Stock Optimisation for an online business offering niche products

Maringa, Palesa (PJ)

14069815
2018/09/27

Project Report submitted in partial fulfilment of the requirements for the module

BPJ 420 Project

at the

Department of Industrial and Systems Engineering
 University of Pretoria

© University of Pretoria

DECLARATION OF ORIGINALITY

Full names: Palesa Jeanine-Claudia Maringa

Student number: 14069815

Declaration

1. I understand what plagiarism is and I am aware of the University's policy in this regard.
2. I declare that this is my own original work
3. Where other people's work has been used (either from a printed source, internet or any other source) this has been carefully acknowledged and referenced in accordance with departmental requirements
4. I have not used another student's past work to hand in as my own
5. I have not allowed and will not allow, anyone to copy my work with the intention of handing it in as his/her own work

Signature: Palesa Maringa

(By typing my name, I pledge that I signed this declaration.)

EXECUTIVE SUMMARY

ABC Company is a retail business that offers a wide range of niche products. The company is an online business and delivers its products to customers nationwide via a courier. The customers peruse the products on the company's website and select the products that they wish to purchase, they then proceed to make an online payment and the products are delivered to them within four days.

A key performance area for the company is inventory management because they pride themselves in having difficult to source products readily available.

The purpose of this document is to define the problem that the company is currently experiencing and to develop a solution for the company. The solution is based on a literature review that was conducted on inventory management.

The problem that the company is facing is that they do not have a formal stock process to manage their inventory. As a result, they have an oversupply of some products and an undersupply of other products. The oversupply of the items causes the company to have high carrying costs and the undersupply causes the company to order products frequently which leads to high ordering costs. In essence, not having a formal stock process has caused the company to have high inventory costs and frequent stock outs have led to unsatisfied customers.

Two models (part A and part B) were formulated and built on MS Excel in order to solve the problem. Part A was the forecast model using multiple linear regression and part B was an inventory model using linear programming.
The forecast model will predict the customer demand and will take into consideration the seasonality and trend that exists in the demand. The linear programming inventory model will take the demand and inventory costs as an input and will give as an output the size of the order and when to place the order. products

TABLE OF CONTENTS

1. Background 1
1.1 Industry Background 1
1.2 Supply Chain Background 1
1.3 Company Background. 2
1.4 Process Background 2
2. Problem Statement 3
2.1 Problem definition 3
2.2 Problem Motivation 4
3. Project Aim 5
4. Scope of the project 5
4.1 Project Scope. 5
5. Literature Review 5
5.1 What is inventory? 5
5.2 Inventory Classifications 6
5.3 Inventory costs 6
5.4 Inventory Management 6
5.4.1 Importance of inventory management 6
5.4.2 Objectives of inventory management 7
5.4.3 Requirements for efficient inventory management 7
5.5 Inventory Models 8
5.5.1 Economic Order Quantity Model with deterministic demand 8
5.5.2 Fixed Interval Model (Uncertain Demand) 10
5.5.3 Dynamic Economic Lot Sizing (DEL) model 12
5.5.4 Markov Decision Model (Stochastic demand) 12
5.6 Inventory management summary 15
5.7 Literature Review Summary 16
6. Project Techniques 16
7. Data analysis 17
7.1 Sales Data 17
7.2 Costs Data 17
8. Alternative Solutions to solving the problem 18
8.1 Exponential Smoothing Vs. Multiple Linear Regression 18
8.1.1 Exponential Smoothing model formulation. 18
8.1.2 Multiple Linear Regression Model Formulation 19
8.1.3 Results for Exponential smoothing and multiple linear regression 20
8.1.4 Discussion of model comparison results and model selection 23
8.2 Fixed Interval Order Quantity model vs. Dynamic Economic Lot (DEL) Sizing using linear programming 25
8.2.1 Fixed Interval Order Quantity Model 25
8.2.2 DEL model using linear programming 25
8.2.3 Inventory model selection 25
8.3 Inventory model formulation 26
8.3.1 Model Assumptions 26
8.3.2 Model Variables and parameters 26
8.3.3 Model 26
8.3.4 Safety Stock 28
9. Proposed Solution Implementation 28
9.1 Model Implementation using item two's data 28
9.2 Item two results interpretation 34
9.2.1 Forecast model results for item two 34
9.2.2 Inventory Model results for item two 34
10. Model Validation 35
10.1 Forecast Model Validation 36
10.2 Inventory model Validation 37
11. Conclusion 40

LIST OF FIGURES

Figure 1 Option one of sourcing products 1
Figure 2 Option two of sourcing products 1
Figure 3 Option three of sourcing products 2
Figure 4 Out of stock items 3
Figure 5 Stock on hand vs. stock sold 4
Figure 6 EOQ Model 9
Figure 7 Fixed Order Quantity Model 10
Figure 8 Roadmap for solving problem deduced from literature review 16
Figure 9 Sales over three years 17
Figure 10 Actual Sales vs. Forecasted Sales for item one using triple smoothing 20
Figure 11 Actual Sales vs. Forecasted Sales for item 1 using multiple linear regression 21
Figure 12 Actual Sales vs. Forecasted Sales for item 2 using triple smoothing 21
Figure 13 Actual Sales vs. Forecasted Sales for item 2 using multiple linear regression 22
Figure 14 Actual Sales vs. Forecasted Sales for item 3 using triple smoothing 22
Figure 15 Actual Sales vs. Forecasted Sales for item 3 using multiple linear regression 23
LIST OF TABLES
Table 1 Item one forecast error results 24
Table 2 Item 2 forecast error results 24
Table 3 Item three forecast error results 24
Table 4 Ordering Costs for item two 31
Table 5 Holding Costs for item two 32
Table 6 Forecast Model results for item two 34
Table 7 Inventory model results for item two 35
Table 8 Supplier 4's observed values vs. forecasted values 36
Table 9 Inventory Costs and actual order size of three items for 2017 38
Table 10 Inventory Costs per item 38
Table 11 Model Results against Actual Results 39
ACRONYMS AND NOTATION
EOQ Economic Order Quantity
FIM Fixed Interval Model
MDM Markov Decision Model

Stock optimisation for an online business offering niche products

1. Background

The aim of the background is to describe the company environment and the current processes that are being used by the company to source and maintain their inventory.

1.1 Industry Background

ABC Company offers firearm accessories. The firearm industry is a regulated and volatile industry. In order to tap into the industry, one has to have a license to do so. The firearm industry can rely heavily on legislations and regulations.

1.2 Supply Chain Background

The company has three methods of sourcing their products. They can source their products either from a local agent, an international agent or directly from the factory.
The flow chart below depicts the first option that the company uses when sourcing their products.

```
A manufacturer in
either Europe or US
produces the products
```

ABC company sources the products from the local agent

Figure 1 Option one of sourcing products

The flow chart below depicts the second option that the company uses to source their products.

A manufacturer in the
USA or Europe produces the products

ABC company buys the products from the international agent

> An international agent buys the products from the manufacturer

Figure 2 Option two of sourcing products

The flow chart below depicts the third option that the company uses to source their products.
A manufacturer in the USA or Europe factory produces the products
 directly from the manufacturer

Figure 3 Option three of sourcing products

From the supply chains above, it is evident that the company sources many of their products internationally. This means that the lead times of the products are quite long and the company has to place orders in batches.

1.3 Company Background

The company was established five years ago. The company is an online business that provides a wide range of niche products to customers. The products are not produced by the company; instead, they sourced from various suppliers. In other words, the company buys and sells products.
The core competency of the company is having difficult to source products available at all times, this makes inventory management essential for the business.
The company is purely an online business, where customers browse through the website and purchase items of their choice. The payments are made online immediately after the items have been selected. The products are delivered to the customers within four days nationwide.

1.4 Process Background

The current stock process that the company is using is not a formalised one. It does not take any seasonality or trend into consideration. The stock process that the company uses is described below:

Step 1: Analysis of	
previous sales	
The previous sales	
for the past few	
months are	
analysed.	Step 2:Average Estimation From the analysis of sales, an average demand for each product is estimated.
Step 3: Order placement	
	The orders for each product are placed based on the average demand.
	The company orders the same amount of stock for the next six months without any
additional analysis.	

2. Problem Statement

2.1 Problem definition

The company is currently experiencing two problems because they do not have a formal stock process to manage their inventory.
The first problem is that they have too little stock of some items, which leads to products being out of stock on a regular basis. This means that their reputation of having difficult to source products available is at risk. Stock outs will lead to unsatisfied customers who will take their business to other establishments. Having stock outs also means that they have to reorder items on a regular basis, which leads to high ordering costs.
An analysis on the inventory stock showed that on average 34% of items were out of stock. The figure below illustrates the out of stock data.

Figure 4 Out of stock items products

The second problem that the company is experiencing is that they have too much stock of some items. Having too much stock means that the carrying costs are excessively high and capital is being tied up in inventory. If capital is being tied up in inventory, that means that it cannot be used elsewhere, which in essence impedes the growth of the business.
The figure below illustrates the stock on hand vs. how much of the stock was sold.

Figure 5 Stock on hand vs. stock sold

2.2 Problem Motivation

The impact that the problem has on the business is discussed below:

- The problem of experiencing stock outs on a regular basis has a major impact on the goodwill of the business. The company has established the reputation of having products readily available, and having stock outs will dismantle that reputation and the company will lose their customers.
- Stock outs also mean that the company has lost sales that they could have made had they had the products available.
- The company needs to grow on a yearly basis, and having too much stock impedes that growth. Capital that could have been used to grow the business is tied up in the inventory that is not being sold.
- Some products that remain in inventory for a long time lose their value and thus become
obsolete. If that occurs, then the company has lost a profit that they could have made. The problem has to be addressed immediately because the company is at risk of losing their customers because the firearm industry is a competitive industry.

3. Project Aim

The aim of this project is to do the following:

- Formulate and build a forecast model that will predict the demand of the products as accurately as possible. As opposed to just taking an average of the demand for the past few months, the model will take into consideration any trends in the demand.
- Formulate and build an inventory model that will minimise the total inventory costs.

4. Scope of the project

4.1 Project Scope

The project addresses the inventory management of the company. The main deliverable is to design a model that will indicate how much stock to order and when to order. The model has to help the company to minimise their inventory costs while satisfying the demand of the customers. The project does not include implementing the inventory model in the company; however, it does include handing over a mapped process illustrating how to use the model.

5. Literature Review

The purpose of this literature review is to provide background information about inventory management and possible techniques that can be used to solve inventory problems with stochastic demand in the retail industry. Various inventory model approaches with their advantages and disadvantages will be discussed.

5.1 What is inventory?

(Samak-Kulkarni and Rajhans, 2013) describes inventory as the stock of items or any resource used in a business, and an inventory system as the set of policies that control and maintain inventory levels.
(Nayak and Padhye) says inventory can also be defined as assets that are intended for sale or are in the process of being produced for sale. There are four main types of inventory namely finished goods, work in process, raw materials and maintenance and operating parts (Gulati). Each type of inventory serves its own purpose and is essential in an organisation.
According to (Farahani et al.), the reasons as to why organisations keep inventory are as follows:

- Inventory is essential for customer satisfaction.
- Inventory is used to protect an organisation against changes in customer demand and lead time.
- Inventory is kept to balance supply and demand, sometimes demand will be more than supply and vice versa so inventory is kept to address that balance.
- Inventory is kept to be used as a buffer in case there are unexpected events taking place
such as a strike.

5.2 Inventory Classifications

(Gulati) classifies inventory into three categories according to their usage rate. The categories are as follows:

1. Active inventory - Inventory that is used frequently in an organisation or inventory that has a high demand in an organisation and whose demand can be predicted.
2. Infrequently used inventory - These are items that are not as frequently used as the active inventory, but they are used a few times in the month and their demand can be predicted.
3. Rarely used inventory - These are items that are not used often or sold often in an organisation. Their demand cannot be predicted.
The reason why inventory is classified into different categories is because the manner in which the inventory is controlled and sourced is different for each category. It is therefore imperative to classify the inventory so that different strategies can be applied for each category.

5.3 Inventory costs

Inventory costs are those costs that are associated with the acquiring, storing and handling of inventory. The main types of inventory costs are the holding costs, ordering costs and shortage costs. A brief description of each type of cost is described below:

- Ordering costs: Costs that are incurred every time an order is placed (Salvendy).
- Holding costs: Costs that are associated with the holding and handling of inventory in the storage facility. The carrying cost can be expressed as the cost per unit of inventory per unit of time (Salvendy).
- Shortage costs: These are costs that are incurred if a sale was lost (Salvendy).

One of the main objectives of an organisation is to reduce the inventory costs (Yadav and Malik).

