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Executive summary

The Pick ’n Pay grocery warehouse situated at the Longmeadow distribution centre (DC)
has 10 790 stock keeping units that are received from 123 vendors and are distributed
to 421 stores located in several provinces as well as three neighbouring countries. The
stock keeping units which are referred to as delivery units (DUs) are picked into handling
units (HUs) (rolltainers used to transport DUs) and staged in staging lanes. Loading staff
load the staged HUs onto transport units (TUs). The TUs then deliver the stock to various
Pick ’n Pay stores. This process is referred to as the outbound process.

The two concerns currently experienced by the outbound process is an excessive num-
ber of dropped HUs (HUs that are not loaded onto their planned TUs) and excessive TU
loading times.

It was determined that a decision support model was required to provide insight on
how to reduce dropped HUs and TU loading times. A Literature review was performed
to investigate agent based simulation (ABS), system dynamics (SD) and discrete event
simulation (DES) as possible simulation techniques. Tako and Robinson (2012) deter-
mined that DES was most frequently used within the supply chain environment to assist
in making tactical and operational decisions. It was determined that a DES model would
be used in this project. AnyLogic was selected as the simulation software as this software
provides the functionality required for a DES model.

The simulation model was developed by simulating the outbound process’s picking/staging,
combining and loading events. Data captured between the 1st of May 2017 and the 30th
of June 2017 was used to develop the simulation model. Key measures were identified
against which the simulation model was validated. These measures included the number
of DUs per HU after loading, loading time per TU, number of HUs staged, combined,
dropped and loaded per shift and the number of TUs loaded per shift. After compar-
ing the data generated for each measure from 100 simulation runs to the observed data
with distribution plots and 99% confidence intervals it was concluded that the developed
simulation model was a valid representation of the outbound process.

It was determined that high levels of congestion in the staging lanes contribute to the
excessive number of dropped HUs and TU loading times. Two scenarios were identified
which could reduce staging lane congestion namely the increase in the number of stores
with night-time receiving and the distribution of weekly volumes. The two identified
scenarios were evaluated with the developed simulation model using data captured between
the 1st of August 2017 and the 31st of August 2017. The effectiveness of the models were
determined by evaluating the number of HUs dropped per shift, loading time per TU,the
number of HUs per TU, the number of HUs in the staging lanes and the flow of HUs
into and out of the staging lanes. It was concluded that both scenarios could reduce the
number of HUs dropped per shift. The scenarios did not indicate a significant reduction in
TU loading times but did produce an increase in the HUs per TU and loading rate per HU.
The scenario proposing an increase in the number of stores with night-time receiving was
selected as the most suitable solution as this solution was the most effective in reducing
the number of dropped HUs and increasing the loading rate per HU.
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Chapter 1

Introduction

Have you ever stood in a Pick ’n Pay store and thought about the supply chain that
filled those shelves with the variety of products that you, so conveniently, pick into your
shopping basket? Considering that the grocery warehouse situated at the Pick ’n Pay
Longmeadow distribution centre (DC) has 10 790 stock keeping units (articles with unique
identification codes) that are received from 123 vendors and are distributed to 421 stores
located in several provinces, as well as three neighbouring countries, it is nothing short
of remarkable. Although Pick ’n Pay has several DCs across South Africa, this report
focuses on the grocery warehouse situated at Longmeadow business estate.

Figure 1.1: Location plot of Pick ’n Pay stores serviced by the grocery warehouse at
Longmeadow DC.

This introductory chapter provides a detailed description of the operations responsible
for the delivery of stock to the respective Pick ’n Pay stores. The current constricting
factors are discussed and a methodology is defined, which forms the base of the developed
solution.
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1.1 Operational overview

Three different units are referred to in this report: delivery units, handling units and
transport units. To clarify the different units, consider the following analogy. When
shopping in a Pick ’n Pay store the products on the shelves, whether individual or grouped
items, are known as delivery units. The trolley used to transport the selected delivery units
is a handling unit. The vehicle used for delivering handling units containing delivery units
home, from Pick ’n Pay, is known as a transport unit.

Figure 1.2 is a basic illustration of the outbound supply chain of the Pick ’n Pay
grocery warehouse.

Figure 1.2: Basic illustration of the outbound supply chain.

Multiple delivery units (DUs) are packed in a handling unit (HU). Multiple HUs are
loaded onto a transport unit (TU). A TU delivers the HUs during a trip to one drop
(delivery to a store) or multiple drops.

1.1.1 Outbound paper process

Pick ’n Pay stores order DUs in SAP, the enterprise resource planning tool used at Pick
’n Pay’s distribution centre. SAP contains master data regarding the volume and weight
of different DUs.

SAP allocates picking tasks to the ordered DUs. A bin packing algorithm uses the
master data as an input and assigns the picking tasks to newly generated HUs, theoretically
filling the HUs. The objective function of the algorithm is to minimise the total amount of
HUs used and ensure that the DUs placed in the HUs are stacked from heaviest to lightest
to attempt to minimise stock damage. The algorithm also ensures that HUs only contain
DUs that have the same store destination.

SAP contains a consolidated order file. Each file entry has a picking task allocated to
a DU which is linked to an HU number. Each file entry also states the store destination of
each HU and the date that the store requires the stock by. The file is imported in Plato,
vehicle routing software that solves a vehicle routing problem. The objective function
of the vehicle routing algorithm is to minimise total transportation costs by taking into
consideration the number of HUs, store destinations, store locations, nominated delivery
days of each store, available vehicles and vehicles’ HU capacities.

Each HU imported in Plato is allocated a designated drop number linked to a trip
number. Plato’s output is a list of trip numbers and a trip schedule containing the planned
trip departure, planned store arrival time(s), planned DC return time, number of drops

2
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and the destination(s), allocated HUs and the TU registration number responsible for
executing the trip. This trip schedule is then imported in SAP.

Figure 1.3 illustrates the paper process from receiving an order to generating a trans-
port schedule.

Figure 1.3: Illustration of the paper process once store orders are received.

The bin packing and vehicle routing problems are referred to above; the investigation
of these problems are not included in this project’s scope. The master data of the DUs’
volumes, an input to the bin packing algorithm, was however evaluated regarding accuracy
and availability and is discussed in Chapter 3. For more information regarding the bin
packing and vehicle routing problems, refer to article Maarouf et al. (2008) and article
Golden et al. (2008).

1.1.2 Outbound physical process

Warehouse picking waves are released at fixed times during the day. SAP determines the
picking wave in which certain picking tasks should be released. This ensures that HUs
are picked and loaded on time, allowing the vehicles to despatch as stated on the trip
schedule. Once the picking wave has been released, picking staff receive picking tasks
from SAP via an advanced material technology wrist pad. Each staff member receives
three HUs to pick at a time as this is the maximum amount of HUs that fit onto a bulk
transport unit (BTU). Each picking task states:

• The DUs that need to be picked.
• The bin locations where the DUs could be located within the warehouse.
• The sequence in which DUs should be placed into the HUs.
• The staging lanes in which the completed HUs should be placed.

Completed HUs are placed in staging lanes in front of the outbound dock doors to
await being loaded into TUs. There are 98 staging lanes. Each staging lane represents
a single Pick ’n Pay store during a picking wave; lanes could represent multiple stores
on different days, but only represent a single store at a time. The completed HUs are
not always full as a result of incorrect or absent DU volume master data causing the bin
packing algorithm to inefficiently pack the HU. Staging lane staff combine HUs that have
been incompletely filled.

Loading tasks are issued manually by printing a loading sheet for a trip and handing
it to a loading staff member. The loading sheet provides the trip number, HU numbers
with associated staging lane locations, as well as the dock door where the TU responsible
for executing the trip is docked. A loading sheet is issued for a trip once the HUs of the
corresponding trip have been staged and the TU has been docked for loading.

3
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Figure 1.4 illustrates the physical process from the release of a picking wave to the
loading of a TU.

Figure 1.4: Illustration of the physical process of executing received store orders.

This report focusses on the picking, staging, combining and loading processes at the
Pick ’n Pay grocery warehouse at Longmeadow business estate and is referred to as the
outbound process.

1.2 Research question

The concerns currently limiting the responsiveness of the outbound process are exces-
sive TU loading times and HUs not being loaded onto the TUs (dropped HUs). Figure
1.5 illustrates the frequency histogram of 2773 recorded TU loading times at the end of
February 2017. 86% of the TUs loaded exceeded the current loading time key performance
indicator (KPI) of 35 minutes.
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Figure 1.5: Illustration of excessive vehicle loading time.
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Figure 1.6 illustrates the number of loaded and dropped HUs in a single twelve-hour
shift for 873 shifts.
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Figure 1.6: Illustration of the number of HUs loaded and the number of dropped HUs per
shift for 873 shift, from the fewest HUs loaded to the most HUs loaded.

Pick ’n Pay does not own a vehicle fleet and outsources this supply chain requirement
to a third party transport solution provider. A fixed cost is incurred per vehicle per month
as well as a variable cost per kilometre travelled. The number of TUs required by Pick ’n
Pay is revised every six months.

Excessive TU loading times and dropped HUs directly influence transportation costs.
When a TU exceeds the required loading time it reduces the time that could be utilised
to deliver HUs to stores and restricts the amount of trips that could be executed per day.
Reduced trips per TU per day result in an increase in TUs required to deliver the planned
HUs, therefore increasing fixed transportation costs.

The actual number of trips made per day are currently 1.7 times the planned number
of trips made per day due to dropped HUs. Additional trips are required to deliver the
dropped HUs to ensure that store orders are delivered, thus increasing the kilometres
travelled and the variable transportation cost.

