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Abstract

In vehicle dynamics there are many parameters that are desired for vehicle control and

modelling. One of the most important parameters for handling and stability is the vehicle

side-slip angle. The ability to directly measure the vehicle side-slip in real-time will aid and

improve many driver assist systems such as stability control schemes and roll-over mitigation,

especially over rough terrain.

Commercial side-slip angle solutions are available but they are prohibitively expensive

and are only suitable for use during vehicle development and performance evaluation. They

are also restricted to small side-slip angles and give unsatisfactory results at low speeds and

over uneven terrain. Previous research has proven that digital image correlation can be used

to accurately measure vehicle side-slip angle over rough off-road terrain using inexpensive,

off-the-shelf cameras. However, side-slip angle calculations were performed in post processing

from pre-recorded footage and not implemented in real time due to the large computational

times of the novel algorithms developed.

This paper describes the improvements made to the algorithms that enable real-time

implementation. The side-slip angle is measured using a single camera pointing downwards

to the terrain and digital image correlation. The sensor is tested on a flat surface using a rig

that allows for validation. The maximum sampling frequency and accuracy are investigated.

The system is shown to measure accurately and in real-time up to 100km/h speeds.
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1. Introduction

Modern passenger vehicles rely on complex control systems to assist drivers in avoiding

accidents or at least to limit damages in the event of a collision. These systems, known

as Advanced Driver Assist Systems (ADAS) use features such as Anti-lock Brake Systems

(ABS) and Electronic Stability Control schemes (ESC) to enhance the safety of the occu-

pants. Typically, these systems require a large combination of sensors to determine the

state of the vehicle. A vehicle model then uses the information to predict the behaviour

of the vehicle within normal driving conditions. The predicted model is compared to the

actual vehicle behaviour and then corrects any deviation using ADAS (Rajamani, 2005).

One parameter that can greatly aid the performance of ADAS is the vehicle side-slip angle,

β. Vehicle side-slip angle can be used as a measure of the vehicle‘s handling and stability

and is, therefore, a valuable parameter in vehicle dynamics. Inagaki et al. (1995) demon-

strated that β and it’s derivative, β̇, offer better insight to the vehicle‘s lateral stability as

compared to yaw-rate. However, due to the difficulty in measuring the side-slip angle most

control systems rely on the yaw rate. Chung and Yi (2006) however found that using a

stability control scheme that was based on side-slip angle resulted in an overall improved

vehicle performance on a virtual test track.

The tyre-road interface is one of the most important research areas in the field of vehicle

dynamics, due to all vehicle excitation forces acting at this interface (excluding aerodynamic

forces). Many parameters that govern the forces at this interface are required to fully

understand the dynamics, one of which is the side-slip angle. Bakker et al. (1987) showed

that there is a strong relationship between the lateral force generated by the tyre and the

tyre side-slip angle. Most tyre models require accurate side-slip angle measurements as a

necessity for the characterisation of tyres, especially during dynamic manoeuvres or when

performing tests on tyre test tracks.

Measuring side-slip angle on off-road terrain presents unique challenges such as measuring
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at low speeds and over rough, uneven terrain where current measuring solutions fail to

accurately measure in these conditions.

Side-slip angle is notoriously difficult to measure, however, such sensors do exist. The

Kistler Correvit S-HR (Kistler, 2016) is a commercially available side-slip angle sensor,

developed for mainly smooth, hard roads where the motion is predominately planar with

little body motion. This sensor uses a combination of the Doppler effect and an absolute

measuring method for determining the side-slip angle. The sensor is limited to a maximum

side-slip angle of ± 15deg, does not perform well below 20km/h and experiences difficulties

when moving over uneven surfaces. Therefore, this sensor is not suitable for terramechanic

applications which generally occurs on uneven terrain and low speeds. The sensor has a

maximum sampling frequency of 250Hz. Due to prohibitive costs of such sensors, the field

of vehicle dynamics has opted to instead estimate the vehicle side-slip angle rather than

directly measure it. These estimation methods use sensor fusion techniques that combine

sensors such as accelerometers, GPS, and rate gyroscopes to estimate the side-slip angle.

