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Abstract

Given the importance of improving municipal solid waste management, the Optimisation
Group from the University of Pretoria completed preliminary studies on data obtained
from waste collection vehicle global position system traces from the City of Cape Town
and found that some waste vehicles spend more time travelling between service locations
and dump-sites as opposed to collecting waste. In order to improve these operations it was
proposed that intermediate facilities be used to reduce the travel distance. The purpose
of this project is to identify potential locations for intermediate waste facilities (transfer
stations) by using a location model and then evaluating the impact of the intermediate
waste facilities on waste vehicle collection operations.

This was achieved by splitting the project into three phases. Since some of the data that
was required was not readily available, it had to be generated first. In phase one that data
sets were generated. In phase two a variant of the location modelling formulation known as
the multi-facility location problem was solved using the generalised Weiszfeld method for
the multi-facility location problem. Up to 25 potential intermediate facility locations were
identified and used for the remaining phase. In the next phase two models were built in
order to quantitatively evaluate the impact of said facilities on waste collection operations.
The first model was concerned with the travel distance and travel time for each collection
vehicle associated to a single collection beat (service location). The second model was
concerned with the waste allocation from the collection beats to either an intermediate
facility or a landfill site and from the intermediate facilities to a landfill. The model was
also used to conduct a cost benefit analysis.

It was concluded that as the number of intermediate facilities increased, the travel
distance, travel time as well as the total transportation cost of the system decreased.
Additionally, the location of the two existing intermediate facilities in the City of Cape
Town were inefficient when compared to the same number of intermediate facilities located
with the Weiszfeld algorithm. Furthermore, it was identified that the optimal number of
facilities to locate, in the City of Cape Town, in order to reap the cost savings from
improving the existing intermediate facility locations with respect to the capital cost of
building new facilities, was three.
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Chapter 1

Introduction

1.1 Background

The importance of Municipal Solid Waste (MSW) management is not given much thought
by the every day citizen who utilises the service. However, “Solid waste management is the
one thing just about every city government provides for its residents. While service levels,
environmental impacts and costs vary dramatically, solid waste management is arguably
the most important municipal service and serves as a prerequisite for other municipal
action” (Hoornweg and Bhada-Tata, 2012). Although MSW management might seem like
a rather simple task it is highly complex consisting of various echelons, from municipal to
governmental. Therefore, managing these activities must be done in an effective, efficient
and sustainable manner.

Poorly managed waste operations can have a global impact on the environment due
to greenhouse gas emissions arising from MSW. In fact, emissions from MSW is esti-
mated to account for almost 5% of total global green house gas emissions (Hoornweg and
Bhada-Tata, 2012). This of course includes emissions from waste collection operations
and methane from landfills amongst others. Locally, uncollected solid waste contributes
to flooding by blocking drainage, air pollution, and public health impacts by harbouring
disease vectors (Hoornweg and Bhada-Tata, 2012). The importance of effective, efficient
and sustainable MSW management does not only lie in reducing its impact on immediate
and global environments, but also in reducing costs associated with it. As solid waste
management is an important municipal service, the reduction in cost of MSW can help
reduce financial pressures on local municipalities and the national government, while si-
multaneously maintaining adequate service delivery. The city of Cape Town for example
budgeted R 128 million for the upgrade of solid waste facilities and R 80 million for the
upgrade of drop-off facilities in the informal settlement areas for the year 2017/2018 alone
(City of Cape Town, 2017).

The question might arise “Why is MSW management important now?”. The answer
lies in global as well as local MSW generation rates and urbanisation rates. According to
Hoornweg and Bhada-Tata (2012) MSW “currently, world cities generate about 1.3 billion
tonnes of solid waste per year. This volume is expected to increase to 2.2 billion tonnes
by 2025.” — generation levels are expected to effectively double by 2025. For the city of
Cape Town, current MSW generation rates are expected to increase from 53425 tonnes
per day to 72146 tons per day (City of Cape Town, 2017). Furthermore, MSW is growing
even faster than the rate of urbanisation (Hoornweg and Bhada-Tata, 2012). This leads to
problems, particularly in finding sites for new landfills or transfer stations, since locations
which were previously unoccupied are now housing new occupants through urbanisation



(Bosompem et al., 2016).

Given the importance of improving MSW management, the Optimisation Group from
the University of Pretoria completed preliminary studies on data obtained from waste
vehicle global position system (GPS) traces and found that some waste vehicles spend
most of their time travelling between service locations and dump-sites as opposed to
actually collecting waste. It was reasoned that this is true in part because of the de-
centralised locations of landfills. The aim of this project was to identify potential locations
for intermediate facilities (waste transfer stations) by using location models and then
evaluating the impact of the transfer stations on waste vehicle operations. The City of
Cape Town was used as the test case.

The implementation of transfer stations has the potential to improve the MSW by
reducing the travelling time between service locations and dump-sites. Thus more time
can be spent collecting waste and ultimately reducing the negative impact these inefficient
operations have locally and globally.

1.2 Municipal Solid Waste Management and Intermediate
Facilities

In this section the basic MSW management is explained and how intermediate facilities
are linked in the process. This will give readers a better understanding of the proposed
solution approach.

A waste management system consists of the following basic components (CSIR Building
and Construction Technology, 2005):

e Waste Generation

On-site Storage

Collection
e Intermediate Facilities

Incineration

e Recycling
e Disposal

How the components are interlinked is shown in the figure 1.1 in form of a typical waste
cycle.
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Figure 1.1: Typical waste cycle (CSIR Building and Construction Technology, 2005)

Waste is generated by people, for example at their homes (Waste Generation). The
waste is then stored within their homes (On Site Storage) until garbage collection day
where it is transferred to a 240L. wheelie bin ready to be collected by garbage collection
trucks (Collection). The garbage truck comes and collects the waste from the residences’
homes by emptying the 240L bins in the back of the truck. The vehicle continues until it
reaches its capacity. The driver either drops the waste off at the nearest facility (Recovery
Plant, Incineration Plant or Disposal Site) through direct transport or at the nearest
intermediate facility (transfer station). Waste at the transfer station is eventually collected
by another vehicle which transfers it to the next facility (Recovery Plant, Incineration
Plant or Disposal Site). The frequency of this operation depends on the municipalities’
collection schedule and the volume of waste generated among other factors.

The reason intermediate facilities exist in the first place and that waste is not sent
to other facilities directly is to make use of economies of scale. Where a typical rear-end
loader refuse truck (Figure 1.2a) only has a capacity of 10m? to 21m3, a roll-on roll-off
vehicle (Figure 1.2b) has a capacity ranging from 18m? to 30m3 (CSIR Building and
Construction Technology, 2005).
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Figure 1.2: Two types of vehicles used for waste collection operations (CSIR Building and
Construction Technology, 2005)

The purpose is not only to reduce the transportation unit cost of collection vehicles,
it also allows for quicker turn-around times and increased productivity. The need for
intermediate facilities largely depends on the amount of waste generated, the collection
system and the distance to disposal sites.

The City of Cape Town, which was used as the test case for the project, has five
available disposable sites; three of which are landfills and the remainder are intermediate
facilities (transfer stations). Their geographical locations can be seen in Figure 1.3.
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Figure 1.3: Disposable facilities

The collection schedule for the city is based on what are called collection beats. A
waste collection beat depicts the area allocated to a single refuse compactor vehicle for
the removal of waste from 240L bins at formal properties. Not all beats are serviced on
the same day, the city has a collection schedule which is readily available online. The 723
collection beat areas can be seen in Figure 1.4.
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Figure 1.4: Beat outlines for the City of Cape Town

Intermediate facilities have the potential to improve the MSW collection operations for
the City of Cape Town. By introducing intermediate facilities, the waste vehicles servicing
a particular beat have the option to drop the waste off at a facility situated closer than
the nearest landfill and may reduce the time required to travel between a drop-off facility
and the collection beats.

