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Abstract. The aim of this paper is to solve an optimal investment, consumption and
life insurance problem when the investor is restricted to capital guarantee. We consider an
incomplete market described by a jump-diffusion model with stochastic volatility. Using
the martingale approach, we prove the existence of the optimal strategy and the optimal
martingale measure and we obtain the explicit solutions for the power utility functions.

1. Introduction

Optimal consumption-investment problem by Merton (1971) ushered a lot of extensions.
In 1975, Richard (1975) extended for the first time this problem to include life insurance
decisions. Pliska & Ye (2007) considered an optimal consumption and life insurance con-
tract for a problem described by a risk-free asset. Kwak et al. (2011) studied an optimal
portfolio, consumption and insurance problem with deterministic labor income. Other
references include Huang et al. (2008), Pirvu & Zhang (2012), Liang & Guo (2016)). Re-
cently, Kronborg & Steffensen (2015) extended this problem to include capital constraints,
previously introduced by Tepla (2001) and El Karoui et al. (2005). Most of the references
mentioned above solved the problem under a diffusion framework.

However, as was pointed out by Merton and many empirical data, the analysis of the
price evolution reveals some sudden and rare breaks (jumps) caused by external information
flow. These behaviors constitute a very real concern of most investors and they can be
modeled by a Poisson process, which has jumps occurring at rare and unpredictable time.
For detailed information see e.g., Jeanblanc-Picque & Pontier (1990), Runggaldier (2003),
Daglish (2002), Øksendal & Sulem (2007), Hanson (2007) and references therein.
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In this paper, we consider a jump-diffusion problem with stochastic volatility as in Mnif
(2007). In his paper, Mnif (2007) solved the portfolio optimization problem using the
dynamic programming approach. Applying this technique in a jump-diffusion model, the
Hamilton-Jacobi-Bellman (HJB) equation associated to the problem is nonlinear, which
in general the explicit solution is not provided. To prove the existence of a smooth so-
lution, he reduced the nonlinearity of the HJB equation to a semi-linear equation under
certain conditions. We use a martingale approach developed by Karatzas et al. (1987)
and Karatzas & Shreve (1998) in a diffusion process to solve the unrestricted problem.
Considering a jump-diffusion model, a market is incomplete and consequently we have
many martingale measures. We obtain the optimal investment, consumption and life in-
surance strategy by the convex optimization method. This method allow us to characterize
the optimal martingale measure for the utility functions of the power type. In the liter-
ature, this method has also been applied by Castañeda-Leyva & Hernández-Hernández
(2005) in an optimal investment-consumption problem considering a stochastic volatil-
ity model described by diffusion processes. Similar works include (Liang & Guo (2016),
Michelbrink & Le (2012) and references therein).

The optimal solution to the restricted problem is derived from the unrestricted opti-
mal solution, applying the option based portfolio insurance (OBPI) method developed by
El Karoui et al. (2005). The OBPI method consists in taking a certain part of capital
and invest in the optimal portfolio of the unconstrained problem and the remaining part
insures the position with American put. We prove the admissibility and the optimality of
the strategy.

The structure of this paper is organized as follows. In Section 2, we introduce the model
and problem formulation of the Financial and the Insurance markets. Section 3, we solve
the unconstrained problem. In Section 4, we solve the constrained problem and prove the
admissibility of our strategy. Finally, in Section 5 we give a conclusion.

2. The Financial Model

We consider two dimensional Brownian motion W = {W1(t);W2(t), 0 ≤ t ≤ T} associ-
ated to the complete filtered probability space (ΩW ,FW , {FW

t },PW ) such that {W1(t),W2(t)}
are correlated with the correlation coefficient |ϱ| < 1, that is, dW1(t) · dW2(t) = ϱdt.
Moreover, we consider a Poisson process N = {N(t),FN(t), 0 ≤ t ≤ T} associated to
the complete filtered probability space (ΩN ,FN , {FN

t },PN) with intensity λ(t) and a PN -
martingale compensated poisson process

Ñ(t) := N(t) −
∫ t

0

λ(t)dt .

We assume that the intensity λ(t) is Lebesgue integrable on [0, T ].
Consider the product space:

(Ω,F , {Ft}0≤t≤T ,P) := (ΩW ⊗ ΩN ,FW ⊗FN , {FW
t ⊗FN

t },PW ⊗ PN) ,

where {Ft}t∈[0,T ] is a filtration satisfying the usual conditions (Protter (2000)). On this
space, we assume that W and N are independent processes.
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The financial market consists of a risk-free asset B := (B(t)t∈[0,T ]), a non-tradable index
Z := (Z(t)t∈[0,T ]) which can be thought as an external economic factor, such as a tempera-
ture, a loss index or a volatility driving factor and a risky asset S := (S(t))t∈[0,T ] correlated
with Z(t). This market is defined by the following jump-diffusion model:

dB(t) = r(t)B(t)dt, B(0) = 1, (2.1)

dZ(t) = η(Z(t))dt+ dW1(t), (2.2)

dS(t) = S(t)
[
α(t, Z(t))dt+ β(t, Z(t))dW1(t) + σ(t, Z(t))dW2 (2.3)

+γ(t, Z(t))dN(t)
]
, S(0) = s > 0 ,

where r(t) is the risk-free interest rate, α(t, z), β(t, z), σ(t, z) and γ(t, z) > −1 denote the
mean rate of return, volatility rates and the dispersion rates respectively. With the latter
condition and the continuity of Z, we guarantee that (2.3) is well defined.

We assume that the market parameters satisfy the following conditions:

(A1) The functions r : [0, T ] → R; α, β, σ, γ : [0, T ] × R → R belong to C1,1([0, T ] × R)
with bounded derivatives. Moreover, for all (t, z) ∈ [0, T ] × R and K > 0,

|α(t, z)| + |β(t, z)| ≤ K

|σ(t, z)| ≤ K(1 + |z|) .

To ensure the existence and uniqueness of the solution to (2.2), we assume a Lipschitz
condition on the R-valued function η:

(A2) There exists a positive constant C such that

|η(y) − η(w)| ≤ C|y − w| , y, w ∈ R .

Under the above assumption, the solution to the stochastic differential equation (SDE)
(2.2) is given by

Z(t) = z +

∫ t

0

η(Z(s))ds+

∫ t

0

dW1(s) . (2.4)

Let us consider a policyholder whose lifetime is a nonnegative random variable τ defined
on the probability space (Ω,F ,P) and independent of the filtration Ft. Consider that τ
has a probability density function f(t) and the distribution function given by

F (t) := P(τ < t) =

∫ t

0

f(s)ds .