These techniques proved successful and correlated well with the values of simulated vehicle

side-slip angle (Bevly et al. (2006), Botha and Els (2012) and Hac and Simpson (2000)).

These sensors are inherently noisy and require large sensor excitations, such as experienced

high-speed dynamic manoeuvres, to provide accurate results and are also highly prone to

integration drift. As a result, these estimation methods are unsuitable for off-road scenarios,

where tests occur at low speeds and experience high levels of noise due to terrain roughness.

Tyre side-slip angle is not typically measured in field tests, however, are measured during

tyre characterisation. The tyres are typically mounted to a rig where the side-slip angle is

accurately controlled (Dora et al., 2006).

Botha and Els (2015) proposed an alternative to current methods whereby the side-slip

angle could be accurately measured using inexpensive, off-the-shelf cameras and digital im-

age correlation. This technique was developed to overcome the hurdles faced with measuring

the side-slip angle in off-road conditions. It measures side-slip angle robustly at low speed

and over varied terrain and does not require large dynamic excitation. This technique was

successfully tested on smooth concrete, rough cobblestone paving, snow, ice and various
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other mixed off-road conditions at various speeds and on several different vehicles. Vari-

ous methods were proposed, either using a single camera or a calibrated stereo-vision rig,

comprising of two cameras at a fixed distance apart. The sensor could be mounted on the

vehicle for vehicle side-slip angle or on the tyre for tyre side-slip angle. For both cases,

the sensors must be facing downwards towards the terrain at all times. The extraction of

side-slip angle from the digital images was performed in post-processing from pre-recorded

footage due to the large computational expense of image processing. This technique proved

to give excellent results that are valuable for vehicle and tyre testing under typical rough,

low speed, off-road conditions where terramechanic aspects are important.

This study builds on Botha and Els (2015) by implementing the single camera technique

in real-time. The sensor can be used for vehicle and tyre testing but also as a direct input

to ADAS systems. The result is a camera-based sensor that uses off-the-shelf cameras and

lenses to accurately measure the side-slip angle in real-time and at low cost.

2. Side-slip angle with digital image correlation

Three algorithms were developed by Botha and Els (2015). Algorithm 1 uses a simple

and efficient planar motion algorithm to track the motion of a single camera. Identifiable

points on the image, known as features, are tracked across sequential images, meaning the

location of that point is found on the corresponding image. Feature tracking will be discussed

in Section 3.2. The locations of the features are represented in pixel coordinates, and not

in real-world coordinates. The direction that the features has moved in, is considered the

direction of travel of the camera. The camera determines the lateral (∆x) and longitudinal

(∆y) motion of features in pixels. Considering that the lateral and longitudinal movement

is known, the angle can be calculated using Equation 1.

β = arctan(
∆x

∆y
) (1)

By mounting the camera on the vehicle so that it is facing downwards towards the terrain,

the motion of the camera is then considered the planar motion of the vehicle. If the camera

is mounted such that the feature motion has an angle of zero when the vehicle undergoes
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Figure 1: Observed effect of vertical motion, yaw, roll, and pitch on feature vector motion (Botha and Els,

2015)

no side-slip, such as when driving in a straight line, then the angle of the feature motion

vector is equal to the side-slip angle. This method is the least computationally expensive of

the algorithms, making it the most suitable candidate for implementing in real-time.

This algorithm makes the assumption that the vehicle undergoes purely planar motion.

This is true for testing on smooth flat surfaces, however, the assumption does not hold

when the vehicle is travelling over rough terrains where the terrain induces other vehicle

motions such as vertical displacement, roll, pitch and yaw. Figure 1 demonstrates the effect

of various vehicle motions on the feature vector motion.

To combat this, algorithms 2 and 3 were developed by Botha and Els (2015). These

algorithms attempted to determine the rigid body motion that the vehicle experiences. By

doing so, the pure lateral and longitudinal motion can be distinguished from the other mo-

tions. Algorithm 2 uses pose estimation which determines the rigid body motion, using a

single camera. As before, features are tracked between sequential images that are used to

calculate the essential matrix (Stewenius et al., 2005), which maps the relative rotation and

translation motion between views, whereby all rotations can be determined. The transla-

tional velocities can also be estimated although these are in scale, meaning that they need

to be multiplied by a scale factor to convert them to real-world coordinates. The scale is

dependent on the motion and is therefore not consistent throughout the measuring process.