Employees responsible for loading reported that 87% of dropped HUs were dropped
as the HUs could not be located in the staging lanes. Loaders spend unnecessary time
locating HUs required for loading. Potential reasons for employees not locating the HUs
required for loading include HUs not being staged in the right lanes, employees misplacing
HUs after combining, and high levels of congestion in the staging lanes. Taking this into
account the assumption could be made that the high number of dropped HUs could directly
influence excessive TU loading times as loading staff spend unnecessary time searching for
HUs.
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1.3 Research design

This project provides a decision support model capable of representing the outbound
process. The model was used in the investigation of operational improvement opportunities
regarding TU loading times and dropped HUs. Two proposed solutions were developed;
an increased number of stores with night-time receiving to increase the total number of
TUs loaded during day shifts, and the adjustment of stores’ nominated delivery days to
distribute the total volume over the week to reduce volume spikes. Both solutions proposed
aim to reduce congestion in the staging lanes. Each solution was evaluated by using the
developed decision support model and potential impacts regarding the performance of the
outbound process for each solution were determined and evaluated.

1.4 Research methodology

An operations research design was followed in this project (Manson, 2006). The design
consists of gaining awareness of the problem, devising suggestions, developing solutions,
evaluating the developed solutions, and making conclusions.

The problem was investigated and is elaborated on in the research question (refer to sec-
tion 1.2, Research question). Potential suggestions were devised by reviewing simulation
literature, specifically within the supply chain environment; agent based simulation (ABS),
system dynamics (SD) and discrete event simulation (DES) were investigated as possible
simulation techniques as well as the software and validation techniques required. A DES
simulation model of the outbound process was developed to address the identified prob-
lems. DU volume master data was reviewed and conclusions were made regarding the
accuracy and availability of the data. Model validation was done by identifying key mea-
sures and comparing the simulation model’s results to the real-life process under the same
input conditions by using distribution plots and 99% confidence intervals. These measures
include:

• DUs per HU after loading.
• Loading time per TU.
• HUs staged, combined, dropped and loaded per shift.
• Number of TUs loaded per shift.

Two scenarios that could potentially address the problems identified were determined.
The two scenarios include an increased number of stores with night-time receiving to
increase the total number of TUs loaded during day shifts, and the adjustment of stores’
nominated delivery days to distribute the total volume over the week to reduce volume
spikes. The developed simulation model was used to evaluate the scenarios. The model
was validated by analysing key measures that represent the performance of the outbound
process. These measures include:

• HUs staged and loaded per shift.
• Number of TUs loaded per shift.
• Loading time per TU.
• Mean number of HUs per TU.
• Mean number of HUs in the staging lanes.
• Flow of HUs into and out of the staging lanes.

Each scenario’s results were evaluated and conclusions regarding possible improvement
opportunities were stated.
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1.5 Document structure

Chapter 2 provides a review of simulation literature that was used to determine this
project’s approach. A review of Pick n Pay’s DUs’ volume master data was conducted;
recommended methods of improving the data’s availability and accuracy is provided in
Chapter 3. The decision support simulation model developed, including the data used
in developing the simulation model, the model’s functionality, model simplifications and
model assumptions are elaborated on in Chapter 4. Chapter 5 stipulates the methods
used to validate the simulation model and provides the validation’s results. Two potential
solutions were identified and analysed by using the simulation model; the results of each
solution’s implementation are included in Chapter 6. Conclusions and recommendations
regarding the proposed solutions are presented in Chapter 7.
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Chapter 2

Literature review

Due to the complex nature of the outbound process, it is challenging to assess the process
while taking all variables into account. Two potential techniques capable of assessing the
outbound process were determined, namely supply chain optimisation and supply chain
simulation.

Ingalls (2014) depicts the difference between supply chain optimisation and supply
chain simulation. Supply chain optimisation could be compared to a car dealer while
supply chain simulation could be compared to a test drive. The car dealer owns a large
variety of cars, but allows the customer to provide desired specifications such as the size and
colour of the car. By taking the customer’s specifications into account the car dealer could
determine a suitable choice. Supply chain optimisation also takes user-defined constraints
into consideration, reducing the total number of feasible solutions and therefore assisting
the user in determining the most suitable solution. Once the dealer has determined a
suitable car for the customer, the customer could request a test drive to experience the
car first-hand before making a decision. Supply chain simulation also allows the user to
experience the model in a real-life system before making a decision.

It was concluded that simulation could provide a risk-free design and test environment;
this is beneficial as it allows users to gain insight on the system’s variables and factors,
identify problems and make informed decisions regarding potential process improvement
opportunities. Simulation also allows the user to develop a model capable of accounting for
variability, an important requisite considering the nature of the outbound process (Ingalls,
2013). Simulation was therefore selected as the technique that would be used to analyse
the outbound process in this project.

2.1 Simulation

Three simulation methods namely agent based simulation (ABS), system dynamics (SD)
and discrete event simulation (DES) were investigated to determine which technique
should be applied in this project.

ABS decentralises a system into its basic components, allowing each component to be
represented by a collection of agents and their environments. Each agent’s behaviour is
programmed individually and the system’s properties are defined by the system’s agent
interactions with their environments (Kasaie and Kelton, 2015). ABS is an ideal approach
when a system’s agents’ behaviour define the system. The outbound process is not defined
by agents; a picking wave in the outbound process for example is released and triggers
pickers to start placing delivery units (DUs) in handling units (HUs), concluding that the
movement of a DU into an HU and an HU to a staging lane is initiated by the system.
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Stock(t) = Stock(t0) +

∫ t

t0

[
Inflows(s) − Outflows(s)

]
ds (2.1)

Figure 2.1: Representation of stocks and flows (Kunc, 2016).

SD represents the relationship between various system components over time and cap-
tures the dynamic aspects of the system by making use of elements such as stock (the
number of agents in a system that increases due to inflows and decreases due to outflows),
feedback loops (controlling the movement of stock by changing variables in the system
in an effort to achieve a certain goal or to stabilise the system) and delays (caused by
accumulated stock) (Kunc, 2016).

SD models are a collection of integral equations where time is continuous and the
size of ds, as depicted in Figure 2.1, is determined by the time step in the modelling
software (Kunc, 2016). SD can therefore be summarised as a continuous deterministic
modelling technique which attempts to understand the overall performance of a system.
The outbound process in this report consists of the four major components needed for a
SD simulation; HUs being staged is an example of inflow, HUs being loaded onto a vehicle
is an example of outflow, and the monitoring of vehicles required to dock for loading at a
certain point in time is an example of a feedback loop. The flows in the outbound process
are however not defined by mathematical relationships. The inflow of HUs into the system,
for example, is dependent on the picking waves and the number of pickers. As a result
of the deterministic nature of the SD, the stochastic nature of the outbound process, for
example the time it takes a picker to pick and stage an HU, cannot be accounted for.

DES could be implemented if the system being investigated consists of agents, activ-
ities, events and resources. An agent consists of certain attributes and is defined as the
reason for a state changing in a system. An agent could also be defined as the flow of
information. The outbound process consists of agents; an HU is an agent in the outbound
process as the number of HUs being loaded onto a vehicle changes the total number of HUs
loaded in a 12-hour shift, and a vehicle is an agent as the number of HUs being loaded onto
a vehicle is an attribute of the vehicle. Agents interact with activities and this interaction
causes events. Events are defined as a change in a system’s state. Resources such as a
person, a machine, a process or a waiting area govern the execution of an activity and has
a set capacity. Activities are grouped into three types namely delays, queues and logic.
The outbound process consists of agents; the process of a picker (resource) picking DUs
into an HU and placing the HU in a staging lane is a delay activity stochastic in nature,
the staging lanes where HUs queue before being loaded is an example of a queue, and DUs
that have to be picked into an HU before the HU could be loaded onto a vehicle is an
example of logic (Ingalls, 2013).

After evaluating these three simulation methods it was determined that ABS should
not be implemented in this project as the outbound process is not defined by agents, a
requisite for ABS. DES and SD could however both be implemented. These methods were
investigated to determine which method should be implemented in this project.
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2.2 Application

DES and SD are used to develop decision support in logistics and supply chain manage-
ment. Tako and Robinson (2012) explored the application of DES and SD to determine
the instances in which each method was applied, and whether similarities existed in terms
of the nature (the type of logistic and supply chain management issues being addressed)
and level of their use. Tako and Robinson (2012) analysed 127 papers relevant to this
topic. It was determined that 68% of the papers made use of DES, 30% made use of SD
and 2% used a combination of the two methods. It was also determined that SD was
mainly used in papers containing issues of a strategic nature, while DES was generally
used in papers containing issues of an operational or tactical nature.

A scale ranking supply chain issues from strategic to operational/tactical is depicted in
Figure 2.2.

Figure 2.2: Supply chain issue ranking (Tako and Robinson, 2012).

Tako and Robinson (2012) determined that SD is capable of simplifying a complex
system and analysing systems by taking the bigger picture into consideration, a view
necessary in strategic decisions-making. DES considers the system’s operational logic
and the stochastic nature of the process, creating an accurate representation of opera-
tional and tactical aspects of a process. The classification of an issue as strategic or
operational/tactical could therefore provide an indication of which simulation technique
to apply in developing a decision support model. It was concluded that the simulation
method should be determined by classifying the outbound process’s issues as strategic or
operational/tactical. The objective of this report is to develop a decision support model to
assist in solving operational and tactical issues of the outbound process (refer to section
1.2 Research Question); DES was therefore determined as the simulation method that
should be used and was implemented in this project.
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2.3 Development

Simulation software with specific functionality is required to develop a DES model. The
functional specifications required include (Ingalls, 2013):

• Global variables to test different strategies or configurations.
• A random number generator to account for variables of a stochastic nature such as

the duration required by a loader to load a single HU onto a vehicle.
• Scheduling capabilities to plan for future events such as the release of a picking wave

or staff members’ lunch hour.
• System state variables to describe the state of the system at any given point in time

such as the number of vehicles loaded or the outstanding number of picking tasks.
• Statistic collection to validate and analyse the model’s result(s).

