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Efficient Modelling of Missile RCS Magnitude
Responses by Gaussian Processes
J. P. Jacobs, Member, IEEE and W. P. du Plessis, Senior Member, IEEE

Abstract—An efficient technique for modelling radar cross
section (RCS) magnitude responses versus frequency is presented.
The technique is based on Gaussian process (GP) regression
and makes it possible to significantly reduce the number of
expensive computer simulations required to accurately resolve
these responses. Examples of two missiles are used to evaluate the
proposed technique. Average predictive normalized root-mean-
square errors (RMSEs) of 1.24% and 1.63% were obtained,
with the worst RMSE being less than 2.2%. These results
were significantly better than results obtained with alternative
techniques, including geometric theory of diffraction (GTD)-
based modeling and support vector regression.

Index Terms—Gaussian processes, radar cross section (RCS),
and modelling.

I. INTRODUCTION

THE radar cross section (RCS) magnitude of a platform
is the main factor in the radar-range equation which is

not under the control of a radar [1], [2]. As a result, RCS
magnitude can be the primary consideration which drives other
radar-design decisions [3]. RCS magnitude affects how easily
a platform can be detected and influences countermeasure
performance via the jammer-to-signal ratio (JSR). The devel-
opment of stealthy platforms, which primarily aim to reduce
RCS magnitude, emphasises the importance of RCS.

RCS varies rapidly with frequency [1], [2], so large numbers
of simulations are required to determine the RCS magnitude
of a target. As a result, only the RCS magnitude averaged
over frequency is specified in many cases, with [3] only
providing seven RCS values from 35 MHz to 9 GHz for the
missile type considered here, despite the significant variations
with frequency shown in simulations below. Most targets of
interest are large in terms of wavelength, meaning that RCS
simulations are extremely time and memory intensive, even
when high-frequency techniques are used [2].

In this letter, the use of Gaussian process (GP) regression
[4], [5] to reduce the number of points at which the RCS
magnitude must be determined via simulation is demonstrated.
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A GP model employing a composite covariance function in-
tended for modelling quasi-periodic responses [4], [6] is shown
to accurately predict RCS magnitudes despite the complicated
frequency responses of the targets. GP regression is shown
to significantly outperform the generic, machine-learning, and
physics-based interpolation techniques considered.

II. MODELLING WITH GAUSSIAN PROCESSES

The roots of GP regression lie in Bayesian statistics; the
main implementation steps are summarized below, following
[4].

Suppose a training set {(xi, gi)|i = 1, . . . , n} of a limited
number of noise-free observations of the latent function is
available (in the present work, the scalar inputs xi are fre-
quency values, and the scalar outputs gi are the corresponding
RCS magnitude values; the latent function is the full RCS
response). It is desired to predict values of the latent function
for new (i.e. test) inputs {x∗,j |j = 1, . . . , n∗} (i.e. frequency
values not included among the training inputs). First, a jointly
Gaussian prior distribution is constructed over the n training
outputs (contained in vector g) and the n∗ unknown test
outputs (g∗):[

g
g∗

]
∼ N

(
0,

[
K (x,x) K (x,x∗)
K (x∗,x) K (x∗,x∗)

])
. (1)

In (1), x and x∗ are vectors containing all training and test
inputs respectively; K (x,x∗) is an n× n∗ matrix containing
the covariances between all pairs of training and test outputs
(other sub-matrices K (·) are similarly defined); and N (u, V )
denotes a multivariate normal distribution with mean vector u
and covariance matrix V .

The posterior distribution, given by g∗|x∗,x,g ∼ N (m,Σ)
[4], is obtained by conditioning the test outputs on the known
training outputs g. The posterior mean m is given by

m = K (x∗,x)K (x,x)
−1

g (2)

which contains the most probable RCS magnitudes associated
with the test frequencies in x∗.

Elements of the covariance matrices in (1) and (2) are
given by the covariance function. For example, the squared-
exponential (SE) covariance function is a standard covari-
ance function previously used for antenna modelling [5]:
kSE (x, x′) = σ2

f exp
(
−0.5r2

)
, where σ2

f governs the vari-
ance of the process, and r2 = (x− x′)2/τ2 where τ is a
positive length-scale parameter [4].

