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Abstract
Supply chain planning of consumer goods distribution is a constant process with expanding cities
and increasing consumer demand. This project is based in the municipality of Ekurhuleni, Gaut-
eng, South Africa. The aim of the project is to develop a model that will use data of the predicted
population distribution of Ekurhuleni in 2030 to develop a robust supply chain for consumer goods.

Three possible development and population layout scenarios that the future of the municipal-
ity could embody were investigated. A model was developed to locate a distribution centre (DC)
and develop a distribution network, that will be compatible with all three of these scenarios. A
literature review was conducted to determine the best practices in the fields of facility location
modelling, distribution network development, robust networks and optimisation models. An al-
gorithm was developed based on the best practices and the data of the UrbanSim model to solve
the problem. The municipality was divided into 1058 zones and based on the algorithm the best
zone to locate the DC is zone 538.

This zone placement passes with a logical test, since the total cost is lower if the DC is located
near the center of the municipality rather than on the outskirts of the municipality. Further
verification and validation was done on the model. Sensitivity analysis on the model was done
by changing certain parameters such as the number of trucks, the capacity of the trucks, and the
operating cost per truck. The operating cost per truck has the most influence on the robustness
of the distribution network. A maximum total saving of R 63 279 could made by using this
approach to place a DC and develop a distribution network for consumer goods. Thus if the
impact on a small scale problem is already this significant, the impact on a full scale distribution
operation could be tremendous. Future work should consider determining the demand per zone
more accurately and in categories since it will impact the given solution.
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Chapter 1

Introduction

1.1 Background

South Africa is a developing country at the southern tip of Africa. In 2011 the South African
population was 51.7 million and it grew to 55.6 million in the subsequent 5 years. The current
average population growth per year in South Africa is 2.207% [2].

The population growth in urban areas and the expansion of cities to surrounding areas is
known as urban growth. This is a result of both population growth and people relocating from
rural areas to urban areas mainly for work opportunities. Urban growth leads to an increase in
economic development for both the city and the country [40].

A wide variety of people live in these urban areas. These people can be classified into household
types. Each of the different household types have specific attributes. The households types have
a certain demand level range for consumer products. Population and urban growth leads to an
increase in this demand for consumer products, especially in urban areas for all household types.
The continuous change in both demand and the city form makes it more difficult to develop
robust distribution networks for these consumer products. Supply chains have to be designed and
implemented to continuously keep up with the demand.

A supply chain is a series of activities that converge raw materials into finished products, as
is illustrated in Figure 1.1. A supply chain of consumer products can be simply explained for
example by the process that is followed to transform cocoa beans into a chocolate. The supply
chain process starts at the farmer who plants and harvests the cocoa beans. The cocoa beans are
then transported to a refinery, where the beans are processed. The refined cocoa is transported
to the chocolate factory, where the chocolate is manufactured. The chocolate is then transported
to a distribution centre (DC), where it is stored. From the DC, the chocolate is delivered to the
retailers where the consumer can buy a chocolate.
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Figure 1.1: Simple supply chain

Supply chains and distribution networks have to expand continuously as a result of population
growth and expanding cities. To develop a long term supply chain strategy, the estimated demand
of the consumer products for the next couple of decades must be taken into account.

The role of urban supply chain planning has increased due to rapid advances in smart city
design where the cities are designed for robustness and sustainability in the long run [15]. In order
for a supply chain to be robust in the long run, the supply chain configuration should ensure that
it remains at the desired performance level for multiple possible future scenarios.

It is important to evaluate both logistics and urban planning simultaneously when developing
a new distribution network. Urban planning is needed to understand the current and future
environment in which the distribution network will be deployed in, while logistics is required to
develop the distribution network. Thus both are crucial parts of the process of developing a
distribution network.

A supply chain is the combination of distribution networks to move goods from point A to
point B. Facility location models place the DCs in the best strategic locations [9].

This distribution network and facility location project is based in the Ekurhuleni municipality
in Gauteng, South Africa. The location of Ekurhuleni is show in Figure 1.2. This municipality is
chosen due to the development potential in the area. There is a great deal of freight movement
in the area around the O.R. Tambo international airport and this will increase more with the
planned expansions in the area.
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Figure 1.2: Ekurhuleni with regards to South Africa

Due to the planned expansions and the implementation of these projects the population of the
municipality as well as the industries in the area will drastically increase. The demand is based the
population size and distribution in the given area and period. The population size and distribution
is an output of UrbanSim models. UrbanSim is an urban development simulation software package
that supports the planning and analysis of development in urban areas [44]. UrbanSim uses data
of interaction between various role players and parameters such as the current population, land
use, the economy, and transportation to ultimately make decisions with regards to the city form
in the couple of years [43].

1.2 Rationale and problem statement

The growth and expansion of cities lead to an increase in consumer product demand and an
increase in the distribution network area. These factors increase the difficulty to develop a robust
supply chain for the future.

Long term distribution network decisions of today will have a big impact on the future logistics
of the company [9]. The design of the distribution network of a company is of utmost importance
in order to keep a competitive advantage and to be able to easily adapt to the changes occurring
in the supply chain during the next 30 years. Having to regularly alter a distribution network is
very costly for a company because it affects the cost, time and quality of the customer service
[20].

Logistics cost consumes a large part of a company’s budget. These costs can be reduced by
carefully designing the supply chain, but especially the last mile distribution of consumer goods
[34]. In 2014 the logistics cost of a product was 11.2% of the Gross Domestic Product which is the
market value of a given product. These logistics costs are set to increase at a rate of just under
1% per year. There are four main contributors to logistics costs namely transportation (57%),
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warehousing (15.2%), inventory carrying cost (14.6%) and management and administration cost
(13.2%) [18]. Thus especially transportation costs have a huge impact on the supply chain cost.
A saving of R 63 279 in logistics costs was seen in the small facility location and distribution
network project, thus the savings can become even grater on a large project.

Another important aspect to consider in logistics is the location of DCs. Currently there is
a lack of models that investigate the location of DCs and the distribution network of consumer
goods to customers, based on how a city will expand in the future.

1.3 Objective

The objective of the project is to design a distribution network model that will be compatible
with any of the multiple scenarios for the Ekurhuleni municipality in 2030, while also catering for
the current demand.

Using the output data of UrbanSim the predicted population distribution of 2030 will be used
for supply chain planning of consumer goods. The model should locate a DC on the best strategic
place, consider the fleet size of each DC and develop a distribution network for the last mile
delivery of consumer goods to the customers. During the project the link between urban planning
and supply chain design will be investigated for the last mile transportation of consumer goods.

1.4 Project Approach

The project started by identifying an improvement opportunity. Once the opportunity was iden-
tified a detailed problem investigation was done. An in-depth literature review was conducted in
order to become familiar with the best practices of robust distribution network design, facility lo-
cation modelling and optimisation models. Once the best practices have been identified the model
formulation was done. The formulation ensured that all aspects of the problem was considered
before developing the algorithm.