5.4 Inventory Management

5.4.1 Importance of inventory management

(Yadav and Malik) says holding and managing inventory in an efficient and effective manner is imperative for any organisation. If inventory is not properly managed and controlled, organisations will not be able to fulfil their demand, and this will result in poor customer satisfaction. The reputation of the business will be damaged, which might result in cancellation of orders that will in turn cause a loss for the business. The solution to avoid the problem described above is to control and maintain inventory through inventory management.
The project is about inventory management in a retail business. The leading source of revenue in a retail business is the sale of inventory, this implies that inventory that is held for the intention of selling is one of the biggest assets in a retail business (Stevenson, 2014) . It is therefore essential to manage inventory in an effective way because the longevity of the business relies heavily on inventory management. products

5.4.2 Objectives of inventory management

(Stevenson, 2014) discusses how inadequate management of inventory can lead to both under and overstocking of items. Understocking will lead to loss of sales and unsatisfied customers, while overstocking will result in capital being tied up in inventory and excessive carrying costs.
In order to alleviate the problems described above,(Stevenson, 2014) describes the two main objectives of inventory management as follows:

1. Achieve customer satisfaction by having the right amount of items at the right time.
2. Keep the inventory costs within reasonable bounds.

5.4.3 Requirements for efficient inventory management

The following information has to be taken into consideration in order to have an effective inventory management system (Stevenson, 2014):

- A dependable forecast system that will forecast the demand of the products.
(John J Coyle, 2016) discusses the following about forecasts:
- A major component in inventory management is to forecast the demand that will be required by the customers.
- There are several techniques that are used to forecast the demand, but it is important to note that all forecasts are wrong and not 100% accurate.
- An important factor in forecasting is the forecast error. The key to successful forecasting is minimizing the error between the actual demand and the forecasted demand.
- There are four types of forecast error methods that can be used to analyse the errors, namely the cumulative sum of forecast errors (CFE), the mean squared error (MSE), the mean absolute deviation (MAD) and the mean absolute percent error (MAPE).
- Forecasting techniques that can be used are the simple moving average, the weighted moving average, exponential smoothing, exponential smoothing with a trend and multiple linear regression. The exponential smoothing with trend technique is used for demand patterns that have seasonality.
- Knowledge about the lead times and the lead time variability.
- The lead time is the time interval between when an order is placed and when the order arrives.
- Information about the lead time is a requirement because you need to know how much safety stock to keep, while waiting for the order to arrive.
- Estimates of the inventory costs.
- The inventory costs are a requirement in any inventory problem because one of the objectives of inventory management is to minimise the costs.
- Classification of the inventory into different categories.
- Different control measures are applied to the different categories.

In conclusion, in order to have an efficient inventory management system, a demand forecast system with minimum error is required. The demand forecast system will predict the customer demand as accurately as possible. Information about the inventory costs and lead time is required in order to plan for inventory.

5.5 Inventory Models

Inventory models answer the question of how much to order and when to order, this addresses the inventory management objectives of customer satisfaction and cost minimisation. (Yadav and Malik) states that the following factors need to be considered when working with inventory models:

1) Demand: Demand is the number of items that are required in each period. The demand is a key factor when determining which inventory model to use. The demand can be known (deterministic) or it can be unknown (probabilistic). (Samak-Kulkarni and Rajhans, 2013) splits the demand pattern into four types:

- Deterministic and static with time
- Deterministic and dynamic with time
- Probabilistic and static with time
- Probabilistic and dynamic with time

2) Lead time: The time interval between placing the order and receiving the order.
3) Order Cycle: The time interval between the placement of two successive orders.
4) Periodic Review: In a periodic review, the inventory levels are inspected at regular time intervals. Orders are placed during said time intervals based on the inventory level at the time of the inspection.
5) Continuous Review: In a continuous review, the inventory levels are checked on continuous basis until the reorder point is reached. Orders are placed at the reorder point.
Various inventory models are going to be discussed below.

5.5.1 Economic Order Quantity Model with deterministic demand

The economic order quantity (EOQ) model is one of the oldest and most commonly used models in inventory control.

The image below depicts the EOQ model. The figure shows how an EOQ model works. The same quantity of inventory is ordered at the reorder point. The item is consumed on a constant rate, when it reaches the reorder point, the optimal quantity is ordered. The lead time is constant.

Figure 6 EOQ Model (Gulati)

The traditional EOQ model was introduced by Ford W. Harris in 1915 (Farahani et al.). The EOQ model is a deterministic model and has the following assumptions (Yadav and Malik) :

- The demand is known and it is constant.
- Shortages are not allowed.
- The product has abundant availability.
- Lead time is constant.
- The holding cost is equal to the unit cost times the inventory carrying charge expressed as a percentage.
(Farahani et al.) uses the following notations to represent the model:
$\mathrm{U}=$ unit cost of the item
$H=$ Holding cost of one unit for one period of time
$\mathrm{Q}=$ order quantity (the optimal quantity)
T = cycle time
D = demand of the item
$R=$ order cost of the item
$Q=\sqrt{\frac{2 D R}{H}}$
The total costs are calculated as follows:
$T C=\frac{Q}{2} H+\frac{D}{Q} R$
TC = total costs (in Rands)
Previous studies have shown that the traditional EOQ model is impractical due to the assumptions that are made in the model (Chuang and Chiang, 2016). Due to the firearm industry's volatile nature, the traditional EOQ model is not sufficient to address the problem because it assumes that the demand is static and deterministic.

5.5.2 Fixed Interval Model (Uncertain Demand)

Most organisations do not operate under the certain demand assumption, particularly the retail industry.
The image below depicts the fixed interval model. From the image, it can be concluded that the demand is not constant. In a fixed order quantity model, the orders are placed at a fixed interval, however the order quantity changes and is not fixed (Stevenson, 2014).

Figure 7 Fixed Order Quantity Model (John J. Coyle, 2016)
(Stevenson, 2014) states that the reasons why companies use the Fixed interval model are the following:

- The fixed interval model assumes that the demand is not constant, which is more realistic
for many companies.
- A supplier's policy may require the organisation to order at fixed intervals.
- Grouping the orders for items from the same supplier will result in cost saving. The organisation will save on ordering costs.
(John J Coyle, 2016) describes the reorder point as the on hand level of inventory that is required to satisfy demand during the lead time. With uncertainty of demand taken into consideration, the reorder must be calculated to include the safety stock that is needed. The reorder point will therefore be the average demand needed during lead time plus the safety stock.

According to(John J Coyle, 2016), the following assumptions are made for the FIQ model:

- Lead time is constant
- A constant cost that is independent of time
- Infinite planning horizon
- The demand has either a discrete distribution or a continuous distribution

In an FIQ model, an organisation has to determine a range of demand values during lead time and the probability associated with the demand value. The FIQ model will discrete distribution will be discussed in this literature review.

FOQ Model for discrete distribution

(John J Coyle, 2016) describes the FIQ Model with discrete distribution as a model that assumes that the demand (Demand = D) is uncertain, but ranges between two discrete values ($a<D<$ b). The probability distribution of the demand ranging between a and b is known.

The orders in a FIQ model are placed on fixed intervals. This implies that there is a possibility of having stock outs or excess inventory.
The following notations are denoted for an FIQ model:
$\mathrm{Q}=$ quantity ordered
$\mathrm{D}=$ demand in units
H = inventory carrying cost
$\mathrm{O}=$ ordering cost
e $=$ expected excess in units
$\mathrm{g}=$ expected shorts in units
$\mathrm{k}=$ stock out cost in rands per unit stocked out
$\mathrm{G}=\mathrm{gk}=$ expected stock out cost per cycle
$G\left(\frac{\mathrm{D}}{\mathrm{Q}}\right)=$ expected cost out per year
eH = expected carrying cost per year for excess inventory
The total costs are calculated as:
$\mathrm{TC}=\frac{1}{2} \mathrm{QH}+\mathrm{O} \frac{\mathrm{D}}{\mathrm{Q}}+\mathrm{eH}+\mathrm{G} \frac{D}{Q}$

5.5.3 Dynamic Economic Lot Sizing (DEL) model

(Agra and Poss, 2018) propose another type of inventory model that can be used to solve inventory problems. The model considers the fact that the demand is uncertain and is more realistic. Three techniques can be used to solve the inventory problem with this model namely:

- Linear Programming
- Dynamic Programming
- Heuristics

5.5.4 Markov Decision Model (Stochastic demand)

(Mubiru, 2010)describes the markov decision model as a model that adopts the markov decision process approach. The markov chain represents the possible demand in different states. The decision of purchasing additional inventory is made using dynamic programming.

The following model development is described by (Mubiru, 2010).

Model formulation

The demand in each period is classified as either favourable or unfavourable, and we assume that the demand in a period is dependent on the demand of the preceding period. The transition probabilities from one demand state to another is described by a markov chain.
The demand is modelled as a markov chain.
$\left.Q^{S}=\begin{array}{rc}F \\ U\end{array} \begin{array}{ll}Q^{S}{ }_{F F} & Q^{S}{ }_{F U} \\ Q^{S}{ }_{U F} & Q^{S}{ }_{U U}\end{array}\right]$
$Q_{i j}^{S}$ is the probability of a transition in demand from state i to state j .
The number of customers is denoted as:

$$
\left.N^{S}=\begin{array}{rc}
F & U \\
U
\end{array} \begin{array}{rc}
N^{S}{ }_{F F} & N^{S}{ }_{F U} \\
N^{S}{ }_{U F} & N^{S}{ }_{U U}
\end{array}\right]
$$

The demand is denoted as:

$$
\left.D^{S}=\begin{array}{rc}
F & U \\
U
\end{array} \begin{array}{rc}
D^{S}{ }_{F F} & D^{S}{ }_{F U} \\
D^{S}{ }_{U F} & D^{S}{ }_{U U}
\end{array}\right]
$$

The quantity of stock is denoted as:

$$
Y^{S}=\begin{array}{rr}
F & U \\
U
\end{array}\left[\begin{array}{cc}
Y^{S}{ }_{F F} & Y^{S}{ }_{F U} \\
Y^{S}{ }_{U F} & Y^{S}{ }_{U U}
\end{array}\right]
$$

The cost is denoted as:

Where,
$S=$ lot sizing policy where $S=0$ represents no additional stock being purchased and $S=1$ represents stock being purchased.
$\mathrm{U}=$ The favourable condition
$F=$ The unfavourable condition
The expected total future cost is denoted as $w_{i}^{s}=$ transpose of $\left[w_{F}^{s}, w_{u}^{s}\right]$ and the accumulated total cost at the end of period 1 is denoted by $a_{i}^{S}=$ transpose of $\left[a_{F}^{S}, a_{u}^{s}\right]$.
The following dynamic programming model can be formulated in order to solve the problem:
Let $C_{n}(i)$ be the optimal total expected inventory cost accumulated during the periods $\mathrm{n}=1,2$,3....., N
$c_{n}(i)=\min _{S}\left\{Q^{S}{ }_{i F}\left(T^{S}{ }_{i F}+c_{n+1}(F)\right), Q^{S}{ }_{i U}\left(T^{S}{ }_{i U}+c_{n+1}(U)\right)\right\}, i \in\{F, U\}, n=1,2, \ldots, N$
$w^{s}=Q^{S}\left(\left[T^{s}\right]\right)^{T}, S \in(0,1)$
Where T represents the transpose of the matrix. The total optimal expected cost will therefore be:
$c_{n}(i)=\min _{S}\left\{w^{S}{ }_{i}+\left(Q^{S}{ }_{i F} c_{n+1}(F)\right)+Q^{S}{ }_{i U} c_{n+1}(U)\right\}, i \in\{F, U\}, n=1,2, \ldots, N-1$
$c_{N}(i)=\min _{S}\left\{w^{S}{ }_{i}\right\}, i \in\{F, U\}$
Q^{S}, T^{S} and p^{s} are therefore computed as:
$Q^{S}{ }_{i j}=\frac{N^{S}{ }_{i j}}{N^{S}{ }_{i F}+N^{S}{ }_{i U}}, i \in\{F, U\}, S \in\{0,1\}$
$T^{S}{ }_{i j}=\left\{\begin{array}{c}\left(c_{p}+c_{h}+c_{s}\right)\left(D^{S}{ }_{i j}-Y^{S}{ }_{i j}\right) \quad \text { if } D^{S}{ }_{i j}>Y^{S}{ }_{i j} \\ 0 \quad \text { if } D^{S}{ }_{i j} \leq Y^{S}{ }_{i j}\end{array}\right.$
$p^{S}{ }_{i}=\left(D^{S}{ }_{i F}-Y^{S}{ }_{i F}\right)+\left(D^{S}{ }_{i U}-Y^{S}{ }_{i U}\right), i \in\{F, U\}, S \in\{0,1\}$

The optimal strategy at time period 1

When the demand is favourable during period 1 , the optimal lot sizing and the inventory costs will be:
$S=\left\{\begin{array}{l}1 \text { if } w^{1}{ }_{F}<w^{0}{ }_{F} \\ 0 \text { if } w^{1}{ }_{F} \geq w^{0}{ }_{F}\end{array}\right.$
and,
$c_{1}(F)=\left\{\begin{array}{l}w^{1}{ }_{F} \text { if } S=1 \\ w^{0}{ }_{F} \text { if } S=0\end{array}\right.$