Training in GP regression entails determining the hyperpa-
rameters of the covariance function (e.g. σ2

f and τ above) that
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Fig. 1. The dimensions of the (a) Stinger and (b) Strela-2
missile models in mm with the positions of the main scatterers
indicated.

minimise the negative log marginal likelihood. In the general
GP regression formulation, observations are assumed to be
noisy, i.e. of the form y (x) = g (x) + η (x), with g (x) being
the latent function and η(x) representing zero-mean Gaussian
noise with variance σ2

n. The negative log likelihood is then
given by [4]

log [p (y|x)] = −0.5yT
(
K + σ2

nI
)−1

y

− 0.5 log
∣∣K + σ2

nI
∣∣− 0.5n log (2π) (3)

where y is a vector containing the n training outputs; K
contains the covariances between all possible pairs of training
outputs calculated using the covariance function; | · | denotes
the determinant of a matrix; and I is the identity matrix.
In the present work, σn was initialized to a very small
value (≈10−6) to reflect the assumption of noise-free RCS
observations, so after training, RCS predictions at training
frequencies coincided with the training values.

Standard covariance functions such as the SE function
are not sufficiently expressive to model the complex RCS
magnitude responses of Section III [6]. Instead, a composite
covariance function of the form k (x, x′) = kSE (x, x′) ×
kPER (x, x′) [4] can be used, with kSE as given above, and
kPER (x, x′) being a periodic covariance function used to
model one-dimensional functions that comprise exact repeti-
tions of a basic function [4]:

kPER (x, x′) = exp
[(
−2 sin2 [π |x− x′| /λ]

)
/θ2
]

. (4)

In (4), the hyperparameter λ determines the intervals between
repetitions, and θ is a length-scale parameter.

III. VERIFICATION EXAMPLES

Missile RCS magnitude responses relevant to a real-world
application were considered [3]. Fig. 1 shows models of the
FIM-92 Stinger and 9K32 Strela-2 (SA-7 Grail) derived from
information freely available on the internet. Frequencies from
5 to 15 GHz were considered in 10-MHz steps for a total of
1 001 data points per missile.

FEKO release 2017.1 [7] was used to simulate the two
targets on axis from the front (i.e. left to right in Fig. 1) as
these missiles will fly straight towards the most vulnerable
targets (helicopters and aircraft during take-off and landing).
Both electrical and magnetic symmetry were used to reduce
simulation run times and memory requirements. Run times
were further reduced by separately meshing the targets at each
simulation frequency, with the maximum triangle edge length
being specified as a fifth of a wavelength. High-frequency
techniques cannot be used here because the main scatterers
(see Fig. 1) are smaller than five wavelengths [2], even at the
highest frequency.

The small size of the targets allows full-wave simulations
to be performed at high frequencies. Despite the small target
sizes, a grand total of 301 hours of simulation time and a max-
imum of 16.8 GB of memory were required to simulate both
missiles on a computer with a six-core 2.30-GHz processor.

Twenty sets of training data were compiled for each missile
to verify that results are not sensitive to the specific training-
data configuration. For each set, the interval of 5 to 15 GHz
was divided into 164 equal sub-intervals, with one frequency
point being uniformly randomly selected from each subin-
terval. If absent, the extreme values (5 and 15 GHz) were
added for a maximum of 166 points. This method of selection
ensured that points were not clumped together, but spread over
the entire frequency range as shown in Fig. 2. The average
simulation time for each set of training data was 25 hours,
so the total simulation time (on average) for both missiles’
training data was 50 hours.

The missiles are approximately 1.5 m long, and only the
magnitude of the RCS is considered. A frequency step of
50 MHz or less is thus necessary to ensure that the nose and
tail of a missile can be resolved [2]. Stated differently, the
fastest variations in the data have a period of approximately
100 MHz, so the Shannon-Nyquist criterion requires at least
two samples over this interval [8]. This estimate ignores
higher-order effects, so a smaller frequency spacing is actually
required. The use of 164 to 166 frequency points is thus based
on a frequency spacing which is 20% larger than required by
the Shannon-Nyquist criterion.

Training consisted of numerical optimization of (3). The
problem is multi-modal, so it was necessary to consider
multiple sets of random hyperparameter starting values to
ensure that good results were obtained (300 sets were used).
The results for the set that gave the lowest negative log-
likelihood are reported. This automatic procedure took 6 to 13
minutes per GP model, so this time was negligible compared
to the simulation time.