The problem is then where and how many intermediate facilities should be located, so
that the waste vehicles can better service the whole region.

1.3 Problem Statement

As MSW generation rates continue to increase, the importance of effective, efficient and
sustainable MSW management systems becomes pertinent. It is therefore important to
collect waste as quickly and efficiently as possible.

For the City of Cape Town it was identified that some waste collection vehicles spend
more time travelling between collection beats (also known as service areas) and dump-sites
than actually collecting waste. It is safe to say that such operations are neither effective,
nor efficient. In light of the increasing rates of urbanisation and waste generation, although
the collecting operations might not pose a serious problem now, in the future, increasing
waste generation will put more pressure on the waste collection operations as well as local
governments and municipalities as they try to uphold service delivery promises.

It was proposed that a possible solution to improve current waste collection operations
was to introduce intermediate facilities. Intermediate facilities allow waste from several
source to be consolidated and brought to a final destination at a later stage. This means
that the vehicles which perform these operations need not drive to the final destination for
each drop-off. Instead the vehicle can make shorter trips to a closer intermediate facility.
This not only helps make use of economies of scale for transferring the waste to the final



destinations, but also reduces turn around times for collection vehicles and increases pro-
ductivity. However, waste from the sources must not necessarily be brought to the facility.
In cases where for example a collection beat is situated closer to a destination location
than to an intermediate facility, it might be more cost effective to make a direct transfer
to the final destination. This solution approach can be seen in Figure 1.5. Nonetheless,
this is the solution approach that was used.

Therefore, the problem this project attempts to solve is:

Where and how many intermediate facilities should be located to minimise the
collection costs?

O /\__
(} S/
O 3

Collection Beats Intermediate Facilities Landfills

Figure 1.5: Solution approach

1.4 Research Design

In order to answer the research question, three mathematical models were required to
gather quantitative information on the problem at hand and generate results in order to
make educated recommendations and draw reasonable conclusions.

The first model that was required, is the multi-facility location model. 1t’s purpose was
to identify potential locations for intermediate facilities. It required the following inputs:

e number of intermediate facilities to be located;
e location of collection beats; and
e waste generated at each collection beat;
and returned as output:
e the location of the intermediate facilities.

After locations were identified, the travel distance model was built in order to calculate
the distance travelled per collection vehicle for each collection beat. This distance was
then divided by the average speed of a waste collection vehicle to get the average travel
time per collection vehicle. The model took as inputs:

e the location of collection beats;
e the waste generated at each collection beat;

e the location of intermediate facilities;



e the location of vehicle depots; and
e the vehicle capacity;
and returned as output:
e the total distance travelled for each vehicle per.

Finally, to complete a cost benefit analysis the waste allocation model was used. This
model is slightly different to the travel distance model in that it is concerned with the
transportation cost of the entire system — the cost for transferring the waste from a
collection beat to either an intermediate facility or landfill (first echelon), and the cost
for transporting the compacted waste from the intermediate facility to a landfill (second
echelon). The travel distance model on the other hand, is only concerned with the travel
distance of the vehicle in the first echelon. The difference will become more clear in
chapter 5.

The two most important models for the completion of the project were the multi-
facility location model and the waste allocation model. The travel distance model was used
to compare the travel time for collection vehicles with and without intermediate facilities.

1.5 Research Methodology

In this section a brief overview of the research methodology that was used is given.

From the Problem Statement it is clear that there were many factors that played a
role in the success of the project. Furthermore, since the project was concerned with an
aspect of MSW management, the project began to move away from a purely operational
problem to a strategic and tactical one. To accommodate this the project was tackled in
three parts. This allowed for strategic and tactical evaluation for each phase. Thus the
three phases were defined as follows:

1. data set generation;
2. identifying potential locations for intermediate facilities; and

3. evaluating the impact of intermediate facilities on waste vehicle operations.

1.5.1 Identifying Potential Locations for Intermediate Facilities

In operations research the identification and selection of any facility is known as a location
modelling problem. It is believed that the first location problem in literature is thanks
to the mathematician Torricelli (1608-1647) (ReVelle and Eiselt, 2005). It is no surprise
that location modelling has come a long way since then. Specifically many variants of the
generic location modelling problem exist. These will be discussed in more detail in the
Chapter 2.

The variant that was used to identify potential locations for the intermediate facilities
was the Multi-Facility Hub Location Problem (HLP). The algorithm that was used is the
Weiszfeld algorithm which will be presented in the Chapters 2 and 4.

1.5.2 Evaluating the Impact of Intermediate Facilities on Waste Vehicle
Operations

Once suitable intermediate facility locations were identified, the impact they had on the
waste collection operations in terms of travel time were assessed. To do this a simple



mathematical model was built in order to calculate the distance each vehicle had to travel
to satisfy the demand at each collection beat which was then divided by the average speed
of a waste collection vehicle. To make the results comparable to current operations, the
model was also applied to current operations. However, the travel time alone was not
sufficient to draw any conclusions about possible advantages or disadvantages of locat-
ing new intermediate facilities. Therefore the waste allocation model, which is a Linear
Programming (LP) model, was built in order to conduct a cost benefit analysis.

Together these models were able to produce good results which aided in evaluating the
impact of intermediate facilities on waste collection operations.

1.6 Document Structure

The remaining document is structured as follows: In the next chapter existing literature
available for location modelling problems will be discussed — first in general and then more
specifically to MSW management. Next, the approaches for how the required model input
data were generated is discussed. Thereafter, the mathematical models are explained
in detail followed by a presentation, discussion and analysis of the results. Finally, we
conclude with our recommendations and make suggestions for further research.



Chapter 2

Literature Review

In this section existing literature will be presented and dissected to gain a clear picture
of methodologies available to solve the problem at hand. Specifically, literature regarding
location modelling for solid waste facilities, Hub Location Problem (HLP) models and
impact evaluation models will be discussed chronologically.

2.1 Location Modelling for Solid Waste Facilities

Location modelling is concerned with “sitting facilities in some given space” (ReVelle and
Eiselt, 2005). It includes the modelling, formulation and solution to a given problem.
There are in fact many variants of the basic formulation, each dealing with a particular
objective and unique structure. According to Eiselt and Marianov (2015) the two main
approaches that exist when it comes to locating waste facilities such as landfills or in-
termediate facilities, are “the formulation of mathematical optimisation models, and the
use of tools from the multi-criteria decision making toolkit”. The mathematical models
can be formulated comprehensively with very little involvement from the decision maker.
However, solving such problems are often very complex and requires long computational
times. On the other hand problems which are formulated as multi-criteria decision making
models are much easier to solve, however they require much more involvement from the
decision maker and a lot more data available before hand.

Since waste data is not readily available, and especially not for developing countries
such as South Africa, the multi-criteria approach is not as applicable to the location
modelling process in this case, as the mathematical optimisation model approach.

Many of the early contributions concerning mathematical optimisation models are al-
most exclusively single-objective mixed integer programming models with a cost minimi-
sation objective function (Eiselt, 2007). However, since the nature of locating solid waste
facilities is a strategic problem, it involves many stakeholders, thus multi-objective prob-
lems began to emerge. Examples include minimisation of risk and cost, or, minimisation
of cost, the quantity that is landfilled, and the environmental impact.

Mitropoulos et al. (2009) present exact and heuristic approaches for the locational
planning of an integrated solid waste management system. They solved a mixed integer
program with the objective of minimising the total cost of the Municipal Solid Waste
(MSW) management system. To be exact they solved a waste flow-allocation problem that
simultaneously located the appropriate facilities (i.e. treatment plants, transfer stations
and sanitary landfills). The waste generated at the sources can be sent either directly to
treatment plants or through transfer stations. Similarly, landfills receive waste collected
directly from the source, treatment plants, or compacted through transfer stations.