The problem was solved using a local search optimisation technique. The model and the
solution was evaluated and verified to ensure that the model leads a robust solution.

1.5 Document structure

The remaining chapters of the document are organised as follows: Chapter 2 is an in-depth
investigation of the problem. Chapter 3 is the critical literature review of the best practices and
solution techniques. Chapter 4 is the conceptual design in which the data preparation is described
and mathematical formulation is done. Chapter 5 is the discussion and interpretation of the
solution. Chapter 6 is the discussion of the model verification and validation. Lastly, Chapter 7
is a conclusion on the work done thus far and a description of future work that can be done with
regards to the project.
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Chapter 2

Problem investigation

With cities expanding rapidly, it is difficult to determine what a city would look like in a few
decades’ time and, in turn, what the demand for a product would be. Urban growth modelling is
often used as a tool to predict what the future spatial distributions of households and jobs would
be in a city. To this extent, the CSIR has implemented UrbanSim R© in multiple cities, of which
Ekurhuleni is one. The output of the simulation models were made available as a base to work
from in this project.
Ekurhuleni had a population of 3 118 574 in 2011 and it is expected to grow to 4 852 896 in
2030, which translates to a yearly growth of almost 2% [43]. A synthetic population was created
based on this data for simulation purposes. A synthetic population is a representation of the
actual population with only the crucial attributes for modelling purposes [40]. The synthetic
population is segmented into categories by attributes such as income class, job type and their
living arrangement (the type of house and the number of people in their household).
Furthermore, to assist with data allocation the entire municipality is divided into 1058 zones, as
seen in Figure 2.1, to assist with the data allocation. These zones are all approximately 3m2. Each
zone consists of a number of parcels, where parcels refer to cadastral parcels — a representation
of the individual erven. Parcels are classified according to their underlying land-use and a parcel
could either be built-up (has one or more buildings present) or vacant (has no buildings). Vacant
parcels are areas that can still be developed and for the purposes of this project, only these will
be considered when placing the DC. the difference between vacant and built-up parcels can be
seen in Figure 2.2.
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Figure 2.1: Ekurhuleni divided into 1058 zones

Figure 2.2: Schematic illustration of different land utilisation parcels constructing a zone

The municipality has identified 21 projects that they would like to implement in the next 20
years to stimulate the economy and ensure growth. Most of these projects are planned in or close
to the priority areas, which are earmarked as areas in which development is prioritised through
higher densities and focused investment in infrastructure projects.

Data related to the 21 projects and priority areas were included in the CSIR’s UrbanSim
simulation model together with a base synthetic population and job opportunities in the city.
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Three scenarios were developed between the CSIR and the municipality to see what the possible
future spatial distribution would be for different city futures. The scenarios reflect differences in
household and economic growth in the city, which would influence where households and jobs are
located in future. These three scenarios are: Trend, Aerotropolis and Human Settlements Project
(HSP), and will be described in more detail in the rest of this chapter.

2.1 Scenarios

2.1.1 Trend

In the trend scenario, 11 of the 21 planned projects of the municipality will be completed; these
are the projects in the priority zones as previously mentioned. This scenario leads to an increase in
both residential and industrial activity. This scenario is more or less a continuation of the current
development rate in Ekurhuleni. The number of the households and location of these households
of this scenario’s simulation are illustrated in Figure 2.3. The total households in 2030 in this
scenario is 1 756 631.

Figure 2.3: Total number of households in each zone in 2030 given the trend scenario [43].
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2.1.2 Aerotropolis

The aerotropolis scenario is an aggressive scenario where all 21 of the projects of the munic-
ipality will be completed. This will lead to a significant increase in industrial activity making it
an economic hub and leading to a large increase in the number of jobs available. Many of these
projects are located around the O.R.Tambo international airport in Johannesburg. This scenario
will lead to significant economic development. The number of the households and location of these
households of this scenario’s simulation is illustrated in Figure 2.4. The total households in 2030
in this scenario is 1 786 766.

Figure 2.4: Total number of households in each zone in 2030 given the aerotropolis scenario [43].
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2.1.3 Human Settlements Project

The HSP scenario is mainly focused on housing projects. Most of the larger housing projects are
broken up into small projects in strategically located areas closer to transportation and jobs. This
will lead to densification of already built-up areas. The number of the households and location
of these households of this scenario’s simulation is illustrated Figure 2.5. The total households in
2030 in this scenario is 1 783 283.

Figure 2.5: Total number of households in each zone in 2030 given the HSP scenario [43].

2.2 Demand

The population distribution in the Ekurhuleni municipality will be used to determine the demand
for the consumer products in each zone in 2030. This demand for the consumer products will
be linked to the number of households in each zone. The demand will be used in the model to
determine which is the best zone to place the DC.

2.3 Conclusion

The whole of Ekurhuleni was divided into zones and these zones consist of smaller parcels. Parcels
are classified as built-up or vacant. A zone with vacant land of 5000m2 will be considered for
the placement of the DC. The demand for the consumer products will be linked to the number
of households in each zone. Thus the total demand per zone is the sum of the demand from all
the households in the zone. Three possible future scenarios for the Ekurhuleni municipality were
investigated. The trend scenario which is a continuation of the normal. The aerotropolis
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scenario which is an aggressive scenario where large development projects are implemented. The
HSP scenario in which large housing projects are broken into smaller projects closer to work
opportunities and public transport. A literature study was conducted to find the best practices
to solve the robust distribution network and facility location problem with uncertainty.
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Chapter 3

Literature review

Based on the scope of the problem, the following best practices were investigated during the
literature review. Urban distribution centres and city logistics since the environment of
the problem is in an urban area. Demand needs to be investigated to gain an understanding
of how to convert household attributes into demand. Facility location models are needed to
determine the optimal location for the facilities. Vehicle routing models will be required to
develop the routes that the trucks will follow to minimise the transportation cost. Distribution
network models are a key aspect to investigate since the problem is based on distribution
networks in Ekurhuleni. Robustness is also very important since it is the core of the problem.
Uncertainty also plays a major role in the problem since the future is fairly unknown and thus
the demand will also be uncertain. Ways to handle these uncertainties will be investigated. Lastly
optimisation models to solve the problem will be investigated in order to ensure that the most
suitable technique is used. The rest of the chapter provides more detail with regards to these
topics.

3.1 Urban distribution centre

City logistics is an attempt to understand the flow of goods in urban areas, while taking sustain-
ability into account. City logistics also considers plans that can be set into action to improve the
efficiency of the flow as well as reduce the congestion [10].

An urban distribution centre (DC) is a logistics facility that is located relatively close to an
urban area or in an urban area. The purpose of these urban distribution centres is to serve the
demand of the population in the area. These centres are used to complete the last mile delivery
to the consumers. By optimising the distribution networks of these centres, the total cost and the
carbon dioxide (CO2) emissions can be reduced since less unnecessary travel is done [14].