The probability that the life time τ > t is given by

F̄ (t) := P(τ ≥ t | Ft) = 1 − F (t) .
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The instantaneous force of mortality µ(t) for the policyholder to be alive at time t is defined
by

µ(t) := lim
∆t→0

P(t ≤ τ < t+ ∆t|τ ≥ t)

∆t

= lim
∆t→0

P(t ≤ τ < t+ ∆t)

∆tP(τ ≥ t)

=
1

F̄ (t)
lim
∆t→0

F (t+ ∆t) − F (t)

∆t

=
f(t)

F̄ (t)
= − d

dt
(ln(F̄ (t))) .

Then, the conditional survival probability of the policyholder is given by

F̄ (t) = P(τ > t|Ft) = exp

(
−
∫ t

0

µ(s)ds

)
, (2.5)

and the conditional survival probability density of the death of the policyholder by

f(t) := µ(t) exp

(
−
∫ t

0

µ(s)ds

)
. (2.6)

Let c(t) be the consumption rate of the policyholder, π(t) be the amount of the policy-
holder’s wealth invested in the risky asset S and p(t) be the sum insured to be paid out
at time t ∈ [0, T ] for the life insurance upon the wage earner’s death before time T . We
assume that the strategy (c(t), π(t), p(t)) satisfy the following definition:

Definition 2.1. The consumption rate c is measurable, Ft-adapted process, nonnegative
and ∫ T

0

c(t)dt <∞, a.s.

The allocation process π is an Ft-predictable process with∫ t

0

π2(t)dt <∞, a.s.

The insurance process p is measurable, Ft-adapted process, nonnegative and∫ T

0

p(t)dt <∞, a.s.

Suppose that the policyholder receives a deterministic labor income of rate ℓ(t) ≥ 0, ∀t ∈
[0, τ ∧ T ] and that the shares are divisible and can be traded continuously. Furthermore,
we assume that there are no transaction costs, taxes or short-selling constraints in the
trading, then after some calculations, the wealth process X(t) , t ∈ [0, τ ∧ T ] is defined by
the following SDE:

dX(t) = [(r(t) + µ(t))X(t) + π(t)(α(t, Z(t)) − r(t)) + ℓ(t) − c(t) − µ(t)p(t)] dt(2.7)
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+ π(t)β(t, Z(t))dW1(t) + π(t)σ(t, Z(t))dW2(t) + π(t)γ(t, Z(t))dN(t) ,

X(0) = x > 0,

where Z(t) is given by (2.4) and τ ∧ T := min{τ, T}.
The expression µ(t)(p(t) − X(t))dt from the wealth process (2.7), corresponds to the

risk premium rate to pay for the life insurance p at time t. Notice that choosing p > X
corresponds to buying a life insurance and p < X corresponds to selling a life insurance,
that is, buying an annuity (Kronborg & Steffensen (2015)).

From Definition 2.1 and the condition (A1), we see that the wealth process (2.7) is well
defined and has a unique solution given by

X(t) = x0e
∫ t
0 (r(s)+µ(s))ds +

∫ t

0

e
∫ t
s (r(u)+µ(u))du

[
π(s)(α(s, Z(s)) − r(s)) + ℓ(s) − c(s)

−µ(s)p(s)
]
ds+

∫ t

0

π(s)β(s, Z(s))e
∫ t
s (r(u)+µ(u))dudW1(s)

+

∫ t

0

π(s)σ(s, Z(s))e
∫ t
s (r(u)+µ(u))dudW2(s) +

∫ t

0

π(s)γ(s, Z(s))e
∫ t
s (r(u)+µ(u))dudN(s) .

We define a new probability measure Q equivalent to P in which S is a local martingale.
The Radon-Nikodym derivative is given by:

Λ(t) := exp
{∫ t

0

[(1 − ψ(s))λ(s) − 1

2
θ2(s, Z(s), ψ(s)) − 1

2
ν2(s, ψ(s))]ds (2.8)

+

∫ t

0

ν(s, Z(s), ψ(s))dW1(s) +

∫ t

0

θ(s, Z(s), ψ(s))dW2(s) +

∫ t

0

ln(ψ(s))dN(s)
}
.

By Girsanov’s Theorem under Q, we have that:
dWQ,ψ

1 (t) = dW1(t) − ν(t, Z(t), ψ(t))dt ,

dWQ,ψ
2 (t) = dW2(t) − θ(t, Z(t), ψ(t))dt ,

dÑQ(t) = dN(t) − ψ(t)λ(t)dt

are Brownian motions and compensated Poisson random measure respectively, where (See
Runggaldier (2003))

ν(t, Z(s), ψ(t)) =
β(t, Z(t))

β2(t, Z(t)) + σ2(t, Z(t))
(r(t) − α(t, Z(t)) − γ(t, Z(t))ψ(t)λ(t)) , (2.9)

θ(t, Z(t), ψ(t)) =
σ(t, Z(t))

β2(t, Z(t)) + σ2(t, Z(t))
(r(t) − α(t, Z(t)) − γ(t, Z(t))ψ(t)λ(t)) , (2.10)

for any Ft-adapted bounded measure ψ > 0. We assume that β2(t, Z(t)) + σ2(t, Z(t)) ̸= 0.
Thus we have infinitely many martingale measures and consequently incomplete market.

Note that, from the boundedness of the associated parameters, the predictable processes
ν, θ, are bounded. Then, one can prove that the stochastic exponential (2.8) is a positive
martingale (see Delong (2013), Proposition 2.5.1.).
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From (2.9) and (2.10), we have that:

[π(t)(α(t, Z(t)) − r(t)) + π(t)β(t, Z(t))ν(t, Z(t), ψ(t)) + π(t)σ(t, Z(t))θ(t, Z(t), ψ(t))

+π(t)γ(t, Z(t))ψ(t)λ(t)] = 0 ,

then under Q, the dynamics of the wealth process is given by

dX(t) = [(r(t) + µ(t))X(t) + ℓ(t) − c(t) − µ(t)p(t)] dt+ π(t)β(t, Z(t))dWQ,ψ
1 (t)

+π(t)σ(t, Z(t))dWQ,ψ
2 (t) + π(t)γ(t, Z(t))dÑQ,ψ(t) , (2.11)

which gives the following representation:

X(t) = x0e
∫ t
0 (r(s)+µ(s))ds +

∫ t

0

e
∫ t
s (r(u)+µ(u))du

[
ℓ(s) − c(s) − µ(s)p(s)

]
ds (2.12)

+

∫ t

0

π(s)β(s, Z(s))e
∫ t
s (r(u)+µ(u))dudWQ,ψ

1 (s)

+

∫ t

0

π(s)σ(s, Z(s))e
∫ t
s (r(u)+µ(u))dudWQ,ψ

2 (s)

+

∫ t

0

π(s)γ(s, Z(s))e
∫ t
s (r(u)+µ(u))dudÑQ,ψ(s) .

The following definition introduces the concept of admissible strategy.