Eiselt (2007) evaluate the effectiveness of existing waste facilities with those obtained
by a system of optimised locations.

Irrespective of the solution approach, the location results of a mathematical optimi-
sation model are by no means the “be-all” solution (Eiselt, 2007). The locations can be
used as a starting point, but later other constraints must be considered too.

In majority of the literature involving locating waste facilities, be it landfills or inter-
mediate facilities, the optimal locations are selected from a set of potential locations. For
this project however, the objective is to identify potential locations, thus we refer to other
location modelling literature as a project basis. In particular the roots for many of the
aforementioned problems lie with the so called HLP.

2.2 Hub Location Problems

Hub location problems were first introduced to the location literature by O’Kelly in 1986
(ReVelle and Eiselt, 2005). They play an important role in the transportation industry
where hubs are required to “decrease the number of transportation links between origin
and destination nodes” (Farahani et al., 2013). For this project, definitions are as follows:
the origin nodes are the collection beats where the waste is generated and from where it
is collected, hubs represent the intermediate facilities and the destination nodes are the
landfills.

Within the realm of hub location problems, there exist three distinct solution domains:
network, discrete and continuous (Farahani et al., 2013). The difference are as follows:

e network — the possible locations for the hub are all nodes in the network;
e discrete — the possible locations for the hub are a set of nodes in the network; and
e continuous — the possible locations for the hub are a plane or a sphere.

An example of a network model would be locating an ambulance along the entire road
network, while an example of a discrete model would be locating a retail facility which
may only be placed in areas which has been zoned for it.

One would be quite right to assume that locating an intermediate facility would also
fall under the discrete solution space, however, often “discrete location models have gone
through an additional preprocessing phase that has preselected candidate sites at which the
facilities may be sited” (Eiselt and Marianov, 2015). This means that additional data of
the network must available. If this is not the case, the best solution is to identify generally
“good” areas for the intermediate facilities which would later be evaluated further. In
particular, since more than one intermediate facility must be located, the variant of the
HLP we are concerned with is the continuous Multi-Facility Location Problem (MFLP).

2.2.1 Solution Approaches

A variety of solution approaches exist for solving the continuous MFLP. Most notably
there exist exact, heuristic and meta-heuristic algorithms. The reason for this is that as the
size of the problem increases, the exact approach is no longer able to solve the problem in
reasonable time. Heuristic and meta-heuristic approaches are the needed (Farahani et al.,
2013).

One of the most well-known solution methods for solving the MFLP is the Weiszfeld
method Iyigun and Ben-Israel (2010). In order to solve the continuous MFLP, which is
NP-Hard, the problem is relaxed by using probabilistic assignments. This means that
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a beat is assigned to an intermediate facility based on the probability that it is closer
to that particular facility instead of another one. With each iteration the probability is
re-calculated as the centre locations are updated too.

In order to answer our research question, the Weiszfeld method was used to solve the
continuous MFLP by locating k£ intermediate facilities.

2.3 Evaluating the Impact of Intermediate Facilities

Seemingly no literature exists which is concerned with evaluating the impact of intermedi-
ate facilities on waste collection operations. However, one article dealing with a “satellite
location analysis for a two-echelon vehicle routing problem” had the potential to lead the
research approach in terms of evaluating the impact of intermediate facilities on waste
collection operations.

Research done by Crainic et al. (2010) evaluated the impact of several parameters,
directly linked to the system layout, on the total transportation cost of a distribution
system. The parameters under investigation were the number of customers, the number
of location hubs, the customer distribution, and the relationship between customer to hub
and hub to destination node costs. Although this is not directly linked to waste collection
operations, the work serves as a starting point in terms of which parameters we could also
change in our models in order to evaluate the impact that intermediate facilities have on
waste collection operations.

2.4 Conclusion

Existing literature was presented in this chapter. In particular work done by Eiselt (2007)
and Mitropoulos et al. (2009) was used as the basis to evaluate the costs of the MSW man-
agement system with and without intermediate facilities. However, since both approaches
required a set of pre-determined waste facility locations, we referred to literature from
the MFLP in a continuous solution space in order to first find potential locations for the
facilities. Furthermore, since the Weiszfeld method is one of the most well-known solution
approaches to the continuous MFLP, we used it to solve for potential intermediate facility
locations.

Finally, literature was found regarding the impact of several parameters on the total
transportation cost of a distribution system. This was used to guide the decision in terms
of which parameters to analyse when evaluating the impact that intermediate facilities
have on the waste collection operations.

11



Chapter 3

Phase 1 — Data Generation

In this chapter the approach used to generate the input data for the models will be
discussed.

A large problem concerning waste data is that it is generally inaccurate, outdated or
incomplete (Hoornweg and Bhada-Tata, 2012). This is even more prominent in developing
countries such as South Africa. This lack of information poses challenges on building
accurate models, since the output of these models is only as accurate as their input.

The first step therefore, was to generate the required input data. For the City of Cape
Town, two primary sources were available to our disposal and lay the foundation for all
other data sets generated. These were data gathered by the Optimisation Group from the
University of Pretoria and the “opendata” portal ! from the City of Cape Town. From
them we were able to extract the following datasets:

e collection beats;
e drop-off sites (i.e. landfill sites and existing intermediate facility locations); and
e waste vehicle Global Positioning System (GPS) data.

For the City of Cape Town, a collection beat represents the area allocated to a single
collection vehicle for the removal of 240L bins at formal properties. These collection beats
are readily available on the City of Cape Town’s opendata portal and come packaged as
so called “shapefiles”. A “shapefile” is a collection of geometric shapes which make up
complex polygons in order to represent any type of area. The collection beats for the a
portion of the city can be seen in Figure 1.4.

The GPS traces from the waste vehicles were provided by the Optimisation Group
from the University of Pretoria. Since the data was large in size, we only received the
GPS data for a single collection day and assumed that it is representative of the general
landscape of waste collection operations throughout Cape Town. With these datasets, we
were able to continue with generating the remaining data required by the models.

Both models were built in Python version 3.5.2 using the available numpy and SciPy
packages.

3.1 Waste Generation Rates

In order to identify potential location for intermediate facilities, the amount of waste that
is generated at a collection beat is required, so that the intermediate facilities could be

! Available from http://webl.capetown.gov.za/webl/opendataportal/default
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strategically placed in such a way to reduce the distance between collection beats and
intermediate facilities for areas generating the most waste.

Waste generation rates are not readily available for the City of Cape Town. The only
generation rate available stems from data by Hoornweg and Bhada-Tata (2012) in which
it was estimated that South Africa generates approximately 2 kg per capita per day. In
reality this number varies depending on the income level of the area. For our purposes we
assumed a constant rate throughout the city.

Still we were unable to say how much waste was generated at a collection beat. How-
ever, coupling the data available for the generation rate per capita per day (see above)
with population data yielded promising results.

The City of Cape Town’s population data for each ward was readily available online
from the 2011 census. The City of Cape Town is divided into 115 wards with a total
population of 3740026 people. A ward is a geopolitical subdivision of municipalities.
Some of the wards can be seen in the Figure 3.1.

Map data ©2017 AfriGIS (Pty) Ltd, Google

Figure 3.1: Ward outlines for the City of Cape Town

It was left to us to allocate each collection beat to a ward and then divide the total
population of the ward by the number of collection beats associated to it to yield the
average population per collection beat. This population was then multiplied by the ap-
proximated generation rate of 2 kg per capita per day to estimate the amount of waste
generated at each collection beat per day.