Locating DCs in urban areas has its advantages and disadvantages. Some of the advantages
and disadvantages are as follow.
Advantages:

• Environmental and social benefits from efficient and less intrusive transport operations.
• Better inventory control, product availability and customer service.
• Facilitation of a switch from push to pull logistics through better control and visibility of

the supply chain.
• Shorter delivery routes from the urban DC to the customers.
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Disadvantages:

• Increased delivery costs, though depending on how well the DC is integrated in the supply
chain.
• Potential for creation of monopolistic situations.
• Loss of direct interface between suppliers and customers.

Urban DCs and city logistics are important aspects to consider when moving forward, since the
Ekurhuleni is an urban area. Although an urban DC has a couple of disadvantages, the advantages
outweigh them thus it will still be a good idea to locate the DC in the municipality.

3.2 Demand

Demand is an important aspect for both facility location models and distribution network models.
The customers will be located at the centre of the zone to make the modelling easier [30].

Consumers buy goods for different reasons and in different ways. These purchasing behaviours
can be categorised in four groups.

• Routine purchases are everyday use products that has a relatively low cost.

• Occasional purchases are goods like clothes that also has a relatively low cost but there
is a significant amount of time going into the purchase.

• Complex purchases are buying items such as laptops or cars. These purchases are expen-
sive and a great deal of research goes into the purchase.

• Impulse purchases are purchases made on impulse due to advertising [38].

There are many factors that can influence consumer behaviour and thus influence the demand
for a certain product. They are:

• Cultural factors play a very important role in determining the consumer behaviour. These
factors include the culture, sub-culture and the social class of the consumer. The types of
products purchased are highly dependent on this factor. The culture of a person has a major
impact on the consumer products that they buy based on trend or tradition.

• Social factors are important for the quality or class of product purchased. These factors
include the consumer’s family and status. Consumers are driven by the opinions of their
families and of society. Thus this is a very important factor driving the demand for certain
status items.

• Personal factors are the most important with regards to the type and value of goods
purchased. These factors include age, gender, occupation, financial situation, lifestyle and
personality. These factors are extremely important for demand forecasting since they influ-
ence all aspects of the demand.

• Psychological factors are the perceptions of consumers of certain product. This factor
includes motivation, perception, research and believes with regards to the product [32].

For the problem addressed in this report, the personal and cultural factors will be most relevant
for the demand forecasting. Most of the personal and cultural factors of the synthetic population
are available as an output of the UrbanSim model. Since it is an urban logistics problem only
the cultural and personal factors can be used to determine the demand for each scenario. These
factors are attributes of each household and can be used to determine the demand per household.
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3.3 Facility location models

Facility location models are used to determine the optimal location for the DCs and when the DC
should be opened [4]. Facility location network design problems are concerned with finding the
optimal locations for facilities as well as the distribution of consumer goods to the customers [13].
These decisions are crucial for the strategic planning of a company [31].

The selected sites for the facilities should not only be profitable in the current environment but
also in several possible future scenarios in the lifetime of the facility [31]. Robust facility location
optimisation is used in models when uncertainty exists over multiple periods [5].

Facility location modelling is used in urban and regional planning to locate facilities that pro-
vides a service [46]. There are several single period facility location models grouped by objective.
These objectives are:

• Min-sum models are used for normal proportion median problems where the total cost or
travel time is minimised.

• Uncapacitated facility location problems are used to minimize the overall operational
costs.

• Min-max models are used to minimise the largest distance from DC to customer.

All of these models try to find the minimum number of facilities servicing the maximum number
of customers [35]. In these models, the total cost to serve is minimised. Both the min-sum model
and min-max model assume that the set-up costs for all the possible new facilities are the same
[28].

Multi-period facility location problems are used when parameters change in a predictable way
over time. The aim is to adapt the facilities configuration to the changing parameters. Stochastic
parameters should also be included to account for uncertainty in future customer demands [28].

For this problem, the facility placing will be kept simple and multi-period modelling will not
be used. The focus will only be on the placing of the DC in a specific zone and not the timing
of the placement. It will be assumed that the set-up costs for all the facilities will be equal. The
min-sum model will be used because it minimises the set-up and transportation costs.

3.4 Vehicle routing models

Vehicle routing problems (VRP) are a combination of optimisation problems that allow the mod-
elling of vehicle fleets and their trips which can include multiple stops. These models are a
representation of the flow of distribution vehicles through the urban areas. An example of a basic
VRP is shown in Figure 3.1. The black dots in the left image are all the customers, the aim is
to serve all the customers from the DC with minimum cost or in minimum time. The image on
the right illustrates the output of a VRP. The best routes to serve all the customers in minimum
time and with minimum cost have been identified.
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Figure 3.1: An example of a basic vehicle routing problem [6].

There are two main motives for doing vehicle routing optimisation in urban areas. The first
is to increase mobility of freight transportation and to reduce the congestion in the urban areas
at a minimum cost. The second is related to the environmental and social aspects where the
greenhouse gas emissions and noise pollution are reduced. In these ways the quality of life of the
people in the urban areas can be improved [7].

An important aspect in urban areas is the time of day. The travel time is highly dependent on
the congestion, which in turn, is dependent on the time of day. When using time dependency in
a model, every hour of the day has a certain travel speed associated to it based on the congestion
in the area at that time. Two sets of solutions can be modelled to determine the impact that the
time dependency will have on solution of the model. By taking into account the time dependency
time can be reduced by up to 10% and the greenhouse gas emissions will thus also be reduced.
Including the time dependency into the model will reduce the variability in the duration of the
trips [7].

There are a couple of variations of vehicle routing problems each with its own specifications:
The variations are:

• Capacitated VRP: The vehicles used to transport the goods has a certain capacity.

• Pick up and delivery VRP: Goods need to be collected from one location and delivered
to another.

• Multi-trip VRP: The vehicles can be assigned more than one route at a time.

• Vehicle routing with time windows: The vehicles has a specified time window in which
they should complete the delivery [24].

The nearest neighbour technique is a technique used to solve vehicle routing problems. This
technique takes the first customer (A) and finds the next closest customer (B). Then it will find
the next nearest neighbour (C) to the most recent one (B). This process will be repeated until
all the customers have been reached. Next it will start at the second customer to complete the
process again. This is then done for all of the customers to determine the best route for the vehicle
to travel [45].
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For this problem the vehicle routing will be kept simple; the trucks will have a certain capacity
and will be assigned more than one customer at a time. There will be no time window for the
model since it is not currently the core problem.

3.5 Supply chain and distribution network models

Supply chain networks and distribution networks are supposed to be used for a long period during
which many parameters may change. Thus it is important to develop networks that can cope
with these changes [28]. Large costs are associated with these network configurations, therefore
stability and robustness are desirable features in such networks [37].

Distribution network design is one of the most important strategic decisions because of the
competitive nature of the industry these days [41]. The uncertainty of the future is modelled by
scenarios with probabilities that are known. A robust supply chain will perform efficiently for all
of the given scenarios and time periods [19].