When the demand is unfavourable, the optimal lot sizing policy and the inventory costs will be:
$S=\left\{\begin{array}{l}1 \text { if } w^{1}{ }_{U}<w^{0}{ }_{U} \\ 0 \text { if } w^{1}{ }_{U} \geq w^{0}{ }_{U}\end{array}\right.$
and,
$c_{1}(U)=\left\{\begin{array}{l}w^{1}{ }_{U} \text { if } S=1 \\ w^{0}{ }_{U} \text { if } S=0\end{array}\right.$

The optimal strategy for time period 2

The accumulated costs at the end of period 1 will be:

$$
\begin{aligned}
a^{S}{ }_{i} & =w^{S}{ }_{i}+Q^{S}{ }_{i F} \min \left\{w^{1}{ }_{F}, w^{0}{ }_{F}\right\}+Q^{S}{ }_{i U} \min \left\{w_{U}^{1}, w^{0}{ }_{U}\right\} \\
& =w^{S}{ }_{i}+Q^{S}{ }_{i F} c_{1}(F)+Q^{S}{ }_{i U} c_{1}(U)
\end{aligned}
$$

This implies that during time period 2 , when the demand is favourable, the optimal lot sizing policy will be:
$S=\left\{\begin{array}{l}1 \quad \text { if } a^{1}{ }_{F}<a^{0}{ }_{F} \\ 0 \quad \text { if } a^{1}{ }_{F} \geq a^{0}{ }_{F}\end{array}\right.$
The corresponding inventory costs will be:
$c_{2}(F)=\left\{\begin{array}{l}a^{1}{ }_{F} \text { if } S=1 \\ a^{0} \text { if } S=0\end{array}\right.$

When the demand is unfavourable, the corresponding optimal lot sizing policy and inventory costs will be:
$S= \begin{cases}1 & \text { if } a^{1}{ }_{2}<a^{0}{ }_{2} \\ 0 & \text { if } a^{1}{ }_{2} \geq a^{0}{ }_{2}\end{cases}$
and,
$c_{2}(U)=\left\{\begin{array}{l}a^{1}{ }_{U} \text { if } S=1 \\ a^{0}{ }_{U} \text { if } S=0\end{array}\right.$
The model described by (Mubiru, 2010) considers a two period planning horizon ($\mathrm{N}=2$). The advantage of using this model is that it considers the fact that the demand is stochastic and it can be used for real life problems. The disadvantage of the model is that it only considers a two period planning horizon which makes it restricted.

5.6 Inventory management summary

Inventory management has two objectives:

1. Achieve customer satisfaction

2 Minimise inventory costs

The requirements for inventory management will be used as inputs in inventory models.
Inventory models address the objectives of inventory management by determing how much to order and when to order.

The requirements for effective inventory management are:

1. Demand forecast system
2. Lead time and lead time variability
3. Estimation of costs
4. Classification of inventory

The main factors to consider when deciding on an inventory model are:

1. Demand
2. Lead time
3. Cycle Order
4. Continuous Review
5. Periodic Review

A Fixed order interval model was discussed for uncertain demand

An EOQ model was discussed for deteministic demand

A markov decision and DEL model were discussed for uncertain demand

5.7 Literature Review Summary

The literature review highlighted very important factors that need to be taken into consideration when solving an inventory problem. These factors provided a roadmap for solving the problem that the company is currently experiencing. The roadmap is highlighted in the figure below.

-As a starting point, the company wants to focus on the fast moving items. The ABC analysis will highlight which items they need to focus on.

-The following forecast models can be considered when developing the solution to the problem:

- Moving Average
\bullet Exponential Smoothing with seasonality and trend
- Multiple Linear Regression

-The information about the costs and lead time will be used as inputs in the inventory model.

- The inventory model will determine when to place an order and how much to order. The type of inventory model used will depend on the demand.

Figure 8 Roadmap for solving problem deduced from literature review

6. Project Techniques

The following Industrial Engineering techniques will be used to approach the problem:

* Inventory management as the main technique. The other tools that fall under inventory management that will be used are:
- $A B C$ analysis to classify the inventory
- Cost Analysis
- Demand Forecasting using exponential smoothing and multiple linear regression
- Lot sizing using linear programming

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA UNIVERSITY OF PRETORIA products

7. Data analysis

The purpose of this section is to indicate what type of data is going to be used and how it is going to be used in the project.

7.1 Sales Data

The sales data is going to be used to firstly determine what trend the data follows and secondly to forecast the demand for the items. It is important to understand the data because it will help determine what type of demand we have, which will help in making decisions such as what type of forecast model to build.
An analysis was done on the sales for all the products sold in each month for 2015,2016 and 2017 to establish if the sales data has any trends or patterns that it follows.

The image below indicates the analysis on orders created per month for the years 2016 and 2017.

Sales for all products in 2015,2016 and 2017

Figure 9 Sales over three years

The demand has peak periods and off peak periods, and it is increasing over time. This indicates that there is seasonality and trend in the data. The graph also indicates the demand is uncertain. This information is going to help determine what type of inventory model and forecast model is going to be selected to solve the problem.

7.2 Costs Data

Estimations for inventory costs are required in order to execute the project. The inventory costs will be used as inputs in the model.

8. Alternative Solutions to solving the problem

The aim of this project is to develop an inventory management process that the company can use to reduce their inventory costs while meeting the demand of the customers. A way of achieving this is to build a forecast model and an inventory model. The forecast model will predict the demand for a 12-month planning period and it will take into consideration the seasonality and the trend that exists in the demand. The inventory model will suggest optimal quantities and when to order the quantities in order to minimise the total inventory costs. In essence, the two models will work together; the demand predicted from the forecast model will be used as an input in the inventory model.
This section will focus on comparing two forecast models and selecting the best one, and also comparing two inventory models and selecting the best one. The best two models will then be the combined solution for this project.
It is important to note that an $A B C$ analysis was performed in order to segment the inventory. The testing and validating of the models was based on selected A items, and the analysis will be used by the company to understand their inventory better and to start controlling their inventory based on the $A B C$ segmentation. The $A B C$ analysis can be found in appendix B.

8.1 Exponential Smoothing Vs. Multiple Linear Regression

As discussed in the paper, the project solution will consist of two models. The forecast model being the first part and the inventory model being the second part. The objective of the forecast model is to predict the demand as accurately as possible. It is important to note that a forecast model is merely a prediction and it can never be 100% accurate. The key in building forecast models is to minimise the error between the forecasted values and the actual values.
Exponential smoothing with seasonality and trend (also known as triple smoothing) and multiple linear regression were the two forecast models that were considered. This section of the report will discuss the model formulation of both the triple smoothing and multiple linear regression methods and which model was selected and why it was selected.

8.1.1 Exponential Smoothing model formulation

Model Variables and Parameters

The variables in the forecast model are what we are calculating. They are the unknown variables that the model will give back as outputs.
Let:
$L_{t}=$ The level at time t
$T_{t}=$ The trend at time t
$S_{t}=$ The seasonality at time t
$f_{t, r}=$ The forecasted demand at time t, r time steps ahead
Parameters are values that are used in the model that do not change. The triple smoothing model has three parameters, namely the alpha (α), beta (β) and gamma (Y) constants. For the model in this project, the smoothing constants were determined using the solver in excel.

Let:
$\alpha=0,229193$
$\beta=0,024444$
$Y=0,997839$

Equations used for the forecast model

The equations used to determine the variables are detailed below:
$L_{t}=\alpha x_{t} / s_{t}+(1-\alpha)\left(L_{t-1}+T_{t-1}\right)$
$T_{t}=\beta\left(L_{t}-L_{t-1}\right)+(1-\beta)\left(T_{t-1}\right)$
$S_{t}=\Upsilon X_{t} / L_{t}+(1-\Upsilon)\left(S_{t}\right)$
$f_{t, r}=\left(L_{t}+r T_{t}\right)\left(S_{t}\right)$

Forecast Model Explanation

The sales data analysis exhibited trend and seasonality traits. In order to build a forecast model, the level, trend and seasonality have to be initialised. This means that we need the values of the aforementioned variables at time step zero.
The sales data was given for four years (2014-2017). The sales data for 2014 and 2015 were used to initialise the trend, level and the seasonality. The initialised values are used to calculate the level, trend and seasonality for time period 1. A forecast for time period t is calculated from the aforementioned variables, as seen in equation (4).
Once the model runs, the variables are updated for the time period being considered, using equation (1), (2) and (3) and used to forecast the demand in the time period that is being considered. The model inputs are the historic demand values for the products. The model gives back trend, seasonality, level and the forecasted demand as outputs.

8.1.2 Multiple Linear Regression Model Formulation

In multiple linear regression, we use multiple variables to predict the demand of the customers. The explanatory variables are the variables that will be used to predict the demand. In this project, the explanatory variables are the time period, which takes the trend into consideration and the seasonal variables.

Model Variables and Parameters

There is only one unknown variable, which is the demand.
Let:
$Y_{i}=$ The predicted demand in month i where, $i=\{1,2,3,4,5,6,7,8,9,10,11,1,2\}$
The parameters in the model are dynamic and depend on the historic demand data. The parameters will be different for each product in the company. For the seasonality variables, there will be 12 seasonal variables for 12 months.
Let:
$\alpha_{i}=$ The coefficient for the seasonality in month i where $i=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
$\beta=$ The coefficient for the slope (predicts the trend)
$\Upsilon=$ The intercept

Stock Optimisation for an online business offering niche

 products
Model Inputs

$X=$ The time period
$K_{p i}=\left\{\begin{array}{c}1 \text { if predicting for season } \mathrm{p} \\ 0 \text { if not predicting for season } \mathrm{p}\end{array}\right.$, where $p=\{1,2,3,4,5,6,7,8,9,10,11,12\}$

Equation used for the model

$Y_{i}=\Upsilon+X \beta+K_{1 i} \alpha_{1}+K_{2 i} \alpha_{2}+K_{3 i} \alpha_{3}+K_{4 i} \alpha_{4}+K_{5 i} \alpha_{5}+K_{6 i} \alpha_{6}+K_{7 i} \alpha_{7}+K_{8 i} \alpha_{8}+K_{9 i} \alpha_{9}+$ $K_{10 i} \alpha_{10}+K_{11 i} \alpha_{11}+K_{12 i} \alpha_{12}$

8.1.3 Results for Exponential smoothing and multiple linear regression

The models were built on MS excel and they were tested using three selected A items which are the company's fast selling items and bring in the most profit in the business. The comparison for both of the models will be discussed in this section.

The image below depicts the actual demand vs. the forecasted demand for item one using exponential smoothing over three years.

Figure 10 Actual Sales vs. Forecasted Sales for item one using triple smoothing

The image below depicts the actual demand vs. the forecasted sales for item 1 using multiple linear regression over three years.

Figure 11 Actual Sales vs. Forecasted Sales for item 1 using multiple linear regression

The image below depicts the actual sales vs. the forecasted sales for item 2 using exponential smoothing over two years. The actual sales are the actual demand for item 2 and the forecasted sales are the predicted demand value using the triple smoothing model.

Figure 12 Actual Sales vs. Forecasted Sales for item 2 using triple smoothing

Stock Optimisation for an online business offering niche

The image below depicts the actual sales vs. the forecasted sales for item 2 using multiple linear regression over two years.

Figure 13 Actual Sales vs. Forecasted Sales for item $\mathbf{2}$ using multiple linear regression

The image below depicts the actual sales vs. the forecasted sales for item 3 using exponential smoothing over two years.

Figure 14 Actual Sales vs. Forecasted Sales for item 3 using triple smoothing

```
Stock Optimisation for an online business offering niche products
```

The image below depicts the actual sales vs. the forecasted sales. The actual sales are the actual demand for item 3 and the forecasted sales are the predicted demand value using the multiple linear regression model.

Actual Sales vs Forecasted Sales for Item 3 using mulitple linear regression

Time Period
\longrightarrow Sales (in units) \quad Forecasted Sales

Figure 15 Actual Sales vs. Forecasted Sales for item 3 using multiple linear regression

8.1.4 Discussion of model comparison results and model selection

(John J. Coyle, 2016) states that the forecast error during any period is calculated as the actual value minus the forecasted value. There are different forecast error methods that can be used to compare the observed value and the predicted value. Three methods were used to analyse the forecast errors for the triple smoothing method and the multiple linear regression method, namely the mean squared error (MSE), the mean absolute deviation (MAD) and the mean absolute percentage error (MAPE).

The formulas for the error methods are listed below:
MSE $=\frac{\sum E_{t}{ }^{2}}{n}$
MAD $=\frac{\sum\left|E_{t}\right|}{n}$
MAPE $=\frac{100 \sum\left|E_{t}\right| / D_{t}}{n}$
Where,
$E_{t}=$ The error in time period t
$D_{t}=$ The actual demand in time period t
$n=$ The number of periods
The three different methods were calculated for each model and each supplier.

The table below depicts the results of the forecast error methods for supplier one. It can be concluded from these results that multiple linear regression is the best method because it has the least error from all of the methods.