AnyLogic has a built-in process modelling library that consists of process modelling
blocks with predefined functionality including blocks to represent delays, queues and re-
sources. The functionality is however not limited to the built-in libraries as the program-
ming language Java could be used to adjust existing process blocks to execute customised
actions defined by the user. The random number generator could create custom distribu-
tions determined by observed data or existing distributions such as a Normal or Weibull
distribution, allowing accurate representations of the stochastic variables and therefore
portraying the real-life system more accurately. The randomness of AnyLogic could be
controlled by setting the random seed, allowing reproducible simulation runs of the process
crucial during the development and validation phases of the model. AnyLogic University
Edition was used in this project due to the software’s availability and the capability of
providing the functionality that was required to develop a DES model (Grigoryev, 2014).

Sargent (2013) evaluated two methods that could be used to validate a simulation
model’s output: graphical displays and confidence intervals. By making use of graph-
ical displays such as histograms or density plots the real-life system’s results could be
compared to the simulation results under the same conditions. The plots represent the
distribution of the desired measure allowing comparison of distribution types, variance,
mean and range of measure to the simulation model. The simulation model could also be
validated by calculating the confidence intervals and comparing the intervals to the mea-
sured statistical attributes of the simulation model. An advantage of simulation is that
the comparison could be done multiple times by using different random seeds to determine
whether the simulation model’s results consistently fall within the calculated confidence
intervals. Multiple methods could be used to determine confidence intervals. For nor-
mally distributed data the interval will be spread evenly around the mean with a range
dependant on the confidence level specified. For skewed data bootstrapping, the process
of randomly sampling with replacements and therefore assigning a measure of accuracy to
a sample estimate such as a mean, is the most reliable method (Orloff and Bloom, 2014).

It was concluded that a DES model should be used due to the operational and tactical
issues of the outbound process. AnyLogic was selected as the simulation software to
develop the decision support model as this software is capable of providing the required
functionality for DES. Graphical displays and confidence intervals should be used to
validate the model to ensure that the developed model is an acceptable representation of
the outbound process.
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Chapter 3

DU volume master data

The outbound process’s bin packing algorithm is used to consolidate delivery units (DUs)
into handling units (HUs). The bin packing algorithm’s objective function is to minimise
the total number of HUs required. This is achieved by efficiently packing each HU to
ensure maximum use of the HU’s capacity. The availability and accuracy of DU volume
master data is important as this data is used as an input when the bin packing algorithm
allocates DUs to HUs.

Inaccurate DU volume master data could either be overstated or understated which
could lead to the bin packing algorithm under utilising or over utilising an HU’s capacity.
Unavailable DU volume master data could result in the bin packing algorithm allocating
the single DU with unavailable volume master data to a single HU, under utilising the
HU’s capacity. Impacts of under utilised HUs on the outbound process could include:

• Reduced picking productivity which could lead to unachieved picking targets.
• Increased number of HUs being staged which could result in unnecessary congestion

in the staging lanes as well as excessive material handling.
• Reduced mean number of DUs per HU and reduced mean number of DUs per

transport unit (TU) which could result in less stock being delivered per trip.

Impacts of over utilised HUs on the outbound process could include product damage
due to over packing, and incomplete picking tasks. Product damage could result in finan-
cial loss as damaged stock cannot be delivered or reused. Incomplete picking tasks could
result in DUs being reallocated to different HUs causing unnecessary work for warehouse
staff.

The DUs’ volume master data could impact the performance and the resource utili-
sation of the outbound process. The accuracy and availability of DU volume master is
therefore valuable and was reviewed.

3.1 Volume availability

The 10790 stock keeping units currently stored in the warehouse are located in 24 different
storage sections. The DUs’ nature determines in which section the units are stored; a body
deodorant is stored in the fire suppression area for example due to the flammable nature
of this DU.

To determine the availability of volume master data, DU volume master data was
compared to DUs currently being stored in the warehouse. It was determined that 472 of
the 10790 DUs currently stored in the warehouse do not contain master data volumes on
record.
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Figure 3.1 depicts the amount of DUs without volume master data in each warehouse
section.
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Figure 3.1: The number of DUs with unavailable volume master data by warehouse storage
section.

Pick ’n Pay has been in the process of centralising over the past 12 months, adding
multiple DUs to the warehouse. The additional DUs could have been added without
specified dimensions, which could have resulted in the missing DU volume master data.

Although only 4.37% of the total DUs’ volume master data is absent, the unavailable
data could impact operations as aforementioned.

3.2 Volume accuracy

To determine the accuracy of volume master data, 100 DUs’ volumes were sampled by
randomly selecting 25 DUs from each volume quantile to ensure an evenly spread sample.
The DUs’ volumes were measured and compared to the volume master data on hand. It
was determined that all of the samples’ actual volumes measured was less than the samples’
volume master data on record. Figure 3.2 depicts the percentage difference between the
volume master data and the actual volume measured for the 100 DUs that were sampled.
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Figure 3.2: The percentage difference between the measured and master volume data for
a 100 unique DUs.
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Possible causes of the inaccurate volume measurements could be vendors changing
products’ packaging without notifying Pick ’n Pay of the changes, or inaccurate measure-
ments captured by the three-dimensional scanner used by Pick ’n Pay to establish each
DUs’s volume.

3.3 Recommendations

Considering that the DUs’ volume master data could impact the performance and the
resource utilisation of the outbound process it is recommended that Pick ’n Pay should
invest time and resources in updating the DU volume master data.

Considering the large amount of DUs in the warehouse, reviewing and updating ex-
isting DUs’ volume master data could be a time and resource consuming process. It is
recommended that vacation work students should be responsible for this process as it does
not require specialised skills.

Resources could be allocated to supervise data capturing of DUs being centralised into
the warehouse to ensure that new DUs’ master volumes are accurate and available.
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Chapter 4

The simulation model

The model developed simulates the three discrete events of the outbound process, namely
picking/staging, combining and loading. The model was developed by making use of data
captured between the 1st of May 2017 and the 30th of June 2017. Data was captured
from SAP (transactional information) and shift data (the picking target per shift, the
number of delivery units (DUs) picked, the number of handling units (HUs) staged, com-
bined, dropped and loaded, the number of transport units (TUs) loaded and the staffing
requirements for the three events).

A single shift consists of 12 hours. A day shift is between 06:00 and 18:00 and a night
shift is between 18:00 and 06:00. The model simulated the outbound process from 06:00
on the 1st of May 2017 to 06:00 on the 1st of July 2017 and takes the allowed lunch hour
(between 12:00 and 13:00, and 00:00 and 01:00) into consideration.

4.1 Picking/Staging

The initial number of HUs in the staging lanes were defined as 2000 in the simulation
model, the actual number of HUs present in the staging lanes at 06:00 on the 1st of May
2017. Figure 4.1 src InitialHU depicts the process block responsible for injecting the
initial number of HUs into the model once the simulation model is started.

Figure 4.1: The picking/staging event of the simulation model.

The picking target and the manning requirements for each shift are used as an input
from an excel sheet; these inputs update when a new shift starts. Multiple picking waves
are released at predetermined times in each shift, representing a fraction of the picking
target for that shift. On release, HUs enter the model. Figure 4.1 src HUarrival depicts
the process block responsible for injecting HUs into the model. When the HU has entered
the model, DUs get allocated to the HU. The number of DUs allocated to an HU is
sampled out of a custom distribution based on observed DUs per HU.
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As an HU enters the picking process block as depicted in Figure 4.1, a picker is seized
from the res pickingStaff resource pool that defines the number of pickers available.
The HU is delayed while the picker allocated to the HU stages the HU. The duration
of the delay is based on a Log normal distribution fitted to the data by using the maxi-
mum likelihood method with a mean log parameter of 2.64 and a standard deviation log
parameter of 1.29 as depicted in Figure 4.2.
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Figure 4.2: Staging time per HU fitted with the Log normal distribution.

Once an HU has been staged the model decides whether the HU should be combined by
making use of a probability distribution. The probability was calculated by determining
the total HUs combined as a fraction of the total number of HUs staged during a shift.
The probability is represented by a Normal curve with a mean of 0.28 and a standard
deviation of 0.05 as depicted in Figure 4.3.
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Figure 4.3: Probability of an HU being combined fitted with a Normal distribution.

If the model determined that an HU could be combined, the toComb process block as
depicted in Figure 4.1 sends the HU to the combining process in the staging lanes. If the
HU could not be combined, the HU is sent to the staging lanes and awaits being loaded.

The key measures determined in the picking/staging events are the number of DUs
picked per shift and the number of HUs staged per shift.
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4.2 Combining

HUs that could be combined enter the combining event and await to be combined by a
staff member as depicted in Figure 4.4. During this event the DUs of one HU are combined
with another HU. The model assumes that only two HUs could be combined as this is the
norm in the real-life outbound process.

Figure 4.4: The combining event of the simulation model.

The duration of the HU delay is based on the time it takes the staff member to execute
the combine event. This time is based on a Log normal distribution fitted to the data by
using the maximum likelihood method with a mean log parameter of 0.37 and a standard
deviation parameter of 1.28 as depicted in Figure 4.5.
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Figure 4.5: Time it takes to combine two HUs fitted with the Log normal distribution.

Once an HU has been completed in the combining event the HU could be loaded. The
key measure for the combining event is the number of HUs combined per shift.