There are four robust distribution network modelling techniques that can be used for this
problem.

• Stochastic programming uses scenarios with known probabilities in a two-stage model.
Where the first stage develops the distribution network configuration and second stage the
material flow configuration after the uncertainty has been resolved. The objective of this
model is to maximise the expected profits in all of the scenarios. This technique will give a
mean based solution [19].

• Fuzzy or probabilistic linear programming is used when some parameters cannot be
estimated. Fuzzy logic can be used to model their uncertainty [19].

• Robust optimisation assumes that the probabilities of each scenario realising is unknown.
The aim is to maximise the profit or minimise the cost over all of the given scenarios. [19].

• The variance technique takes the known probabilities of the scenarios and finds a bal-
ance between their expected values, the solution robustness and other factors such as en-
vironmental factors. The solution robustness is evaluated on the absolute deviation or the
variance[19].

By defining the strategic robust supply chain as a set of Pareto-optimal configurations the problem
can be modelled as a mean-standard deviation robust design problem. These configurations can
be ussed to assist with choosing between the alternative solutions based on the trade-offs and
what they deem most important [19].

Distribution network design incorporates both facility location models and vehicle routing mod-
els at strategic and tactical levels. Studies have shown that these two models are interdependent
and if treated otherwise it could lead to excessive costs for the company [34].

For this problem, the robust optimisation technique is most suitable technique to use since the
probabilities of each of the scenarios is unknown and the solution should be robust.
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3.6 Robustness

A robust optimisation problem is a contradictory problem. Robustness seeks a solution that is
capable of still performing relatively well even when conditions change while the optimisation of
a supply chain seeks to make the current solution as good as possible. For this reason stochastic
problem solving methods will give a much better answer than deterministic methods [17].

Robust networks ensure that the service is at the desired level with minimum service cost to
the company in the long run. Robustness also enables the network to cope with the uncertainty
that the future holds [3].

For the problem, robustness is extremely important. The solutions for each scenario alone will
be treated as the non-flexible solutions. The solution of the combined model where the possibility
of all the scenarios are incorporated will be treated as the flexible scenarios. If the network is
robust, it will have minimum variation between the flexible and non-flexible solutions [26]. The
robustness of the network will be determined by finding the minimum variation between the
flexible scenario and each of the non-flexible scenarios.

3.7 Uncertainty

Two of the biggest uncertainties in supply chains are the uncertainty in the supply and demand.
The uncertainty in supply is caused by delays or problems at the supplier. Uncertainty in the
demand can be as a result of difficulties in forecasting and fluctuation in demands [4]. These
future uncertainties are usually a result of changes in the economic environment or in the business
[33]. The main uncertainty contributor is the demand, since the demand levels and the household
distributions of the future is unknown.

Sensitivity analysis of the demand can be done to test the influence of the uncertainty by
determining a base case scenario and then changing the demand in a couple of scenarios. A
deviation of 10% from the base case will be sufficient if it is done in both directions. With a
good solution it is impossible to improve an objective value without sacrificing at least one other
parameter [4]. In this case the demand of each scenario will be altered with the 10% deviation to
determine the impact of these changes.

Uncertainty plays a major role in the problem since the future is unknown with regards to the
demand and the specific scenario that will realise. Thus sensitivity analysis will be done to test
the impact of the uncertainty on the model.

Scenario planning is a way of thinking about the future for companies. The company executives
develope a few scenarios and discuss how these scenarios will affect the company. The company
can then develop plans the handle each of the scenarios the best of their capabilities. These
scenarios are based on a few uncertain paraters that are changed to determine the impact of the
parameters on solutions [27].

In this case, scenario planning is used for alternatives of what the future Ekurhuleni munici-
pality might embody. Thus the scenarios will be used to develop a distribution network that will
perform well in all of the possible scenarios.

With the uncertainty of which scenario will realise, a method to cope with the uncertainty had
to be investigated. The deviations between the objective functions are minimised [39]. This ap-
proach is ideal to use when different future scenarios are possible, as is the case in the investigated
problem.
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3.8 Optimisation algorithms

Optimisation algorithms can either be exact or approximate methods. When using exact meth-
ods, a global optimal solution can be identified. When using approximate methods, there is no
guarantee that a global optimal solution can be reached [39].

• Exact methods determine a specific solution for the given problem using mathematical
constructs. These methods focus on discrete events in which branch and bound models are
used [22].

• Approximate methods can be divided into two types of algorithms. The approximate
algorithms and heuristic algorithms. Approximate algorithms focus on giving quality solu-
tions in the given time bounds. Heuristic algorithms focus on finding a reasonably good
solution in an acceptable amount of time. These algorithms assist to find reasonably good
solutions for large problems at a reasonable cost. Metaheuristics can find better solutions
for larger problems than any of the other mentioned methods. Metaheuristics can be used as
the starting point to solve any optimisation problem [39]. Metaheuristics include techniques
such as tabu search, simulated annealing, genetic algorithms, ant colony optimisation, parti-
cle swarm optimisation and differential evolution. A number of different metaheuristics are
shown in Figure 3.2. From these different metaheuristics, genetic algorithms and differential
evolution algorithms were investigated further. Metaheuristics serve three main purposes:
solving problems faster, solving large problems, and obtaining robust algorithms.

Figure 3.2: Common metaheuristics [16].
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3.8.1 Local search

Local search is an optimisation method for solving hard computational problems. This method
finds the best solution given a wide range of possible solutions. Local search is commonly used in
VRPs and travelling salesman problems. This optimisation method is based on the neighbourhood
based algorithms where the nearest neighbour is selected to determine where to travel next.

A local search starts from a given or random candidate solution and iteratively moves to the
next neighbour after the candidate solution has been evaluated. This process continues until a
satisfactory solution is found [36].

3.8.2 Genetic algorithms

A genetic algorithm is an evolutionary algorithm which is based on the adaptive process in nature.
Genetic algorithms take two possible solutions and change aspects of the solutions to develop two
new possible solutions. This process is done randomly to diversify the solutions space. As the
algorithm evolves, the better solutions have a higher chance of being selected again [45]. The
cross-over and mutation process of the genetic algorithm care illustrated in Figure 3.3.

Figure 3.3: A diagram of the crossover and mutation process of genetic algorithms [29].

The process of developing a genetic algorithm is as follow:

1. Create a population of P solutions by randomly generating starting solutions.

2. Randomly select two individuals in the population as parents and produce offspring. If
the offspring’s fitness function value is the same or less desirable than any individual in
the population, it is eliminated. If the offspring is better than at least one member of
the population, the worst individual in the population is replaced with the offspring. This
process is repeated for G generations.

3. The best individual in the population is the solution [11].
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3.8.3 Differential evolution

Differential evolution is an evolutionary population based strategy [12]. This strategy is a robust,
effective and simple goal optimisation algorithm. Each individual in the population is treated as a
vector. Instead of classical crossover operators of most evolutionary algorithms, the recombination
of differential evolution individuals is based on a linear combination.