Table 1 Item one forecast error results

Item one		
Forecast Error Method	Exponential Smoothing	Multiple Linear Regression
Mean Squared Error (MSE)	102,56	5,38
Mean Absolute Deviation (MAD)	7,43	1,93
Mean Absolute Percentage Error (MAPE)	72,52	18,95

The table below depicts the results of the forecast error methods for item two. It can be concluded from these results that multiple linear regression is the best method because it has the least error from all of the methods.

Table 2 Item two forecast error results

Item two		
Forecast Error Method	Exponential Smoothing	Multiple Linear Regression
Mean Squared Error (MSE)	4136,14	1495,79
Mean Absolute Deviation (MAD)	39,27	25,97
Mean Absolute Percentage Error (MAPE)	88,52	53,83

The table below depicts the results of the forecast error methods for item three. It can be concluded from these results that multiple linear regression is the best method because it has the least error from all of the methods.

Table 3 Item three forecast error results

Item three		
Forecast Error Method	Exponential Smoothing	Multiple Linear Regression
Mean Squared Error (MSE)	864,70	43,83
Mean Absolute Deviation (MAD)	20,30	5,30
Mean Absolute Percentage Error (MAPE)	106,74	65,93

In order to compare the two forecast models, three items were analysed using both models. The models forecasted the demand for each item and the results were compared against the observed
demand and depicted with line graphs. From the visual depiction of the results, it was clear that the multiple linear regression model was the better model.
For an accurate and fair decision to be made, three forecast error methods were used to analyse the errors of both models for all three items. All three methods indicated that the multiple linear regression model produces demand forecast values with the least error.

The model that was selected as a solution to the problem is the multiple linear regression model because of the aforementioned reasons.

8.2 Fixed Interval Order Quantity model vs. Dynamic Economic Lot (DEL) Sizing using linear programming

The sales data indicated that the demand is not certain. The literature review revealed that there are many inventory models that can be considered when there is uncertain demand. This section of the report focuses on reviewing two approaches that can be used to solve inventory management problems that deal specifically with uncertain demand. The two approaches that will be discussed are the DEL model using linear programming and the fixed interval order quantity model.

8.2.1 Fixed Interval Order Quantity Model

(Stevenson, 2014) states that the fixed interval order quantity model is used when the demand is variable. The orders are placed on fixed intervals, but the order size varies from cycle to cycle. This model is demand sensitive. The disadvantage of the model is that if you order on a fixed interval, there is a possibility that stock might run out because the order interval is fixed; a lot of carrying stock is needed.
The demand as seen in the sales graph is very dynamic. It follows a certain pattern every year but it is very erratic. Using the fixed interval order model will be a disadvantage because there is a high possibility of running out of stock during the cycle time. The order interval is fixed and leaves no room for creativity and moving the reorder points continuously based on the demand.

8.2.2 DEL model using linear programming

The DEL model is also used when dealing with uncertain demand as well. The difference with this model is that the order size and the reorder point are both dynamic. They change every cycle depending on what the demand is.

8.2.3 Inventory model selection

The model that will be used to solve the problem is the dynamic economic lot sizing (DEL) model using linear programming. The reasons as why the method was selected is listed below:

- The demand is uncertain.
- The demand follows a certain trend and seasonality. The seasonality can be seen through the sales analysis, where the data follows a certain pattern every 12 months.
- The (DEL) model is a dynamic model which is used when there is uncertain demand in the system. It will meet the objective of minimising total inventory costs, while making sure that demand is met in each month.
- The linear programming method is easy to build and implement using open office excel, which the client has access to.
- The order size and reorder point will be different every cycle, which will accommodate the dynamic demand.

8.3 Inventory model formulation

The objective of the inventory model is to find optimal order quantities that will minimise the total inventory costs. For this project, the total inventory costs are the ordering costs and the carrying costs.
Linear programming was used to formulate the inventory model.

8.3.1 Model Assumptions

- The model assumes that the demand is met in all the time periods, i.e. there are no shortages.
- There are no backorders.
- An order is only placed once all of the demand has been depleted.
- The planning period is 12 months.
- The order quantity is placed at the beginning of the month.
- The order quantity will be a summation of the demand in k periods.

8.3.2 Model Variables and parameters

Variables

Let:
$Y_{i} \triangleq\left\{\begin{array}{c}1 \text { if we place an order in month i } \\ 0 \text { if we do not place an order in month i }\end{array} ;\right.$ The variable that determines if we place an order in month i, where $i=\{1,2, \ldots, 12\}$
$x_{i} \triangleq$ The order quantity in month i, where $i=$ month $\{1,2, \ldots, 12\}$

Parameters

The parameters for the model are the carrying costs and the ordering costs. These are different for every supplier.
$s=$ ordering costs
$c=$ carrying costs

8.3.3 Model

Explanation of objective function

The objective function of the model is divided into two parts. The parts will be explained and derived in the next paragraph.

Part A

$\sum_{i=1}^{12} s Y_{i} \Longrightarrow$ This part describes the ordering costs. It is a summation over 12 time periods. If an order is place for month i, where $i=\{1,2, \ldots ., 12\}$, the variable will be one and the cost will
be included in the summation. If an order is not placed, the variable will be zero and the ordering cost will therefore be excluded from the summation.

Part B

$c\left(12 x_{1}+11 x_{2}+10 x_{3}+9 x_{4}+8 x_{5}+7 x_{6}+6 x_{7}+5 x_{8}+4 x_{9}+3 x_{10}+2 x_{11}+x_{12}\right)$
Part B was calculated using ending inventory denoted as E. The carrying costs are associated with inventory that is in stock. The ending inventory E at the end of each month was formulated as follows:
$E_{i}=$ Ending inventory at the end of month i where $i=\{1,2,3, . ., 12\}$
$D_{i}=$ Demand required in month i where $i=\{1,2,3, . ., 12\}$
Month 1: $E_{1}=X_{I}-D_{1}$
Month 2: $E_{2}=X_{I}+X_{2}-D_{1}-D_{2}$
Month 3: $E_{3}=X_{I}+X_{2}+X_{3}-D_{1}-D_{2}-D_{3}$
Month 4: $E_{4}=X_{I}+X_{2}+X_{3}+X_{4}-D_{1}-D_{2}-D_{3}-D_{4}$
Month 5: $E_{5}=X_{I}+X_{2}+X_{3}+X_{4}+X_{5}-D_{1}-D_{2}-D_{3}-D_{4}-D_{5}$
Month 6: $E_{6}=X_{I}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}-D_{1}-D_{2}-D_{3}-D_{4}-D_{5}-D_{6}$
Month 7: $E_{7}=X_{I}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}-D_{1}-D_{2}-D_{3}-D_{4}-D_{5}-D_{6}-D_{7}$
Month 8: $E_{8}=X_{I}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}+X_{8}-D_{1}-D_{2}-D_{3}-D_{4}-D_{5}-D_{6}-D_{7}-D_{8}$
Month 9: $E_{9}=X_{I}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}+X_{8}+X_{9}-D_{1}-D_{2}-D_{3}-D_{4}-D_{5}-D_{6}-$ $D_{7}-D_{8}-D_{9}$
Month 10: $E_{10}=X_{I}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}+X_{8}+X_{9}+X_{10}-D_{1}-D_{2}-D_{3}-D_{4}-D_{5}-$ $D_{6}-D_{7}-D_{8}-D_{9}-D_{10}$
Month 11: $E_{11}=X_{I}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}+X_{8}+X_{9}+X_{10}+X_{11}-D_{1}-D_{2}-D_{3}-D_{4}-$ $D_{5}-D_{6}-D_{7}-D_{8}-D_{9}-D_{10}-D_{11}$
Month 12: $E_{12}=X_{I}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}+X_{8}+X_{9}+X_{10}+X_{11}+X_{12}-D_{1}-D_{2}-$ $D_{3}-D_{4}-D_{5}-D_{6}-D_{7}-D_{8}-D_{9}-D_{10}-D_{11}-D_{12}$

The summation of the ending inventory for all 12 months $=E_{1}+E_{2}+E_{3}+E_{4}+E_{5}+E_{6}+E_{7}+$ $E_{8}+E_{9}+E_{10}+E_{11}+E_{12}$
This summation will therefore be:

$$
\begin{aligned}
& 12 x_{1}+11 x_{2}+10 x_{3}+9 x_{4}+8 x_{5}+7 x_{6}+6 x_{7}+5 x_{8}+4 x_{9}+3 x_{10}+2 x_{11}+x_{12}-12 D_{1}- \\
& 11 D_{2}-10 D_{3}-9 D_{4}-8 D_{5}-7 D x_{6}-6 D_{7}-5 D_{8}-4 D_{9}-3 D+2 D_{11}-D_{12}
\end{aligned}
$$

The equation above represents the summation of the ending inventory for 12 months. The equation was used in the objective function to minimise the total carrying costs for 1 year. The demand D_{i} was excluded in the objective function because it is a known variable.

Objective Function

$\operatorname{Min} \sum_{i=1}^{12} s Y_{i}+c\left(12 x_{1}+11 x_{2}+10 x_{3}+9 x_{4}+8 x_{5}+7 x_{6}+6 x_{7}+5 x_{8}+4 x_{9}+3 x_{10}+\right.$ $2 x_{11}+x_{12}$)

Constraints

$\sum_{n=1}^{i} X_{n} \geq \sum_{n=1}^{i} D_{n}$ for all $i=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
(This constraint ensures that the demand is met every month for all months)
$X_{i} \leq M Y_{i}$ for all $i=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
(This constraint links the binary variable to the integer variable)
$Y_{i}=\{0,1\}$ (Binary Variable) for all $i=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
$X_{i}=$ integer for all $i=\{1,2,3,4,5,6,7,8,9,10,11,12\}$

8.3.4 Safety Stock

(Stevenson, 2014) states that safety stock protects against stock outs. It is kept in storage to protect against any stock outs that many occur due to discrepancies in demand forecasts and problems during lead time.
The safety stock for this project will not affect the inventory model. It is calculated and ordered at the beginning of the year together with the first order of the year. The safety stock for each item will be different. It will remain in storage until it is needed to balance the inventory levels.

The safety stock is calculated as follows:
Safety stock $=$ (maximum daily usage \times maximum lead time) - (Average daily usage \times average lead time)

9. Proposed Solution Implementation

9.1 Model Implementation using item two's data

The aforementioned multiple linear regression model and the inventory model that were formulated form a combined solution for this project. The two models were built on MS Excel.

In order to illustrate how the combined model works and how it will be used in the company going forward, item two is going to be used as an example to plan for this years (2018) inventory. The model will produce results which will then be interpreted.

* Step 1: Part 1 is using the forecast model. Pull up the historic data for item two. The data was condensed to the year, month and demand for confidentiality reasons.

Stock Optimisation for an online business offering niche products

Past Sales over the last

* Step 2: Copy and paste the demand in the correct column under Sales (in units). The built in model will automatically calculate the predictions for all the previous years.

```
Stock Optimisation for an online business offering niche products
```

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA


```
Stock Optimisation for an online business offering niche products
```

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

* Step 3: Extend the column in blue for the next 12 months.

The blue box was used to calculate the demand predictions from a regression model. The 1 represents being in a certain month and the 0 represents not being in a month. It is imperative to extend the box

Click on period 37 and move down until period 48. The predictions for 2018 will be automatically calculated

* Step 4: Calculate the inventory costs for the item. For item two, the inventory costs are calculated below.

Table 4 Ordering Costs for item two

Ordering Cost	Amount (in rands)
Cost to prepare order requisition	500
Cost to prepare and issue a payment to the supplier	372
Cost to ship order from supplier	697
Cost to clear a shipment through customs	380
Total Costs	1949

Table 5 Holding Costs for item two

Holding Cost	Percentage
Insurance on the warehouse area	0.06% of unit costs per year
Finance Cost	18% of unit cost per year
Redundancy cost	0.75% of unit cost per year
Total	$18,81 \%$ of unit cost per year

Unit cost $=626$
Holding Cost per month $=18,81 \% * 626 / 12=9.48$ per month

* Step 5: Click on the inventory model sheet and enter the forecasted demand values and the inventory costs accordingly.

Stock Optimisation for an online business offering niche products

* Step 5: The inventory model has been built in the excel document, it will automatically calculate the order size and reorder point for the forecasted demand in 2018. Click on data, go to solver and solve the model.

* Step 6: The model has found a solution, which needs to be interpreted.

9.2 Item two results interpretation

9.2.1 Forecast model results for item two

The table below contains the results from the forecast model. The model predicted the demand values for 2018.
Table 6 Forecast Model results for item two

Month	Demand (in units)
January	17
February	16
March	19
April	47
May	17
June	12
July	15
August	16
September	19
October	20
November	20
December	

9.2.2 Inventory Model results for item two

The table below contains the results from the inventory model. The 1 implies that an order should be placed in that month and the 0 implies that no order will be placed in that month.
The results show that in order to minimise costs for 2018, 3 orders have to be placed in the year. An order of 52 units in January, an order of 106 units in April and an order of 75 units in September.
The order placed for January will be enough to satisfy the demand for January, February, and March.

The order placed for April will be enough to satisfy the demand for April, May, June, July, and August.

The order placed for September will be enough to satisfy the demand for September, October November, and December.