Definition 2.2. Define the set of admissible strategies {A} as the consumption, investment
and life insurance strategies for which the corresponding wealth process given by (2.12) is
well defined and

X(t) + g(t) ≥ 0, ∀t ∈ [0, T ], (2.13)

where g is the time t actuarial value of future labor income defined by

g(t) := E
[∫ T

t

e−
∫ s
t (r(u)+µ(u))duℓ(s)ds | Ft

]
. (2.14)

Since

EQ,ψ
[∫ t

0

π(s)β(s, Z(s))e
∫ t
s (r(u)+µ(u))dudWQ,ψ

1 (s)

]
= 0 , (2.15)

EQ,ψ
[∫ t

0

π(s)σ(s, Z(s))e
∫ t
s (r(u)+µ(u))dudWQ,ψ

2 (s)

]
= 0 , (2.16)

EQ,ψ
[∫ t

0

π(s)γ(s, Z(s))e
∫ t
s (r(u)+µ(u))dudÑQ,ψ(s)

]
= 0 , (2.17)

we see that the last three terms in (2.12) are Q local martingales and from (2.13), a
supermartingale (see e.g., Karatzas et al. (1991)). Then, the strategy (c, π, p) is admissible
if and only if X(T ) ≥ 0 and ∀t ∈ [0, T ],
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X(t) + g(t) = EQ,ψ
[∫ T

t

e−
∫ s
t (r(u)+µ(u))du[c(s) + µ(s)p(s)]ds+ e−

∫ T
t (r(u)+µ(u))duX(T ) | Ft

]
.

(2.18)
At time zero, this means that the strategies have to fulfill the following budget constraint:

X(0) + g(0) = EQ,ψ
[∫ T

0

e−
∫ t
0 (r(u)+µ(u))du[c(t) + µ(t)p(t)]dt+ e−

∫ T
0 (r(u)+µ(u))duX(T )

]
.

(2.19)
Note that the condition (2.13) allows the wealth to become negative, as long as it does

not exceed in absolute value the actuarial value of future labor income g(t) in (2.14) so
that it prevent the family from borrowing against the future labor income.

As in Kronborg & Steffensen (2015), the following remark is useful for the rest of the
paper.

Remark. Define

Y (t) :=

∫ t

0

e−
∫ s
0 (r(u)+µ(u))du[c(s) + µ(s)p(s) − ℓ(s)]ds+X(t)e−

∫ t
0 (r(u)+µ(u))du, t ∈ [0, T ].

(2.20)
By (2.12) we have that the Conditions (2.15), (2.16) and (2.17) are fulfilled if and only if
Y is a martingale under Q. The natural interpretation is that, under Q, the discounted
wealth plus discounted pension contributions should be martingales. It is useful to note
that if Y is a martingale under Q, the dynamics of X can be represented in the following
form:

dX(t) = [(r(t) + µ(t))X(t) + ℓ(t) − c(t) − µ(t)p(t)]dt+ ϕ1(t)dW
Q,ψ
2 (t) (2.21)

+ϕ2(t)dW
Q,ψ
2 (t) + φ(t)dÑQ,ψ(t) ,

for some FW
t -adapted processes ϕ1 , ϕ2(t) and FN

t -adapted process φ, satisfying ϕ(t), φ(t) ∈
L2, for any t ∈ [0, T ], then under Q, Y is a martingale.

3. The Unrestricted problem

In this section, we solve our main optimization problem using the martingale duality
method. Consider the concave, non-decreasing, upper semi-continuous and differentiable
w.r.t. the second variable utility functions Uk : [0, T ] ×R+ → R+ , k = 1, 2, 3 . Define the
strictly decreasing continuous inverse functions Ik : [0, T ] × R+ → R+ , k = 1, 2, 3 , by

Ik(t, x) =

(
∂Uk(t, x)

∂x

)−1

, k = 1, 2, 3. (3.1)
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The Legendre-Frechel transform Ũk corresponding to the utility function Uk is defined as
follows: (see, Karatzas & Shreve (1998))

Ũk(t, x) := max
y>0

[Uk(t, y) − yx] = Uk(t, Ik(t, x)) − xIk(t, x) , t ∈ [0, T ] , 0 < x <∞ . (3.2)

Let ρ(t) be a deterministic function representing the policyholder’s time preferences. The
policyholder chooses his strategy (c(t), π(t), p(t)) in order to optimize the expected utility
from consumption, legacy upon death and terminal pension. His strategy, therefore, fulfils
the following:

J(x, c∗, π∗, p∗) := sup
(π,c,p)∈A′

E
[∫ τ∧T

0

e−
∫ s
0 ρ(u)duU1(s, c(s))ds+ e−

∫ τ
0 ρ(u)duU2(τ, p(τ))1{τ≤T}

+e−
∫ T
0 ρ(u)duU3(X(T ))1{τ>T}

]
. (3.3)

Here, 1A is an indicator function of a set A. A′ is the subset of the admissible strategies
(feasible strategies) given by:

A′ :=
{

(c, π, p) ∈ A | E
[∫ τ∧T

0

e−
∫ s
0 ρ(u)du min(0, U1(s, c(s)))ds

+e−
∫ τ
0 ρ(u)du min(0, U2(τ, p(τ)))1{τ≤T}

+e−
∫ T
0 ρ(u)du min(0, U3(X(T )))1{τ>T}

]
> −∞

}
. (3.4)

The feasible strategy (3.4) means that it is allowed to draw an infinite utility from the
strategy (π, c, p) ∈ A′, but only if the expectation over the negative parts of the utility
function is finite. It is clear that for a positive utility function, the sets A and A′ are equal (
see e.g., Kronborg & Steffensen (2015)). In order to solve the unrestricted control problem
(3.3), one can use the Hamilton-Jacobi-Bellman (HJB) equation (e.g., Mnif (2007)) or the
combination of HJB equation with backward stochastic differential equation (BSDE) with
jumps (Guambe & Kufakunesu (2015)). In this paper, we use the martingale approach ap-
plied in (Karatzas et al. (1991), Castañeda-Leyva & Hernández-Hernández (2005), Kronborg & Steffensen
(2015)). This is due to the restricted problem in the next section, where its terms are de-
rived from the martingale method in the unrestricted problem.

Using (2.5) and (2.6), we can rewrite the policyholder’s optimization problem (3.3) as:

J(x, c∗, π∗, p∗) = sup
(c,π,p)∈A′

E
[∫ T

0

e−
∫ s
0 ρ(u)du[F̄ (s)U1(s, c(s)) + f(s)U2(s, p(s))]ds

+e−
∫ T
0 ρ(u)duF̄ (T )U3(X(T ))

]
.