The result is that the pure planar motion can be distinguished from the rigid body motion

experienced when travelling on off-road terrain. The side-slip angle can be calculated by

taking the angle between the lateral and longitudinal movement, as shown in Equation 1.

Since the angle is not affected by the scaling the scaling does not pose a problem. This
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algorithm requires many complex iterations and error checking before converging to a suit-

able answer, making it computationally expensive and potentially difficult to implement in

real-time.

The third algorithm uses a stereo-vision rig that obtains all measurements directly in

unscaled real-world units. This method uses two cameras that view the same scene at

the same time which allows for 3D measurements. Once a 3D map of the scene has been

generated, features on the map can be tracked between sequential maps. As before, the

rotation and translation matrices can be determined from the tracked points. However,

unlike algorithm 2, these are unscaled and represent the motions in SI units. Similar to

algorithm 2, the pure planar motion underwent by the vehicle can be distinguished from

other vehicle motions and the side-slip angle calculated by taking the angle between the

lateral and longitudinal movement, as shown in Equation 1. The 3D map generation is

computationally expensive and is the bottleneck for computation time in this algorithm,

making it difficult to implement in real-time time. One major advantage of this algorithm is

that many other vehicle parameters can be extracted simultaneously such as roll and pitch

angles and the vehicle velocity.

Botha and Els (2015) validated the algorithms by comparing the measured side-slip

angles to known side-slip angles. The cameras and sensor were mounted on a gimbal that

allowed them to be rotated in one-degree increments relative to the vehicle. This allows for

the side-slip angle to be set at a fixed angle that forces a known artificial side-slip angle

to be measured by the sensor while the vehicle travels in a straight line. This method was

chosen as opposed to dynamic manoeuvres that would induce vehicle side-slip as it is not

a repeatable and controlled process. Although measurements were compared to the Kistler

Correvit S-HR sensor, there is also no accurate comparative measure that would validate

the measurements. The gimbal system was mounted close to the vehicle’s centre of gravity,

or CG, to reduce the effect of other vehicle motions. These tests were conducted at various

side-slip angles and over two terrains, a flat concrete surface and a rough Belgian paving to

simulate off-road terrains. The vehicle velocity did not exceed 20km/h during these tests.

The results of the tests are summarised in Table 1 that show the mean values, the standard
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deviation (STD) and the root-mean-square (RMS) values. It is evident that all three the

algorithms outperformed the Correvit S-HR sensor with smaller errors and lower noise levels

proving the use of cameras as a viable alternative to the sensor.

Table 1: Results obtained for all techniques at various side-slip angles and over two terrains

Correvit S-HR 2D Planar 2D Pose 3D

Flat[deg] RMS Mean STD RMS Mean STD RMS Mean STD RMS Mean STD

0 2.30 0.42 2.26 0.91 -0.36 0.84 0.91 -0.31 0.85 0.83 0.06 0.83

2 2.76 2.45 1.28 1.87 1.75 0.66 1.89 1.76 0.69 1.81 1.70 0.60

5 5.86 5.48 2.09 4.98 4.90 0.89 5.02 4.92 0.98 4.93 4.85 0.87

10 10.39 10.10 2.48 9.96 9.95 0.53 9.97 9.95 0.60 9.81 9.77 0.87

Belgian[deg] RMS Mean STD RMS Mean STD RMS Mean STD RMS Mean STD

0 1.71 0.65 1.58 0.91 -0.09 0.91 0.94 -0.02 0.93 0.92 -0.09 0.92

2 2.98 2.52 1.59 2.10 1.85 0.99 2.18 1.92 1.01 2.06 1.83 0.95

5 5.60 5.42 1.42 4.92 4.85 0.83 4.97 4.90 0.86 4.89 4.79 0.96

10 10.56 10.35 2.12 10.03 10.00 0.75 10.07 10.04 0.78 9.90 9.87 0.87

Comparing the results from the flat surface to the Belgian paving the STD of all three

algorithms increased. However, they only increased (on average) by 10% and the error never

exceeded 1deg. The mean values stayed relatively constant with a low error. Even though

the assumption of pure planar motion was clearly violated over the Belgian paving, the

2D Planar algorithm performed better than expected with comparable accuracies to the

other algorithms. This leads to the conclusion that using a more computationally expensive

algorithm to distinguish between the planar motion and the rigid body motion does not

significantly improve the accuracy of the results. The computationally efficient, 2D Planar

method, is therefore sufficient and the best candidate for real-time implementation and will

be used during this investigation.