4.3 Loading

The loading event is dependant on the TUs and HUs that are awaiting loading. The
loading event therefore consists of two sub-events namely the docking of a TU and the
loading of a TU.

4.3.1 TU arrival

The simulation model inserts TUs to be loaded (as depicted as src vehiclesAvail in
Figure 4.6) as an input every hour. The model takes into account the number of HUs
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awaiting loading, the mean number of HUs per TU, and the time of day. The time of
day is taken into consideration as Pick ’n Pay stores’ receiving times largely dictate the
number of TUs required for loading during a shift as the majority of stores only receive
during the day. Roughly 65% of all TUs loaded in a day are loaded during the night shift
to ensure that HUs are delivered during the day.

Each TU receives a unique trip number and the number of HUs that should be loaded.
The number of HUs allocated to a TU is sampled from a custom distribution based on
the number of HUs per TU observed. Once a TU exits the del arrival process block
as depicted in Figure 4.6, the TU seizes an available dock door from the res dockDoors

resource pool (the total number of dock doors) as depicted in Figure 4.6. The delay
between TU docking and TU loading is as a result of the warehouse operations, such as
the printing of a load sheet, required before TUs could be loaded. The delay duration is
sampled from a custom distribution based on historic observations.

Figure 4.6: TUs arriving for loading in the simulation model.

Once a TU exists the del LoadStart process block as depicted in Figure 4.7, the
TU enters the wait loader process block as depicted in Figure 4.7 and the model allo-
cates a loader to the TU. When a loader has been allocated to load, the TU enters the
wait Loading process block as depicted in Figure 4.7. The TU is issued for loading and
the number of HUs that need to be loaded from the SL process block (as depicted in Figure
4.4) is released.

Figure 4.7: TU issued for loading in the simulation model.

4.3.2 TU loading

HUs are each allocated a trip number as well as the loader allocated for loading the associ-
ated TU. HUs awaiting loading enter the loading process as depicted by the enter Loading

process block in Figure 4.8.

Figure 4.8: HUs being loaded in the simulation model.
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The model makes use of a decision block to determine whether the HU will be dropped.
This decision is based on a probability associated with the number of HUs in the staging
lanes.

Figure 4.9 illustrates how the probability to drop an HU increases as the number of
HUs in the staging lanes increase. If the HU is dropped, the HU returns to the staging
lanes.
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Figure 4.9: Probability of an HU being dropped and the number of HUs in the staging
lanes.

The allocated loader loads a single TU at a time. The duration of the HUs’ delay is
determined by the time it takes a loader to load an HU into a TU. This time is represented
by a Log normal distribution fitted to the data by using the maximum likelihood method
with a mean log parameter of 1.12 and a standard deviation parameter of 0.59 as depicted
in Figure 4.10.

0.0

0.1

0.2

0.3

0 10 20

Minutes per HU

D
en

si
ty

Log normal distribution

Figure 4.10: Loading time per HU fitted with the Log normal distribution.
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There is a delay between the last HU loaded onto a TU and the TU despatch as
depicted in Figure 4.11. The delay duration is sampled from a custom distribution based
on historic observations. Once a TU exits the delay the seized dock door is released and
the TU exits the model.

Figure 4.11: TUs despatching in the simulation model.

The key measure identified for the loading event is the number of HUs loaded per shift,
the number of HUs dropped per shift, the number of TUs loaded per shift, the number of
DUs per HU when loaded onto a TU, and the TU loading times.

4.4 Simulation model summary

The simulation model as depicted in Figure 4.12 was developed to evaluate the impact of
tactical and operational decisions on the outbound process. The tactical and operational
decisions that could be evaluated by the model include:

• Manning quantities.
• The size of the picking wave.
• The release time of the picking wave.
• Task completion rates.
• Arrival times of TUs.

Structural decisions could however not be addressed with the developed model. It is
concluded that the developed model has the functional capabilities to be able to address
the concerns mentioned in Section 1.2, Research question.

Figure 4.12: The developed simulation model.
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Chapter 5

Model validation

Key measures that the model could be validated against were identified. The measures
include:

• Number of delivery units (DUs) per handling unit (HU) after loading.
• Loading time per transport unit (TU).
• HUs staged, combined, dropped and loaded per shift.
• Number of TUs loaded per shift.

Two methods of model validation were used; a distribution plot to compare the actual
measured values and the values generated by the simulation model, and confidence inter-
vals for each measure’s mean by using observed data gathered between the 1st of May
2017 and the 30th of June 2017.

5.1 Distribution plots

The importance of comparing the density plots of the observed data and the simulated
data is that it provides an indication of the range and statistical nature of each measure.
This indicates whether the simulation model accurately accounts for the variability of the
real life process. Density plots comparing each measure’s observed data and simulated
results were generated and are depicted in Figure 5.1 to Figure 5.8.

Figure 5.1 illustrates the density plot of the observed and simulated data for the number
of DUs picked per shift.
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Figure 5.1: Density plot of observed data and simulated results for the number of DUs
picked per shift.
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Figure 5.1 indicated that the simulation model generates the same distribution as the
observed data for the number of DUs picked per shift. This finding was expected as the
picking target was provided as an input in the simulation model.

Figure 5.2 illustrates the density plot of the observed and simulated data for the number
of HUs staged per shift.

0.00000

0.00025

0.00050

0.00075

1000 2000 3000 4000

Handling units staged per shift

D
en

si
ty

Simulation data

Figure 5.2: Density plot of observed data and simulated results for the number of HUs
staged per shift.

The number of HUs staged is dependant on the number of DUs allocated to each HU
by the simulation model, a number sampled out of a custom distribution as previously
mentioned. Figure 5.2 illustrates that the number of HUs staged per shift follows the same
distribution for the observed data and the simulated data. The number of DUs picked per
shift and the number of HUs staged per shift is an important function of the simulation
model as it represents the start of the outbound process. It was concluded that the values
generated by the simulation model for these two measures are accurate in comparison to
the observed data.

Figure 5.3 illustrates the density plot of observed data and simulated data for the
number of HUs combined per shift.
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Figure 5.3: Density plot of observed data and simulated results for the number of HUs
combined per shift.

An increase in HUs combined per shift decreases the total number of HUs in the staging
lanes, relieving staging lane congestion. The simulation model should accurately depict
the number of HUs being combined per shift to ensure a realistic flow of HUs into and
out of the staging lanes. Figure 5.3 illustrates that the simulation model follows the same
distribution for the number of HUs combined per shift as the observed data.
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Figure 5.4 illustrates the density plot of the observed data and simulated data for the
number of HUs dropped per shift.
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Figure 5.4: Density plot of observed data and simulated results for the number of HUs
dropped per shift.

Considering that the significant amount of dropped HUs per shift is one of the concerns
being addressed in this report, the simulation model should be able to produce results
consistent with the observed data so that the right conclusions could be made. Figure 5.4
illustrates that the simulation model follows the same distribution for the number of HUs
dropped per shift as the observed data.

Figure 5.5 and Figure 5.6 illustrate the density plots of the number of HUs loaded per
shift and the number of TUs loaded per shift for the observed data and the simulated
data.
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Figure 5.5: Density plot of observed data and simulated results for the number of HUs
loaded per shift.
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Figure 5.6: Density plot of observed data and simulated results for the number of TUs
loaded per shift.
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Figure 5.5 and Figure 5.6 are bimodal; this is as a result of the number of TUs loaded
during day shifts and night shifts. As mentioned in Subsection 4.3.1 TU arrival, 65% of
the daily TUs loaded are loaded during the night shift due to most stores having day-time
receiving. The lower mode thus indicates the number of HUs and TUs loaded during the
day shift and the upper mode the number of HUs and TUs loaded during the night shift.
Figure 5.5 and Figure 5.6 illustrate that the number of HUs and TUs loaded generated by
the simulation model follows the same distribution as the observed data.

Figure 5.7 illustrates the density plot of observed data and simulated data for the
number of DUs per HU when loaded onto a TU.
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Figure 5.7: Density plot of observed data and simulated results for the number of DUs
per HU.

The mean number of DUs per HU indicates the combining event’s effectiveness. Figure
5.7 illustrates that the mean DUs per HU when loaded onto a TU, as generated by the
simulation model, follows the same distribution as the observed data. The Figure 5.7 also
illustrates that the combining event in the simulation model achieves the same effectiveness
as the real-life process.

Figure 5.8 illustrates the density plot of observed data and simulated data for the TU
loading times.
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Figure 5.8: Density plot of observed data and simulated results for TU loading times.

Considering that excessive TU loading times is one of the concerns being addressed
in this report, the simulation model should be able to produce results consistent with the
observed data so that the right conclusions could be made. Figure 5.8 illustrates that the
TU loading times generated by the simulation model follows the same distribution as the
observed data.
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5.2 Confidence intervals

The mean confidence intervals of each measure, based on the observed data, provides a
method to test whether the data generated by the simulation model conforms to approxi-
mately the same mean as the observed data’s population. The mean confidence intervals of
the identified measures were calculated based on the nature of the measures’ distributions.
A confidence level of 99% was used in the calculation of the confidence intervals.

It was determined that the number of HUs combined per shift, the mean DUs per HU,
and the number of HUs and TUs loaded per shift are represented by Normal distributions;
the t-test was used to determine confidence intervals. The number of DUs picked per
shift, the number of HUs staged per shift and the number of HUs dropped per shift
are represented by skewed distributions; the bootstrap method was used to determine
confidence intervals. 100 independent simulation runs were conducted and the mean of
each measure for each simulation-run was compared to the calculated confidence intervals.
The results are depicted in Figure 5.9 to Figure 5.18.