The root-mean-square errors (RMSEs) for each model were
computed from

RMSE =

√∑n∗
l=1 [RCSp (l)− RCSs (l)]

2

max
l

RCSs (l)
(5)

where RCSp (l) and RCSs (l) are the predicted and simulated
linear RCS magnitudes at frequency index l respectively. GP
regression ensures that the errors at the training points are
negligible, so all results reported below consider the RMSEs
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Fig. 2. The worst GP results for the (a) Stinger and (b) Strela-2 compared to the simulated (true) RCS magnitude.

of only the test points (the subsets of the 1 001 available points
remaining after the training points were removed).

The simulated responses, shown for each missile in Fig. 2,
are challenging to model as they contain quasi-periodicities
at a minimum of two levels: a rapidly-varying oscillation
and a slowly-varying envelope which has no clear pattern.
Fig. 2 also shows the GP fit for each missile, specifically
the result with the worst RMSE for the 20 training-data sets.
While the predicted RCS magnitudes have slight errors at
some frequencies, the detailed structure of both responses is
correctly predicted. GP regression is thus shown to accurately
model the variation of the RCS magnitudes with respect to
frequency for the missile models considered.

The accuracy of GP regression is explored further in Fig. 3,
where the RCS and error magnitudes are compared. The
results with the worst RMSEs from the 20 training data sets are
again reported to highlight how well the GP approach performs
in all cases. The right scales of Fig. 3 show that the error is less
than 1 dB for 88.9% and 86.5% of the 1 001 frequency points
for the Stinger and Strela-2 models respectively. Fig. 3 also
shows that larger RCS magnitudes tend to have smaller errors
than smaller RCS magnitudes. Less than 1.0% and 2.6% of the
largest 50% of the 1 001 RCS magnitudes exceed a 1-dB error
in the two cases, and fewer than 1.2% and 2.1% of the points
which are within 10 dB of the maximum RCS magnitude for
each missile have an error of greater than 1 dB. The mean is
most strongly influenced by large values, so errors in the larger
RCS magnitudes will have a greater effect on the average RCS
magnitudes used for system design.

The RMSEs obtained using GP regression and three other

TABLE I
RMSES OF TEST DATA

Model Best Median Worst Mean

St
in

ge
r GP 0.88% 1.25% 1.68% 1.24%

Spline 18.8% 19.8% 22.2% 19.9%
SVM 12.5% 13.6% 15.5% 13.7%
GTD 4.36% 4.82% 12.6% 5.46%

St
re

la
-2

GP 1.32% 1.54% 2.11% 1.63%
Spline 17.5% 19.0% 23.2% 19.2%
SVM 12.4% 14.2% 16.4% 14.2%
GTD 7.48% 14.8% 16.6% 12.8%

modelling techniques are compared in Table I for the same 20
sets of training points. Even the best results for cubic-spline
interpolation, a generic interpolation technique, were poor
(RMSEs of 18.8% and 17.5% for each missile respectively).
Support vector regression (SVR), a kernel-based machine
learning method often used for microwave modelling (e.g.
[9]), yielded best results when the epsilon-insensitive band was
set to 2% of the maximum RCS magnitude in the training
set (the penalty parameter and the scaling parameter of the
Gaussian kernel were optimized using a grid search with cross-
validation). While the SVR RMSEs improved on the cubic-
spline results, they still were poor, and depended strongly
on the training point configurations. Of the three alternative
techniques, a physics-based interpolation technique based on
geometric theory of diffraction (GTD) [10] performed best.
The associated scatterers were initially positioned as shown
in Fig. 1, after which the model parameters were numerically
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Fig. 3. The relationship between the error and simulated (true)
RCS magnitudes for the worst (a) Stinger and (b) Strela-2 GP
models.

optimised to minimise the RMSE. The results obtained by
the GTD-based model depend strongly on the training-point
configurations, and even the best results obtained are notably
poorer than the worst GP results.

IV. CONCLUSION

Many applications require accurate RCS magnitude in-
formation, but the complexity of the responses means that
simulations at large numbers of frequencies are required.
GP regression has been shown to accurately model the RCS
magnitudes of missiles using a frequency step which is 20%
larger than required by a first-order estimate of the Shannon-
Nyquist rate.

The GP-regression models are extremely accurate and con-
sistent despite the number of simulated frequency points
being below the Shannon-Nyquist limit. Significantly, even the
worst GP results substantially improved upon the best results
obtained by other techniques.
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