However, working with the collection beats and wards as shapefiles proved a difficult
task. For example, allocating each collection beat to a ward by looking at whether or not
the collection beat is contained within a ward yielded the results in table 3.1.

The reason that majority of the collection beats are contained within more than one
ward is simply because the shapes are not perfectly aligned, and so it skews the results.
For that reason the collection beats and wards were simplified to the centroid of the shape.
Figure 3.2a illustrates this for a single ward.
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Number of intersections | Count

2.0 278
1.0 186
3.0 162
4.0 69
5.0 20
6.0 6
8.0 1
7.0 1

Table 3.1: Number of intersection vs number of occurrences

® Collection Beat
® Centroid

(a) Simplified beat

—e— Centroids

—e— Wards

Map data ©2017 AfriGIS (Pty) Ltd, Google

(b) Simplified wards

Figure 3.2: Simplification of wards and collections beats

Thus we had a single GPS coordinate for each collection beat.

The model for estimating these generation rates per collection beat lay with one of the
simplest machine learning algorithms called K-Nearest Neighbour (KNN) algorithm. The
KNN algorithm finds the nearest neighbour for a point in data set A in data set B. In this
case, the points in data set A represented the collection beats, while the points in data
set B represented the wards. The results of the algorithm are shown in Figure 3.3.
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(a) Unallocated collection beats (b) Allocated collection beats

Figure 3.3: Allocation of collection beats to wards

Once each collection beat was allocated to a ward, the population per ward (which
was given by the 2011 census data) was divided over the total number of collection beats
associated to it. This gave the average population per collection beat. This number was
multiplied by the constant waste generation rate of 2 kg per capita per day. An example
of the results can be seen in Figure 3.2.

3.2 Depot Locations

In order to calculate the travel time using our travel distance model one had to know
where the waste collection vehicles start and end their trips. As explained in Section 1.2,
a waste collection vehicle would typically starts at a depot, collects waste at a collection
beat, replenishes its capacity at an intermediate facility (if necessary), and returns to its
depot.

These depot locations, however, were not simply found using our available sources,
thus the idea was to estimate these locations using the collection vehicles’ GPS traces.

FEach waste collection vehicle is fitted with a GPS tracking unit which periodically
sends out its current location and the position of its ignition key. A typical trace looks
like this:

VEH_REG_NO DATE POS TIMES- | POS_X POSY | POS IGNITION
TAMP
CA130563 2011-05-12 | 03:49:43.0000 | 18.681067 | -33.9351 F

Table 3.3: Typical GPS trace

With this information it was possible to estimate the depot locations with reasonable
confidence. The underlying idea was that if a waste collection vehicles’ ignition position
was off (POS_IGNITION == F) we can assume that the vehicle was at rest, for example
at a depot. It could also be the case that the vehicle was for example stopping at the side
of the road, or filling petrol etc. Therefore more data points were needed to improve the
accuracy of our assumptions.

To do this we first had to extract the three most important fields: POS_X, POS_Y and
POS_IGNITION from our dataset. In our case we extracted the traces of all vehicles for
the waste collection operations on a Thursday over the period from 2011-05-05 to 2014-
10-02 with more than 1 million rows. The more data available, the more accurate the
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algorithm output becomes. Next we filtered the data to include only entries for which
POS_IGNITION == F. This left us with a total of 22590 entries. The final step before
feeding the data to the algorithm was to map the data on Google Earth in order to
estimate the input parameters for the algorithm. Specifically we needed to estimate the
sample density (minimum number of points per cluster), and the cluster distance. We
estimated that a cluster distance of 100m and a sample density of 300 points would be
adequate.

The algorithm we used to identify the depot location was the DBSCAN — density
based clustering algorithm. Its purpose is to discover clusters and noise from a spatial
dataset (Ester et al., 1996). This was very relevant in our case as we were trying to
identify the depot locations from a spatial dataset which included noise (e.g. the vehicle
stopping at a non-depot location). The results of the DBSCAN algorithm are shown in
Figure 3.4.

© GPS Traces * Depot Locations

R

(Ceco)

(a) Before DBSCAN implementation (b) After DBSCAN implementation

Figure 3.4: Results of DBSCAN algorithm

The DBSCAN algorithm starts with an arbitrary point P in the dataset and returns
all other points that fall within the circle of radius ¢ with centre P. If the total number
of points including point P is greater than the number of points specified by min_points,
then a cluster has been found. The algorithm then further loops through every point P’
in the cluster, returns all other points that fall within the circle of € with centre P’. If
the total number of points is more than min_points then the cluster is updated to include
the new cluster too. In case the number of points in the circle are less than min_points
we ignore the point and continue with the next one. This explanation is represented in
pseudocode in algorithm 1.

3.3 Conclusion

In this chapter we discussed how the datasets required for the project were acquired.
The GPS traces for the waste collection vehicles were sourced from the Optimisation
Group from the University of Pretoria, while the collection beats and drop-off sites (i.e.
landfill sites and existing intermediate facility locations) were obtained from the opendata
portal from the City of Cape Town. However, this information was not sufficient, we
still required the amount of waste generated per collection beat in order to strategically
locate the intermediate facilities. Hoornweg and Bhada-Tata (2012) estimated that South
Africa generates approximately 2 kg per capita per day. We took this insight and linked it
with the population data per ward in order to estimate how much waste is generated per
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Algorithm 1: Pseudocode for the DBSCAN clustering algorithm (Agrawal, 2013)

DBSCAN Algorithm
DBSCAN (dataset, epsilon, min_points):
C=0
for each unwvisited point P in dataset do
mark P as visited
sphere_points = regionQuery (P, epsilon)
if sizeof(sphere_points) < min_points then
ignore P
else
C = next cluster
expandCluster (P, sphere_points, C, epsilon, min_points)

expandCluster (P, sphere_points, C, epsilon, min_points):
add P to cluster C
for each point P‘ in sphere_points do

if P‘is not visited then
mark P as visited
sphere_points‘ = regionQuery (P°, epsilon)
if sizeof(sphere_points‘ < min_points) then
add sphere_points‘ to sphere_points

if P‘is not a member of any cluster then
add P to cluster C

regionQuery (P, epsilon):
return all points within radius of size epsilon centred at P (including P)
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ward. We then took this further and looked at which collection beats are contained within
which ward and simply split the waste generated per ward evenly amongst the associated
collection beats in order to estimate the average waste generated per collection beat.

Next we also generated the locations of the waste vehicle depots from the vehciles’
GPS traces. Finally, we were left with following datasets:

e location of collection beats;
e waste generated per collection beat;

e location of drop-off sites (i.e. landfill sites and existing intermediate facility loca-
tions); and

e location of depots.

Next we present the models which made use of these datasets.
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Chapter 4

Phase 2 — Multi-Facility Location
Model

Once the datasets were generated, it was possible to find potential locations for interme-
diate facilities. In this chapter we present the Multi-Facility Location Problem (MFLP)
model that was used to generate the intermediate facility locations. We also present our
variants thereof in order to take into account the location of landfill sites as well as ex-
isting intermediate facilities. First, the generalised Weiszfeld method for the multi-facility
location problem is presented, followed by an adaption to consider the locations of landfills
and then considering the location of existing landfills. Finally, we conclude with choosing
the best adaption for our problem.

Since the Weiszfeld method is a well-known solution approach to the MFLP, the gen-
eralised Weiszfeld method for the multi-facility location problem of Iyigun and Ben-Israel
(2010) was used to find candidate locations for the intermediate facilities.

The model was coded in Python version 3.5.2.