Figure 5.9 illustrates the frequency histogram of the mean DUs picked per shift gen-
erated by the simulation model in relation to the mean confidence interval of the number
of DUs picked per shift of the observed data.
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Figure 5.9: Frequency histogram of the simulated mean DUs picked per shift in relation
to the calculated confidence interval.

Figure 5.10 illustrates the frequency histogram of the mean HUs staged per shift gen-
erated by the simulation model in relation to the mean confidence interval of the number
of HUs staged per shift of the observed data.
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Figure 5.10: Frequency histogram of the simulated mean HUs staged per shift in relation
to the calculated confidence interval.

Figure 5.9 and Figure 5.10 illustrate that the mean number of DUs picked per shift and
the mean number of HUs staged per shift generated by the simulation model fall within
the confidence intervals.
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Figure 5.11 and Figure 5.12 illustrate the frequency histograms of the mean HUs
combined and dropped per shift generated by the simulation model in relation to the
mean confidence interval of the number of HUs combined (Figure 5.11) and dropped
(Figure 5.12) per shift of the observed data.
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Figure 5.11: Frequency histogram of the simulated mean HUs combined per shift in rela-
tion to the calculated confidence interval.
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Figure 5.12: Frequency histogram of the simulated mean HUs dropped per shift in relation
to the calculated confidence interval.

Figure 5.11 and Figure 5.12 illustrate that the mean number of HUs combined and
dropped per shift generated by the simulation model fall within the confidence intervals.

The mean confidence intervals for the number of HUs and TUs loaded per shift was
calculated for the day shift and night shift to take the bimodal nature of these measures
into consideration. Figure 5.13 and Figure 5.14 illustrate the number of HUs and TUs
loaded as generated by the simulation model in relation to the mean confidence interval
of the number of HUs and TUs loaded per day shift of the observed data.
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Figure 5.13: Frequency histogram of the simulated mean HUs loaded per day shift in
relation to the calculated confidence interval.
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Figure 5.14: Frequency histogram of the simulated mean TUs loaded per day shift in
relation to the calculated confidence interval.

Figure 5.15 and Figure 5.16 illustrate the mean number of HUs and TUs loaded as
generated by the simulation model in relation to the mean confidence interval of the
number of HUs and TUs loaded per night shift of the observed data.
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Figure 5.15: Frequency histogram of the simulated mean HUs loaded per night shift in
relation to the calculated confidence interval.
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Figure 5.16: Frequency histogram of the simulated mean TUs loaded per night shift in
relation to the calculated confidence interval.

Figure 5.13 to Figure 5.16 illustrate that the mean number of HUs and TUs loaded per
day shift and night shift as generated by the simulation model fall within the confidence
intervals.

Figure 5.17 illustrates the frequency histogram of the mean DUs per HU when loaded
onto a TU as generated by the simulation model in relation to the confidence interval of
the observed data.
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Figure 5.17: Frequency histogram of the simulated mean DUs per HU when loaded onto
a TU in relation to the calculated confidence interval.

Figure 5.17 illustrates that the mean number of DUs per HU when loaded onto a TU
generated by the simulation model mostly falls within the calculated confidence intervals.
The values outside the calculated confidence intervals are not a concern as the values
missed the interval by less that 0.5.

Figure 5.18 illustrates the frequency histogram of the loading time per TU as generated
by the simulation model in relation to the mean confidence interval of the loading time
per TU from the observed data.
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Figure 5.18: Frequency histogram of the simulated mean TU loading time in relation to
the calculated confidence interval.

Figure 5.18 illustrates that the loading times per TU generated by the simulation
model falls within the calculated confidence intervals.

5.3 Model validation conclusion

After comparing the distribution plots and confidence intervals of the identified measures
to the simulated results it was concluded that the developed simulation model is a credible
representation of the outbound process. It could therefore be assumed that performing
scenario modelling by making use of the developed model could generate credible rep-
resentations of the outbound process that could provide insights in the decision-making
process.
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Chapter 6

Scenario modelling

Observed data and data generated by the validated simulation model were used to deter-
mine the root causes of the excessive number of dropped handling units (HUs) per shift
and the excessive transport unit (TU) loading times. It was determined that the two
concerns are as a result of staging lane congestion. High quantities of HUs in the staging
lanes increase the probability of dropped HUs as it becomes more likely that the HUs
will not be found by loaders. Loaders waste time searching for HUs which contributes to
excessive TU loading times.

6.1 Identifying solutions

By investigating the flow of HUs into and out of the staging lanes per shift, the cause of
staging lane congestion could be comprehended. Due to the fact that the majority of TUs
loaded per day is loaded during the night shift, the flow of HUs out of the staging lanes
exceeds the flow of HUs into the staging lanes, relieving staging lane congestion during the
night shift. During the day shift however the flow of HUs into the staging lanes exceeds
the flow of HUs out of the staging lanes causing an accumulation of HUs in the staging
lanes. Figure 6.1 illustrates the density plots of the flow of HUs into and out of the staging
lanes per minute per shift.
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Figure 6.1: Density plots of the flow of HUs into and out of the staging lanes during day
shifts and night shifts.
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It was determined that the probability of dropping an HU during the day shift is higher
than during the night shift due to higher staging lane congestion; as the number of HUs
in the staging lanes increases, the probability of dropping HUs increases.

Figure 6.2 illustrates the increase in the probability of dropped HUs as the number of
HUs in the staging lanes increases.
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Figure 6.2: Probability of an HU being dropped compared to the number of HUs in the
staging lanes.

Figure 6.3 illustrates the probability of an HU being dropped during the day shift and
night shift.
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Figure 6.3: Density plots of the probability of an HU being dropped during the day shift
and the night shift.

Figure 6.3 illustrates that the probability of dropping an HU is higher during the day
shift than the night shift due to staging lane congestion. The selected scenarios’ objective
is to reduce the mean and range of the number of HUs in the staging lanes to reduce the
total number of dropped HUs in the staging lanes and therefore the loading time per TU.
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Figure 6.4 illustrates the frequency histogram of the number of HUs present in the
staging lanes as captured by the simulation model every 5 minutes.
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Figure 6.4: Frequency histogram of the number of HUs in the staging lanes sampled every
5 minutes.

6.2 Increase in night-time receiving stores

This scenario’s proposed solution attempts to reduce congestion in the staging lanes by
increasing the number of stores that receive orders during night time (18:00-06:00). The
TUs loaded during the night shift primarily deliver to stores with day-time receiving (06:00-
18:00) and the TUs loaded during the day shift primarily deliver to stores with night-time
receiving. Increasing the number of stores with night-time receiving will increase the
number of TUs loaded during the day shift and decrease the number of TUs loaded during
the night shift; this will increase the flow of HUs out of the staging lanes during the day
preventing staging lane congestion.

The proposed solution does not state which stores should change from day-time to
night-time receiving but evaluates the impact that an equal amount of day-time receiving
stores and night-time receiving stores could have on the outbound process.

In order to simulate this scenario, the simulation model’s TU arrival was adapted
to account for the increased number of stores with night-time receiving. No additional
changes were made to the simulation model, ensuring that the proposed solution’s effects
could be evaluated in isolation.

6.3 Distribution of weekly volume

This scenario’s proposed solution attempts to reduce staging lane congestion by adjusting
stores’ nominated delivery days to evenly distribute the total weekly volume throughout
the week. This results in a constant picking target for each shift throughout the week.
The constant picking target results in a constant flow of HUs into the staging lanes which
reduces spikes of HUs flowing into the staging lanes.

This proposed solution does not state the required nominated delivery days for each
store to achieve the evenly distributed weekly volume but evaluates the impact that this
change could have on the outbound process.
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In order to simulate this scenario, the simulation model’s input was adapted to ensure
that the size of the picking target was constant for each shift throughout a week; this was
done to evaluate the effect of the evenly distributed weekly volume. No additional changes
were made to the simulation model, ensuring that the proposed solution’s effects could be
evaluated in isolation.

6.4 Scenario results

Measures that could provide insight into the outbound process’s performance were used
to validate each scenario’s proposed solution. The measures include:

• HUs dropped per shift.
• Loading time per TU.
• Number of HUs per TU.
• Number of HUs in the staging lanes.
• The flow of HUs into and out of the staging lanes.

The measures’ results were obtained for each scenario by simulating each scenario 100
times. The input data used to simulate each scenario was captured between the 1st of
August 2017 and the 31st of August 2017; this data set was not used in the development
of the simulation model to ensure unbiased results.

6.4.1 Scenario 1 - Increase in night-time receiving stores

The solution proposed in this scenario attempts to relieve staging lane congestion by
creating a steady flow of HUs out of the staging lanes by increasing the number of TUs
loaded during the day shift. The solution could result in a pull-system, where the loading
of TUs pulls HUs from the staging lanes. The results are depicted in Figure 6.5 to Figure
6.9. Statistical summaries are provided for each figure in Table 6.1 to Table 6.6.

Figure 6.5 illustrates the density plot of the flow of HUs into and out of the staging
lanes per minute, for both day and night shifts.
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Figure 6.5: Density plots of the flow of HUs into and out of the staging lanes during day
shifts and night shifts.
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This solution’s impact could be evaluated be comparing the flow of HUs into and out
of the staging lanes for day shifts and night shifts. Figure 6.5 depicts that the flow of HUs
out of the staging lanes for the day shift is similar to the flow of HUs out of the staging
lanes for the night shift as a result of an increase in TUs loaded during the day shift.

Table 6.1 and Table 6.2 provide statistical summaries of the flow of HUs into and out
of the staging lanes for the observed data and the simulated data of this scenario for day
shifts and night shifts.

Table 6.1: Statistical summary of the flow of HUs into and out of the staging lanes during
day shifts of the observed data and day shifts of this scenario’s simulated data.