Table 7 Inventory model results for item two

Month	When to order	How much units to order
January	1	52
February	0	0
March	0	0
April	1	106
May	0	0
June	0	0
July	0	0
August	0	75
September	1	0
October	0	0
November	0	0
December	0	0

The total inventory costs incurred for 2018 using the model is R 23 638,40.

10. Model Validation

In order for the model to be useful, it should measure what it was intended to measure and support the intended uses and purposes. This section of the report illustrates using items from the company that both the forecast model and the inventory model achieve the intended uses and purposes; they do what they were designed to do.

10.1 Forecast Model Validation

The purpose of the model is to predict the demand for a time period of 12 months using historical data.

This model can be validated by comparing the actual sales in 2015, 2016 and 2017 with the model prediction values. If the error is low, then the model is good enough to be used for future predictions. Item four's data was used to compare the values.
Table 8 Supplier 4's observed values vs. forecasted values

Year	Month	Observed Demand	Forecasted Demand	Error
2015	January	4	7	3
	February	6	8	2
	March	10	7	3
	April	12	12	0
	May	9	11	2
	June	7	7	0
	July	7	9	2
	August	8	7	1
	September	8	12	4
	October	10	7	3
	November	7	9	2
	December	11	10	1
2016	January	13	10	3
	February	15	11	4
	March	9	10	1
	April	14	15	1
	May	13	14	1
	June	12	10	2
	July	15	12	3
	August	9	10	1
	September	19	15	4
	October	11	10	1
	November	10	12	2
	December	14	13	1
2017	January	12	13	1
	February	11	14	3
	March	10	13	3
	April	19	18	1
	May	19	17	2
	June	12	13	1
	July	14	15	1
	August	13	13	0
	September	18	18	0
	October	8	13	5
	November	19	15	4
	December	14	16	2

It can be concluded from the table that model is a good one because the error is low.

10.2 Inventory model Validation

The purpose of the inventory model is to give as an output the size of the optimal quantities and reorder points in order to minimise total inventory costs. For this project, the total inventory costs of last year (2017) for the 3 items that were compared earlier in the paper were analysed and calculated. In order for the model to be valid, the total inventory costs produced by the model should be significantly lower than the actual total inventory costs that were incurred last year.

The inventory model was validated using the following steps:

- Three items were used to validate the model.
- The actual total inventory costs for 2017 for each item were collected, analysed and calculated. These are the actual costs that were incurred in 2017 and were compared against the model results.
- The forecast model was used to predict the demand for 12 months for all three items in 2017.
- The demand values from the forecast model and the inventory costs were used as inputs in the inventory model.
- The optimal order quantities and reorder points were determined by the inventory model for each item for 2017.
- The results from the model for all three items were compared against the actual results from 2017

The table in the next page depicts the various costs of the three items that make up the holding costs and the ordering costs. The cost information in the table was used to calculate the total inventory costs for each item, which would subsequently be used to calculate both the actual total incurred costs for 2017 and also be used as inputs in the inventory model. The table also shows the actual number of orders placed for each item and the order size. The information about the actual order size and number of orders placed aided in calculating the actual costs that were incurred in 2017.

Stock Optimisation for an online business offering niche

 productsThe table below depicts the various cost information and stock information for three selected items in the company.

Table 9 Inventory Costs and actual order size of three items for 2017

		Item 1	Item 2	Item 3
Ordering Costs				
	Costs to prepare order requisition	2000	1000	250
	Cost to prepare and issue a payment to the supplier	372	0	0
	Cost to ship order from supplier	6250	0	180
	Cost to clear a shipment through customs	1950	0	0
Holding Costs				
	Insurance on the warehouse area	0.6\% per year	0.6\% per year	$0.6 \% \text { per }$ year
	Finance cost (for holding costs)	18% per year	18\% per year	18% per year
	Redundancy cost	$0.5 \% \text { per }$ year	0.25% per year	0.75\% per year
Number of orders placed in 2017 by company		1	11	10
Actual order size in 2017		453	20 or 30	25 or 30

The table below depicts the calculated inventory costs derived from the table above
Table 10 Inventory Costs per item

	Item 1	Item 2	Item 3
Holding Cost per item (\%)	19.1	18.85	19.35
Unit Cost per item (R)	47	295	50
Holding cost per item (R)	0.75	4.63	0.81
Ordering cost per item (R)	10572	1000	430

The actual costs that were incurred for each item were calculated and compared against the results from the model. The following table depicts the model results against the actual results.

Table 11 Model Results against Actual Results

		Item 1	Item 2	Item 3
	Model Results			
Stock Information	Reorder Points (in months) and order size (in units)	January 313 units	January 48 units April 100 units September 71 units	January 83 units June 160 units
	Total units needed for the year 2017 based on demand	348	222	246
	Safety Stock calculated for 2017 (acts as a buffer)	53	14	30
	Amount of Safety Stock Needed to meet demand	35	3	3
Cost Information	Total Holding Costs and Ordering Costs	11870.28	4347.3	1372.7
	Safety Stock Costs	37.28	70.64	24.56
	Total Costs	11907.56	4417.94	1397.26
	Actual Results			
Stock Information	Reorder Points (in months) and order size (in units)	January 453 units	January - February 20 units March-June 30 units July - November 20 units	January- February 30 units March- October 25 units
Cost Information	Total Carrying Costs	1894.5	2074.24	230.04
	Total ordering costs	10572	11000	4300
	Total Costs	12466.50	13074.24	4530.04
Cost Saving		558.94	8656.30	3132.78

The table above shows that the model produces results that minimise the total inventory costs; there is a significant cost saving for each item when the model is used. This validates that the model is doing what it was designed to do.

The safety stock calculations for the model results section and the calculations for the carrying costs and the ordering costs in the actual results section can be found in appendix C .

11. Conclusion

The aim of the project was to establish an inventory management process that the company could use to balance their inventory levels while minimising the total inventory costs.

To achieve an adequate stock process, a forecast model and an inventory model were developed and built on excel. An ABC analysis was developed as the first step to solving the problem. The ABC analysis was performed so that the inventory could be segmented into three different groups depending on how much profit the products generate. The purpose of the ABC analysis in this project was to highlight the products that the company should focus on as an initial step to improving their stock process.

Two alternatives were considered for the forecast model, namely the multiple linear regression model and the exponential smoothing model. The models were both built on excel and tested using three A items (items that generate the most income in the company) from the company. For both models, the demand for 24 months was forecasted for each of the three items and then compared against the actual demand for the 24 months. The graphs of the actual demand and the forecasted demand for all three items showed that the multiple linear regression model produced demand results that had the least error.
To verify that the multiple linear regression does indeed produce results with the least error, the error values for both models were analysed using the mean squared error, the mean absolute deviation and the mean absolute percentage error techniques. This analysis showed that the multiple linear regression model produces results with the least error, and thus the model was selected as the forecast model that the company should use to forecast the demand.
An inventory model using linear programming was developed to minimise the total inventory costs. The model has three inputs; the forecasted demand from the multiple linear regression model, the holding costs and the ordering costs. The forecast model is not 100% accurate, so to account for that safety stock is used as a buffer.

The inventory model and the forecast model form a combined solution for the problem. The combined solution ensures that the demand with the lowest error is predicted, which implies that the trend and seasonality that exists in the demand will be taken into consideration. It will also ensures that the total inventory costs will be minimised. The combined solution will thus meet the customer demand while minimising the inventory costs.

References

CHUANG, C.-H. \& CHIANG, C.-Y. 2016. Dynamic and stochastic behavior of coefficient of demand uncertainty incorporated with EOQ variables: An application in finishedgoods inventory from General Motors' dealerships. International Journal of Production Economics, 172, 95-109.
FARAHANI, R. Z., REZAPOUR, S. \& KARDAR, L. 10.2 The Role of Distribution Centers and Warehouses in Logistics. Logistics Operations and Management - Concepts and Models. Elsevier.
GULATI, R. 5.3.1 Inventory Classifications. Maintenance and Reliability Best Practices (2nd Edition). Industrial Press.
JOHN J COYLE, C. J. L. J., ROBERT A NOVACK, BRIAN J GIBSON 2016. Supply Chain Management, A Logistics Perspective. Cengage Learning.
JOHN J. COYLE, C. J. L. J., ROBERT A. NOVACK, BRIAN J. GIBSON 2016. Supply Chain Management, A Logistics Perspective. Cengage Learning.
MADDAH, B. \& NOUEIHED, N. 2017. EOQ holds under stochastic demand, a technical note. Applied Mathematical Modelling, 45, 205-208.
MUBIRU, P. K. 2010. A Markov decision model for optimising economic production lot size under stochastic demand. ORiON, vol. 26, no. 1. pp. 45-52.
NAYAK, R. \& PADHYE, R. 4.6.2 Average Days of Inventory in Hand. Garment Manufacturing Technology. Elsevier.
SALVENDY, G. 77.1.2.2 Evaluating the Cost of an Inventory Policy. Handbook of Industrial Engineering - Technology and Operations Management (3rd Edition). John Wiley \& Sons.

SAMAK-KULKARNI, S. M. \& RAJHANS, N. R. 2013. Determination of Optimum Inventory Model for Minimizing Total Inventory Cost. Procedia Engineering, 51, 803-809.
STEVENSON, W. J. 2014. Operations Management, Twelfth Edition, Global Edition. McGraw-Hill Education.
YADAV, S. R. \& MALIK, A. K. 21.2 Inventory. Operations Research. Oxford University Press.
Agostinho Agra, Michael Poss, Micael Santos 2018. Optimizing make-to-stock policies through a robust lot-sizing model. International Journal of Production
Economics,Volume 200,Pages 302-310,ISSN 0925-5273

Appendix A

The appendix consists of the mentorship form.

Department of industrial \& Systems Engineering
 University of Pretoria
 Final Year Project Mentorship Form 2018

introduction

An industry mentor is the key contact person within a company for a final year project student. The mentor should be the person that could provide the best guidance on the project to the student and is most likely to gain from the success of the project.

The project mertor has the foliowing important responsibilities:

1. To select a suitable student/candidate to conduct the project.
2. To confirm his/her role as project mentor, duly authorised by the company by signing this Project Mentor Form. Multiple mentors can be appointed, but is not advised.
3. To ensure that the Project Definition adequately describes the project.
4. To review and approve the Project Proposal, ensuring that it clearly defines the problem to be investigated by the student and that the project aim, scope, deliverables and approach is acceptable.
5. To review and approve aii subsequent project reports, particularly the final Project Report at the end of the second semester, thereby ensuring that information is accurate and the solution addresses the problems and/or design requirements of the defined project.
6. Ensure that sensitive comildential information or intellectual property of the company is not disclosed in the document and/or that the necessary arrangements are made with the Department regarding the handling of the reports.

Project Mentor Details

Company:	Jizni Cz Accessories
Project Description:	Stock optimisation for on ontine business
Student Name:	Palesa Maringa
Student number:	14069815
Stedent Signature:	ftrainga
Mentor Name:	Marius van Biho
Designation:	Owner.
E-mail	admin e jizni-corea.
Tel No:	
Cell No:	0833040940
Fax No:	
Mentor Signature:	

Stock Optimisation for an online business offering niche products

universiteit van pretoria
UNIVERSITEET VANPRETORIA
UNIVERSITY OFPRETORIA YUNIBESITHI YA PRETORIA

Appendix B

The appendix contains the $A B C$ analysis that was performed for the company. The $A B C$ analysis will help the company to control the items differently based on the category.