Hence,
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J(x, c∗, π∗, p∗) = sup
(c,π,p)∈A′

E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U1(s, c(s)) + µ(s)U2(s, p(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duU3(X(T ))

]
. (3.5)

We now solve the main problem using the duality method. This approach allow us
construct an auxiliary market Mψ̂ related to the original one, by searching over a family

of martingale measures, the inf-sup martingale measure ψ̂ and so the hedging portfolio
process in the auxiliary market, satisfies the portfolio constraints in the original market
Mψ and replicates exactly the contingent claim almost surely. This approach has been
applied under diffusion in a number of papers, see, for instance, He & Pearson (1991),
Karatzas & Shreve (1998), Section 5.8, Castañeda-Leyva & Hernández-Hernández (2005),
Liang & Guo (2016). Otherwise, one can complete the market by adding factitious risky
assets in order to obtain a complete market, then apply the martingale approach to solve
the optimal portfolio problem. For the market completion, we refer to Karatzas et al.
(1991), Runggaldier (2003), Section 4., Corcuera et al. (2006).

Thus, we define the associated dual functional Ψ(ζ, ψ) to the primal problem (3.5), where
ζ is the Lagrangian multiplier, by:

Ψ(ζ̂ , ψ̂) := sup
ζ>0;ψ>0

{
E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U1(s, c(s)) + µ(s)U2(s, p(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duU3(X(T ))

]
+ζ(x+ g(0))

−ζ
{
EQ,ψ

[∫ T

0

e−
∫ t
0 (r(u)+µ(u))du[c(t) + µ(t)p(t)]dt+ e−

∫ T
0 (r(u)+µ(u))duX(T )

]}}
.

The dual problem that corresponds to the primal problem (3.5), consists of

min
ζ>0,ψ>0

Ψ(ζ, ψ). (3.6)

Note that (see, Cuoco (1997) or Karatzas & Shreve (1998), for more details)

EQ,ψ
[∫ T

0

e−
∫ t
0 (r(u)+µ(u))du[c(t) + µ(t)p(t)]dt+ e−

∫ T
0 (r(u)+µ(u))duX(T )

]
= E

[∫ T

0

e−
∫ t
0 (r(u)+µ(u))duΓψ(t)[c(t) + µ(t)p(t)]dt+ e−

∫ T
0 (r(u)+µ(u))duΓψ(T )X(T )

]
,

where we have defined the adjusted state price deflator Γ by:

Γψ(t) := Λ(t)e
∫ t
0 (ρ(s)−r(s))ds (3.7)

= exp
{∫ t

0

[ρ(s) − r(s) − 1

2
θ2(s, Z(s), ψ(s)) − 1

2
ν2(s, Z(s), ψ(s)) + (1 − ψ(s))λ(s)]ds
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+

∫ t

0

ν(s, Z(s), ψ(s))dW1(s) +

∫ t

0

θ(s, Z(s), ψ(s))dW2(s) +

∫ t

0

ln(ψ(s))dN(s)
}
.

This deflator can be written in the SDE form by:

dΓψ(t) = Γψ(t)
[
(ρ(t) − r(t))dt+ ν(t, Z(s), ψ(t))dW1(t) (3.8)

+θ(t, R(t), ψ(t))dW2(t) + (ψ(t) − 1)dÑ(t)
]
.

Then, from the definition of the Legendre-Transform (3.2), the dual functional Ψ in (3.6)
can be written as

Ψ(ζ, ψ) := E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[Ũ1(s, c(s)) + µ(s)Ũ2(s, p(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duŨ3(X(T ))

]
+ζ(x+ g(0)) . (3.9)

The following theorem shows, under suitable conditions the relationship between the
primal problem (3.5) and the dual problem (3.6).

Theorem 3.1. Suppose that ψ̂ > 0 and ζ̂ > 0. The strategy (c∗(t), p∗(t)) ∈ A′ and
X∗(T ) > 0 defined by

c∗(t) = I1(t, ζ̂Γψ̂(t)); p∗(t) = I2(t, ζ̂Γψ̂(t)); X∗(T ) = I3(ζ̂Γψ̂(T )),

such that (2.19) is fulfilled, where X∗(T ) ∈ FT is measurable, is the optimal solution to

the primal problem (3.5), while (ψ̂, ζ̂) is the optimal solution to the dual problem (3.6).

Proof. By the concavity of the utility functions Uk, k = 1, 2, 3, (see Karatzas & Shreve
(1998)), we know that

Uk(t, x) ≤ U(t, Ik(t, x)) − y(Ik(t, y) − x) .

Then it can be easily shown that

J(t, c(t), p(t), X(t)) ≤ inf
ζ>0,ψ>0

Ψ(ζ, ψ) . (3.10)

Hence, to finish the proof, we need to show that

inf
ζ>0,ψ>0

Ψ(ζ, ψ) ≥ J(t, c(t), p(t), X(t)) .

From (3.9), we know that

inf
ζ>0,ψ>0

Ψ(ζ, ψ)

= inf
ζ>0,ψ>0

{
E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[Ũ1(s, c(s)) + µ(s)Ũ2(s, p(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duŨ3(X(T ))

]
+ζ(x+ g(0))

}
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≤ E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[Ũ1(s, c(s)) + µ(s)Ũ2(s, p(s))]ds+ e−

∫ T
0 (ρ(u)+µ(u))duŨ3(X(T ))

]
+ζ̂(x+ g(0))

= E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U1(s, c

∗(s)) + µ(s)U2(s, p
∗(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duU3(X

∗(T ))
]
−ζ̂

{
E
[∫ T

0

e−
∫ t
0 (r(u)+µ(u))duΓψ̂(t)[c∗(t) + µ(t)p∗(t)]dt

+e−
∫ T
0 (r(u)+µ(u))duΓψ̂(T )X∗(T )

]}
+ζ̂(x+ g(0))

= E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U1(s, c

∗(s)) + µ(s)U2(s, p
∗(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duU3(X

∗(T ))
]

≤ sup
(c,p,π)∈A′

{
E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U1(s, c(s)) + µ(s)U2(s, p(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duU3(X(T ))

]}
= J(t, c(t), p(t), X(t)) .

Then, using (3.10), we conclude the proof, i.e., (c∗(t), p∗(t), X∗(T )) is the optimal solution

to the primal problem (3.5) and (ψ̂, ζ̂) is the optimal solution to the dual problem (3.6). �

Remark. Note that the optimal (ψ̂, ζ̂) is not necessarily unique, thus for different choice

of initial wealth, one might obtain different ψ̂ and ζ̂.

3.1. Results on the power utility case.

In this section, we intend to derive the explicit solutions for the utility functions of the
constant relative risk aversion type given by:

U1(t, x) = U2(t, x) = U3(t, x) =


e−κt

δ
xδ, if x > 0,

limx→0
e−κt

δ
xδ, if x = 0,

−∞, if x < 0,

(3.11)

for some δ ∈ (−∞, 1) \ {0} and t ∈ [0, T ]. Thus the inverse function (3.1) is given by

Ik(t, x) = e−
κ

1−δ
tx−

1
1−δ , k = 1, 2, 3 (3.12)

and the corresponding Legendre-Transform Ũk by

Ũk(t, x) = Uk(t, Ik(t, x)) − xIk(t, x) =
1 − δ

δ
e−

κ
1−δ

tx−
δ

1−δ , k = 1, 2, 3 .