4.1 Model Formulation

Let D = {x; : i € 1, N} be a set of N data points (customers) with given weights
(demands) {w; > 0:4i € 1,N} and C = {c; : K € 1,K} be a set of K many centre
locations (intermediate facilities). Then given an integer 1 < K < N, the MFLP is to
locate K facilities and assign each customer to a facility by minimising the sum of weighted
distances:

K
min > > wid(;, i) (4.1)

k=1xz;€0k

where ¢;, is the location of intermediate facilities and g is the cluster of customers
assigned to the k-th facility. In our case the centres represent the intermediate facilities
and the customers represent the collection beats.

The generalised Weisfeld method for multiple facilities is given in Algorithm 2. The
algorithm takes an iterative approach at finding optimal locations for K facilities. It
alternates between assigning probabilities to the customers, that is the probability that
a customer is associated to centre k, and updating the centres with respect to these
probabilities and given weights per customer.
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Algorithm 2: A generalised Weiszfeld algorithm for multiple facilities

Data: D = {x;:i € 1, N} data points (location of customers),
{w; :i € 1, N } weights,
K the number of facilities,
€ > stopping criterion

Initialisation: K arbitrary centres {cy: k € 1, K }

Iteration:
Step 1: compute distances {d(x,cy) : k € 1, K} for all ¢ € D using (4.2)

Step 2: compute probabilities {pi(x) : ¢ € D, k € 1, K} using (4.3)
Step 3: update the centres {¢; = Ti(c) : k € 1, K} using (4.4)

K
Step 4: if Y d(c},ci) < € stop
k=1

return to step 1

The approach of the algorithm can be seen in Figure 4.1. There the inner working of
the algorithm become visually clearer. K arbitrary centres are initiated (Initial Centres).
The algorithm then computes the distances between centres and customers, and computes
the probabilities that customer ¢ is associated to centre k. Based on these values the
previous centres are updated and the next iteration begins until a stopping criterion is
reached (Final Centres)

—-33.5- Collection Beats
® Initial Location
r)
-33.6 - ® lterations

® Final Locations

| | |
w w w
w w w
© © ~

Longitude

-34.0 -

-34.1- ‘ - e
-34.2-

18.3 18.4 18.5 18.6 18.7 18.8 18.9
Latitude

Figure 4.1: Weiszfeld iterations

Given two vectors p = (p1,p2) and ¢ = (q1,¢2), then their euclidean distance is
calculated as:

d(p,q) = v/ (q1 —p1)? + (g2 — p2)? (4.2)
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Given the centres and distances d(x;, ¢ ), the probability that data point «; is associated
to centre ¢y, is given by:

H d(wivcj)
pk(:liz) = Kﬁék , k€ 1,7 (43)
> 1 d(wi, em)

I=1m#l

To update the centres for ¢ not in the set D (customer locations) the equation is given

N pi(ei)w;

Tu(e) =Y | 2 | (4.4)

i=1 pk x;)w;
Z Ty odl

It can be seen that Equation (4.4) is undefined if a centre ¢ coincides with a data point.
Iyigun and Ben-Israel (2010) propose an extension to deal with this problem. If a centre
¢y, does not coincide with one of the data points, then

Z Dyl@u S (@i — o) (4.5)

l2; — CkH

Otherwise, if a centre ¢; coincides with a data point x;, then x; belongs with certainty
to the kth cluster, and so

plx;) =1, pm(x;) =0, for all m # k. (4.6)

In this case, we define

Rj
Ry (x; max{|| R’ k 4.7
k() = {IIR |l — }HR]H (4.7)

where,

Z f’k B () (48)

| z—%H

Finally, we replace the updated centres equation (4.4) with (4.9):

Ti(c) = ¢+ hy(c)Ry(c) (4.9)

with  hy(c) = —— (4.10)

2

N
k
PaE =

Essentially, what this extension does is, for a data point coinciding with a centre,
it ignores that data point for the calculation of updating the centre. The next section
discusses how the algorithm was adapted to locate intermediate facilities with respect to
landfills too.
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4.2 Locating With Respect to Landfills

From Section 1.2 it should be clear that a Municipal Solid Waste (MSW) management
system is not only concerned with collecting waste from collection beats and bringing it
to intermediate facilities, it us also concerned with hauling the the compacted waste from
the intermediate facilities to the nearest landfill.

The Weiszfeld algorithm, however, only minimises the sum of weighted distances be-
tween the centre locations (intermediate facilities) and customer locations but ignores the
location of the landfills, where the waste ultimately ends up at. The landfills should there-
fore be included in the calculation for locating the intermediate facilities as this would
firstly consider the system as a whole, and secondly minimise the sum of weighted dis-
tances between the customer locations, centre locations and landfill locations.

A possible solution was to add the landfill locations to the dataset and assign them
a dummy weight. It turned out, however, that the Weiszfeld algorithm was relatively
insensitive towards the landfills at lower dummy weights. However, as soon as the dummy
weight became too large relative to the actual weights of the customer locations, the centre
locations would “snap” on top of the landfills. This can be seen in Figure 4.2.

—33.5- Collection Beats
@ Landfills
()
-33.6- ® Final Locations
—33.7 -
5 -338-
2 A/
? 5 @
€ -33.9- %
9 ]
—-34.0 -
—-34.1- K 3 :.‘J&
—-34.2 -
18.3 18.4 18.5 18.6 18.7 18.8 18.9

Latitude

Figure 4.2: Locating With Respect to Landfills

This behaviour was to be expected. The reason is that the objective of the Weiszfeld
algorithm is to locate K facilities and assign each customer to a facility by minimising the
sum of weighted distances. As soon as the weight of a location becomes too large relative
to the remaining weights of the data set the best solution becomes to locate the centre as
close to the customer as possible, hence on top of it.

It is impractical to locate an intermediate facility next to a landfill let alone on top
of it. Locating an intermediate facility too close to a landfill makes the benefit of an
intermediate facility futile. It is therefore safe to say that this adaption of the generalised
Weiszfeld method for the multi-facility location problem was not used further.
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4.3 Locating With Respect to Existing Intermediate Facil-
ities

Since the City of Cape Town already has two intermediate facilities, it may be more
beneficial to find potential locations for new intermediate facilities with respect to existing
facilities i.e. cover the areas that are missed by the current facility locations.

To achieve this, an additional step was added to the algorithm. The algorithm still
calculated the distance between customer locations and centre locations as in step 1,
but the distance between customer locations and existing intermediate facilities was also
calculated. If the distance between the customer and the existing intermediate facilities
was less than that of the customer and the new centre, the customer was removed from
the dataset for that iteration. For each iteration the same process was executed.

The results of the normal locations versus the locations with this additional experi-
mental step can be seen in Figure 4.3. From an initial inspection it can be seen that there
are no prominent differences between the two data sets. The only visual difference is that
the normal implementation seemingly located the facilities more even evenly among the
collection beats. This can be seen in the South-Easterly corner of the data set. Where
the normal implementation located only one facility, the adaption located two facilities in
close proximity. Another example can be seen at the point (18.70, -33.85). In the adapted
implementation the two facilities are located closer together than for the normal imple-
mentation. A last example can be seen in the South-Westerly corner. The one cluster
of collection beats has access to an intermediate facility in the normal implementation,
however has no access for the adapted implementation.
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Figure 4.3: Locating With Respect to Existing Intermediate Facilities

More detailed differences were not studied as they did not help answer the research
question. The question to be answered was:

Where and how many intermediate facilities should be located to minimise the
collection costs?

The aim was to locate new intermediate facilities and not to locate more facilities.
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4.4 Conclusion

In this chapter we discussed the model that was used in Phase 2 of the research project’s
solution approach. More specifically we discussed the model that was used to solve the
MFLP which was needed to identify potential locations for intermediate facilities. The
MFLP was solved by applying the generalised Weiszfeld method for multiple facilities. We
also discussed two experimental variants of the generalised Weiszfeld method which were
believed potentially improve the location allocation process. It turned out, however, that
locating the intermediate facilities with respect to landfill locations by assigning dummy
weights to the landfill locations, located the facility on top of the landfill locations. This
was impractical and therefore the adaption was not used.

