Supporting Information

Multistage Antiplasmodium Activity of Astemizole Analogues and Inhibition of Hemozoin Formation as a Contributor to Their Mode of Action

Malkeet Kumar¹, John Okombo¹, Dickson Mambwe¹, Dale Taylor², Nina Lawrence², Janette Reader³, Mariëtte van der Watt³, Diana Fontinha⁴, Margarida Sanches-Vaz⁴, Belinda C Bezuidenhout⁵, Sonja B Lauterbach⁵, Dale Liebenberg⁵, Lyn-Marie Birkholtz³, Theresa L Coetzer⁵, Miguel Prudêncio⁴, Timothy J. Egan^{1,6}, Sergio Wittlin^{7,8}, Kelly Chibale*^{1,6,9}

¹Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.

²Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa.

³Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.

⁴Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.

⁵Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa

⁶Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.

⁷Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland ⁸University of Basel, 4003 Basel, Switzerland.

⁹South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry University of Cape Town, Rondebosch 7701, South Africa.

Table of contents

1.	Supplementary Table 1:	S3-S4
2.	Figure S1	S4
3.	NMR spectra	S5-S23

Supplementary Table S1: Melting points, solubility and β -haematin inhibitory activity (β HIA) values for AST, it metabolites and analogues tested in this study.

Compound Code	Melting Point (°C)	Kinetic Solubility (µM)	βΗΙΑ ΙC50 (μΜ)	^a cLogP	^a pKa	bhERG pC50
AST	169-171.5	90	130.5	5.84	9.19	8.26
DM-AST	180.5-182.3	200	55.2	5.25	9.19	8.17
Nor-AST	167.5-169	150	856.2	3.38	9.45	6.73
3	138-140.3	35	2000.0	5.83	8.0	7.98
5c	70-72	90	253.4	4.11	9.18	6.61
5d	138-140	155	2709.5	4.18	9.21	7.24
7	37-40	25	132.9	5.84	9.19	8.10
8	138-141	35	201.6	5.84	9.19	8.12
9	148-151	10	160.0	5.13	9.19	7.97
10	159-162	10	93.8	5.13	9.19	7.30
11	131-134	<5	97.5	5.13	9.19	7.82
12	126-129	20	964.8	5.51	9.19	6.54
13	182-184	20	3049.0	4.21	9.19	7.26
14	118-121	60	2640.0	4.05	9.19	7.88
15	146-148	5	65.2	5.13	9.19	8.07
16	200-202	30	3646.0	4.20	9.19	7.56
17	165-167	85.2	125.4	4.54	9.19	7.90

18	59-62	30	252.8	5.84	9.19	8.11
19	115-117	100	181.1	5.84	9.19	8.05
20	64-66	65	294.8	5.75	9.19	8.12
Hydrocortisone		195	-			
Reserpine		<5	-			
Chloroquine			23	5.06	10.01	6.21
Amodiaquine			11			
Halofantrine						7.36

^aCalculate using ChemDraw Professional; ^bhERG pIC50: was determined using starDropTM predictive software;

Astemizoles: βH Inhibition vs Antiplasmodial Activity

Figure S1: Linear correlation between β H inhibition and parasite growth IC₅₀ values for *Pf*NF54. Measurements of β H and parasite growth inhibitions were both done in triplicates.

Figure S2: ¹H-NMR spectrum of AST in CD₃OD at 400 MHz.

Figure S3: ¹³C-NMR spectrum of AST in CD₃OD at 101 MHz.

Figure S4: ¹H-NMR spectrum of DM-AST in CD₃OD at 400 MHz and D₂O shake experiment.

Figure S5: ¹³C-NMR spectrum of DM-AST in CD₃OD at 101 MHz.

Figure S6: ¹H-NMR spectrum of 3 in CD₃OD at 400 MHz.

Figure S7: ¹³C-NMR spectrum of 3 in CD₃OD at 101 MHz.

Figure S8: ¹H-NMR spectrum of 5c in CD₃OD at 400 MHz.

Figure S9: ¹³C-NMR spectrum of 5c in CD₃OD at 101 MHz.

Figure S10: ¹H-NMR spectrum of 5d in CD₃OD at 400 MHz.

Figure S11: ¹³C-NMR spectrum of 5d in CD₃OD at 101 MHz.

Figure S12: ¹H-NMR spectrum of 7 in CD₃OD at 400 MHz.

Figure S13: ¹³C-NMR spectrum of 7 in CD₃OD at 101 MHz.

Figure S14: ¹H-NMR spectrum of 8 in CD₃OD at 400 MHz.

Figure S15: ¹³C-NMR spectrum of 8 in CD₃OD at 101 MHz.

Figure S16: ¹H-NMR spectrum of 9 in CD₃OD at 400 MHz.

Figure S17: ¹³C-NMR spectrum of 9 in CD₃OD at 101 MHz.

Figure S18: ¹H-NMR spectrum of 10 in CD₃OD at 300 MHz.

Figure S19: ¹³C-NMR spectrum of 10 in CD₃OD at 101 MHz.

Figure S20: ¹H-NMR spectrum of 11 in CD₃OD at 400 MHz.

Figure S21: ¹³C-NMR spectrum of 11 in CD₃OD at 101 MHz.

Figure S22: ¹H-NMR spectrum of 12 in DMSO @ 80 °C at 400 MHz.

Figure S23: ¹³C-NMR spectrum of 12 in DMSO at 101 MHz.

Figure S24: ¹H-NMR spectrum of 13 in CD₃OD at 400 MHz.

Figure S25: ¹³C-NMR spectrum of 13 in CD₃OD at 101 MHz.

Figure S26: ¹H-NMR spectrum of 14 in CD₃OD at 400 MHz.

Figure S27: ¹³C-NMR spectrum of 14 in CD₃OD at 101 MHz.

Figure S28: ¹H-NMR spectrum of 15 in CD₃OD at 400 MHz.

Figure S29: ¹³C-NMR spectrum of 15 in CD₃OD at 101 MHz.

Figure S30: ¹H-NMR spectrum of 16 in CD₃OD at 400 MHz.

Figure S31: ¹³C-NMR spectrum of 16 in CD₃OD at 101 MHz.

Figure S32: ¹H-NMR spectrum of 17 in CD₃OD at 600 MHz.

Figure S33: ¹³C-NMR spectrum of 17 in CD₃OD at 151 MHz.

Figure S34: ¹H-NMR spectrum of 18 in CD₃OD at 600 MHz.

Figure S35: ¹³C-NMR spectrum of 18 in CD₃OD at 151 MHz.

Figure S36: ¹H-NMR spectrum of 19 in CD₃OD at 600 MHz.

Figure S37: ¹³C-NMR spectrum of 19 in CD₃OD at 151 MHz.

Figure S38: ¹H-NMR spectrum of 20 in CD₃OD at 600 MHz.

Figure S39: ¹³C-NMR spectrum of 20 in CD₃OD at 151 MHz.