Differential evolution algorithms have control parameters such as population size, crossover
probability and scaling factor. The parameter values have to be selected carefully since they will
influence the quality of the solution [47].

The process of developing a differential evolution algorithm is as follows:

1. Create an initial randomly distributed population (P0) of size k.

2. Set the parameters and termination criteria.

3. The weight difference between two individuals in the population is added to another indi-
vidual in the population.

4. Crossover and mutation generates new individuals in the population.

5. Selection determines which individuals are suitable with regard to the fitness values to
eliminate bad solutions.

6. This process continuous until the termination criteria is reached [47].

3.9 Conclusion

Based on the above analysis of the literature, the following can be concluded. Urban DCs have a
couple of disadvantages but the advantages outweigh these disadvantages. There are many aspects
that influence the demand for products. In this problem personal and cultural factors will be used
to infer the demand. These attributes can be identified for each household to determine the
demand per household and aggregate it to demand per zone. The facility location planning model
will be kept relatively simple where a min-sum model will be used to determine the location
of the facilities at a minimum cost. The vehicle routing problem will also be kept relatively
simple. A capacitated vehicle routing problem will be used since the trucks will have specified
capacities. For the distribution network development, the robust optimisation technique will be
used to determine the optimum configuration. The robustness of the solution will be determined
by finding the minimum variation between the flexible and non-flexible scenarios. Local search will
be used to solve the problem since it is not as computationally expensive as the other alternatives
and it is commonly used in VRPs.
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Chapter 4

Conceptual design and formulation

The problem has been defined in Chapter 2 and best practices to solve the problem have been
investigated in Chapter 3. With these best practices in mind, the data preparation, conceptual
design and model formulation was done in this chapter. During this chapter alternative solution
methods were investigated to find the most suitable method.

4.1 Data preparation

The output data of the UrbanSim models were analysed and filtered for the purpose of the problem.
The data was visualised in Qgis to gain a greater understanding.

The current input data of the Ekurhuleni municipality was filtered to show the vacant land in
each zone. This reduction was used to determine whether or not there is space for a DC in that
zone. The reduction was done by taking the cumulative sum of the area of all the empty, vacant
and unknown parcels in each zone.

The latitude and longitude coordinates of the centroids of each zone were identified. These
coordinates were used to determine the distances between the zones. The DC as well as the
customers were located at these coordinates.

4.2 Conceptual design

The previously defined facility location and distribution network problems were solved using an
optimisation algorithm. The formulation and modelling of the problem was divided into four parts
as seen in Figure 4.1. The data from the UrbanSim model was used to develop potential solutions
for all three of the scenarios. The least cost DC placement of each scenario was determined. The
cost difference between each possible DC location cost and the least cost DC placement for that
scenario was determined for all the possible locations in all three zones. These outputs of the
individual scenario models was used in the goal programming approach to find the best robust
DC location when taking all three the scenarios into consideration.
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Figure 4.1: The flow from the problem to the solution.

The conceptual design gave a better understanding of how to approach and solve the problem.
From the conceptual design a mathematical formulation of the problem was done.

4.3 Formulation

4.3.1 Assumptions made for the model

• The distances between the zones are calculated as the straight line distance between the
centroids of the zones.

• The demand per zone is equal to the households per zone.

• It is assumed that a retailer is located at the centroid of each zone, the consumer products
are delivered to these retailers.

• A DC cannot be placed in a zone if there is less than 5000m2 vacant land available in the
zone [8].

• If a DC is placed it is placed on the centroid of the zone.

• Only one DC is placed in the model.

• The set-up cost of the DC is is a fixed cost of R29 700 000 [1].

• The product of size 0.2m3 was selected , which is used to determine the number of units
that can fit in a truck.

21



• The truck can make deliveries to multiple zones in one trip.

• A 3−tonne truck was be used in the model, since the trucks must be mobile in urban areas.
The operation cost per km for the truck is R10.62. The truck has a cubic space of 10m3

[42].

• The CO2 emissions were assumed to be 0.107 kg/km [25].

• The carbon tax is R120 per tonne of CO2 emitted [23].

4.3.2 Individual models

For each of the three scenarios, the optimal cost and configuration were determined.

Let:
Z be the set of possible DC locations
G be the set of customer locations
J be the set of trucks

4.3.2.1 Parameters

Let:

dg , Demand per customer g ∈ GGG
mg1g2 , Distance between customers g1 and g2 where g1, g2 ∈ GGG, g1 6= g2

oz , The open space in each zone z ∈ ZZZ
f , Fleet size of the DC

v , The capacity of a truck

k , The operating cost per km (inR)

e , The CO2 emissions per km (in tonnes)

c , The DC capacity (in units)

n , The cost of opening a DC (inR)

s , Number of units that can fit in a truck

4.3.2.2 Calculated variables

tj , The distance travelled by truck j ∈ JJJ
wj , The CO2 emissions per truck j ∈ JJJ
bj , The cost as result of CO2 emissions per truck j ∈ JJJ
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4.3.2.3 Decision variables

Decision variables are variables that have to be determined by the algorithm [21].

xz =

{
1, if a DC is placed in zone z εZ

0, otherwise

ajg =

{
1, if truck j ∈ JJJ delivers to customer g ∈ GGG
0, otherwise

4.3.2.4 Objective functions

The objective function of a model evaluates a quantitative indicator of importance such as yield,
profit or cost [21]. For this problem the total cost which consists of the DC set-up cost and the
distribution network cost is minimised. The distribution network costs include the operating cost
per truck as well as the CO2 emissions costs.

min
∑
Z

nxz +
∑
J

∑
G

ajg(ktj + bj) (4.1)

The total cost is minimised for each scenario individually to find the optimum solution for each
one of the three scenarios.

4.3.2.5 Constraints

tj =
∑
Z

∑
G

xzajg1ajg2mg1g2 ∀ j ∈ JJJ (4.2)

wj = 0.107tj ∀ j ∈ JJJ (4.3)

bj =
120

1000
wj ∀ j ∈ JJJ (4.4)∑

Z

xz = 1 (4.5)

xz ∈ {0; 1} ∀ z ∈ ZZZ (4.6)∑
J

ajg ∈ {0; 1} ∀ g ∈ GGG (4.7)

Equation 4.2 calculates the distance travelled by each truck. Equation 4.3 determines the CO2

emissions for each truck. Equation 4.4 calculated the cost as a result of CO2 emissions for each
truck. Equation 4.5 ensures that only one DC is placed. Equation 4.6 and 4.7 defines binary
variables.

4.3.3 Goal programming approach

The objective of this model is to develop a robust distribution network that is compatible with all
three of the original scenarios. Goal programming was used for this approach where all three the
original scenarios are taken into account at the same time. Having established the best configu-
ration in terms of minimised costs for the three individual scenarios, a cross-cutting solution was
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defined through considering all three of the scenarios. This cross-cutting solution was evaluated in
all three scenarios. It was expected that the solution will be sub-optimal to all the scenarios but
will present the most robust solution capable of addressing most of the uncertainties associated
with futuristic modelling.