We define a function H(ψ) by
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H(ψ) := E
[∫ T

0

e−
∫ t
0 (ρ(u)+µ(u)+

κ
1−δ

u)du[Γψ(t)]−
δ

1−δ [1 + µ(t)]dt (3.13)

+e−
∫ T
0 (ρ(u)+µ(u)+ κ

1−δ
u)du[Γψ(T )]−

δ
1−δ

]
.

Then the dual functional (3.9) is given by

Ψ(ζ, ψ) =
1 − δ

δ
ζ−

δ
1−δH(ψ) + ζ(x+ g(0)) . (3.14)

Fixing ψ > 0 and taking the minimum on (3.14), we obtain the optimal ζ̂, given by

ζ̂ =

[
x+ g(0)

H(ψ)

]δ−1

.

Inserting this optimal ζ̂ to the above equation, we obtain

Ψ(ζ̂ , ψ) =
1

δ
(x+ g(0))δH1−δ(ψ) .

Now, solving the dual problem (3.6) is equivalent to solving the following value function
problem

V (t, Z(t)) = inf
ψ>0

H(ψ) , δ > 0 (3.15)

or
V (t, Z(t)) = sup

ψ>0
H(ψ) , δ < 0 . (3.16)

Note that from (3.8) and the Itô’s formula (see, Øksendal & Sulem (2007), Theorem
1.16), yields

d[Γψ(t)]−
δ

1−δ

= [Γψ(t)]−
δ

1−δ

{[
− δ

1 − δ
(ρ(t) − r(t)) +

δ

2(1 − δ)2
(ν2(t, Z(t), ψ(t)) + θ2(t, Z(t), ψ(t)))

+
(
ψ− δ

1−δ (t) − 1 +
δ

1 − δ
(ψ(t) − 1)

)
λ(t)

]
dt− δ

1 − δ
θ(t, Z(t), ψ(t))dW2(t)

− δ

1 − δ
ν(t, Z(t), ψ(t))dW1(t) +

(
ψ− δ

1−δ (t) − 1
)
dÑ(t)

}
,

which gives the following representation

E
{

[Γψ(t)]−
δ

1−δ

}
= E

[
exp

{∫ t

0

[ δ

1 − δ
(r(u) − ρ(u)) +

δ

2(1 − δ)2
(ν2(u, Z(u), ψ(u)) + θ2(u, Z(u), ψ(u)))

+
(
ψ− δ

1−δ (u) − 1 +
δ

1 − δ
(ψ(u) − 1)

)
λ(u)

]
du

}]
; u ∈ [0, T ] .
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Then the function H(ψ) can be written as

H(ψ) = E
[∫ T

0

e−
∫ t
0 (r̃(u,Z(u),ψ(u))+µ(u)+

κ
1−δ

u)du[1 + µ(t)]dt+ e−
∫ T
0 (r̃(u,Z(u),ψ(u))+µ(u)+ κ

1−δ
u)du

]
,

(3.17)
where

r̃(t, Z(t), ψ(t)) = − δ

1 − δ
r(t) +

1

1 − δ
ρ+

δ

2(1 − δ)2
(ν2(t, Z(t), ψ(t)) + θ2(t, Z(t), ψ(t)))

+

(
ψ− δ

1−δ (t) − 1 +
δ

1 − δ
(ψ(t) − 1)

)
λ(t) . (3.18)

Proceeding as in (2.8), we define a new probability measure Q̃ equivalent to P, by

dQ̃ = Λ− δ
1−δ dP .

By this change of measure, the external economic factor (2.2) can be written as

dZ(t) =

[
η(Z(t)) − δ

1 − δ
ν(t, Z(t), ψ(t))

]
dt+ dW Q̃,ψ

1 (t) . (3.19)

Now, the problem (3.15) with H(ψ) given by (3.17) can be solved using the dynamic
programming approach. It is easy to see that the associated Hamilton-Jacobi-Bellman
(HJB) equation satisfying V (t, Z(t)) is given by (see, Øksendal & Sulem (2007), Theorem
3.1. for more details)

1 + µ(t) + Vt(t, z) +
1

2
Vzz(t, z) +

[ 1

1 − δ
(δr(t) − ρ− δλ(t) + κt) − λ(t) + µ(t)

− δ(r(t) − α(t, z))2

2(1 − δ)2[β2(t, z) + σ2(t, z)]

]
V (t, z) +

[
η(z) − δβ(t, z)(r(t) − α(t, z))

(1 − δ)[β2(t, z) + σ2(t, z)]

]
Vz(t, z)

− inf
ψ>0

{(
ψ− δ

1−δ +
δ

1 − δ
ψ

)
λ(t) +

δ(γ2(t, z)λ2(t)ψ2 − 2(r(t) − α(t, z))γ(t, z)λ(t)ψ)

2(1 − δ)2[β2(t, z) + σ2(t, z)]
V (t, z)

− δβ(t, z)γ(t, z)λ(t)ψ

(1 − δ)[β2(t, z) + σ2(t, z)]
Vz(t, z)

}
= 0 .

We look for a candidate solution of the form V (t, z) = exp{−h(t, z)}. Then we obtain
the following semi-linear partial differential equation, whose existence and uniqueness of
a smooth solution has been established, under the assumptions (A1) − (A2). (For more
details we refer to Pham (2002) or Mnif (2007), Theorem 4.1.)

− ht(t, z) − 1

2
hzz(t, z) +

1

2
h2z(t, z) +H(t, z, h, hz, ψ) = 0 , (3.20)

where

H(t, z, h, hz, ψ) =
1

1 − δ
(δr(t) − ρ− δλ(t) + κt) − λ(t) + µ(t)



14 OPTIMAL PORTFOLIOS, CONSUMPTION AND INSURANCE

− δ(r(t) − α(t, z))2

2(1 − δ)2[β2(t, z) + σ2(t, z)]
+ (1 + µ(t))eh(t,z)

+
[
η(z) − δβ(t, z)(r(t) − α(t, z))

(1 − δ)[β2(t, z) + σ2(t, z)]

]
hz(t, z)

− inf
ψ>0

{(
ψ− δ

1−δ +
δ

1 − δ
ψ
)
λ(t)eh(t,z)

+
δ(γ2(t, z)λ2(t)ψ2 − 2(r(t) − α(t, z))γ(t, z)λ(t)ψ)

2(1 − δ)2[β2(t, z) + σ2(t, z)]

− δβ(t, z)γ(t, z)λ(t)ψ

(1 − δ)[β2(t, z) + σ2(t, z)]
hz(t, z)

}
.