The second variant was to locate the intermediate facilities with respect to the existing
facilities. Also this approach was disregarded as the aim of the project was not to locate
more facilities but rather to locate new facilities and see how they affect the collection
operations. We do however, compare the location of the existing facilities with the loca-
tion of new intermediate facilities in the Results and Discussion Chapter to evaluate how
effective the location of the existing facilities is.

For the remainder of the project the standard implementation of the generalised
Weiszfeld method for multiple facilities was used to generate the potential locations for
intermediate facilities.
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Chapter 5

Phase 3 — Impact Evaluation
Models

Once the potential locations for intermediate facilities were identified, models were built to
gain quantitative insight regarding the impact of intermediate facilities on waste collection
operations. First the travel distance mode was built to help better understand the impact
of the facilities in terms of travel distance and ultimately travel time. As such, the model
is extremely simple and will be explained in the next section.

However, the travel distance/time alone was not enough to draw any real conclusions
as it does not look at the Municipal Solid Waste (MSW) collection operations as a whole.
It only calculates the travel distance for the waste vehicles per collection beats, for drop-
ping the waste at an intermediate facility. It does not include the time for the vehicles
transferring the compacted waste from the intermediate facility to the nearest landfill.
Furthermore, it also does not allow for direct routes for collection beats to a landfill which
might be closer than an intermediate facility. This is not a true reflection of reality.

Therefore, another model was built which was able to help the decision making process
by taking more factors into account than the travel distance model. Since the waste
allocation model is a Linear Programming (LP) model with an objective function for
minimising cost, it was the perfect candidate to do a cost benefit analysis with.

The results of the models will be discussed in the next chapter.

5.1 Travel Distance Model

The starting point for evaluating the impact of intermediate facilities on waste collec-
tion operations was to look at the travel distance of the waste vehicles with and with-
out intermediate facilities. In order to compare results from the Multi-Facility Location
Problem (MFLP) model with current operations, the current situation was simplified by
running it through the same model.

At a high level, the travel distance model looks at the total distance a waste collection
vehicle would need to travel in order to satisfy the demand for its associated collection
beat. The trip includes the distance from the starting depot to its collection beat, then
any number of trips from the collection beat to the intermediate facility in order to satisfy
the beat’s demand, and finally a trip from the intermediate facility to the vehicle’s starting
depot.

The model was built on the following assumption:

1. all collection beats, intermediate facilities, depots and landfills are represented by a
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single Global Positioning System (GPS) point;

2. no time restrictions are imposed on the vehicles — this means that the vehicle can
make as many trips as necessary to fulfil the demand of its collection beat;

3. the distance between points is the haversine distance, and not the actual driving
distance;

4. each collection beat is serviced by one and only one collection vehicle; and

5. no direct routes to a landfill are allowed — all waste must be collected and brought
to an intermediate facility.

The model was coded in Python version 3.5.2 using the available numpy package in
order to take advantage of numpy’s broadcasting capabilities. This dramatically increases
computational speeds in comparison to the same function written in pure Python. The
difference in computational speed between the haversine formula (5.1) written in pure
Python and a vectorised function can be seen in table 5.1. A distance matrix was generated
between 723 collection beats and 25 intermediate facilities using the pure Python and
vectorised function of the formula.

Number of function calls Execution time
Pure Python 1046185 29.310 seconds
Vectorisation 1451 0.129 seconds

Table 5.1: Execution time for calculating a haversine distance matrix using the pure
python and vectorised implementation of the haversine formula

The computational speed increase is especially important since the haversine formula
is called multiple times throughout the model. In fact the formula was also used in the
linear program for the waste allocation model.

5.1.1 Model Formulation

Given two geographical coordinates with their latitude and longitude (in radians), the
haversine distance between these points is given by:

- Ao — A
d = 2r arcsin \/sin2 <M> + cos ¢1 - cos ¢y - sin? (21> (5.1)

2 2

where,
e d: haversine distance between points;
e 7: radius of the earth;
e @1, ¢o: latitude of point 1 and point 2, in radians; and
e )1, A9: longitude of points 1 and point 2, in radians.

The model is presented in pseudocode in Algorithm 3. Since each collection beat is
serviced by a single collection vehicle, each collection beat only has one travel distance
associated with it. We begin by calculating the haversine distance between a collection
beat and each depot, in order to determine the closest depot for a collection beat and set
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it as the starting location for the vehicle. The distance as well as the associated depot
is stored in a list. This is repeated for each collection beat and intermediate facility in
order to determine the closest facility used to replenish the vehicle’s capacity. Again,
the distance and associated facility is stored. Next, the haversine distance between the
associated closest depot and associated closest intermediate facility is calculated — this
is the last trip the vehicle makes from the intermediate facility to end at the depot.

The total number of trips a vehicle must make between a service area and an interme-
diate facility was calculated using the following formula: 2[%] — 1. The demand for the
collection beat is divided by the vehicle’s capacity. The ceiling of the value is taken since
no fraction trips can be made. This number is multiplied by two to include the return
trips. However, since on the last trip, the vehicle does not return to the collection beat
but rather returns to the depot, we reduce the trips by one. This process is repeated for
all service areas.

Algorithm 3: Travel distances

Input : Set D of customers
Set W of demands for each customer
Set F of depot locations
Set C' of intermediate facilities
The vehicle capacity as «
Output: Total travel distance per customer

h1 — o0
h2 — o0
for d € D do
for f € ' do
h < haversine(d, f)
if h < hy then
hl ~—h
fclosest — f
for c € C do
h < haversine(d, c)
if h < ho then
hQ ~—h
Celosest < C
h3 — haverSine(fclosesta Cclosest)
trips <— 2[2] — 1
total distance < hi + trips - ho + h3

return total distance

5.2 Waste Allocation Model

It turned out that simply using the travel distance per vehicle was not enough to make an
informed recommendation, as the previous model did not take into account the additional
travelling that is required in order to bring the collected waste from intermediate facilities
to landfills. Furthermore, it was also an unreasonable assumption that no direct routes for
a vehicle to a landfill site was allowed. It is reasonable to assume that for some vehicles,
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if their collection beat is located directly next to a landfill, or if the distance to a landfill
is less than that of the nearest intermediate facility, it might be more efficient to drop the
waste off directly at the landfill.

Therefore, a LP model was built in order to tackle these shortfalls and to gain a more
holistic view on the impact of intermediate facilities. The model was based on the work
done by Mitropoulos et al. (2009) and Eiselt (2007) since both works were concerned
with the collection operations as an integrated system, thus they looked at transporting
the waste from collection beats to intermediate facilities and then further to landfills.
Furthermore, they also allowed for direct routes to landfills. Finally, since both were LP
models, their objective function was concerned with minimising total system costs. In our
case we only looked at minimising the total system transportation cost.

The model was coded in Python version 3.5.2 using the optimisation package PulLP
— a linear solver library.

5.2.1 Model Formulation

Similar to the model presented by Eiselt (2007), this model also consists of three layers;
the collection beats (or customers) are the first layer, the intermediate facilities on the
second layer, and the landfills on the third layer. Assuming that p intermediate facilities
are to be chosen, then a binary variable o; is one when intermediate facility j is to be
opened and zero otherwise. Variable z;; indicates the amount of waste transferred from
collection beat i to intermediate facility j and variable y;; indicates the amount of waste
transferred from collection beat ¢ to landfill k.