In Out

Element Observed data Scenario 1 Observed data Scenario 1

Mean 3.73 3.83 3.04 4.21
Median 4 4.1 3.2 4.4

Standard deviation 1.64 1.66 1.49 1.87
Min 0.0 0.0 0.0 0.0
Max 11.8 12.0 14.2 14.8

Table 6.1 indicates that the difference between the outflow’s median and inflow’s me-
dian during the day shift for the observed data is 0.8 HUs per minute which indicates
that the population of HUs increased with 0.8 HUs per minute during the day shift. The
simulated data indicates that the difference between the outflow’s median and inflow’s
median during the day shift is -0.3 HUs per minute which indicates that the population of
HUs decreased with 0.3 HUs per minute during the day shift; this indicates that staging
lane congestion could be relieved during a day shift.

Table 6.2: Statistical summary of the flow of HUs into and out of the staging lanes during
night shifts for the observed data and the scenario’s data.

In Out

Element Observed data Scenario 1 Observed data Scenario 1

Mean 4.28 4.29 4.92 4.25
Median 4.6 4.7 5.4 4.4

Standard deviation 1.86 1.87 2.29 2.01
Min 0.0 0.0 0.0 0.0
Max 13.6 13.2 18.0 16.4

Table 6.2 indicates that the difference between the outflow’s median and inflow’s me-
dian during the night shift for the observed data is -0.8 HUs per minute which indicates
that the population of HUs decreased with 0.8 HUs per minute during the night shift.

The simulated data indicates that the difference between the outflow’s median and
inflow’s median during the night shift is 0.3 HUs per minute which indicates that the
population of HUs increased with 0.3 HUs per minute during the night shift.

The reduced rate at which the number of HUs increase and decrease during night shifts
and day shifts indicates that this scenario’s solution reduces the volatility of HUs’ flow into
and out of the staging lanes which could reduce the mean number of HUs in the staging
lanes.
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Figure 6.6 illustrates the effect of reduced HU flow volatility on the number of HUs in
the staging lanes.
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Figure 6.6: Density plot of observed data and simulated results for the number of HUs in
the staging lanes sampled every 5 minutes.

Table 6.3: Statistical summary of HUs in the staging lanes for the observed data and
simulated data.

HUs in the staging lanes

Element Observed data Scenario 1

Mean 2181 1712
Median 2225 1743

Standard deviation 402.3 267.1
Min 780 620
Max 3710 2609

Table 6.3 depicts that the scenario’s mean and median for HUs in the staging lanes
are smaller than that of the observed data, illustrating the effect of the reduced HU flow
volatility. After analysing Figure 6.6 and Table 6.3 it was concluded that the solution
proposed in Scenario 1 reduces congestion in the staging lanes; it was therefore assumed
that the dropped HUs per shift would be reduced too.

Figure 6.7 illustrates the density plot of the observed data and simulated data for the
number of HUs dropped per shift.
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Figure 6.7: Density plot of observed data and simulated results for the number of HUs
dropped per shift.
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Figure 6.7 illustrates that the reduced staging lane congestion results in a decrease in
dropped HUs per shift. Table 6.4 provides a statistical summary of the number of dropped
HUs for the observed data and the simulated data.

Table 6.4: Statistical summary of the number of dropped HUs per shift of the observed
data and the simulated data.

Dropped HUs per shift

Element Observed data Scenario 1

Mean 353.6 188.5
Median 312.5 194

Standard deviation 196.3 64.5
Min 108 27
Max 1267 404

Table 6.4 illustrates that this scenario’s solution reduces the mean and median of the
dropped HUs per shift. The standard deviation and the maximum number of dropped
HUs per shift indicates that the proposed solution also reduces the range of dropped HUs
which leads to more predictable and therefore a more manageable number of dropped
HUs.

Figure 6.8 illustrates the density plot of observed data and simulated data for the TU
loading times.
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Figure 6.8: Density plot of observed data and simulated results for TU loading times.

Figure 6.8 illustrates that there is not a significant difference between the observed data
and the simulated data for TU loading times. Table 6.5 provides a statistical summary of
the TUs loading times for the observed data and the simulation data.

Table 6.5: Statistical summary of TU loading times of the observed data and simulated
data.

TUs loading time

Element Observed data Scenario 1

Mean 101.9 102.3
Median 78.75 77.9

Standard deviation 78.3 78.1
Min 15.3 16.9
Max 824.5 839.2
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The information in Table 6.5 confirms that there is not a significant difference between
the TU loading times for the observed data and the simulated data. The benefit of the
proposed solution with regards to TU loading is visible in the number of HUs per TU.

Figure 6.9 illustrates the density plot of observed data and simulated data for the HUs
per TU.
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Figure 6.9: Density plot of observed data and simulated results for the number of HUs
per TU.

Figure 6.9 indicates an increase in the mean number of HUs per TU in the proposed
solution. Table 6.6 provides a statistical summary of the HUs per TU for the observed
data and the simulated data.

Table 6.6: Statistical summary of HUs per TU of the observed data and simulated data.

HUs per TU

Element Observed data Scenario 1

Mean 27.9 29.4
Median 27 29

Standard deviation 10.2 9.6
Min 2 2
Max 53 53

Table 6.6 depicts an increase in the mean and median HUs per TU in the proposed
solution. It can therefore be concluded that the reduced staging lane congestion increases
the loading rate per HU. The mean loading rate observed per HU is 3.65 minutes per
HU. The proposed solution produces an HU loading rate of 3.47 minutes per HU. The
increased HU loading rate is not visible in the total TU loading time as the reduced
number of dropped HUs causes more HUs to be loaded, resulting in higher HUs per TU.
The proposed solution does therefore not improve the total TU loading time but the loader
efficiency which results in higher TU space utilisation.

It can be concluded that the solution proposed in this scenario could potentially reduce
the number of dropped HUs per shift and increase TU loading efficiency.
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6.4.2 Scenario 2 - Distribution of weekly volume

The solution proposed in this scenario attempts to relieve staging lane congestion by
enforcing a steady flow of HUs into the staging lanes by evenly distributing weekly volumes.
The weekly volumes being distributed evenly ensures constant picking targets for day shifts
and night shifts throughout the week. The solution could result in a push-system, where
the constant picking target pushes HUs through the outbound process. The results of this
scenario are depicted in Figure 6.10 to Figure 6.14. Statistical summaries for each figure
are provided in Table 6.7 to Table 6.12.

Figure 6.10 illustrates the density plot of the flow of HUs into and out of the staging
lanes for both day and night shifts.
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Figure 6.10: Density plots of the flow of HUs into and out of the staging lanes during day
shifts and night shifts.

Figure 6.10 depicts that the flow of HUs into the staging lanes is similar for the day
shift and night shift as a result of the volume being evenly distributed throughout a week.
The proposed solution’s impact can be seen by evaluating the difference between the flow
of HUs into and out of the staging lanes for day shifts and night shifts. Table 6.7 and
Table 6.8 provide a statistical summary of the flow of HUs into and out of the staging
lanes for the observed data and the simulated data for day shifts and night shifts.

Table 6.7: Statistical summary of the flow of HUs into and out of the staging lanes during
the day shift for the observed data and the simulated data.

In Out

Element Observed data Scenario 2 Observed data Scenario 2

Mean 3.73 4.428 3.04 4.212
Median 4 4.4 3.2 4.2

Standard deviation 1.64 1.62 1.49 2.03
Min 0.0 0.0 0.0 0.0
Max 11.8 11.8 14.2 15.4

‘ Table 6.7 indicates that the difference between the outflow’s median and inflow’s
median during the day shift for the simulated data is 0.2 HUs per minute which indicates

37



[git] • Branch: (None) @ (None); Author: (None); Date: (None) •

that the population of HUs increased with 0.2 HUs per minute during the day shift. This
flow rate is significantly less than the 0.8 HUs per minute from the observed data.

Table 6.8: Statistical summary of the flow of HUs into and out of the staging lanes during
the night shift of the observed data and simulated data.

In Out

Element Observed data Scenario 2 Observed data Scenario 2

Mean 4.28 4.17 4.92 4.21
Median 4.6 4.4 5.4 4.5

Standard deviation 1.86 1.68 2.29 2.12
Min 0.0 0.0 0.0 0.0
Max 13.6 11.0 18.0 15.6

Table 6.8 indicates that the difference between the outflow’s median and inflow’s me-
dian during the night shift is -0.1 HUs per minute which indicates that the population of
HUs decreased with 0.1 HUs per minute during the night shift. It was concluded that this
solution reduces the volatility of the flow of HUs into and out of the staging lanes.

Figure 6.11 illustrates the effect of the reduced HU flow volatility on the number of
HUs in the staging lanes.
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Figure 6.11: Density plot of observed data and simulated results for the number of TUs
loaded per shift.

Table 6.9: Statistical summary of HUs in the staging lanes of the observed data and the
simulated data.

HUs in the staging lanes

Element Observed data Scenario 2

Mean 2181 2015
Median 2225 2005

Standard deviation 402.3 209.1
Min 780 1267
Max 3710 3045

Table 6.9 illustrates a smaller mean and median for HUs in the staging lanes for
the simulated data than the observed data. The smaller standard deviation indicates the
impact of the reduced HU flow volatility. From Figure 6.11 and Table 6.9 it was concluded
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that the solution proposed in this scenario reduces congestion in the staging lanes; it was
therefore assumed that the dropped HUs per shift would be reduced too.

Figure 6.12 illustrates the density plot of the observed data and simulated data for the
number of HUs dropped per shift.
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Figure 6.12: Density plot of observed data and simulated results for the number of HUs
dropped per shift.

