Supporting Information ## Multistage Antiplasmodium Activity of Astemizole Analogues and Inhibition of Hemozoin Formation as a Contributor to Their Mode of Action Malkeet Kumar¹, John Okombo¹, Dickson Mambwe¹, Dale Taylor², Nina Lawrence², Janette Reader³, Mariëtte van der Watt³, Diana Fontinha⁴, Margarida Sanches-Vaz⁴, Belinda C Bezuidenhout⁵, Sonja B Lauterbach⁵, Dale Liebenberg⁵, Lyn-Marie Birkholtz³, Theresa L Coetzer⁵, Miguel Prudêncio⁴, Timothy J. Egan^{1,6}, Sergio Wittlin^{7,8}, Kelly Chibale*^{1,6,9} ¹Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa. ²Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa. ³Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa. ⁴Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal. ⁵Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa ⁶Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa. ⁷Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland ⁸University of Basel, 4003 Basel, Switzerland. ⁹South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry University of Cape Town, Rondebosch 7701, South Africa. ## **Table of contents** | 1. | Supplementary Table 1: | S3-S4 | |----|------------------------|--------| | 2. | Figure S1 | S4 | | 3. | NMR spectra | S5-S23 | Supplementary Table S1: Melting points, solubility and β -haematin inhibitory activity (β HIA) values for AST, it metabolites and analogues tested in this study. | Compound
Code | Melting
Point
(°C) | Kinetic
Solubility
(µM) | βΗΙΑ
ΙC50
(μΜ) | ^a cLogP | ^a pKa | bhERG
pC50 | |------------------|--------------------------|-------------------------------|----------------------|--------------------|------------------|---------------| | AST | 169-171.5 | 90 | 130.5 | 5.84 | 9.19 | 8.26 | | DM-AST | 180.5-182.3 | 200 | 55.2 | 5.25 | 9.19 | 8.17 | | Nor-AST | 167.5-169 | 150 | 856.2 | 3.38 | 9.45 | 6.73 | | 3 | 138-140.3 | 35 | 2000.0 | 5.83 | 8.0 | 7.98 | | 5c | 70-72 | 90 | 253.4 | 4.11 | 9.18 | 6.61 | | 5d | 138-140 | 155 | 2709.5 | 4.18 | 9.21 | 7.24 | | 7 | 37-40 | 25 | 132.9 | 5.84 | 9.19 | 8.10 | | 8 | 138-141 | 35 | 201.6 | 5.84 | 9.19 | 8.12 | | 9 | 148-151 | 10 | 160.0 | 5.13 | 9.19 | 7.97 | | 10 | 159-162 | 10 | 93.8 | 5.13 | 9.19 | 7.30 | | 11 | 131-134 | <5 | 97.5 | 5.13 | 9.19 | 7.82 | | 12 | 126-129 | 20 | 964.8 | 5.51 | 9.19 | 6.54 | | 13 | 182-184 | 20 | 3049.0 | 4.21 | 9.19 | 7.26 | | 14 | 118-121 | 60 | 2640.0 | 4.05 | 9.19 | 7.88 | | 15 | 146-148 | 5 | 65.2 | 5.13 | 9.19 | 8.07 | | 16 | 200-202 | 30 | 3646.0 | 4.20 | 9.19 | 7.56 | | 17 | 165-167 | 85.2 | 125.4 | 4.54 | 9.19 | 7.90 | | 18 | 59-62 | 30 | 252.8 | 5.84 | 9.19 | 8.11 | |----------------|---------|-----|-------|------|-------|------| | 19 | 115-117 | 100 | 181.1 | 5.84 | 9.19 | 8.05 | | 20 | 64-66 | 65 | 294.8 | 5.75 | 9.19 | 8.12 | | Hydrocortisone | | 195 | - | | | | | Reserpine | | <5 | - | | | | | Chloroquine | | | 23 | 5.06 | 10.01 | 6.21 | | Amodiaquine | | | 11 | | | | | Halofantrine | | | | | | 7.36 | ^aCalculate using ChemDraw Professional; ^bhERG pIC50: was determined using starDropTM predictive software; Astemizoles: βH Inhibition vs Antiplasmodial Activity **Figure S1**: Linear correlation between β H inhibition and parasite growth IC₅₀ values for *Pf*NF54. Measurements of β H and parasite growth inhibitions were both done in triplicates. Figure S2: ¹H-NMR spectrum of AST in CD₃OD at 400 MHz. Figure S3: ¹³C-NMR spectrum of AST in CD₃OD at 101 MHz. Figure S4: ¹H-NMR spectrum of DM-AST in CD₃OD at 400 MHz and D₂O shake experiment. Figure S5: ¹³C-NMR spectrum of DM-AST in CD₃OD at 101 MHz. Figure S6: ¹H-NMR spectrum of 3 in CD₃OD at 400 MHz. Figure S7: ¹³C-NMR spectrum of 3 in CD₃OD at 101 MHz. Figure S8: ¹H-NMR spectrum of 5c in CD₃OD at 400 MHz. Figure S9: ¹³C-NMR spectrum of 5c in CD₃OD at 101 MHz. Figure S10: ¹H-NMR spectrum of 5d in CD₃OD at 400 MHz. Figure S11: ¹³C-NMR spectrum of 5d in CD₃OD at 101 MHz. Figure S12: ¹H-NMR spectrum of 7 in CD₃OD at 400 MHz. Figure S13: ¹³C-NMR spectrum of 7 in CD₃OD at 101 MHz. Figure S14: ¹H-NMR spectrum of 8 in CD₃OD at 400 MHz. Figure S15: ¹³C-NMR spectrum of 8 in CD₃OD at 101 MHz. Figure S16: ¹H-NMR spectrum of 9 in CD₃OD at 400 MHz. Figure S17: ¹³C-NMR spectrum of 9 in CD₃OD at 101 MHz. Figure S18: ¹H-NMR spectrum of 10 in CD₃OD at 300 MHz. Figure S19: ¹³C-NMR spectrum of 10 in CD₃OD at 101 MHz. Figure S20: ¹H-NMR spectrum of 11 in CD₃OD at 400 MHz. Figure S21: ¹³C-NMR spectrum of 11 in CD₃OD at 101 MHz. Figure S22: ¹H-NMR spectrum of 12 in DMSO @ 80 °C at 400 MHz. Figure S23: ¹³C-NMR spectrum of 12 in DMSO at 101 MHz. Figure S24: ¹H-NMR spectrum of 13 in CD₃OD at 400 MHz. Figure S25: ¹³C-NMR spectrum of 13 in CD₃OD at 101 MHz. Figure S26: ¹H-NMR spectrum of 14 in CD₃OD at 400 MHz. Figure S27: ¹³C-NMR spectrum of 14 in CD₃OD at 101 MHz. Figure S28: ¹H-NMR spectrum of 15 in CD₃OD at 400 MHz. Figure S29: ¹³C-NMR spectrum of 15 in CD₃OD at 101 MHz. Figure S30: ¹H-NMR spectrum of 16 in CD₃OD at 400 MHz. Figure S31: ¹³C-NMR spectrum of 16 in CD₃OD at 101 MHz. Figure S32: ¹H-NMR spectrum of 17 in CD₃OD at 600 MHz. Figure S33: ¹³C-NMR spectrum of 17 in CD₃OD at 151 MHz. Figure S34: ¹H-NMR spectrum of 18 in CD₃OD at 600 MHz. Figure S35: ¹³C-NMR spectrum of 18 in CD₃OD at 151 MHz. Figure S36: ¹H-NMR spectrum of 19 in CD₃OD at 600 MHz. Figure S37: ¹³C-NMR spectrum of 19 in CD₃OD at 151 MHz. Figure S38: ¹H-NMR spectrum of 20 in CD₃OD at 600 MHz. Figure S39: ¹³C-NMR spectrum of 20 in CD₃OD at 151 MHz.