3. Computer Vision Techniques

In this paper an open source computer vision library called OpenCV (OpenCV, 2017)

was used and all computer vision techniques were implemented in C++. It was chosen due

to the large library of optimised algorithms that allows for fast execution, as required for

real-time implementation.
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3.1. Camera calibration

Digital images require pre-processing to remove distortion created by the lens before

they can be used for accurate computer vision measurements. The lens distortion can be

mathematically modelled and therefore corrected. The required parameters can be deter-

mined through calibration. The most popular calibration method was developed by Zhang

(2000) and uses images of a known pattern and size, at various angles and distances from

the camera to solve the lens model parameters in a least squares manner.

3.2. Feature tracking algorithms

The 2D planar method requires features to be tracked between images. This is achieved

through optical flow techniques. Sparse optical flow algorithms are computationally less

expensive as they track the motion of small subsets of the image instead of the motion of

the entire image, as is the case in dense optical flow, making it more suitable for real-time

implementation.

The most common and widely used sparse optical flow algorithm is the Lucas-Kanade

algorithm (Lucas and Kanade, 1981). However, many other feature tracking algorithms exist

such as the Scale-Invariant Feature Transform (SIFT) (Lowe, 2004), Speeded-Up Robust

Features (SURF) (Bay et al., 2008), Oriented FAST and Rotated BRIEF (ORB) (Rublee

et al., 2011) and Binary Robust Invariant Scalable Keypoints (BRISK) (Leutenegger et al.,

2011). More algorithms do exist but will not be considered during this investigation. These

algorithms differ mainly by their feature descriptor and typically use a simple brute force

matching strategy that matches features by comparing them against all other possibilities

using a suitable metric.

A comparative study was conducted between the above-mentioned algorithms to de-

termine which algorithm would be the best candidate for real-time applications. These

algorithms were selected as they are included in the OpenCV library.

Table 2 shows the computation time required to identify and track 50 features across a

640x480 sized image on a desktop computer with an i5 quad core processor 2.8GHz, using

a single core. Pre-recorded footage of a vehicle travelling over an asphalt road was used
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for this investigation. From this, it is evident that the Lucas-Kanade (LK) algorithm is the

least computationally expensive and was able to track the features in 15ms, which is less

than half it’s closest competitor. The accuracy of the algorithms was not tested during the

analysis as it is outweighed by the importance of computation time.

Table 2: Various feature tracking algorithms performance comparison

Algorithm Average Computation time [ms]

Lucas-Kanade 15

SIFT 570

SURF 95

ORB 35

BRISK 550

3.3. Lucas-Kanade feature tracking

The Lucas-Kanade optical flow algorithm tracks features across images by solving the

optical flow equation in a least squares approach. The algorithm makes three important

assumptions to simplify the optical flow equation. The first assumption is that brightness

across the tracked images are consistent. The first assumption would be invalid if sudden

shadows are generated but can be overcome by using adjustable camera parameters such

as sensor gain, aperture and contrast. The second assumption is that feature motion is

small. The assumption of small motion is partially overcome by introducing a modification

to the algorithm developed by Bouguet (2000) that tracks over a pyramid of smaller scaled

images which reduces the motion on the image. The motion on the smallest image is then

tracked and the solution used on the next largest image. This process is repeated for the

larger scaled images until the solution of the motion of the original image is found. The

third assumption is that the windowed region around the feature has the same motion as the

feature itself. This is valid when planar motion is observed from a stationary scene although

may not hold if multiple objects move or if the motion is predominantly rotational. These

assumptions reduce the optical flow equation to Equation 2, known as the Lucas-Kanade
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equation, where Ix, Iy and It represent the partial derivative of the pixel intensity in the

x and y directions as well as with respect to time t. The algorithm solves this equation to

determine the velocity in the x-direction, Vx, and the velocity in the y-direction, Vy. The

exact location is found by iteratively minimizing the cost function in Equation 3 by stepping

in the direction of the velocity vector at each iteration, where I(x, y, t) represents the pixel

intensity at pixel coordinate (x, y) at time t and I(x + u, y + v, t + 1) represents the pixel

intensity in the comparative image.Vx
Vy

 = −

∑ IxIx
∑
IyIx∑

IxIy
∑
IyIy

−1 ∑ IxIt∑
IyIt

 (2)