Now, suppose that there exists a unique solution h(t, z) ∈ C1,2([0, T )×R)×C0([0, T ]×R)
to the semi-linear equation (3.20). We define a function

K(t, z, ψ) =
(
ψ− δ

1−δ +
δ

1 − δ
ψ
)
λ(t)eh(t,z) − δβ(t, z)γ(t, z)λ(t)ψ

(1 − δ)[β2(t, z) + σ2(t, z)]
hz(t, z)

+
δ(γ2(t, z)λ2(t)ψ2 − 2(r(t) − α(t, z))γ(t, z)λ(t)ψ)

2(1 − δ)2[β2(t, z) + σ2(t, z)]
.

Note that from (A1), K is continuous. Moreover, it is convex in a bounded ψ > 0, i.e.,

∂2K
∂ψ2

(t, z, ψ) =
δλ(t)

(1 − δ)2

[
ψ

δ−2
1−δ eh(t,z) +

1

β2(t, z) + σ2(t, z)

]
> 0 , δ > 0 .

So there exists

ψ̂(t) ∈ arg minK(t, z, ψ) .

The existence of the optimal measure ψ̂(t) for the problem (3.16) can be solved similarly.

Since we obtained the optimal ζ̂ and ψ̂, from Theorem 3.1 and (3.12), we obtain the
following expressions

c∗(t) = p∗(t) =
X(t) + g(t)

H(t)
e−

κ
1−δ

t , (3.21)

X∗(T ) =
X(t) + g(t)

H(t)
e−

κ
1−δ

t

(
Γ(T )

Γ(t)

)− 1
1−δ

, (3.22)

where

H(t) = E
[∫ T

t

e−
∫ s
t (r̃(u,Z(u),ψ̂)+µ(u)+

κ
1−δ

(u−t)du[1 + µ(s)]ds+ e−
∫ T
t (r̃(u,Z(u),ψ̂)+µ(u)+ κ

1−δ
(u−t))du

]
.
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From (3.8), by Itô’s formula we know that(
Γ(T )

Γ(t)

)− 1
1−δ

= exp
{ 1

1 − δ

∫ T

t

[
r(s) +

1

2
ν2(s, Z(s), ψ̂) +

1

2
θ2(s, Z(s), ψ̂) − ρ(s) + [ψ̂ − 1 − ln ψ̂]λ(s)

]
ds

− 1

1 − δ

[∫ T

t

ν(s, Z(s), ψ̂)dW1(s) +

∫ T

t

θ(s, Z(s), ψ̂)dW2(s) +

∫ T

t

ln ψ̂dÑ(s)

]}
.

Then we have:

dX∗(t) = Odt− 1

1 − δ
ν(t)(X∗(t) + g(t))dW1(t) −

1

1 − δ
θ(t)(X∗(t) + g(t))dW2(t)

+
(
ψ̂− 1

1−δ (t) − 1
)

(X∗(t) + g(t))dN(t), (3.23)

where O := O(t,X∗(t), g(t)). Comparing (3.23) with (2.7), we obtain the optimal alloca-
tion: 

π∗(t)β(t, Z(t)) = − 1
1−δν(t, Z(t), ψ̂)(X∗(t) + g(t)) ,

π∗(t)σ(t, Z(t)) = − 1
1−δθ(t, Z(t), ψ̂)(X∗(t) + g(t)) ,

π∗(t)γ(t, Z(t)) =
(
ψ̂− 1

1−δ − 1
)

(X∗(t) + g(t)) .

(3.24)

Hence,

π∗(t) =

(
ψ̂− 1

1−δ − 1
)
− 1

1−δν(t, Z(t), ψ̂) − 1
1−δθ(t, Z(t), ψ̂)

β(t, Z(t)) + σ(t, Z(t)) + γ(t, Z(t))
(X∗(t) + g(t)) . (3.25)

Inserting (3.21) and (3.24) into (2.11) we obtain the following geometric SDE which can
be solved applying the Itô formula (Øksendal & Sulem (2007), Theorem 1.16)

d(X∗(t) + g(t))

X∗(t) + g(t)
=

[
r(t) + µ(t) − 1 + µ(t)

H(t)

]
dt− 1

1 − δ
ν(t, Z(t), ψ̂)dWQ,ψ̂

1 (t)

− 1

1 − δ
θ(t, Z(t), ψ̂)dWQ,ψ̂

2 (t) +
(
ψ̂− 1

1−δ (t) − 1
)
dÑQ,ψ̂(t) .(3.26)

We conclude this section, summarizing our results in the following Lemma:

Lemma 3.2. For the power utility functions (3.11), the optimal investment-consumption-
insurance strategy (c∗(t), π∗(t), p∗(t)), ∀t ∈ [0, T ] is given by

c∗(t) = p∗(t) =
X∗(t) + g(t)

H(t)
e−

κ
1−δ

t

and

π∗(t) =

(
ψ̂− 1

1−δ − 1
)
− 1

1−δν(t, Z(t), ψ̂) − 1
1−δθ(t, Z(t), ψ̂)

β(t, Z(t)) + σ(t, Z(t)) + γ(t, Z(t))
(X∗(t) + g(t)) .
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4. The restricted control problem

In this section, we solve the optimal investment, consumption and life insurance prob-
lem for the constrained control problem. We obtain an optimal strategy for the case of
continuous constraints (American put options) by using a so-called option based portfolio
insurance (OBPI) strategy. The OBPI method consists in taking a certain part of capital
and invest in the optimal portfolio of the unconstrained problem and the remaining part
insures the position with American put. We prove the admissibility and the optimality
of the strategy. For more details see e.g., El Karoui et al. (2005), Kronborg & Steffensen
(2015).

Consider the following problem

sup
(c,π,D)∈A′

E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U(c(s)) + µ(s)U(p(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duU(X(T ))

]
, (4.1)

under the capital guarantee restriction

X(t) ≥ k(t,D(t)), ∀t ∈ [0, T ] , (4.2)

where

D(t) :=

∫ t

0

h(s,X(s))ds ,

k and h are deterministic functions of time. The guarantee (4.2) is covered by

k(t, d) = 0 (4.3)

and
k(t, d) = x0e

∫ t
0 (r

(g)(s)+µ(s))ds + de
∫ t
0 (r

(g)(s)+µ(s))ds, (4.4)

with
h(s, x) = e−

∫ s
0 (r

(g)(u)+µ(u))du[ℓ(s) − c(s, x) − µ(s)p(s, x)],

where r(g) ≤ r is the minimum rate of return guarantee excess of the objective mortality
µ. Then

k(t, z) = x0e
∫ t
0 (r

(g)(s)−µ(s))ds +

∫ t

0

e
∫ t
s (r

(g)(u)+µ(u))ds[ℓ(s) − c(s) − µ(s)p(s)]ds. (4.5)