Since the travelling cost for waste vehicles is difficult to find, we avoid an exact trans-
portation cost for the vehicles transporting the waste from intermediate facility but instead
introduce a discount factor a. The justification for the discount factor is that unlike the
collection vehicles that transport waste from the customer to intermediate facility or land-
fill, the vehicles which collect the waste from intermediate facilities have a much larger
capacity. The model also assumes that the intermediate facilities are capacitated while
the landfills are un-capacitated. Furthermore let M be an arbitrarily large number.

It is now possible to formulate the model.

Index sets
I £ set of collection beat locations, where j € I
J £ set of intermediate facility locations, where j € J
K £ set of landfill locations, where k € K

The decision variables are

Tij £ amount of waste carried from collection beat i to intermediate facility j
yir. = amount of waste carried from collection beat i to landfill k
N 1, if intermediate facility j is opened
Oj = .
0, otherwise

Other model parameters are
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k £ number of intermediate facilities to be opened

cap £ given maximum capacity per intermediate facility

c £ given unit transportation cost for vehicles travelling in the first echelon

« £ given discount factor for vehicles travelling in the second echelon

Dj £ given waste flow at intermediate facility j

d;j £ given haversine distance between collection beat i and intermediate fa-
cility j

dik £ given haversine distance between collection beat i and landfill k

d; £ given haversine distance between intermediate facility j and its nearest
landfill

W; £  given waste generated at collection beat i

The objective is to minimise the total transportation cost given by:

min z = Z injdijc + Z Z YirdipC + Z djpjc(l — o) (5.2)

icl jeJ icl keK jeJ

and subject to

jeJ keK

Z:L‘ij < MOj VjedJ (5'4)
i€l

o=k VjelJ (5.5)
jeJ

inj < pj Vield (5.6)
i€l

pj < cap VjiedJ (5.7)

The object function (5.2) minimises the total system transportation cost. The first
term is the total cost for transporting waste from collection beats to intermediate facilities.
The second terms is the total cost for transporting waste from collection beats to landfills
and the last term is the total discounted cost of transporting waste from intermediate
facilities to landfills.

The first constraint, (5.3), ensures that the total flow from the collection beat is equal
to the waste generated by the beat. Constraints (5.4) and (5.5) ensure that when waste
is transferred to a facility it is opened and that the total number of facilities opened is
equal to the specified number of facilities to be opened. Finally constraints (5.6) and (5.7)
ensure that the total waste flow to the intermediate facility does not exceed its capacity.
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5.3 Conclusion

The models that were used to solve the problem at hand were presented in this chapter.
First the travel distance model was discussed. Its purpose was to calculate the total
distance a waste vehicle would traverse in order for it to collect all the waste generated
at its respective collection beat. However, the model had unrealistic simplifications as it
did not take into consideration the entire collection operation, which included the waste
to be transferred from intermediate facility to landfill site. Furthermore, the constraint
imposed on the model were that the vehicles had to unload the waste at an intermediate
facility and was not allowed to make direct trips to landfill sites. A more realistic model
was developed in order to address these short-commings and to yield more accurate results
in terms of the overall waste collection operations with respect to intermediate facilities.
The model is a LP model with the objective of minimising the system’s transport costs.
In the next section we present the results obtained from the models for various parameters
and scenarios.
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Chapter 6

Results and Discussion

Once the models were built it was possible to run the models through various scenarios and
evaluate their outcome. Since the City of Cape Town already has two intermediate facilities
which are in use, another interesting question arose: “could these intermediate facilities
have been located more efficiently?”. Remaining with the original problem statement of
identifying potential locations for intermediate facilities and evaluating their impact on
waste collection operations, the following questions were addressed:

e how does the system transportation costs change with respect to changing parame-
ters;

e how does the waste allocation change with respect to changing parameters;

e assuming that no intermediate facilities exist for the City of Cape Town, how many
intermediate facilities should be constructed and where should the City locate these
facilities?

The remainder of the chapter is structured as follows. First the potential locations for
the intermediate facilities are discussed, then the impact that the intermediate facilities
have on waste vehicle travel time is analysed, followed by a cost benefit analysis and a
summary of the results.

6.1 Intermediate Facility Locations

In Chapter 4, the various models and adaptions were discussed. It was decided that the
best model to use was the standard implementation of the generalised Weiszfeld method
for the multi-facility location problem.

The biggest question for this part of the project was “how many facilities should be
located?”. As a test-case it was decided that up to a total of 25 facilities would be located.
The reason was that locating more than 25 locations required more than 2000 iterations
per run which was relatively time consuming. Additionally with 25 intermediate facilities
it was believed that the City of Cape Town would be covered sufficiently.

Using the generalised Weisfeld method for multiple facilities, Algorithm 2, 25 potential
locations for the intermediate facilities were identified, shown in Figure 6.1. Their exact
locations can be found in appendix A.
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* Proposed Intermediate Facilities

Google Map data ©2017 AfiGIS|(Pty) Ltd, Google

Figure 6.1: Potential locations for intermediate facilities

6.2 Travel Time

Before the travel time could be calculated for the vehicles, the travel distance had to be
calculated. The data sets for the model were discussed in Section 1.4, the only additional
parameter which was not mentioned is the vehicle capacity. It was assumed that the first
echelon waste vehicles have an approximate capacity of 10 tons.

Once the travel distance was calculated for each collection beat, it was possible to
estimate a travel time for each collection vehicle per collection beat. The distance was
divided by an average vehicle speed of 30 km/h to yield the estimated time a waste
collection vehicle spent travelling from the depot to a collection beat, between a collection
beat and intermediate facility and finally back to the depot. The travel time did not
include the time of collecting waste.

In order to see how the travel time changes with an increasing number of intermediate
facilities, the travel time was calculated for the range of locating 1 to 25 intermediate
facilities. Therefore, the Weiszfeld method was used to solve for one facility, for which the
travel time was calculated, then for two facilities, then for three facilities and so forth.

The results for the average travel time for waste collection vehicles with various number
of intermediate facilities located can be seen in Figure 6.2. As the number of intermediate
facilities increase, the travel time decreases. This is because as more intermediate facilities
are located around the city (see Figure 6.1) they cover a larger area, and so the facility
becomes closer for more collection beats. This means that a waste collection vehicle no
longer has to drive to a landfill further away, but can instead drop-off the waste at a nearby
intermediate facility.

The figure also shows a dotted line at around 1.68 h. That was the case for when
the three existing landfills were treated as landfills. In other words, no intermediate
facilities were present. It can be seen that the dotted line intersects the graph when three
intermediate facilities were located. This means that in terms of travel time, so long
as waste collection vehicles are forced to visit an intermediate facility, not locating any
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Figure 6.2: Travel time vs number of intermediate facilities

intermediate facilities when three landfills are available is the better option. However, as
soon as more intermediate facilities than landfills are located, the model figure shows that
the average travel time is less for the waste collection vehicles.

As mentioned previously, this was not a fair comparison, as the model did not take
into the account the additional time that must be spent transferring the waste from inter-
mediate facilities to the nearest landfill.

6.3 Cost Benefit Analysis

The results from the previous section were actually expected, especially since only the first
echelon operations were considered. Without considering the second echelon operations,
the travel time will decrease as more facilities are available because a larger area is serviced
by the facility which is closer then the previous it was previously services by.

In this section a wholistic approach is applied by using the waste allocation model.
The model was run for various input parameters to gain a better understanding of how
intermediate facilities impact the waste collection operation system.

According to a feasibility report for Eskom regrading the “Municipal Solid Waste
Diversion and Beneficiation Opportunities at Nelson Mandela Bay Metro Municipality”,
the unit travel cost of a waste collection vehicle is R 13.73 per km per ton. It was also
assumed that the maximum capacity of an intermediate facility is 1000 tons and that
the discount factor for vehicles travelling the second echelon is 1/4 or 25% of the first
echelon costs.