ε =
m∑
i

m∑
j

[I(x, y, t) − I(x+ u, y + v, t+ 1)] (3)

The Lucas-Kanade algorithm firstly requires features that can easily be tracked. The

algorithm developed by Shi and Tomasi (1994) has been mathematically selected to be

optimal in order to accurately and reliably solve the feature motion using the Lucas-Kanade

tracking algorithm and is used during this investigation. The features are selected by first

taking the second derivative of the image pixel intensities to obtain the Hessian matrix

H(x, y) in a window around a pixel:

H(x, y) =

 δ2I
δx2

δ2I
δxδy

δ2I
δyδx

δ2I
δy2

 (4)

Considering the eigenvalues of the H(x, y), if the smallest eigenvalue is above a set

threshold and the ratio between the eigenvalues are below another set threshold, the point

is classed as unique and easy to track. These are typically corner points that have high

contrast in multiple directions.

4. Algorithm

The algorithm starts by obtaining images from a single camera that is pointed down-

wards towards the terrain. Before features are identified, the distortion is removed from
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the images. Features are identified and then subsequently tracked using the Lucas-Kanade

algorithm. Since the tracked features may have outliers present, the Random SAmple Con-

sensus (RANSAC) (Fischler and Bolles, 1981) algorithm is used. RANSAC is an iterative

algorithm that is used to estimate parameters of a model from data which contains outliers

and was used to filter the tracked features to ensure no outliers obscure the side-slip an-

gle measurements. A regression model is then generated from only inliers to calculate the

side-slip angle as per Equation 1. If the magnitude of the feature motion vector is less than

2 pixels, the side-slip angle measurement is rejected to ensure no loss of accuracy. Figure 2

shows a typical output of the algorithm and shows the feature motion vectors. Green feature

motion vectors have been classed as inliers, whereas blue feature motion vectors are outliers

and are not considered in the calculations. The algorithm was set to track 50 features.

Figure 2: Features tracked across sequential images

The algorithm was threaded across all cores (thus four threads were created) to boost the

computational efficiency. This results in each core running its own local version of the algo-

rithm. This increases throughput (the overall sampling frequency of the system) but does

not decrease latency (the time it takes to process a set of images). The main thread would
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continuously check whether a thread was busy and then supply it with a set of images for

processing once it became available. For clarification, Figure 3 shows a flow diagram of the

side-slip angle algorithm.

Acquire initial 
image It, i=0

Acquire next  image 
It+i, i=1

Identify and track 
features between It

and It+i

Apply RANSAC to 
filter outliers and 

then determine best-
model fit

Remove distortion

|D| > thresholdCalculate side-slip 
angle Yes

Write data to file

Reset  It+I = It

Reject measurementNo

Reset  It+I = It

Thread available No

Yes

Figure 3: Flow diagram of side-slip angle algorithm

5. Testing

The side-slip angle measurement was tested using the same test setup as Botha and Els

(2015) described in Section 2 and is shown in Figure 4. The camera was mounted 450mm

from the testing surface, resulting in a field-of-view (FOV) of 480mm x 350mm. Ideally, the

camera should be mounted on or close to the centre of gravity of the vehicle to minimise the

effect of vehicle motion, however, for testing purposes, it was mounted on the rear of the

vehicle. The vehicle was driven in a straight line on a flat concrete road and the side-slip

angle set to 0, 5 and 10 deg. It should be noted however that the system can theoretically
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measure any angle but is limited because of the gimbal setup only allowing up to 10deg

rotation.

a ) Top view of gimbal setup b ) Side view of gimbal setup

Figure 4: Camera Gimbal Setup

The camera used in during this investigation is a Point Grey Flea3 USB 3.0 camera

with Fujinon DF6HA-1B lenses. The camera can be mounted closer to the surface and still

yield a large enough FOV by using a smaller lens focal length. The camera was set to a

resolution of 640x480 pixels with which a maximum frame rate of 450Hz can be achieved.