We still denote by X∗, c∗, π∗ and p∗ the optimal wealth, optimal consumption, investment
and life insurance for the unrestricted problem (3.3), respectively. The optimal wealth for
the unrestricted problem Y ∗(t) := X∗(t) + g(t) has the dynamics

dY ∗(t) = Y ∗(t)
{[
r(t) + µ(t) − 1 + µ(t)

H(t)

]
dt− 1

1 − δ
ν(t, Z(t), ψ̂)dWQ,ψ̂

1 (t) (4.6)

− 1

1 − δ
θ(t, Z(t), ψ̂)dWQ,ψ̂

2 (t) +
(
ψ̂− 1

1−δ (t) − 1
)
dÑQ,ψ̂(t)

}
,

∀t ∈ [0, T ], Y ∗(0) = y0, where y0 := x0 + g(0). Under Q, the economic factor Z is given
by
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dZ(t) =
[
η(Z(t)) + ν(t, Z(t), ψ̂(t))

]
dt+ dWQ,ψ̂

1 (t) . (4.7)

Let P a
y,d(t, T, k + g) denote the time-t value of an American put option with strike price

k(s,D(s)) + g(s), ∀s ∈ [t, T ], where D(t) = d and maturity T written on a portfolio Y ,
where Y (s), s ∈ [t, T ] is the solution to (4.6), with Y (t) = y. By definition, the price of
such put option is given by

P a
y,d(t, T, k + g) := sup

τs∈Tt,T
EQ

[
e−

∫ τs
t (r(u)+µ(u))du[k(τs, D(τs)) + g(τs)

−Y (τs)]
+
∣∣∣Y (t) = y,D(t) = d

]
,

where Tt,T is the set of stopping times τs ∈ [t, T ].
As in Kronborg & Steffensen (2015), we introduce the American put option-based port-

folio insurance

X̂(ϱ)(t) := ϱ(t,D(t))Y ∗(t) + P a
ϱY ∗ , D(t, T, k + g) − g(t), t ∈ [0, T ], (4.8)

for ϱ ∈ (0, 1) defined by

ϱ(t,D(t)) = ϱ0 ∨ sup
s≤t

(
b(s,D(s))

Y ∗(s)

)
, (4.9)

where b(t,D(t)) is the exercise boundary of the American put option given by

b(t, d) := sup
{
y : P a

y,d(t, T, k + g) = (k(t, d) + g(t) − y)+
}

(4.10)

and ϱ0 := ϱ(0, D(0)) is determined by the budget constraint

ϱ(0, D(0))Y ∗(0) + P a
ϱY ∗ , D(0, T, k + g) − g(0) = x0. (4.11)

By definition of an American put option, P a
ϱY ∗ ,D (t, T, k+g) ≥ (k(t, d)+g(t)−ϱ(t,D(t))Y ∗(t))+,

∀t ∈ [0, T ]. Hence

X̂(ϱ)(t) := ϱ(t,D(t))Y ∗(t) + P a
ϱY ∗,D(t, T, k + g) − g(t)

≥ ϱ(t,D(t))Y ∗(t) + (k(t, d) + g(t) − ϱ(t,D(t))Y ∗(t))+ − g(t)

≥ k(t, d),∀t ∈ [0, T ],

i.e., X̂(ϱ) fulfils the American capital guarantee.
Under the optimal martingale measure ψ̂, we recall some basic properties of American

put options in a Black-Scholes market (Karatzas & Shreve (1998))

P a
y,d(t, T, k + g) = k(t, d) + g(t) − y, ∀(t, y, d) ∈ Cc
∂
∂y
P a
y,d(t, T, k + g) = −1, ∀(t, y, d) ∈ Cc

AP a
y,d(t, T, k + g) = (r(t) + µ(t))P a

y,d(t, T, k + g), ∀(t, y, d) ∈ C,
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where from (4.6), the generator operator A is given by (see e.g., Øksendal & Sulem (2007),
Li et al. (2014))

(Aϕ)(y, z) =
∂ϕ

∂t
+

(
r(t) + µ(t) − 1 + µ(t)

H(t)

)
y
∂ϕ

∂y
+
(
η(z) + ν(t, z, ψ̂)

) ∂ϕ
∂z

+
1

2

∂2ϕ

∂z2

+
1

2(1 − δ)2

[
ν2(t, Z(t), ψ̂) + θ2(t, Z(t), ψ̂)

]
y2
∂2ϕ

∂y2
− 1

1 − δ
ν(t, z, ψ̂)

∂2ϕ

∂y∂z

+

[
ϕ(t, yψ̂− 1

1−δ , z) − ϕ(t, y, z) − y
(
ψ̂− 1

1−δ − 1
) ∂ϕ
∂y

]
λ(t)

and

C := {(t, y, d) : P a
y,d(t, T, k + g) > (k(t, d) + g(t) − y)+}

defines the continuation region. Cc is the stopping region, that is the complementary of
the continuation region C. From the exercise boundary given in (4.10), we can write the
continuation region by

C = {(t, y, d) : y > b(t, d)}.
Define a function H by

H(t, y, d) := y + P a
y,d(t, T, k + g) − g(t),

then we have

X̂(ϱ)(t) = H(t, ϱ(t,D(t))Y ∗(t), D(t)).

From the properties of P a
y,d(t, T, k + g), we deduce that

H(t, y, d) = k(t, d), ∀(t, y, d) ∈ Cc,
∂

∂y
H(t, y, d) = 0, ∀(t, y, d) ∈ Cc (4.12)

AH(t, y, d) =
∂

∂t
k(t, d) + h(t, d)

∂

∂d
k(t, d) ∀(t, y, d) ∈ Cc, (4.13)

AH(t, y, d) = (r(t) + µ(t))P a
y,d(t, T, k + g) + ℓ(t) − (r(t) + µ(t))g(t)

+

(
r(t) + µ(t) − 1 + µ(t)

H(t)

)
y

+

(
P a

yψ̂
− 1

1−δ ,d
(t, T, k + g) − P a

y,d(t, T, k + g)

)
λ(t)

= (r(t) + µ(t))H(t, y, d) + ℓ(t) − 1 + µ(t)

H(t)
y +

[
H(t, yψ̂− 1

1−δ , d) (4.14)

−H(t, y, d) − y
(
ψ̂− 1

1−δ (t) − 1
) ]
λ(t), ∀(t, y, d) ∈ C.