The first question to be answered was, since the City of Cape Town already has two
intermediate facilities, “could these intermediate facilitiecs have been located more effi-
ciently?”. To answer this question, the locations of the existing intermediate facilities and
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the potential locations according to the Weiszfeld method were each given as input for the
waste allocation model and the results compared. Figure 6.3 shows the results. In the bar
chart in Figure 6.3a it can be seen that had the intermediate facilities been located using
the Weiszfeld method the transportation costs could have been reduced. The locations of
the existing and new intermediate facilities are shown on the map in figure 6.3b.
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Figure 6.3: Existing vs new intermediate facilities

All this showed is that the locations of intermediate facilities with the Weiszfeld method
could potentially have been more cost-effective than the location of the current facilities.

However, how did these cost savings change as the number of intermediate facilities
located increased? Figure 6.4a shows that as the number intermediate facilities increased,
the transportation costs decreased. This is expected for the same reason as explained in
the previous section. Furthermore, since a discount factor is involved, it is beneficial to
collect as much waste at the intermediate facilities and then transport it to the landfills at
a later stage to make use of the economies of scale. This can be seen in figure 6.4b. As the
number of intermediate facilities increased, more waste was allocated to the intermediate
facilities as opposed to being sent directly to the landfills. This behaviour was also the case
for when the discount factor and the capacity of the intermediate facilities were increased.
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Figure 6.4: Affect of increasing number of facilities on transportation cost and waste
allocation

Despite the fact that transport costs decreased as more intermediate facilities were
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located, at what point do the cost benefits no longer outweigh the costs of building inter-
mediate facilities? To do this the annual cost savings per k intermediate facilities were
compared with the capital cost required for building those k facilities to calculate a break
even point (in years). This was done for a range from 1 to 10 intermediate facilities. The
results were plotted on a graph in order to compare the scenarios. The project with the
shortest break even period would be the most cost-effective scenario to implement consid-
ering the capital cost of opening that many facilities and the cost savings reaped from the
scenario.

Assuming a capital cost per intermediate facility of R 20 million, the break even
curve for up to 10 intermediate facilities is represented in figure 6.5.
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Figure 6.5: Break even curve for 10 intermediate facilities

The dashed line shows the shortest break even period and its associated number of
intermediate facilities. With a break even period of 30.88 years, locating three intermediate
facilities had the best cost benefit to capital cost ratio (i.e. break even period). The
locations of the three intermediate facilities with respect to the existing facilities can be
seen in figure 6.6.
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Figure 6.6: Proposed intermediate facilities vs existing locations

However, it is important to understand that this was just a test-case and that factors
such as time-value of money, operating expenses of intermediate facilities, varying fuel costs
and increases waste volumes were not considered. They would undoubtedly influence the
results.

6.4 Discussion

Although the results showed that locating the intermediate facilities with the Weiszfeld
method is superior to the location of the existing facilities, it is important to understand
that these locations were based purely on Geographical Information System (GIS) data
for collection beats and their estimated waste generation and no other information. Other
factors may influence the results. It is therefore necessary to always confirm the potential
location with a site visit in order to confirm the results of optimal sites Bosompem et al.
(2016).

From the travel time analysis it was clear that the more number of intermediate facil-
ities were located, the less the average travel time per vehicle was. In order to decrease
the total travel time for waste vehicles in the first echelon, more intermediate facilities
should be introduced. Omne can deduce that the converse is true for the waste vehicles
in the second echelon as they must then visit more intermediate facilities to transfer the
waste to the landfills.

However, the cost benefit analysis showed that even so, the total transportation cost for
both echelons decreased with increasing number of intermediate facilities. Yet, the cost
savings of locating more intermediate facilities with respect to the capital cost did not
always increase. In fact, in this particular case, the best scenario was to locate three new
intermediate facilities with a total capital cost of R 60 million at the locations specified in
figure 6.6, and no longer use the existing intermediate facilities.
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Chapter 7

Conclusion and Future Work

In this report the potential location for intermediate waste facilities and the impact thereof
on waste collection operations were addressed.

In Chapter 1, the background concerning waste collection operations, the importance
thereof and the problem statement were presented, among others. The Literature Review
gave an insight to the existing literature available and what approaches had previously
been taken to address similar problems. The approaches taken for generating the data
sets were also presented as well as the models used to identify potential locations for
intermediate facilities and to evaluate their impact.

Although the location of existing intermediate facilities fall short of the intermediate
facility locations using the Weiszfeld method, it is important to understand that many
assumption were made which may not actually justify this discrepancy. For example,
although the capital costs were included in the waste allocation model, nowhere did we
consider the cost of removing the existing facilities. Neither were other costs such as facility
maintenance costs, un-loading costs or operating expenses for the facilities considered.

Furthermore, for the Weiszfeld algorithm its only two required input data sets were
both simplified. The collection beats were reduced to single points, while the waste gen-
eration data was not verifiable and was generated by other data sets.

Additionally, the distances used throughout the project were also extremely simplified,
either to the euclidean distance or the haversine distance. These distances also do not
accurately represent the actual travel distance that a waste collection vehicle might take,
notwithstanding that there might be cases (especially in Cape Town) where waste vehicles
are not able to traverse as the roads are too narrow, or the there is only a one-way street.

Finally we also mentioned that other benefits from locating intermediate facilities had
not yet been considered. For example, the added benefit of locating intermediate facilities
is that since the intermediate facility is closer to other collection beats, the number of
vehicles required in the first echelon could be dramatically reduced, since a vehicle is able
to collect more waste in less time, since the travel distance between collection beat and
landfill is drastically reduced. In this project these benefits were ignored as the assumption
remained that one waste collection vehicle services one collection beat.

Therefore, the following could be done in the future in order to improve the accuracy
and validity of the project:

1. increase the distance accuracy by using for example Google’s Distance Matrix API;

2. apply a more rigorous process to identify potential locations for intermediate facili-
ties;

38



3. possibly solve the project as a variant of the Vehicle Routing Problem (VRP) specif-
ically as a Vehicle Routing Problem with Intermediate Facilities (VRPIF) in order
to reap the additional benefits of the intermediate facilities;

4. use more accurate and relevant data, for example getting more accurate waste gen-
eration data could improve the accuracy of the project.

Even so, the project demonstrated novel approaches for generating additional data
sets with limited available data. It also showed that intermediate facilities can be located
using the generalised Weiszfeld method for the multi-facility location problem and how
their impact can be evaluated using two models; a travel distance model and a Linear
Programming (LP) waste allocation model.

This project can be used as the starting point for future research and has shown a
clear path for how results can be refined for future iterations.
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Appendix A

Weiszfeld Locations

Table A.1: Table showing the 25 potential intermediate facility locations
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18.712807110067782
18.516465960006666
18.6515972
18.511482500041097
18.567621847116392
18.701078419988875
18.856917610000004
18.48818928
18.477853264884782
18.50480412038433
18.655660900000004
18.58163093000046
18.452388860000003
18.633334900000275
18.49549166744577
18.516638740000396
18.34627769038505
18.692484909999997
18.38930131226647
18.61627861564411
18.559215537027686
18.687923503042967
18.534331900000307
18.60030451542234
18.45194658979699

-33.85711528004055
-33.96785460999634
-33.963851330000004
-33.81786668005036
-33.97029320213694
-34.06064018997564
-34.11279587
-33.55391653000001
-34.05734740341308
-33.92349569986156
-34.03332516999999
-33.916753720000024
-33.93340046
-33.89671335001809
-34.03196860424894
-34.039005569999965
-34.03130630995192
-33.99668034
-34.13483586383872
-34.03304298094496
-33.922332512988724
-33.85646828705292
-33.98023397000012
-34.010294744359456
-33.73502547018385
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Appendix B

Project Sponsorship Form
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