4.3.3.1 Objective function

This model is a multi-objective model in which the total difference between the optimal cost for
each scenario and the total cost of the scenario in the cross-cutting solution is minimised. The
standard deviation between these costs were minimised.

min ((y1 − θ1) + (y2 − θ2) + (y3 − θ3) + σ(y1 y2 y3)) (4.8)

Where θi, i ε {1, 2, 3} is the minimum cost solution for each of the original scenarios as calculated
in equation 4.1 and yi, i ε {1, 2, 3} is the robust solution for each original scenario.

Equation 4.8 ensures that the difference between the optimal cost for each scenario and the total
cost of the scenario in the cross-cutting solution is minimised. The deviation between these costs
were minimised.

4.4 Alternative solution methods

Three software package alternatives for solving the problem were investigated. The first software
package that was considered is AnyLogistix which is a logistics package from the AnyLogic group.
This would have been a feasible option if not for the restraints of the student version which limited
the number of zones that could be defined. Buying the full version was not an option.

The second alternative that was investigated is programming in Python. This option offers the
advantage of adding different aspects of the problem together. It is open source thus it would not
cost additional money. There is no constraint on the size of the model. Modules can be installed
to assist with the solving of the problem.

The last alternative that was investigated for the solving of the problem was Supply chain guru
from LlamaSoft. This was not a feasible option because the student version is very limited and
cannot be used to solve the current problem. Thus the only option that was capable of solving
the problem given the restraints was programming in Python.

Different Python packages were investigated to determine which is the best for solving the
vehicle routing problem (VRP). The packages that were investigated are: PyEvolve, OR Tools,
and Inspyred. A few key criteria were considered and these packages were scored according to a
score out of 10, where 1 is very poor and 10 is excellent. These criteria and the scores can be
seen in Table 4.1. Based on the total of each package the best package for solving the VRP was
selected. Form Table 4.1 it is evident that OR Tools has the highest total score and thus OR
Tools was used to solve the VRP.

Table 4.1: Comparing different Python packages to use to solve the VRP
PyEvolve OR Tools Inspyred

Ease of use 6 7 6
Help documentation 4 8 5
Compatibility with VRP 7 8 8
Total 17 23 19
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The conceptual design and mathematical model was developed to assist with the programming
that was used to solve the problem. Various alternative methods to solve the problem were
investigated and from those alternatives Python with the use of OR Tools was selected to solve
the problem. During the next chapter the solution of the problem will be discussed.
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Chapter 5

Solution

In Chapter 4, alternative solution methods for solving the problem were investigated and Python
programming with the help of OR Tools was selected. From the formulation in Chapter 4, a model
was developed which consisted of a VRP and a goal programming approach model. The VRP
base case for each scenario consisted of 1058 zones and 4 trucks each with a capacity of 50 000
units. Only zones with an open land area of 500 000 m2 were considered for the placement of the
DC.

The demand per zone, the coordinates of the centroid of each zone, the number and capacity of
trucks, and a zone in which the DC could be placed, were used as the input parameters for the VRP.
A local search, with the help of OR Tools, was used to find the best distribution network given
the input parameters. During the local search the nearest neighbour zone was determined. The
truck delivered the required demand to the next nearest neighbour zone. This nearest neighbour
search process continued until the truck was empty, at this point the truck drove back to the DC
to reload. This process was completed for all the trucks until the demand of all the zones were
met. The distance travelled by all the trucks were received as an output of the VRP.

The VRP was used to determine the total distribution network cost for each zone the DC could
be placed in. This cost was calculated by multiplying the cost per km with the total distance
travelled by the trucks. The total cost for each zone in the scenario was determined by adding
the total distribution network cost and the cost to build a DC. These calculations were done for
all the applicable zones of each scenario. From these answers the minimum total cost for each
scenario as well as the best zone to place the DC for that scenario could be determined.

The total cost of each applicable zone of each scenario was used in the goal programming
approach to determine the best, most robust zone to place the DC given the uncertainty of which
scenario will realise in the future. The objective function was minimised to determine the best
zone to locate the DC to ensure that the distribution network is as robust as possible.

Based on the calculations done, the best zone to place the DC is zone 538. Figure 5.1 illustrates
where zone 538 is located with regards to Ekurhuleni and all the other zones. The large red dot is
the location of the DC, in zone 538 and the other smaller dots are the zones to which the consumer
goods must be delivered in Ekurhuleni.
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Figure 5.1: The most robust location for the DC is zone 538

The total number of households for the trend scenario by 2030 is 1 756 631. The total number
of households for the aerotropolis scenario by 2030 is 1 786 766. The total number of households
for the HSP scenario by 2030 is 1 783 283. The total number of households in each zone are very
similar and thus the minimum cost location for the different scenarios does not differ significantly.

The minimum total cost for each scenario can be seen in Table 5.1 together with the zone
in which the DC should be placed in to obtain this minimum cost. These values are compared
to that of the robust solution and the difference between the minimum cost and the cost given
the most robust zone to place the DC is given. It is apparent that the difference between the
minimum cost for each scenario and the robust cost for each scenario is small which implies the
distribution network is indeed robust.
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Table 5.1: Comparing the optimal solutions for each scenario with the robust solution.
Trend Aerotropolis HSP

Minimum total cost DC zone 444 895 538
Minimum total cost R 29 725 140 R 29 725 400 R 29 725 206
Robust DC zone 538 538 538
Robust total cost R 29 725 964 R 29 725 611 R 29 725 206
Difference R 824 R 211 R 0

Figure 5.2 illustrates the minimum cost DC location for each scenario with regards to the locations
of the customers. The red dot on each image is the location of the DC with the minimum total cost
in the given scenario. For the trend scenario, the DC is located in zone 444. For the aerotropolis
scenario, the DC is located in zone 895 and for the HSP scenario, the DC is located in zone 538.
For all three the scenarios the DC is located more or less in the same area. This similarity is due
to the fact that only one DC is placed per scenario and the number of households in the scenarios
does not differ by significantly.

Figure 5.2: The optimal least cost routes for each original scenario

The graphs in Figure 5.3 illustrates the total costs for each scenario. The dot in each graph is
the minimum cost for that scenario while the triangle is located on the total cost for the robust
supply chain for each original scenario. The minimum cost for the HSP scenario and the total
cost for the robust supply chain is the same since in both cases the DC is placed on in zone 538.
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Figure 5.3: Total cost graphs for each scenario
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Table 5.2 provides the total cost for the distribution network for a randomly selected zone in which
the DC could be placed for the three scenarios. The total cost difference between the minimum
cost for each scenario as stated in Table 5.1 and the cost if the DC were placed in the stated zone
was determined. The last column of Table 5.2 is the objective function value that was minimised
to find the most robust distribution network and the best zone to locate the DC. Zone 538 is
indeed the most robust zone to place the DC, since its objective function value is the lowest.