Figure 6.12 depicts that reduced staging lane congestion results in a decrease in the
number of dropped HUs per shift. Table 6.10 provides a statistical summary of the number
of dropped HUs for the observed data and the simulated data.

Table 6.10: Statistical summary of the number of dropped HUs per shift of the observed
data and the simulated data.

Dropped HUs per shift

Element Observed data Scenario 2

Mean 353.6 246.6
Median 312.5 241

Standard deviation 196.3 61
Min 108 104
Max 1267 524

Table 6.10 depicts that this scenario’s solution reduces the mean and median of the
dropped HUs per shift. The standard deviation and the maximum number of dropped
HUs per shift indicates that the proposed solution also reduces the range of dropped HUs.

Figure 6.13 illustrates the density plot of observed data and simulated data for the TU
loading times.
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Figure 6.13: Density plot of observed data and simulated results for the number of TUs
loaded per shift.
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Figure 6.13 illustrates that there is not a significant difference between the observed
data and the simulated data for TU loading times. Table 6.5 provides a statistical summary
of the TUs loading times for the observed data and the simulation data.

Table 6.11: Statistical summary of TU loading times of the observed data and the simu-
lated data.

TUs loading time

Element Observed data Scenario 1

Mean 101.9 101.6
Median 78.75 79.9

Standard deviation 78.3 78.8
Min 15.3 17.9
Max 824.5 844.6

The information in Table 6.11 confirms that there is not a significant difference between
the TU loading times for the observed data and the simulated data. The benefit of the
proposed solution with regards to TU loading is visible in the number of HUs per TU.

Figure 6.14 illustrates the density plot of observed data and the simulated data for the
HUs per TU.
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Figure 6.14: Density plot of observed data and simulated results for the number of HUs
per TU.

Figure 6.14 indicates an increase in the mean number of HUs per TU in the proposed
solution. Table 6.12 provides a statistical summary of the HUs per TU for the observed
data and the simulated data.

Table 6.12: Statistical summary of HUs per TU of the observed data and the simulated
data.

HUs per TU

Element Observed data Scenario 1

Mean 27.9 28.67
Median 27 28

Standard deviation 10.2 9.4
Min 2 2
Max 53 53

Table 6.12 depicts an increase in the mean and median HUs per TU in the proposed
solution. It can therefore be concluded that the reduced staging lane congestion increases
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the loading rate per HU. The mean loading rate per HU is 3.65 minutes per HU. The
proposed solution produces an HU loading rate of 3.55 minutes per HU. The increased HU
loading rate is not visible in the total TU loading time as the reduced number of dropped
HUs causes more HUs to be loaded, resulting in higher HUs per TU. The proposed
solution does therefore not improve the total TU loading time but the loader efficiency
which results in higher TU space utilisation.

It can be concluded that the solution proposed in this scenario could potentially reduce
the number of dropped HUs per shift and increase TU loading efficiency and capacity
utilisation.
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Chapter 7

Conclusion and Recommendations

7.1 Conclusion

It was concluded that staging lane congestion causes excessive numbers of dropped handling
units (HUs). Congestion in the staging lanes increases the probability of HUs not being
located which results in HUs being dropped. This contributes to excessive transport
unit (TU) loading times as loading staff spend time locating HUs which reduces the load-
ing efficiency.

The availability and accuracy of the delivery unit (DU) volume master data directly
contributes to staging lane congestion. It was determined that several DUs do not have
master volume data on record. The bin packing algorithm will thus allocate these single
DUs to an HU which results in an under utilised HU and more HUs being used than
required. It was determined that out of the 100 DUs measured 100 DUs’ actual volume is
less than the volume recorded in the DU volume master file. This causes the bin packing
algorithm to insufficiently fill each HU which results in an excessive amount of HUs being
used.

Two scenarios, namely an increase in night-time receiving and the distribution of
weekly volumes, were investigated to determine the impact of each on the number of
dropped HUs and TU loading times. It was concluded that either solution proposed could
potentially reduce the number of dropped HUs per shift. The scenarios’ TU loading times
do not indicate a significant reduction, but the loading rate per HU and the HUs per TU
increased.

The measures with the largest potential financial impact were identified and used to
evaluate each scenario’s cost implications. The measures included the mean:

• HUs dropped per shift.
• Minutes to load an HU.
• HUs per TU.

A reduction in the number of dropped HUs per shift could result in less additional trips
required to deliver the dropped HUs which could result in a reduced number of kilometres
travelled. An increase in loading efficiency could result in less loading staff required per
shift, which could result in reduced labour expenses. An increase in HUs per TU could
result in an increase in HUs delivered per kilometre travelled which could reduce the total
cost to deliver stock to Pick ’n Pay stores.

Table 7.1 depicts the mean number of dropped HUs per shift, minutes per HU loaded
and HUs per TU for both scenarios’ results and the observed data.
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Table 7.1: Summary of the mean value for each finacial measure for both scenarios and
the observed data.

Measure Observed data Scenario 1 Scenario 2

HUs dropped per shift 353.6 188.5 246.6
HU loading rate per minute 27.9 29.4 28.67

HUs per TU 3.65 3.47 3.55

Table 7.1 indicates that Scenario 1 could result in higher cost savings for Pick ’n Pay’s
distribution centre (DC).

The potential cost impact of implementing each scenario’s proposed solution was con-
sidered. It was determined that both scenarios have low implementation costs for the Pick
’n Pay DC as both scenarios propose tactical solutions. Pick ’n Pay stores will however
have to incur costs to implement the proposed solutions.

For Pick ’n Pay stores to change from day-time to night-time receiving the stores would
have to reschedule receiving staff. As some non-centralised vendors(stock is not distributed
by the Pick ’n Pay DC) deliver directly to the Pick ’n Pay store, it cannot be assumed
that the stores could simply move their day-time receiving staff to the night-time as they
may have to receive stock from non-centralised vendors during the day-time. Security
implications could also impact night-time receiving.

The moving or reduction of Pick ’n Pay stores’ nominated delivery days could result
in an increase in receiving staff required over weekends which could result in additional
over-time costs.

It was concluded that by making use of the decision support model developed, the
scenarios could be evaluated to make informed decisions regarding the outbound process.
It was determined that both scenarios could address the outbound process’s concerns.
The first scenario, the increase of stores with night-time receiving, addresses the concerns
more efficiently. It is therefore recommended that the first scenario’s solution should be
implemented.

7.2 Recommendations

After the completion of this project recommendations could be made regarding the devel-
opment of the simulation model, root causes for dropped HUs, and the implementation of
the proposed solution.

It is recommended that functionality should be added to the simulation model so that
the trip time of a TU could be considered. This functionality should allow users to specify
a fixed number of available TUs which could assist users in evaluating the impact that the
proposed solution could have on the fixed number of TUs required.

This project confirmed that staging lane congestion is one of the main causes of the
excessive number of dropped HUs per shift. Reduced congestion does however not com-
pletely eliminate the occurrence of dropped HUs. It is therefore recommended that Pick ’n
Pay should investigate the root cause(s) of dropped HUs. Additional cause(s) for dropped
HUs could include HUs being staged in the incorrect staging lanes and HUs unintentionally
being moved to the incorrect lane during the combining process.

The simulation model indicated that reduced staging lane congestion does not signifi-
cantly reduce TU loading times but could improve the HU loading rate. It is recommended
that Pick ’n Pay should investigate alternative methods for staging. Currently each stag-
ing lane represents a single Pick ’n Pay store per picking wave. It is recommended that
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Pick ’n Pay should investigate the possibility of each staging lane representing a TU per
picking wave. This could ensure that TUs’ HUs are staged in a single lane which could
reduce loaders’ travelling time which could reduce TU loading times.

Pick ’n Pay should investigate the feasibility of implementing the proposed solution
by evaluating stores’ co-operation and willingness to change from day-time to night-time
receiving. If it is determined that a suitable amount of stores are prepared to adjust,
multiple variations of The Assignment Problem exist which could provide a method of
selecting which Pick ’n Pay stores should be moved from day-time receiving to night-time
receiving.
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Appendix B

Sampled DUs with measured dimensions.
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Product.Short.Description

ALL GOLD TOMATO COCKTAIL ORIGINAL 200ML1

cm3

CLORETS ORIGINAL GUM 14.5GR2

Quantile

COLGATE A/CAVITY T/PAST BUBBLEFRUIT 50ML3

L

DERMO EXPERTISE R/VITALFT L/R SPF25 50ML4

W

ELVIVE MOUSSE FREE STYLE EXT FIRM 200ML5

H

GOLDCREST ORANGE MARMALADE 340GR6

INECTO H/COL SUPER BLACK NATURALS 50ML7

JOHNSON'S BABY EASY COMB SPRAY 150ML8

JOHNSON'S BABY SOAP ALOE VERA 100GR9

LENTHERIC K/SCOPE TOO HOT TO HNDLE 100ML10

LENTHERIC MASCULIN DEO B/S EXTREME 150ML11

NIVEA FOR MEN F/CREAM MOIST F/GEL 50ML12

NO NAME SOUP MIX 500GR13

NUTRILIDA V/GUARD FIZZY CHEWS 60EA14

OLD SPICE STICK CHAMPION 50ML15

PANTENE 2IN1 SHMP/CON SMOOTH&SLEEK 200ML16

PETER STUYVESANT RED EVOLVE PMP 20EA17

PLAYGIRL DEODORANT TEMPTATION 90ML18

PNP 11W BC CW SPIRAL 1P BX19

PONDS AGE MIRACLE REG FACIAL FOAM 100ML20

SHIELD DEODORANT SACHET REFILL ACTV 50ML21

STIMOROL AIR RUSH CHEWING GUM MENTHOL22

TWISP CHERRY PURE REFILL 20ML23

VINOLIA SOAP LAVENDER 125GR24

VITA−THION EFFERVESCENT TABS 20EA25

2240.896

 729.925

2662.400

2513.104

3053.120

2646.000

2213.400

1965.600

1466.640

1411.550

2510.080

1557.504

1311.000

2734.875

1515.822

2221.128

 791.544

1713.120

2873.000

1288.560

 989.184

 936.000

 292.404

2640.000

1494.255

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

1stQuantile

16.4

 9.7

10.4

13.1

14.0

12.0

10.2

21.0

19.4

10.9

16.0

31.2

23.0

18.7

19.3

11.7

 3.9

12.0

13.0

11.8

19.2

15.0

 5.9

26.4

13.3

12.2

17.5

16.0

10.9

 9.4

24.5

15.5

 5.2

 9.0

 7.4

10.6

 5.2

19.0

12.5

 6.6

11.3

23.6

 8.6

17.0

 7.0

 5.6

10.4

 5.9

10.0

10.7

11.2

 4.3

16.0

17.6

23.2

 9.0

14.0

18.0

 8.4

17.5

14.8

 9.6

 3.0

11.7

11.9

16.8

 8.6

16.6

13.0

15.6

 9.2

 6.0

 8.4

10.0

10.5
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Product.Short.Description

