following the SEADM
should prevent the SEA from succeeding.

5.3 Indirect Communication Scenario

The generic description for this scenario reads as follows:
“This template illustrates an SEA in which the attacker
attempts to gain unauthorised access to a workstation
within an organisation by using a storage device. Once
the target has plugged the storage device (in this case a
USB flash drive) into the targeted workstation, the SEA
is deemed to be successful; the attacker is now able to
install a backdoor onto the workstation via the storage
device. The social engineer can then proceed to use this
workstation as a pivot point for any further attacks on the
organisation.” This scenario is populated with elements
from the real-world example where the social engineer
attempts to gain unauthorised access to a workstation in
an organisation by using a storage medium device [23,24].
This attack is also depicted in a popular television series
about penetration testing, Mr. Robot [23].

In this scenario, the organisation does not have a company
policy in place that disallows employees plugging storage
devices into their workstations. The social engineer will
leave the device outside the organisation’s building to be
found by an employee. The device will be infected with
a trojan so that when it is plugged into the workstation, it
opens a backdoor for the social engineer to connect to the
system remotely. As the storage device is left unattended,
this attack utilises indirect communication. The rest of this
section maps this scenario to the model.

S1 – Understanding the Request: The storage medium
device planted by the social engineer should be marked
clearly to indicate that it contains important and/or
confidential information. The social engineer expects that
the receiver – the employee who finds this device – will
either try to return the device to its rightful owner (a
benevolent target), or attempt to access the contents of
the drive (a malevolent target). The social engineer may
attempt to manipulate a specific employee into finding the
device, or may settle for any employee. As it is an inherent
request, the request should be easily understandable to the
target, and the transition (S1,U,S3) should be followed in
the SEADM.
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S2 – Requesting information to fully understand the
request: This state would not typically be entered, as
the social engineer would have made certain that the
storage medium device is deployed at such a location that
only individuals who have access to a workstation and
who understand how such devices work would find the
device. If this is not the case, the attack runs the risk of
immediate failure, as the receiver may take the device to a
lost-and-found where the attack is indefinitely halted, or to
the IT department where the attack may be detected. Either
of these cases would result in the transition (S2,¬I,SF), a
failure state.

S3 – Does the receiver meet the requirements to
perform the request?: As it is assumed that the
organisation does not prohibit the use of external USB
drives on company workstations, and the receiver has
access to a workstation that supports the USB attachment,
the receiver is capable of performing the request. In most
instances, this would be sufficient for the requirements
of performing the implicitly requested action, and the
transition (S3,C,S4) would be followed. If the drive is
labelled as confidential, however, the receiver may be
considered to not have sufficient authority to attach the
drive. In this instance, the transition (S3,¬C,SF) would
be followed in the SEADM, resulting in the attack being
halted or thwarted.

S4 – Does the request have any further requirements
that need to be met before the request can be
serviced?: The implicit request is directed at the receiver
to manipulate them into attaching the device to a company
worstation, either to return it to its rightful owner or to
determine its contents. This action is not available to
the public, or in service of preventing a life-threatening
emergency. While there are no administrative or
procedural reason for refusal due to a lack of specific
company policy, the request would be considered unusual,
and so the transition (S4,R,S5) would be followed.

S5 – To what extent is the requester’s identity
verifiable?: Since indirect communication is utilised, the
only piece of information the receiver has is the physical
storage device, which does not provide any external
verification information. Following the SEADM, this
would result in a transition (S5,VL,SF), resulting in the
implicit request being either halted or detected by a more
knowledgeable individual who is allowed to safely, and
on a secure workstation, verify the contents of the storage
device and potentially contact the rightful owner. Neither
VM or VH should be followed in this instance.

S6 – Can you verify the requester’s identity from a third
party source?: While this state should not be reached,
there is no available third-party to provide verification of
the device. The only option in this instance would be
to follow transition (S6,¬T,SF), similarly resulting in the
failure of the attack.

S7 – Does the authority level of the requester provide
them with sufficient rights to request the action or

information? If this state were hypothetically reached, the
lack of specific organisational policy governing the use of
external storage media would provide sufficient authority
for the implicit request to be performed, resulting in a
transition (S7,A,SS) and allowing the attack to succeed.
Similar to S6, however, this state should not be reached
if the SEADM is properly followed.

This demonstrates how the SEADM may be successfully
utilised to prevent an attack when SEAs use indirect
communication.

The preceding three sections have shown, through the use
of attack templates, how the SEADM may be applied to
help detect and prevent several social engineering attack
vectors that utilise bidirectional, unidirectional and indirect
communication approaches. The SEADM is, however,
only a tool, and is best utilised in conjunction with security
awareness and robust security policy to reinforce and guide
its appropriate application and use, largely dependent on
the security context.

The following section concludes the paper with a summary
of the advantages of the underlying finite state machine
and how it was still able to thwart social engineering attack
templates.

6. CONCLUSION

The protection of information is extremely important in
modern society and even though the security around
information is continuously improving, a weak point is
still human actors who are susceptible to manipulation
techniques. This paper explored social engineering as a
domain and social engineering attack detection techniques
as a process within this domain. To this end, both the
previous papers by the authors, Social Engineering Attack
Detection Model: SEADM [6] and Social Engineering
Attack Detection Model: SEADMv2 [14] were revisited.

Both of the previous iterations of the SEADM focused
on expanding the capability of the accuracy of detection.
The models were populated with questions catering
for attacks utilising either bidirectional communication,
unidirectional communication or indirect communication.
Previous work did mention that the model is extensible
with additional questions, but was unclear on how and
where additional questions should be added.

This paper improves on the SEADM by providing the
underlying finite state machine, which allows researchers
to better understand and utilise the SEADM. Representing
the SEADM as a finite state machine allows one to
have a more concise overview of the process that is
followed throughout the model. The model provided a
general procedural template for implementing detection
mechanisms for social engineering attacks. The state
diagram provides a more abstract and extensible model that
highlights the inter-connections between task categories
associated with different scenarios. This paper also shows
that the finite state machine is both deterministic and
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correct for all possible input alphabets, simplifying the
process of implementing the SEADM model either as a
process or in software. The state diagram is currently
implemented as a mobile application as part of a social
engineering prevention training tool [25].

The improved SEADM was further taken and tested
against social engineering attack templates, showing
that the SEADM remains capable of thwarting social
engineering attacks. Adapting the SEADM to a finite state
machine improved the extensibility of the model without
negatively impacting on detecting social engineering
attacks.

The SEADM, with the underlying finite state machine, can
be used as a general framework to protect against social
engineering attacks. Even if the model is not adhered
to in respect of every request, it will cause one to think
differently about requests — and this is already a step in
the right direction.
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