An external synchronising pulse was used to trigger the camera to capture an image. This

also enables the synchronization of other measurement devices if needed. Due to the high

sampling frequency, it is required that the camera has a short shutter time. This reduces

the exposure the camera sensor has to the scene and therefore sufficient light is required.

The aperture of the camera was set relatively large to allow high light exposure to the

sensor. This decreases the reduces the depth of field. However, since the distance between

the camera and the testing surface is constant, a large depth of field is not required. The

short shutter time also reduces motion blur on images.

The processing unit used during this investigation was an Intel NUC with a 6th gener-

ation i7 quad core/8 thread processor that runs at 2.5GHz (Intel Corporation, 2016) with

solid state hard drive and 16Gb DDR4 memory.
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6. Results

The performance of the sensor is evaluated by considering the processing time per mea-

surement and the accuracy of the measurement.

6.1. Processing time

Initial performance evaluation was focussed on the maximum obtainable sampling fre-

quency. This was accomplished by increasing the sampling frequency until the computation

time became excessive and the algorithm started skipping frames. As a result, it was found

that 250Hz was the maximum obtainable sampling frequency with no frame skipping. Set-

ting the sampling frequency to 300Hz resulted in an average sampling frequency of 283Hz

and increasing it further to 350Hz resulted in an actual sampling frequency of 302Hz. Al-

though higher sampling frequencies were obtained, they are not consistent and the skipped

frames create ambiguities in the measurements. This sensor matches the 250Hz sampling

frequency of the commercial sensor, the Correvit S-HR (Kistler, 2016).

6.2. Accuracy

The accuracy of the measurement is determined by setting the side-slip angle to a prede-

fined value on the gimbal setup and then driving in a straight line. The measured side-slip

angle is then compared to the known side-slip angle. The sampling frequency was set to

250Hz which is the maximum obtainable sampling frequency. In these tests, the vehicle was

accelerated from rest up to 60km/h. Table 3 shows the results where the side-slip angle was

set and compared to the average side-slip angle that was measured for that run. The STD

for each run is also added as an indication of the noise levels obtained. The results show

that a maximum of 0.46deg error in the side-slip angle was obtained throughout testing,

although most measurements were considerably closer with a mean error of 0.25deg. The

mean STD is 0.56deg, and did not exceed 0.7deg. It should be noted that the testing surface

was not completely flat and at speed, caused motions on the vehicle which could explain

some of the noise experienced.
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Table 3: Side-slip angle results on flat concrete at 250Hz

Side-slip angle [deg] Run Mean [deg] Standard deviation

0 1 -0.0671 0.4621

2 0.0598 0.5030

3 0.3620 0.4990

5 1 5.053 0.6144

2 5.399 0.5024

3 5.10 0.6914

10 1 10.46 0.5873

2 10.43 0.5742

3 10.06 0.6507

Figure 5 shows a test where the side-slip angle was set to 10deg and (a) shows the size

of the motion vector (D) in pixels. Coincidently D correlates well with the actual vehicle

velocity, in km/h, that was obtained from the vehicle‘s speedometer and was used as an

approximation towards the vehicle velocity. This assumption is only valid for this specific

setup and does not generally hold. For future investigations other means of vehicle velocity

are required. Figure 5 (b) shows the number of features that were successfully tracked. The

decrease in this number will be discussed in the following section. Figure 5 (c) shows the

side-slip angle measurement which measures 10deg as expected.

6.3. Discussion

A commercial sensor, such as the Correvit S-HR, was not available during this investi-

gation and no direct comparison could be made. However, these results are comparable to

that of Botha and Els (2015) who used a similar experimental setup on the same test surface

(refer to Table 1) for both the DIC methods and the Correvit S-HR sensor. Comparing the

results to those measurements, it is evident that similar accuracies were obtained proving

that the camera based sensor outperforms the commercial sensor. Lower noise bands are
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Figure 5: Results obtained with side-slip angle set at 10 deg

also observed.