Product Name	Quantity Sold	Total Sales (Annual Consumption)	Cumulative Consumption (ZAR)	Cumulative Consumption (\%)	ABC category
Shockbottle case gauge	58	79407	79407	3.5399	A
Double Alpha aluminium grips	58	58000	137407	6.1255	A
CZ Competition hammer	37	57664	195071	8.6961	A
CZ P-07 magazine, 9 mmP 15 round	190	44811	239882	10.6938	A
Black Mamba Full Cover (P-07)	40	39000	278882	12.4323	A
ET Pre B disconnector	74	38155	317037	14.1333	A
CAA Roni CZ7 (P-07 Gen 2 / P-09)	4	36520	353557	15.7613	A
CZC Extended firing pin (Shadow)	86	31650	385207	17.1722	A
Design Tech (med) (P-07 Gen 2)	51	30510	415717	18.5323	A
CR Speed EDC belt	113	26985	442702	19.7353	A
CGW Short Reset Kit (P-07/P-09)	17	26605	469307	20.9213	A
CZ Official Baseball Cap	98	25536	494843	22.0597	A
Design Tech (small) (P-07/09)	45	25425	520268	23.1931	A
CZ tritium night sights (P07/P09)	21	24654	544922	24.2922	A
CAA Roni CZ7 for P-07 Duty	4	24348	569270	25.3776	A
Inforce APL Pistol Light	11	23914	593184	26.4437	A
CZ P-09 magazine, 9 mmP 19 round	50	23661	616845	27.4985	A
DPM recoil reduction system ($\mathrm{P}-07$)	27	23247	640092	28.5348	A
CZ Custom Aluminium grips, grip tape (Shadow)	14	23128	663220	29.5658	A
Fiber optic rod CZC	560	22750	685970	30.5800	A
CZC Fiber optic front sight, 1mm (P07/P09)	29	21431	707401	31.5354	A
CZ Aluminium grips, Thin (Shadow)	15	20692	728093	32.4578	A
CZ rubber grips	26	20650	748743	33.3784	A
CZ Fiber optic front sight, 1mm (Shadow)	43	20000	768743	34.2700	A
IMI double mag pouch (P-07/09)	46	19194	787937	35.1256	A
DPM recoil system (SP-01 / TS Orange)	21	19140	807077	35.9789	A
CZ magazine, 9 mmP 18 round	80	18585	825662	36.8074	A
Design Tech (med) (P-07 Duty)	52	18480	844142	37.6312	A
Sightron SIII 10-50x60 FCH	1	17609	861751	38.4162	A
Black Mamba (P-07)	21	17157	878908	39.1810	A
Sightron SIIII 10-50x60 T/D	2	16957	895865	39.9370	A
Comp-Tac International (SP-01)	15	16624	912489	40.6781	A
CZ Brass grips, checkered (Shadow)	7	15218	927707	41.3565	A
DAA Magnetic Racer (Shadow)	8	14608	942315	42.0077	A
CZ magazine, 9 mmP 16 round	58	14430	956745	42.6510	A
CZ Adjustable rear sight (Shadow)	10	14130	970875	43.2809	A
Range shirt	38	14042	984917	43.9068	A
CZC Recoil spring (Shadow)	161	13806	998723	44.5223	A
CR Speed World Shoot Model II	9	13581	1012304	45.1277	A
CZ Fiber optic front sight, 1.5 mm (Shadow)	26	13500	1025804	45.7296	A
02, Slide stop (CZ 75 B)	31	13398	1039202	46.3268	A
DAA PDR Pro (Shadow)	11	13156	1052358	46.9133	A
Fobus Paddle Evolution (P-07)	30	12796	1065154	47.4837	A
Sticky Holster (P-07)	21	12789	1077943	48.0539	A
Narrow 1mm fiber optic front sight (CZ 75 series	20	12176	1090119	48.5967	A
1.5 mm Fiber optic sights set - target (P07/P09)	11	11957	1102076	49.1297	A
CZ Stainless steel guide rod (Shadow)	36	11840	1113916	49.6575	A
CZ Aluminium grips, short (Shadow)	7	11564	1125480	50.1730	A
MaxTuck (P-07)	16	11472	1136952	50.6844	A
Kiddies range bag	26	11300	1148252	51.1882	A
Ross Leather IWB 16 (P-07)	30	11100	1159352	51.6830	A
CZC tritium front sight (P-07/P-09)	10	11090	1170442	52.1774	A
Mec Gar magazine, 19 round (CZ)	40	11084	1181526	52.6715	A
Black Mamba Full Cover (Shadow)	11	11000	1192526	53.1619	A
CZ flat safety set (SP-01)	9	10960	1203486	53.6505	A
02, Slide stop (SP-01)	23	10860	1214346	54.1346	A
Competition hammer, wide	6	10302	1224648	54.5939	A
Appendix 2.1 (P-07)	12	9912	1234560	55.0357	A
Design Tech double mag pouch (P-07/09)	27	9828	1244388	55.4739	A
1.5 mm Fiber optic sights set - defender (P07/P09	9	9783	1254171	55.9100	A
24, 25, Sight set, standard metal (P-07 Gen 2)	15	9780	1263951	56.3460	A
Ross dress belt, 1.5 inch, black	23	9384	1273335	56.7643	A

CZ Team shirt	10	9130	1282465	57.1713	
Hera Arms Triarii (Shadow)	1	9130	1291595	57.5783	A
Hogue Rubber Grips (CZ 75)	22	9086	1300681	57.9834	A
CZC Hammer spring (CZ)	165	8820	1309501	58.3765	A
IMI double mag pouch (CZ 75)	24	8683	1318184	58.7636	A
DPM recoil system (Glock Gen 3)	10	8610	1326794	59.1475	A
Cz Custom Alu grips, thick, grip tape (Shadow)	5	8260	1335054	59.5157	A
Viridian C5L light laser, green	2	8260	1343314	59.8839	A
TekMat cleaning mat (other handguns)	62	8178	1351492	60.2485	A
Black Mamba (CZ 75 B)	10	8170	1359662	60.6127	A
Black Mamba (P-09)	8	8170	1367832	60.9769	A
CZ Aluminium plus 2 shoe (P-07)	20	8088	1375920	61.3375	A
CZ Custom magazine well IDPA (CZ75)	5	8045	1383965	61.6961	A
Sight pusher	4	7912	1391877	62.0488	A
TekMat cleaning mat (CZ75)	47	7830	1399707	62.3979	A
DPM recoil reduction system (CZ 75)	9	7749	1407456	62.7433	A
CR Speed High Torque belt	22	7497	1414953	63.0775	A
Mamba single mag carrier (P-07/Glock)	20	7434	1422387	63.4089	A
Ross dress belt, 1.5 inch, tan	18	7429	1429816	63.7401	A
Mec Gar magazine, 17 round (CZ)	26	7345	1437161	64.0675	A
DPM recoil reduction system (P-09)	6	7302	144463	64.3931	A
Peltor Sport Tac	3	7173	1451636	64.7128	A
Peltor Bull's Eye I	17	7170	1458806	65.0325	A
Coco bolo grips, part checker (CZ75)	5	7044	1465850	65.3465	A
CZ Adjustable rear sight (TS)	5	6740	1472590	65.6469	A
DPM recoil system (TS)	9	6699	1479289	65.9456	A
CR Speed Versa-Pouch	61	6693	1485982	66.2439	A
CZ Magazine well (Shadow)	4	6608	1492590	66.5385	A
Hogue Powerspeed Carry holster (P-09)	8	6534	1499124	66.8298	A
Meprolight night sights (CZ 75B)	5	6305	1505429	67.1109	A
Ross Leather IWB 15 (P-07)	20	6226	1511655	67.3884	A
Blade Tech OWB Holster (CZ 97B)	6	6210	1517865	67.6653	A
Vz Grips Tactical Diamonds	6	6132	1523997	67.9386	A
DAA Racer	12	6090	1530087	68.2101	A
Black Mamba Full Cover (CZ 75 B)	6	6000	1536087	68.4776	A
Ross Leather OWB 12 (P-07)	16	5920	1542007	68.7415	A
Ross Leather OWB 5 (P -07)	16	5920	1547927	69.0054	A
CZC TAC rear sight (P07/P09)	6	5742	1553669	69.2614	A
Hi Viz front sight	10	5610	1559279	69.5115	
1 mm Fiber optic sights set - defender (P07/P09)	5	5435	1581162	70.4870	A
CGW Pro-package (P-01)	1	5435	1586597	70.7293	A
K -mag 32 round magazine (CZ 75)	15	5360	1591957	70.9682	A
CGW reduced spring kit - Carry (P-07 P-09)	9	5283	1597240	71.2037	A
Blade Tech OWB Holster (SP-01)	12	5220	1602460	71.4364	A
CZ Custom Comp rear HAJO (Shadow)	3	5217	1607677	71.6690	A
Blade Tech OWB Holster (P-09)	6	5166	1612843	71.8993	A
Competition hammer, low	3	5151	1617994	72.1289	A
Competition hammer, wide low	3	5151	1623145	72.3586	A
Redfield Counterstrike	2	5130	1628275	72.5872	A
VZ Grips Tactical Diamonds (Compact)	5	5110	1633385	72.8150	A
CZC H-TAC tritium rear sight (P-07/P-09)	3	5088	1638473	73.0419	A
CZ Custom FO Tactical rear sight (Shadow)	4	5044	1643517	73.2667	A
11, Sear (Shadow)	11	5000	1648517	73.4896	A
Appendix 2.1 (Glock)	6	4956	1653473	73.7106	A
CZ magazine, 9 mmP 26 round	3	4956	1658429	73.9315	A
Black Mamba (Glock)	6	4902	1663331	74.1500	A
CZ Custom magazine well IPSC (TS)	3	4827	1668158	74.3652	A
Extended safety, IPSC (TS)	3	4827	1672985	74.5804	A
16, Hammer (Shadow)	5	4785	1677770	74.7937	A
Rubber magazine base (CZ 75)	50	4704	1682474	75.0034	A
CGW reduced spring kit - Comp (P-07 P-09)	7	4696	1687170	75.2127	A
Appendix 2.0 (P-07)	9	4653	1691823	75.4202	A
Ross Leather Shoulder 42A (P-07)	2	4644	1696467	75.6272	A
CZ magazine, 9 mmP (Pre B)	7	4566	1701033	75.8307	A
29, Safety LL (SP-01)	5	4565	1705598	76.0342	A
CZ Tritium night sight set (Shadow)	2	4478	1710076	76.2339	A
CZ 83 magazine, 9 mmK 12 round	8	4410	1714486	76.4305	A
Hogue Powerspeed Carry holster (P-07)	6	4356	1718842	76.6247	A
Pachmayr Tactical rubber sleeve (CZ 75)	25	4350	1723192	76.8186	A
Sidewinder Pro (P-09)	4	4348	1727540	77.0124	A
BaseMax (P-07)	8	4344	1731884	77.2061	A
Hi Viz rear sight	6	4278	1736162	77.3968	A

TekMat cleaning mat (long gun)	14	4176	1740338	77.5829	A
Comp-Tac International (CZ 75B)	5	4156	1744494	77.7682	A
05, Trigger (CZ 85 COMBAT)	5	4130	1748624	77.9523	A
VZ Grips Diamond Backs	4	4088	1752712	78.1346	A
Black Mamba (CZ 83)	5	4085	1756797	78.3167	A
A-Zoom snap caps (5 pack)	19	4063	1760860	78.4978	A
Cat laser	3	4044	1764904	78.6781	A
Mamba double mag carrier (CZ-75)	6	4044	1768948	78.8583	A
DAA Golden 20 Pocket Gauge	5	4020	1772968	79.0376	A
Black Mamba FC (CZ 75 D / P-01)	4	4000	1776968	79.2159	A
Black Mamba Full Cover (P-09)	4	4000	1780968	79.3942	A
Shotmaxx timer	2	3914	1784882	79.5687	A
DAA PDR Pro IDPA	4	3912	1788794	79.7431	A
CZC H-TAC rear sight (P07/P09)	4	3828	1792622	79.9137	A
CGW Stainless steel guide rod (P-07)	6	3801	1796423	80.0832	A
Black Mamba APL (P-07)	4	3792	1800215	80.2522	A
CZ rubber grips (Compact)	5	3780	1803995	80.4207	A
Fiber optic rear sight (Shadow)	6	3780	1807775	80.5892	B
50, Extractor (CZ 75 B)	19	3724	1811499	80.7552	B
45, Shadow front sight	9	3717	1815216	80.9209	B
CZC mag spring \& follower kit 10	24	3700	1818916	81.0859	B
Inforce WML Rifle Light	2	3566	1822482	81.2448	B
CGW reduced power trigger return spring	38	3496	1825978	81.4007	B
Lee Factory Crimp Die	10	3480	1829458	81.5558	B
CZ Custom Tactical rear HAJO (Shadow)	2	3478	1832936	81.7109	B
27, Main spring plug, flat (P-07)	17	3472	1836408	81.8657	B
41, Firing Pin Spring (Rami)	62	3430	1839838	82.0186	B
CZC TAC tritium rear sight (P-07/P-09)	2	3392	1843230	82.1698	B
CZ Buffer set (Shadow)	53	3379	1846609	82.3204	B
Mamba double mag carrier (P-07/Glock)	5	3370	1849979	82.4706	B
CZ 75 TS magazine, 17 round, 40S\&W	11	3346	1853325	82.6198	B
Wolff Recoil spring (Shadow)	19	3306	1856631	82.7672	B
CZ Magazine well (TS)	2	3304	1859935	82.9145	B
Magazine spring, Wolff $+5 \%$ (CZ 75)	73	3270	1863205	83.0602	B
Black Mamba (Other brands)	4	3268	1866473	83.2059	B
1 mm Fiber optic sights set - target (P07/P09)	3	3261	1869734	83.3513	B
Sticky Mag Pouch	13	3260	1872994	83.4966	B
CZC Extended safety (SP-01)	2	3218	1876212	83.6401	B
Fobus Paddle Holster (CZ 75 B)	7	3199	1879411	83.7827	B
CZ Custom grip screws hex	17	3195	1882606	83.9251	B
CZ Fiber optic rear sight (CZ75B)	5	3150	1885756	84.0656	B
CZ Aluminium +1 Shoe (TS)	12	3132	1888888	84.2052	B
Ross dress belt, 1.25 inch, black	8	3128	1892016	84.3446	B
08, Trigger spring (CZ75)	86	3050	1895066	84.4806	B
CZ Serrated front sight (P07/P09)	10	3040	1898106	84.6161	B
16, Hammer (CZ 75B)	8	3019	1901125	84.7507	B
Nextorch WL10X	6	3000	1904125	84.8844	B
UpLula	7	3000	1907125	85.0182	B
CZC Aluminium Mag Base (CZ 75)	19	2960	1910085	85.1501	B
Ross Leather OWB 5 (CZ 75)	8	2960	1913045	85.2821	B
CZ Plus 2 shoe (P-07 / P-09)	57	2958	1916003	85.4139	B
K-mag 23 round magazine (CZ 75)	8	2890	1918893	85.5428	B
CZ Custom H-TAC rear sight (CZ 75 B)	3	2871	1921764	85.6708	B
Everyday shirt	8	2784	1924548	85.7949	B
Extended safety, IPSC (SP-01)	2	2756	1927304	85.9177	B
DAA Magnetic pouch	8	2742	1930046	86.0400	B
CZ 97 B magazine, 10 round	9	2715	1932761	86.1610	B
Sidewinder (P-07)	4	2696	1935457	86.2812	B
10, Ejector (CZ 75)	3	2610	1938067	86.3975	B
Blade Tech OWB Holster (P-07)	6	2610	1940677	86.5139	B
DAA PDR Belt-Ride	6	2610	1943287	86.6302	B
DPM recoil reduction system (CZ Compact)	3	2583	1945870	86.7454	B
Single action trigger, flat aluminium, adjustable	4	2544	1948414	86.8588	B
CZC Extended firing pin (CZ75-B)	5	2532	1950946	86.9717	B
CZ Custom FO Competition rear sight (Shadow)	2	2522	1953468	87.0841	B
Meprolight night sights (P-01)	2	2522	1955990	87.1965	B
DAA Deluxe magnetic pouch	6	2500	1958490	87.3080	B
Extended +4 magazine base ($\mathrm{P}-07$)	5	2412	1960902	87.4155	B
Viridian C5L-R light laser, red	1	2391	1963293	87.5221	B
53, Rear sight (Shadow)	3	2384	1965677	87.6284	B
Competition hammer (Decocker)	2	2348	1968025	87.7330	B