Proposition 4.1. Consider the strategy (ϱc∗, ϱπ∗, ϱp∗), where ϱ is defined by (4.9). Then,
the strategy (ϱc∗, ϱπ∗, ϱp∗), where ϱ is admissible.
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Proof. For ϱ constant and linearity of Y ∗(t),∀t ∈ [0, T ], we have that ϱ(t,D(t))Y ∗(t) and
Y ∗(t) have the same dynamics. Then, using Itô’s formula, (4.13)-(4.14), (c∗(t), p∗(t)) in
Theorem 3.1 and the fact that ϱ increases only at the boundary, we obtain (here ∂

∂y
means

differentiating with respect to the second variable)

dH(t, ϱ(t,D(t))Y ∗(t), D(t))

= [dH(t, ϱY ∗(t), D(t))] + Y ∗(t)
∂

∂y
H(t, ϱ(t,D(t))Y ∗(t), D(t))dϱ(t,D(t))

= AH(t, ϱY ∗(t))dt− 1

1 − δ
ν(t, Z(t), ψ̂)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), D(t))dWQ,ψ̂

1 (t)

− 1

1 − δ
θ(t, Z(t), ψ̂)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), D(t))dWQ,ψ̂

2 (t)

+
[
H(t, ϱY ∗(t)ψ̂− 1

1−δ (t), D(t)) −H(t, ϱY ∗(t), D(t))
]
dÑQ,ψ̂(t)

+Y ∗(t)
∂

∂y
H(t, ϱ(t,D(t))Y ∗(t), D(t))dϱ(t,D(t))

=
{

(r(t) + µ(t))H(t, ϱY ∗(t), D(t)) + ℓ(t) − ϱc∗(t) − ϱµ(t)p∗(t)

+
[
H(t, ϱY ∗(t)ψ̂− 1

1−δ (t), D(t)) −H(t, ϱY ∗(t), D(t))

−ϱY ∗(t)
(
ψ̂− 1

1−δ (t) − 1
) ]
λ(t)

}
1(ϱ(t,D(t))Y ∗(t)>b(t,D(t)))dt[

∂

∂t
k(t,D(t)) + h(t,D(t))

∂

∂d
k(t,D(t))

]
1(ϱ(t,D(t))Y ∗(t)≤b(t,D(t)))dt

+Y ∗(t)
∂

∂y
H(t, ϱ(t,D(t))Y ∗(t), D(t))1(ϱ(t,D(t))Y ∗(t)=b(t,D(t)))dϱ(t,D(t))

− 1

1 − δ
ν(t, Z(t), ψ̂)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), D(t))dWQ,ψ̂

1 (t)

− 1

1 − δ
θ(t, Z(t), ψ̂)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), D(t))dWQ,ψ̂

2 (t)

+
[
H(t, ϱY ∗(t)ψ̂− 1

1−δ (t), D(t)) −H(t, ϱY ∗(t), D(t))
]
dÑQ,ψ̂(t).

From (4.12) we know that ∂
∂y
H(t, ϱ(t,D(t))Y ∗(t), D(t)) = 0 on the set

{(t, ω) : ϱ(t,D(t))Y ∗(t) = b(t,D(t))}, then

dH(t, ϱ(t,D(t))Y ∗(t), D(t))

=
{

(r(t) + µ(t))H(t, ϱY ∗(t), D(t)) + ℓ(t) − ϱc∗(t) − ϱµ(t)p∗(t)

+
[
H(t, ϱY ∗(t)ψ̂− 1

1−δ (t), D(t)) −H(t, ϱY ∗(t), D(t)) − ϱY ∗(t)
(
ψ̂− 1

1−δ (t) − 1
) ]
λ(t)

}
dt

+
[ ∂
∂t
k(t,D(t)) + h(t,D(t))

∂

∂d
k(t,D(t)) − [(r(t) + µ(t))k(t,D(t)) + ℓ(t)
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−ϱ(t,D(t))c∗(t) − ϱ(t,D(t))µ(t)p∗(t)]
]
1(ϱ(t,D(t))Y ∗(t)≤b(t,D(t)))dt

− 1

1 − δ
ν(t, Z(t), ψ̂)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), D(t))dWQ,ψ̂

1 (t)

− 1

1 − δ
θ(t, Z(t), ψ̂)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), D(t))dWQ,ψ̂

2 (t)

+
[
H(t, ϱY ∗(t)ψ̂− 1

1−δ (t), D(t)) −H(t, ϱY ∗(t), D(t))
]
dÑQ,ψ̂(t).

Hence, since {(t, ω) : ϱ(t,D(t))Y ∗(t) ≤ b(t,D(t))} =
{

(t, ω) : ϱ(t,D(t)) = b(t,D(t))
Y ∗(t)

}
has a

zero dt⊗ dP-measure, we conclude that

dH(t, ϱ(t,D(t))Y ∗(t), D(t))

=
{

(r(t) + µ(t))H(t, ϱY ∗(t), D(t)) + ℓ(t) − ϱc∗(t) − ϱµ(t)p∗(t)

+
[
H(t, ϱY ∗(t)ψ− 1

1−δ (t), D(t)) −H(t, ϱY ∗(t), D(t)) − ϱY ∗(t)
(
ψ− 1

1−δ (t) − 1
) ]
λ(t)

}
dt

− 1

1 − δ
ν(t, Z(t), ψ̂)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), D(t))dWQ,ψ̂

1 (t)

− 1

1 − δ
θ(t, Z(t), ψ̂)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), D(t))dWQ,ψ̂

2 (t)

+
[
H(t, ϱY ∗(t)ψ̂− 1

1−δ (t), D(t)) −H(t, ϱY ∗(t), D(t))
]
dÑQ,ψ̂(t),

i.e. by (2.21), the strategy (ϱc∗, ϱπ∗, ϱp∗) is admissible. �

We then state the main result of this section.

Theorem 4.2. Consider the strategy (ĉ, π̂, p̂), ∀t ∈ [0, T ] given by

ĉ =
ϱ(t,D(t))Y ∗(t)

H(t)
= ϱ(t,D(t))c∗(t), (4.15)

π̂ = ϱ(t,D(t))π∗(t), (4.16)

p̂ =
ϱ(t,D(t))Y ∗(t)

H(t)
= ϱ(t,D(t))p∗(t), (4.17)

where the strategy (c∗, π∗, p∗) is defined in Lemma 3.2. Combined with a position in an
American put option written on the portfolio (ϱ(s,D(s))Y ∗(s)) with strike price k(s,D(s))+
g(s), ∀s ∈ [t, T ] and maturity T , where ϱ(s,D(s)), s ∈ [t, T ] is a function defined by (4.9).
Then, the strategy is optimal for the American capital guarantee control problem given by
(4.1)-(4.2).

Proof. Similar to that in Kronborg & Steffensen (2015), Theorem 4.1.
�
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5. Conclusion

The paper focused on an optimal investment-consumption insurance with capital con-
straints, specifically the American capital guarantee. We solved our problem in the jump
diffusion framework using the martingale approach. An explicit solution was obtained in
the power utility case.
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Castañeda-Leyva, N. & Hernández-Hernández, D. (2005), ‘Optimal consumption-
investment problems in incomplete markets with stochastic coefficients’, SIAM journal
on control and optimization 44(4), 1322–1344.

Corcuera, J. M., Guerra, J., Nualart, D. & Schoutens, W. (2006), ‘Optimal investment in
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