BEACON ALLSRT NON/LIQ MINI FRT 75GR1

cm3

BEENO FLATTIES HEALTHY TREATS 120GR2

Quantile

BOB MARTIN S/MOIST D/TREAT J/CARE 45GR3

L

CANDEREL VANILLA SWEETENER 40GR4

W

COLMAN'S ENGLISH MUSTARD POWDER 100GR5

H

DEWFRESH UHT MANG/ORNGE NECT JUICE 200ML6

DOVE CONDITIONER PURE CARE 250ML7

FIESTA HAIRSPRAY SUPER HOLD 300ML8

GARNIER CONDIT COCONUT OIL&COCOA 200ML9

GARNIER SHAMP AVO OIL&SHEA BUTTER 250ML10

LEA&PERRINS HP SAUCE ORIGINAL 255GR11

NANDO'S P PERILEMON&HERB 250ML12

NANDO'S PERI−PERI GARLIC 250ML13

PNP CHUNKY BEEF DOG FOOD 400GR14

PNP S SURE SPF30 CONTINUOUS SPRAY 125ML15

PURITY AQUEOUS CREAM FRAG FREE 350ML16

PURITY BABY POWDER ESSENTIALS 200GR17

RHODES TOMATO&ONION MIX 410GR18

SATISKIN HANDWASH CINNAMON&HONEY 400ML19

SENSODYNE REPAIR&PROTECT WHITE 75ML20

STUDIO PRO LOCK IT EXTRA STRENGTH 400ML21

TRESEMME SHAMPOO MOISTURE RICH 900ML22

VICKS INHALER BLISTER 1ML23

WEIGH−LESS MOUSSE CHOCOLATE 50GR24

WELLINGTON'S CHILLI SCE SWEET HOT 375ML25

6244.560

7956.000

4933.500

5554.176

4689.924

6144.000

4534.920

4082.272

5383.104

5796.700

5759.424

4243.715

4222.400

7560.000

4522.000

3843.840

4052.700

7305.984

4804.800

4186.875

5684.224

6448.440

6222.816

5137.844

8000.000

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

2ndQuantile

25.2

12.0

22.0

22.6

25.8

32.0

17.0

10.6

18.4

18.2

19.8

18.5

11.6

30.0

14.0

26.0

15.8

22.4

22.0

14.5

18.2

17.4

24.6

14.2

25.0

21.0

39.0

11.5

19.2

14.9

16.0

11.7

16.6

15.9

17.5

14.4

11.3

18.2

22.5

19.0

17.6

15.0

30.2

15.6

16.5

12.2

17.0

18.6

22.9

16.0

11.8

17.0

19.5

12.8

12.2

12.0

22.8

23.2

18.4

18.2

20.2

20.3

20.0

11.2

17.0

 8.4

17.1

10.8

14.0

17.5

25.6

21.8

13.6

15.8

20.0
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Product.Short.Description

ALL JOY SOYA SAUCE 250ML1

cm3

BIOCRYSTAL POWDER RUBY GRAPEFRUIT 1KG2

Quantile

BISCOTTI CANDY DELIGHTS 140GR3

L

CAPE COOKIES MINI DBL DELIGHT BISC 200GR4

W

CARTWRIGHTS CURRY POWDER EXT SPICY 100GR5

H

FLAMING TIGER SRIRACHA H/CHILL SCE 450ML6

GLADE AIR FRESHENER FRESH LEMON 300ML7

GOLDEN CLOUD READY MIX BRAN MUFFIN 500GR8

HUG IN A MUG HAZELNUT CAPPUCINO 10X24GR9

LIL−LETS MAXI REGULAR UNSCENTED 10EA10

LIQUI−FRUIT CRANBERRY COOLER 1.5L11

NOLA MAYONNAISE CREAMY STYLE 730GR12

ONG'S PLUM SAUCE 255GR13

OROS READY TO DRINK ORANGE 300ML14

PECK'S ANCHOVETTE 85GR15

PEDIGREE D/FOOD CHIC&RICE IN JELLY 100GR16

PNP  L/F INSTN NOODLE M/ROOM 75GR17

PNP 4 BEAN MIX 400GR18

PNP CHOC CREAM CEREAL BARS 30GR 6EA19

PNP MUTTON SOUP 60GR20

RAID SUPER FAST CIK INSECTID 180ML21

ROBERTSONS M/B REF SPC SHISANYAMA 151GR22

SAFARI PEANUTS ROASTED & SALTED 450GR23

STEERS SAUCE HOT PERI PERI 375ML24

STYLING DRED 2 SPRAY SHAMPOO 350ML25

 8116.80

 9161.04

14700.00

12651.41

13897.52

11970.00

 8994.15

12494.59

16186.46

13050.72

14241.45

13728.00

 8671.50

14581.44

 8977.92

10657.10

12579.46

16006.14

13781.90

10596.68

12501.22

12803.70

16308.86

14018.20

 9604.80

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

3rdQuantile

24.0

29.4

24.5

39.6

36.4

20.0

23.0

35.2

33.3

31.8

28.5

30.0

18.0

36.0

33.4

39.5

32.8

44.8

29.8

38.2

31.8

26.8

31.2

31.0

23.2

17.8

19.0

30.0

19.6

16.6

28.5

16.5

30.6

24.8

15.2

19.0

26.0

20.5

24.4

22.4

19.0

13.6

30.8

28.2

19.0

21.6

19.5

39.6

23.8

18.0

19.0

16.4

20.0

16.3

23.0

21.0

23.7

11.6

19.6

27.0

26.3

17.6

23.5

16.6

12.0

14.2

28.2

11.6

16.4

14.6

18.2

24.5

13.2

19.0

23.0
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Product.Short.Description

ALWAYS PLATINUM NIGHT 7EA1

cm3

BEIGEL&BEIGEL TRADITIONAL PRETZELS 200GR2

Quantile

BOB MARTIN C/CON CAT RICH CHICKEN 1.8KG3

L

BOKOMO PRONUTRO CHOCOLATE 750GR4

W

CANINE CUISINE D/F A SM BRD CH&RI 1.75KG5

H

CROSSE&BLACKWELL TRIM REG DRESSING 790GR6

GALLO PORTUGESE OLIVE OIL 750ML7

KELLOGG'S COCO POPS ORIGINAL 350GR8

KNORR SOUP BEEF & ONION 200GR9

MAYNARDS WINE GUMS ROUND 400GR10

MR MUSCLE TILE CLEAN CNTRY FIELDS 750ML11

NESTLE CERELAC INF CEREALRICE 250GR12

PALMOLIVE SHAMPOO ANTI DANDRUFF 350ML13

PNP ALL PUR CLN CR SP/FRESH 750ML14

PNP DISHWASHING MACHINE POWDER 1KG15

PURINA H M ADULT GOURMET MEDLEY 1.8KG16

RAID INSECTICIDE DP L/ODOUR 300ML17

RIGOR THICK BLEACH CORAL REEF 750ML18

ROBERTSONS JIKELELE CAYENNE PEPPER 100GR19

ROYCO SOUP CHILLI BEEF&GREEN PEPPER 45GR20

ROYCO SOUP HEARTY BEEF 50GR21

SAFARI CAKE MIX CHOICE 250GR22

SKIP INTELL FLEX W POWDER 2KG23

SUNLIGHT DISHWASHING LIQUID 1.5L24

SUNLIGHT SOAP ALOE FRESH 175GR25

17952.72

45356.25

24360.00

31692.67

43520.00

19297.92

20942.64

60357.12

29143.05

19491.84

23611.13

36424.00

18869.76

29400.00

28908.43

27682.11

22030.12

39081.28

20499.52

20995.20

20712.67

21260.80

35907.30

28195.39

21947.81

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

4thQuantile

31.0

41.0

40.0

32.8

68.0

38.0

30.6

38.4

37.0

36.0

33.4

29.0

41.6

35.0

40.8

40.7

40.4

23.9

37.6

24.0

32.4

40.0

32.5

35.4

29.6

22.8

37.5

29.0

39.6

32.0

27.6

23.6

29.0

26.7

28.8

25.8

31.4

21.0

30.0

29.4

30.5

26.6

51.1

18.8

32.4

24.4

30.2

39.6

26.2

22.2

25.4

29.5

21.0

24.4

20.0

18.4

29.0

54.2

29.5

18.8

27.4

40.0

21.6

28.0

24.1

22.3

20.5

32.0

29.0

27.0

26.2

17.6

27.9

30.4

33.4
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