For the accuracy measurements, the vehicle velocity was limited to 60km/h. However, to

further test the capabilities of the sensor tests were conducted at higher speeds. It was found

that measurements could still be made up to 100km/h which was the maximum obtainable

speed for the test vehicle on the test surface. This is also far better than required for

most off-road testing on rough terrain. Figure 6 shows a test where the side-slip angle was

set to 5deg and the vehicle accelerated from rest to 100km/h. Figure 6 (a) shows the D

and therefore an estimate of the velocity as explained. Figure 6 (b) shows the number of

features tracked during the measurement. As the vehicle velocity increases, the ability to

track features also decreases. At 100km/h it appears only a small portion of the 50 features

are correctly tracked. Although only one point is required to calculate the side-slip angle,

the robustness is drastically reduced.

Even at the lower speed of 60km/h, where the accuracy tests were conducted, a reduction

in features tracked occurs although not to the extent of 100km/h. There are three possible

causes for this phenomenon. The first is blurring on the images caused by the high velocity

of the vehicle. This could be reduced by decreasing the shutter time and decreasing the

aperture but will require better lighting. The second is the assumption of small motion made

by the LK tracking algorithm being violated. The motion can be reduced by increasing the
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Figure 6: (a) Pixel displacement which represents velocity (b) the number of features that were successfully

tracked (c) the measured side-slip angle which was set to 5 deg

distance between the camera and the ground. This would also reduce blurring caused by

the motion, however, the accuracy at lower speeds will be reduced due to the larger field of

view. Variable focal length can also be used to achieve the same effect. The focal length can

be adjusted either manually or automatically based on the velocity at which the test occurs.

The third possibility is the lack of overlap between frames. At 100km/h, there is 110mm

displacement between samples, resulting in a 70% overlap between images. By rotating the

camera 90deg such that the features are tracked in the width rather than the length, the

overlap is increased to 78%. The overlap is important as only features in this region can be

tracked. If features are chosen where there is no overlap, the feature cannot be tracked, and

the feature is therefore lost.

As mentioned before, the pixel displacement was used as an approximation towards the

vehicle velocity. If a calibration is done to find the correlation between the vehicle velocity

and D, the exact vehicle velocity can be measured by the sensor in addition to the side-slip

angle. This could supply ADAS with an alternative vehicle velocity measurement during

dynamic manoeuvres where the velocity determined by the wheel speed is complex and

generally unreliable such as during ABS braking.
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7. Conclusion

From the results obtained it is clear that the real-time implementation of the camera-

based side-slip angle sensor was successful. A maximum sampling frequency of 250Hz was

obtained. The mean error across measurements was 0.25 deg with a mean STD of 0.56 deg.

Although no direct comparison can be made between the camera based sensor and the com-

mercial sensor, a comparison can be made to previous results obtained that used the same

experimental setup. This proved that the camera-based sensor outperforms the commercial

sensor in accuracy and with lower noise bands. It also shows that, although no tests were

conducted on rough off-road terrains, the sensor will still outperform the commercial sensor

on these rough terrains since the algorithms are the same. Rough terrains also allow better

features to be identified and subsequently are easier to track. Supplementary tests showed

that the sensor could measure up to 100km/h which is close to highway speeds. This is also

far better than required for most off-road testing on rough terrain, showing excellent capa-

bilities. In conclusion, the camera based sensor successfully provides a cheaper alternative

to current methods by using inexpensive, off-the-shelf cameras with dedicated software.

Although the investigation was deemed successful, various improvements can be made.

Firstly, the cause for the reduction in features tracked at higher speeds can be identified.

This will improve the accuracy of the measurements at high speeds and possibly allow for

even higher operating speeds. The overlap can be increased by rotating the camera as to

allow the features to move along the width of the camera which has a larger field of view.

A variable focal length lens can be used to obtain better accuracy at both low and high

speed. The focal length can change depending on the vehicle velocity obtaining FOV that

is optimal for each vehicle speed. The sensor can be calibrated to determine the exact

relationship between the actual vehicle velocity and D (making the assumption that the

sensor is fixed to the vehicle and its position will not change), the system could provide the

velocity of the vehicle independent of other measurements.
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