Table 5.2: Evaluating the robustness of the chosen zone for the DC against other possible zones
Zone Trend Aerotropolis HSP Total

cost
difference

Standard
deviation

Objective
function

37 R 29 726 852 R 29 727 026 R 29 727 077 5 208 96 5 304
355 R 29 730 464 R 29 729 823 R 29 729 343 13 884 459 14 343
520 R 29 725 386 R 29 727 316 R 29 725 619 2 574 860 3 434
538 R 29 725 964 R 29 725 611 R 29 725 206 1 035 310 1 345
631 R 29 729 039 R 29 729 760 R 29 732 049 15 102 1 283 16 385
749 R 29 731 215 R 29 732 429 R 29 732 629 20 527 625 21 152
917 R 29 731 231 R 29 732 310 R 29 728 951 16 746 1400 18 146
1000 R 29 731 156 R 29 730 953 R 29 732 779 19 141 817 19 958

From Table 5.2 three of the randomly selected zones were selected to illustrate why their
objective functions differ so much from that of the most robust zone, zone 538. Figure 5.4 is
an illustration indicating where the DCs of the three randomly selected zones are located. From
the figure it can be seen that all these DCs are located relatively on the outskirts of Ekurhuleni,
whereas if the DC is located in zone 538 it is close to the center of the municipality. If the DC is
located on the outskirts of the municipality the total distance travelled will increase, which will
subsequently increase the total cost.

Figure 5.4: The location of the DC in three different zones with regards to Ekurhuleni
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For the current problem a maximum total saving of R 63 279 could be made by using this
approach to locate a DC and develop a distribution network for consumer goods. Thus if the
impact on a small scale problem is already this large, the impact on a full scale distribution
operation could be tremendous.

From a logical point of view the solution seemed to be a feasible solution, since the DC is
located relatively in the center of the municipality. Further verification, validation and sensitivity
analysis was done to determine the validity and sensitivity of the model and the solution.
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Chapter 6

Verification and validation

For the model verification, the model was assessed against the aim of the project. If the model
was in-line with the objective the model would be deemed valid. The model was verified using a
logical test to determine whether or not a reasonable answer was given by the model. A sensitivity
analysis was conducted to determine the sensitivity of the model with changing parameters.

The objective of the project was to design a distribution network model that will be compatible
with any of the multiple development scenarios for the Ekurhuleni municipality in 2030, while also
catering for the current demand. The model should locate the DC on the best strategic place,
consider the fleet size of each DC and develop a distribution network for the last mile delivery
of consumer goods to the customers. During the project the link between urban planning and
supply chain design was investigated for the last mile transportation of consumer goods.

The given solution is a robust solution since it has the lowest cost difference between the
scenarios as well as between each scenario’s minimum and the cost of the distribution network if
that scenario realises. The model found the best zone to place the DC given the uncertainty of
which scenario will realise in the future. A link between urban planning and supply chain design
was defined since the predictive urban planning data was used to determine the best DC location
and distribution network for last mile transportation of consumer goods. This link can thus be
used to save money by determining the best supply chain configuration given the uncertainty of
how the area will expand in the future. With this project R 63 279 could be saved using this
approach. Thus all the objectives of the project were met.

A logical test with regards to the location of the DC was implemented. This test determined
whether or not the output of the model was a reasonable solution. The solution is a reasonable
solution, since the DC is located relatively in the center of the municipality. The placement of the
DC in the center of the municipality will keep the distribution network cost lower than if the DC
was located on the outskirts of the municipality, since less distance will be travelled by the trucks.

The CSIR department that developed the UrbanSim simulation models were consulted to
determine if the solution met their expectations. The department was satisfied that the solution
gave an answer which they were seeking for.
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6.1 Sensitivity analysis

A sensitivity analysis was conducted to determine if the model is generic and if reasonable answers
are given as solutions. The following parameters were altered to determine the sensitivity of the
model: the operating cost per km, the truck capacity and the number of trucks. The base case of
every scenario has 4 trucks each with a capacity of 50 000 units and an operating cost of R10.27
per km.

6.1.1 Operating cost per km

The operating cost per km for the trucks was altered to investigate its impact, since fuel price is
a continuously changing parameter. The operating cost per km is narrowly related to the total
cost since if the operating cost increases or decreases the total cost will do the same. Table 6.1
is a summary of the sensitivity analysis done for the operating cost per km. For each case the
optimal cost, the robust cost and the cost difference for each scenario is given. Table 6.2 provides
the total cost difference between each scenario’s optimal and robust solution for each case as well
as the objective function value for each case.

Table 6.1: Effect of altering the operating cost per km per truck
Optimal
DC zone

Optimal
total cost

Robust
DC zone

Robust
total cost

Cost
difference

Trend (R9.27) 440 R29 722 695 533 R29 722 991 296
Trend (base case) 444 R29 725 140 538 R29 725 964 824
Trend (R11.27) 442 R29 727 585 531 R29 728 180 595

Aerotropolis (R9.27) 894 R29 722 930 533 R29 723 582 652
Aerotropolis (base case) 895 R29 725 400 538 R29 725 611 211
Aerotropolis (R11.27) 894 R29 727 870 531 R29 728 171 301

HSP (R9.27) 536 R29 722 755 533 R29 723 439 684
HSP (base case) 538 R29 725 206 538 R29 725 206 0
HSP (R11.27) 536 R29 727 657 531 R29 728 489 832

Table 6.2: The total cost difference and objective function value for each case due to altering the
operating cost per km

Total
cost

difference

Objective function
value for most

robust zone

R9.27 total difference R1 632 2 321
Base case total difference R1 035 1 344

R11.27 total difference R1 728 4 923

Figure 6.1 illustrates the relationship between the minimum total cost and robust cost for
each scenario in each of the cases when altering the operating cost per km. From the graph it
can be seen that the relationship between the total operating cost and the operating cost per km
is relatively linear. Thus it will be easy to determine the total cost of a scenario for any given
operating cost by just plugging the value into the straight line equation.
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Figure 6.1: The relationship between the minimum total cost and robust cost for each scenario in
each of the cases when altering the operating cost per km.