Competition hammer (P-07/P-09)
CZ Defender rear sight (P07/P09)
Black Mamba C5 (Glock)
Black Mamba CE C5 (Other brands)
22,23,48 Decocking lever set (P-07/P-09) Ross Leather Cross Draw 11 (P-07)
Ross Leather OWB 12 (P-09)
CZ Recoil buffer (Shadow)
Hi Viz sight set
Ross Leather OWB 23 (CZ 75)
Ross Leather OWB 23 (P-07)
Mec Gar magazine, 14 round (CZ)
Sidewinder Pro (P-07)
BaseMax (CZ 75 B)
CGW Stainless steel guide rod (P-09)
CZ Single action trigger, Tactical Sport
Lee Bulge Buster Kit
54, Firing pin (CZ 75B)
64, Safety RH (SP-01)
Design Tech single mag pouch (P-07/09)
Comp-Tac International (CZ 75 D / P-01)
Blade Tech OWB Holster (CZ 75B)
Appendix 2.0 (Glock)
CR Speed Model 2000
VZ Grips Frag (Compact)
K-mag 17 round magazine (CZ 75)
CAA Single point sling
DPM recoil reduction system (CZ 97)
Gen 2 trigger with CGW overtravel stop (P-07 / P-
Double Alpha magazine brush
29, Safety LH (Shadow)
CZ Custom Competition rear sight (Shadow)
CZ Recoil spring, reduced ($\mathrm{P}-07$)
Gen 2 hammer assembly (P-07)
Black Mamba APL (Glock)
DAA magnet for CR Versa pouch
Fobus Paddle Holster (CZ 75 D / P-01)
Sticky Holster (CZ 75)
DAA Race Master pouch \& Magnet
Sightron SIII Sunshade
65, Slide stop RH (CZ 85)
54/37, Firing pin (Shadow)
CZ Defender rear sight (Shadow)
07, Trigger bar (CZ75)
CAA Flip-up sight set
Viridian CTL light
Blade Tech OWB Holster (TS)
DPM recoil system (M\&P)
Folding knuckle for Triarii
Pocket knife (P-07)
CZC mag spring (10 coils)
CZ Custom Aluminium grips, checkered (Compac
CZ Custom Medium Alu grips, grip tape (TS)
CZ Custom Short alu grips, grip tape (Shadow)
DAA Golden Multi Gauge
Mamba single mag carrier (CZ-75)
Black Mamba (Shadow)
CZ Custom Shadow II rear sight (Shadow)
CZ Single action trigger, straight
CZ aluminium grips, checkered (Compact)
11, Sear (CZ 75 B)
VZ Grips special order (\$75)
Special Order: Ross Leather
CGW extended magazine release (P-07/P-09)
CZ magazine, 9 mmP 16 round extended (75D Con
IMI Polymer flip-up sight set
Lyman Brass Tapper
Ross Leather IWB 16 (CZ 83)
Ross Leather OWB 12 (CZ 75)
Ross Leather OWB 5 (Shadow)
Ross Leather OWB 7 (P-07)

1
4
2
2
6
6
8
68
3
6
6
8
2
4
4
4
7
12
3
17
2
2
4
2
2
9
3
2
2
13
2
2
11
4
2
3
4

m ~m m \quad m
\sim

- -

1
2
1

1
23

1
1

1
4

4
2

2
3
1

4
2

2
2
3 3

1
4
4
4
4
4

2348	1
2348	19
2304	1
2304	1
2220	19
2220	1
2220	1
2210	1
2200	1
2190	1
2190	1
2175	1
2174	1
2172	1
2172	2
2172	2
2128	2
2088	2
2088	2
2088	2
2078	2
2070	2
2068	2
2060	2
2044	2
2034	2
2022	2
2000	2
2000	2
1980	2
1914	2
1914	2
1914	2
1912	2
1896	2
1866	2
1828	2

DPM recoil system (1911/2011 Bull Barrel)
Hogue brushed aluminium grips (CZ 75)
Hogue matt aluminium grips (CZ 75)
28, Grip Screws (CZ 75 B)
Hogue Powerspeed Carry holster (SP-01)
MaxTuck (CZ 75 B)
48,49, CZ 83 plastic grips
MTM 100 round ammo box
Hogue Handall universal grip sleeve
VZ Grips special order ($\$ 65$)
Comp-Tac Single Mag Pouch (CZ75)
DPM recoil system (1911/2011)
17, Extractor (P-07/P-09)
CZ magazine, 9 mmP 14 round
02, Slide stop (TS. 405\&W)
16, Narrowed Shadow hammer (CZ 75 B)
CZ Custom trigger pin
DPM recoil system (Czechmate)
Hogue Grim Reaper grips (CZ 75)
DAA Racer magazine pouch
CZ Magazine assembly (CZ200)
Sticky Holster (P-09)
Magazine spring, Wolff $+10 \%$ (CZ 75)
CZ Adjustable rear sight (CZ 75 B)
Sidewinder (CZ 75 D / P-01)
CZ Defender rear sight (CZ75B)
CZ Target rear sight (P07/P09)
CZ 75 TS magazine, 20 round, 9 mmP
CZ Single action trigger, smaller hands
Stainless steel magazine brake
Lyman Digital Trigger Pull Gauge
41, Recoil spring (CZ 75 B)
2 mm Parallel punch
VZ Grips Frag
Progrip Lotion
1.5mm Fiber optic front sight (P07/P09)

1 mm Fiber optic front sight (P07)
Black Mamba Full Cover (CZ 75 Compact)
CR Versa Hanger kit
SportEAR XT4 Hearing protector
21, Hammer spring (CZ 75B)
CZ Custom Competition rear sight (CZ 75 B)
CZ Custom Tactical rear sight (CZ 75 B)
CZ magazine, 9 mmP 16 round (Compact) Black Mamba APL (Other brands) Black Mamba APL (P-09)
Stainless steel guide rod (SP-01)
55/38, Firing pin spring (CZ 75B)
64, Detent plunger RHS
CZ P-07 magazine, .40S\&W 12 round
34, Trigger bar spring (CZ 75 B) GG\&G rail adaptor for H\&K USP 52, Extractor spring, Wolff $+25 \%$ (CZ 75)
CAA quick release swing swivel
Metal front sight with dot (P07)
CZ 100 magazine, 9 mm 10 round (CZ100)
Appendix 2.1 (CZ 75B)
CZC Bench Block
3 mm Parallel punch
Extended magazine base (P-09)
Design Tech V2 Paddle
DAA Racer Hanger Assembly
11, Sear (Pre B)
Ross dress belt, 1.25 inch, tan
10, Ejector (TS)
Dummy training gun
Wide 1.5 mm fiber optic front sight (CZ 75 series)
Wide 1 mm fiber optic front sight (CZ 75 series)
Double Alpha grip tape
20, 21, Safety lever set (P-07/P-09)
53, Rear sight (CZ 75B)
Ross Leather Ankle 13 (CZ 83)
Ross Leather Ankle 13 (P-07)

1	1457	2102962	93.7484	B
1	1457	2104419	93.8134	B
1	1457	2105876	93.8783	B
15	1456	2107332	93.9432	B
2	1452	2108784	94.0080	B
2	1434	2110218	94.0719	B
5	1415	2111633	94.1350	B
65	1400	2113033	94.1974	B
9	1392	2114425	94.2594	B
2	1348	2115773	94.3195	B
3	1330	2117103	94.3788	B
1	1326	2118429	94.4379	B
3	1305	2119734	94.4961	B
4	1305	2121039	94.5543	B
2	1304	2122343	94.6124	B
2	1296	2123639	94.6702	B
10	1288	2124927	94.7276	B
1	1283	2126210	94.7848	B
1	1283	2127493	94.8420	B
12	1266	2128759	94.8984	B
1	1239	2129998	94.9537	B
2	1218	2131216	95.0080	B
42	1199	2132415	95.0614	C
1	1196	2133611	95.1147	C
0	1192	2134803	95.1679	C
2	1174	2135977	95.2202 C	C
2	1174	2137151	95.2726	C
2	1130	2138281	95.3229 C	C
2	1086	2139367	95.3713	C
5	1085	2140452	95.4197	C
1	1065	2141517	95.4672	C
43	1050	2142567	95.5140	C
26	1032	2143599	95.5600	C
1	1022	2144621	95.6056	C
8	1020	2145641	95.6510	C
2	1000	2146641	95.6956	C
2	1000	2147641	95.7402	C
1	1000	2148641	95.7848	C
2	1000	2149641	95.8293	C
1	996	2150637	95.8737	C
16	962	2151599	95.9166	C
1	957	2152556	95.9593	C
1	957	2153513	96.0020	C
2	956	2154469	96.0446	C
1	948	2155417	96.0868	C
1	948	2156365	96.1291	C
2	914	2157279	96.1698	C
34	910	2158189	96.2104	C
5	870	2159059	96.2492 C	C
3	870	2159929	96.2880 C	C
26	864	2160793	96.3265	C
1	861	2161654	96.3649	C
22	854	2162508	96.4029	C
6	850	2163358	96.4408	C
3	849	2164207	96.4787	C
1	848	2165055	96.5165	C
1	826	2165881	96.5533	C
1	826	2166707	96.5901	C
20	817	2167524	96.6266	C
1	804	2168328	96.6624 C	C
7	791	2169119	96.6977	C
1	783	2169902	96.7326	C
2	782	2170684	96.7674	C
2	782	2171466	96.8023	C
1	761	2172227	96.8362 C	C
1	761	2172988	96.8701 C	C
1	761	2173749	96.9041 C	C
1	761	2174510	96.9380 C	C
13	747	2175257	96.9713	C
2	740	2175997	97.0043 C	C
2	740	2176737	97.0373	C
2	740	2177477	97.0703	C
2	740	2178217	97.1032	