6.1.2 Capacity of trucks

Different truck sizes are available and thus the impact of the capacity of the trucks were inves-
tigated to determine the size of the impact. The capacity of the trucks were altered between 40
000 units per truck and 60 000 units per truck. Table 6.3 illustrates the impact of altering the
capacity for all the different cases. As seen in Table 6.4 the capacity of the truck has a large
impact on the cost as well as the robustness of the solution. The total cost for each scenario for
each case increase as the capacity decrease. This relationship is as expected, since the smaller the
capacity of the truck the more trips the tucks will have to make to deliver the required number of
products to the zones.
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Table 6.3: Effect of altering the truck capacity
Optimal
DC zone

Optimal
total cost

Robust
DC zone

Robust
total cost

Cost
difference

Trend (40 000 units) 532 R29 728 088 525 R29 728 771 683
Trend (base case) 444 R29 725 140 538 R29 725 964 824

Trend (60 000 units) 547 R29 723 262 552 R29 723 686 424
Aerotropolis (40 000

units)
534 R29 728 768 525 R29 730 551 1783

Aerotropolis (base case) 895 R29 725 400 538 R29 725 611 211
Aerotropolis (60 000

units)
525 R29 723 196 552 R29 724 407 1211

HSP (40 000 units) 517 R29 728 951 525 R29 729 059 108
HSP (base case) 538 R29 725 206 538 R29 725 206 0

HSP (60 000 units) 555 R29 722 798 552 R29 724 088 1290

Table 6.4: The total cost difference and objective function value for each case when altering the
truck capacity

Total
cost

difference

Objective function
value for most

robust zone

40 000 Units total difference R2 574 3 354
Base case total difference R1 035 1 344

60 000 Units total difference R2 925 3 219

Figure 6.2 illustrates the relationship between the minimum total cost and robust cost for each
scenario in each of the cases when altering the truck capacity. From the graph it can be seen that
the relationship between the total operating cost and the operating cost per km is negative linear.
Thus it will be easy to determine the total cost of a scenario for any given truck capacity by just
plugging the value into the straight line equation. The figure also clearly shows that the robust
total cost for each scenario of each case is higher that the minimum cost, which is as expected.
The HSP base case minimum total cost and robust cost is the same since the robust zone and
minimum cost zone is the same zone.
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Figure 6.2: The relationship between the minimum total cost and robust cost for each scenario in
each of the cases when altering the truck capacity.

6.1.3 Number of trucks

The number of trucks is an uncertain parameter since there is not a fixed number of trucks
specification that could be used. Thus the impact of the number of trucks were investigated
to determine whether the model is sensitive to these changes. Table 6.5 is a summary of the
sensitivity analysis done for the number of trucks, for each case the optimal cost, the robust cost,
and the cost difference for each scenario is given. Table 6.6 provides the total cost difference
between each scenario’s optimal and robust solution for each case. From the data it is clear that
the number of trucks have an impact on the solution.

Table 6.5: Effect of altering the number of trucks
Optimal
DC zone

Optimal
total cost

Robust
DC zone

Robust
total cost

Cost
difference

Trend (3 trucks) 443 R29 725 140 888 R29 725 585 445
Trend (base case) 444 R29 725 140 538 R29 725 964 824
Trend (5 trucks) 442 R29725036 890 R29 725 153 117

Aerotropolis (3 trucks) 891 R29 725 407 888 R29 725 869 462
Aerotropolis (base case) 895 R29 725 400 538 R29 725 611 211
Aerotropolis (5 trucks) 893 R29 725 407 890 R29 725 869 462

HSP (3 trucks) 536 R29 725 244 888 R29 726 651 1407
HSP (base case) 538 R29 725 206 538 R29 725 206 0
HSP (5 truck) 538 R29 725 244 890 R29 726 301 1057
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Table 6.6: The total cost difference and objective function value for the change in the number of
trucks

Total
cost

difference

Objective function
value for most

robust zone

3 Trucks total difference R2 314 2 764
Base case total difference R1 035 1 344
5 Trucks total difference R1 636 2 109

Figure 6.3 illustrates the relationship between the minimum total cost and robust cost for each
scenario in each of the cases when altering the number of trucks. In this graph the minimum
total cost for each scenario of each case is relativity similar while the robust operating cost for
each scenario of each case differs by a large amount. Thus it can be concluded that the number
of trucks have a large impact on the robustness of the model. The figure also clearly shows that
the robust total cost for each scenario of each case is higher that the minimum cost, which is as
expected. The HSP base case minimum total cost and robust cost is the same since the robust
zone and minimum cost zone is the same zone.

Figure 6.3: The relationship between the minimum total cost and robust cost for each scenario in
each of the cases when altering the number of trucks.

For all of the cases tested the DC is placed in more or less the same area although the zone
numbers differ by quite significantly they are relatively close to one another. From all of the
parameters that were changed the capacity of the trucks has the highest impact on the robustness
of the solution.
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Chapter 7

Conclusion

This project is based in the Ekurhuleni municipality in Gauteng, South Africa. Presently supply
chain models are using the current demand and short term forecasted demands to develop supply
chains. This traditional method of forecasting brought about the idea of incorporating urban
planning into last mile distribution networks. The urban planing was used to determine the
number of households in each zone in the Ekurhuleni municipality. The number of households
was converted into a demand per zone located at the centroid of the zone. The data was used to
locate a DC and develop a robust distribution network model for 2030.

There are three scenarios of what the municipality could look like in the future. A model
was developed that located a distribution centre and developed a distribution network that is
compatible with all three of the scenarios. A literature review was conducted to determine the
best practices in the fields of facility location modelling, distribution network development, robust
networks and optimisation models. An algorithm was developed based on the best practices and
the data of the UrbanSim model to solve the problem. Based on the algorithm the best zone to
locate the DC is zone 538.

This zone placement holds up with a logical test since the DC is located relatively in the center
of the municipality, thus it seems feasible. Verification and validation was done to determine the
validity of the model and the solution. Sensitivity analysis on the model was done by changing
certain parameters such as the number of trucks, the capacity of the trucks, and the operating
cost per truck. The operating cost per truck had the most influence on the robustness of the
distribution network. A maximum total saving of R 63 279 could be made by using this approach
to place a DC and a develop distribution network for consumer goods. Thus if the impact on a
small scale problem is already this significant, the impact on a full scale distribution operation
could be tremendous.

7.1 Future work

Future work can evaluate the placement of more than one DC when working with a larger area
such as a province or country.

The demand of the zones can be divided into different categories based on the household
attributes to ensure a higher accuracy in the demand for consumer products. This is an important
aspect to consider since the demand will have a great impact on the solution.
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Appendix A

List of symbols

ajg , Which truck j ∈ JJJ delivers to which zone g ∈ GGG
bj , The cost as result of CO2 emissions per truck j ∈ JJJ
c , The DC capacity

dg , Demand per customer g ∈ GGG
e , The CO2 emissions per km

f , Fleet size of the DC

G , The set of customer locations

J , The set of trucks

k , The operating cost per km

mg1g2 , Distance between customers g1 and g2 where g1, g2 ∈ GGG, g1 6= g2

n , The cost of opening a DC

oz , The open space in each zone z ∈ ZZZ
s = Number of units that can fit in a truck

tj , The distance travelled by truck j ∈ JJJ
u , The cost per square meter to opening a DC

v , The capacity of a truck

wj , The CO2 emissions per truck j ∈ JJJ
xz , Whether a DC is placed ina zone z ∈ ZZZ
Z , The set of possible DC locations
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Appendix B

Mentor form
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