Ross Leather IWB 16 (CZ 75) Ross Leather IWB 16 (P-09)
Ross Leather IWB MV1 (Compact)
Ross Leather OWB 12 (CZ83)
Ross Leather OWB 12 (Shadow)
Ross Leather OWB 5 (CZ 83)
Ross Leather OWB 5 (P-01)
Ross Leather OWB 5 (P-09)
DAA Racer magazine pouch with magnet SportEAR XT2 Hearing protector Red Dot Mount with racker (Shadow)
40, Magazine follower (CZ 75)
02, Slide stop (CZ 85)
39, Recoil spring assembly ($\mathrm{P}-07$)
45, Plain front sight (TS)
32, Magazine catch, D-type (Shadow)
66/39, Firing pin stop (Shadow)
Old Faithful IWB holster (CZ 75)
Sidewinder (CZ 83)
Sidewinder Zero (CZ 75 B)
Sidewinder Zero (P-07)
51, Extractor pin
Talon grips - Grip Tape (P-09)
Talon grips - Rubber (P-07)
02, Slide stop (TS 9mm)
Mec Gar +2 shoe
38, Guide rod (P-07 Duty)
09 , Pin number 9 (CZ 75 B)
SportEAR XP3 Ear plugs
3GM (Three Grand Masters)
3GM2 (Three Grand Masters 2)
05, Trigger (Shadow)
12, Sear spring (CZ 75 B)
CZ 75 Spares Kit 1 (SP-01)
CZ Fiber optic rear sight - defender (P07/P09)
39, CZ Magazine spring, 18 round SP-01 magazine
22, Main spring plug (CZ 75)
49, Trigger bar spring (P-07/P-09)
02 , Slide stop (CZ 97 B)
Sticky Dual Mag Pouch
37, Magazine Base, plastic (SP-01)
Ross Leather OWB 7 (CZ 97
Talon grips - Rubber (P-09)
Travel mount (Sticky holster)
02, Slide stop (Shadow 2/P-01)
Hogue grip screws (CZ)
DPM replacement spring set (SP-01)
Hogue Powerspeed Carry holster (CZ 75B)
46, Front sight pin (CZ 75B)
Courier delivery
Single action trigger, target
Stainless steel guide rod (Compact)
K-mag 23 round magazine (CZ 100)
Ross Leather OWB 7 (CZ 75)
Stainless steel guide rod (CZ 75)
Venture Gear Drone
20, Main spring strut (CZ 75)
CZ Custom solid firing pin retaining pin (CZ 75B)
52 , Extractor spring (SP-01)
Performance shirt
DR Performance Practice Deck 1.0
04, Slide stop (P-07/P-09)
37, Magazine Base, metal (CZ 75)
41, Slide stop (CZ 83)
Design Tech V2 Belt attachment
Pin for CZ Custom mag well (CZ75)
Practical Shooting Beyond Fundamentals
CZC mag spring \& follower kit 13
Peltor Optime III
Old Faithful IWB (new design) (P-07/ P-09)
31, Detent plunger spring
29, Safety (Pre B)

	15
	1
	1
	27
	2
	2
	1
	1
	7
	3
	1
	35
	7
	1
	1
	1
	6
	1
	1
	4
	5

740	2178957	97.1362	C
740	2179697	97.1692	C
740	2180437	97.2022	C
740	2181177	97.2352	C
740	2181917	97.2682	C
740	2182657	97.3012	C
740	2183397	97.3342	C
740	2184137	97.3672	C
726	2184863	97.3995	C
709	2185572	97.4311	C
704	2186276	97.4625	C
700	2186976	97.4937	C
696	2187672	97.5247	C
696	2188368	97.5558	C
680	2189048	97.5861	C
678	2189726	97.6163	C
678	2190404	97.6465	C
674	2191078	97.6766	C
674	2191752	97.7066	C
674	2192426	97.7367	C
674	2193100	97.7667	C
672	2193772	97.7967	C
660	2194432	97.8261	C
660	2195092	97.8555	C
652	2195744	97.8846	C
652	2196396	97.9136	C
650	2197046	97.9426	C
645	2197691	97.9714	C
644	2198335	98.0001	C
639	2198974	98.0286	C
639	2199613	98.0571	C
630	2200243	98.0851	C
630	2200873	98.1132	C
630	2201503	98.1413	C
630	2202133	98.1694	C
624	2202757	98.1972	C
618	2203375	98.2248	C
610	2203985	98.2520	C
609	2204594	98.2791	C
609	2205203	98.3063	C
602	2205805	98.3331	C
600	2206405	98.3598	C
600	2207005	98.3866	C
596	2207601	98.4132	C
587	2208188	98.4393	C
576	2208764	98.4650	C
573	2209337	98.4905	C
565	2209902	98.5157	C
550	2210452	98.5403	C
546	2210998	98.5646	C
543	2211541	98.5888	C
543	2212084	98.6130	C
530	2212614	98.6366	C
522	2213136	98.6599	C
522	2213658	98.6832	C
522	2214180	98.7064	C
520	2214700	98.7296	C
520	2215220	98.7528	C
516	2215736	98.7758	C
513	2216249	98.7987	C
504	2216753	98.8211	C
500	2217253	98.8434	C
500	2217753	98.8657	C
500	2218253	98.8880	C
500	2218753	98.9103	C
500	2219253	98.9326	C
500	2219753	98.9549	C
496	2220249	98.9770	C
487	2220736	98.9987	C
474	2221210	99.0198	C
468	2221678	99.0407	C
465	2222143	99.0614	C

Fobus Magazine Pouch (Glock)	1	457	2222600	99.0818	C
Fobus Paddle Holster (Glock)	1	457	2223057	99.1022	C
Avion slim-fit eye protection	5	435	2223492	99.1216	C
DAA PDR Low-Ride	1	435	2223927	99.1410	C
Single action trigger, Custom	1	435	2224362	99.1604	C
30, Detent plunger LHS	11	430	2224792	99.1795	C
Aluminium shoe (SP-01)	3	430	2225222	99.1987	C
15, Ejector (P-07 / P-09)	6	420	2225642	99.2174	C
Mamba single mag carrier (CZ 83)	1	413	2226055	99.2358	C
Viridian ECR (Instant-On) upgrade kit	2	392	2226447	99.2533	C
32, Magazine catch, o-type (CZ75B)	1	391	2226838	99.2707	C
50, Extractor (.40 S\&W)	2	391	2227229	99.2882	C
Ross dress belt, decorative	1	391	2227620	99.3056	C
06, Trigger pin (CZ75)	12	390	2228010	99.3230	C
CGW recoil spring 15 (P-07/P-09)	3	390	2228400	99.3404	C
CGW recoil spring 18 (P-09)	3	390	2228790	99.3577	C
Lyman Kinetic Bullet Puller	1	378	2229168	99.3746	C
IMI Red dot riser	1	370	2229538	99.3911	C
Extra Power Sear Spring (P-07/P-09)	4	364	2229902	99.4073	C
33, Magazine catch spring (CZ 75 B)	11	350	2230252	99.4229	C
J hook kydex	3	348	2230600	99.4384	C
Wolff recoil spring (CZ 83)	2	348	2230948	99.4539	C
Wolff Recoil spring (CZ75 Compact)	2	348	2231296	99.4695	C
32, Magazine catch, D-type (SP-01)	1	339	2231635	99.4846	C
Pit Viper (P-07)	1	339	2231974	99.4997	C
37, 57, Firing pin retaining pin	9	336	2232310	99.5147	C
38, Mag base lock (CZ 75)	6	332	2232642	99.5295	C
52, Extractor spring (CZ 75 B)	24	330	2232972	99.5442	C
Talon grips - Grip Tape (P-07)	1	330	2233302	99.5589	C
24, Magazine brake (Shadow)	4	312	2233614	99.5728	C
40, Extractor spring (P-07/P-09)	6	312	2233926	99.5867	C
Fiber optic rod DAA	8	312	2234238	99.6006	C
24, Magazine brake (CZ 75B)	6	296	2234534	99.6138	C
DPM replacement spring set (P-07)	3	288	2234822	99.6266	C
09, Trigger bar (P-07/P-09)	1	283	2235105	99.6393	C
39, Recoil spring (P-07)	3	261	2235366	99.6509	C
Gift voucher	1	261	2235627	99.6625	C
12, Disconnector (P-07/P-09)	2	260	2235887	99.6741	C
Bulge Buster push rod (9mm)	2	260	2236147	99.6857	C
30, Detent plunger (P-01 Omega)	6	258	2236405	99.6972	C
Design Tech V2 Molle attachment	4	252	2236657	99.7085	C
38, Mag base lock (SP-01)	10	249	2236906	99.7196	C
03, Slide stop spring (L shaped)	9	240	2237146	99.7303	C
13, Sear pin (CZ 75 B)	6	234	2237380	99.7407	C
Magazine spring, K-Mag	4	234	2237614	99.7511	C
Magwell main spring plug (P-09)	1	230	2237844	99.7614	C
Magazine spring, Wolff $+5 \%$ (CZ 75 Compact)	4	218	2238062	99.7711	C
Appendix Specific Platform (CZ 83)	1	217	2238279	99.7808	C
Metal front sight with green phos dot (P07)	1	217	2238496	99.7904	C
43, Safety latch spring (P-07/P-09)	7	215	2238711	99.8000	C
42, Guide rod (Shadow)	10	210	2238921	99.8094	C
41, Recoil spring (P-01)	3	208	2239129	99.8187	C
30, Trigger pin (P-07/P-09)	3	200	2239329	99.8276	C
CZC Recoil spring (Compact)	2	200	2239529	99.8365	C
03, Slide stop spring (r shaped)	7	195	2239724	99.8452	C
45, Hammer spring (CZ 75 Compact)	5	195	2239919	99.8539	C
29, Hammer pin (P-07/P-09)	4	183	2240102	99.8620	C
55, Magazine spring (CZ83)	4	174	2240276	99.8698	C
Ross Leather OWB 7 (CZ 83)	2	174	2240450	99.8775	C
28, Sear pin (P-07/P-09)	3	166	2240616	99.8849	C
Design Tech V2 Thumb retention	4	156	2240772	99.8919	C
Magazine base, K-Mag	3	152	2240924	99.8987	C
DPM replacement spring set (TS)	1	148	2241072	99.9053	C
48, Decocking lever spring (P-07/P-09)	3	144	2241216	99.9117	C
27, Main spring plug with loop (P-07)	2	140	2241356	99.9179	C
59, Firing pin block stop spring	3	140	2241496	99.9242	C
32, Main spring plug pin (P-07/P-09)	3	130	2241626	99.9300	C
Shotmaxx carry case	2	126	2241752	99.9356	C
47, Slide stop spring (P-07)	7	120	2241872	99.9409	C
Design Tech V2 Resistance retention	4	120	2241992	99.9463	C
69, Recoil buffer (TS)	5	117	2242109	99.9515	C
Belt Clip, Metal	1	109	2242218	99.9564	C

Stock Optimisation for an online business offering niche products


```
Stock Optimisation for an online business offering niche products
```


Appendix C

Appendix C consists of four parts. The first part shows how the safety stock for the model results was calculated. The safety stock is used as a buffer to account for any discrepancies in the demand forecast results. It is also be used for any shortages that may occur during the lead-time.

Safety Stock Calculations

	Item 1	Item 2	Item 3	
Maximum daily usage (in units)	5	4	9	
Maximum lead time (in days)	12	5	4	
Average daily usage (in units)	1	2	3	
Average lead time (in days)	7	3	2	
Saftey Stock for 2017 (in units)	53	14	30	

Part 2 shows how the calculations of the actual inventory costs for item one for 2017 were calculated.

Actual inventory cost calculations for item 1 for 2017

Holding costs and Ordering Cost Calculations for item one for the year 2017						
		Actual Demand	Amount of stock ordered	Ending Inventory	Holding Costs $=(0.75 *$ ending inventory)	Ordering Costs = number of orders* 10572
2017	January	24	453	429	321.75	10572
	February	32		397	297.75	
	March	36		361	270.75	
	April	116		245	183.75	
	May	54		191	143.25	
	June	26		165	123.75	
	July	14		151	113.25	
	August	14		137	102.75	
	September	14		123	92.25	
	October	8		115	86.25	
	November	8		107	80.25	
	December	2		105	78.75	
	Total Holding Costs				1894.5	
	Total Ordering Costs				10572	
	Total costs				12466.5	

Stock Optimisation for an online business offering niche products

Part 3 shows how the calculations of the actual inventory costs for item two for 2017 were calculated.

Actual inventory costs for item two for 2017

Holding costs and Ordering Cost Calculations for item two for the year 2017						
		Actual Demand	Amount of stock ordered	Ending Inventory	Holding Costs =(4.63* ending inventory)	Ordering Costs = number of orders* 1000
2017	January	12	20	8	37.04	1000
	February	18	20	10	46.3	1000
	March	6	30	34	157.42	1000
	April	55	30	9	41.67	1000
	May	26	30	13	60.19	1000
	June	9	30	34	157.42	1000
	July	6	20	48	222.24	1000
	August	5	20	63	291.69	1000
	September	10	20	73	337.99	1000
	October	31	20	62	287.06	1000
	November	26	20	56	259.28	1000
	December	18		38	175.94	
	Total Holding Costs				2074.24	
	Total Ordering Costs				11000	
	Total costs				13074.24	

Part 4 shows how the calculations of the actual inventory costs for item three for 2017 were calculated.

Actual inventory costs for item three for 2017

Holding costs and Ordering Cost Calculations for item three for the year 2017						
		Actual Demand	Amount of stock ordered	Ending Inventory	$\begin{aligned} & \text { Holding Costs } \\ & =\left(0.81^{*}\right. \text { ending } \\ & \text { inventory }) \\ & \hline \end{aligned}$	Ordering Costs = number of orders* 430
2017	January	22	30	8	6.48	430
	February	34	30	4	3.24	430
	March	24	25	5	4.05	430
	April	4	25	26	21.06	430
	May	20	25	31	25.11	430
	June	36	25	20	16.2	430
	July	32	25	13	10.53	430
	August	14	25	24	19.44	430
	September	6	25	43	34.83	430
	October	8	25	60	48.6	430
	November	24		36	29.16	
	December	22		14	11.34	
	Total Holding Costs				230.04	
	Total Ordering Costs				4300	
	Total costs				4530.04	

