
ar
X

iv
:1

60
5.

00
21

7v
2 

 [
m

at
h.

FA
] 

 4
 F

eb
 2

01
7

Discrete Morrey Spaces and Their Inclusion Properties

Hendra Gunawan1, Eder Kikianty2, and Christopher Schwanke3

1Department of Mathematics, Bandung Institute of Technology

Jalan Ganesha No. 10, Bandung 40132, Indonesia

E-mail: hgunawan@math.itb.ac.id

2Department of Mathematics and Applied Mathematics, University of Pretoria

Private Bag X20, Hatfield 0028, South Africa

E-mail: eder.kikianty@up.ac.za

3Unit for BMI, North-West University

Private Bag X6001, Potchefstroom 2520, South Africa

E-mail: schwankc326@gmail.com

Abstract

We discuss discrete Morrey spaces and their generalizations, and we prove necessary and
sufficient conditions for the inclusion property among these spaces through an estimate for the
characteristic sequences.
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1 Introduction

Many operators that are initially studied on Lebesgue spaces Lp(Rd) have discrete analogues on
ℓp(Zd), see for examples [5, 6, 8, 12, 13, 14, 15]. Some of these operators have also been studied on
‘continuous’ Morrey spaces Mp

q (Rd), see for examples [1, 2, 3, 7, 11]. In this paper, we are interested
in studying discrete analogues of Morrey spaces and their generalizations. In particular, we discuss
the inclusion property of these spaces and prove some necessary and sufficient conditions for this
property. For related works on the continuous version, see [4, 9, 10].

Let m ∈ Z, N ∈ ω := N∪{0}, and write Sm,N := {m−N, . . . , m, . . . , m+N}. Then |Sm,N | = 2N +1
— the cardinality of Sm,N . (It is independent of m, but we write it in the subscript to keep track
of the set.) Let K be R or C and 1 ≤ p ≤ q < ∞. We denote by ℓp

q = ℓp
q(Z) the set of sequences

x = (xk)k∈Z taking values in K such that

‖x‖ℓp
q

:= sup
m∈Z,N∈ω

|Sm,N |
1

q
− 1

p





∑

k∈Sm,N

|xk|p





1

p

< ∞.

Clearly ℓp
q is a vector space, which we shall call a discrete Morrey space. We remark that when

p = q, we have ℓp
p = ℓp, the space of p-summable sequences with integer indices. For a sequence x

to be in ℓp
q, x has to have some decay, but not as fast as those in ℓp. In general, for p < q, ℓp

q is a
larger space than ℓp, as we shall see below.
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In the following sections, we shall discuss (i) discrete Morrey spaces, (ii) weak type discrete Morrey
spaces, (iii) generalized discrete Morrey spaces, and (iv) generalized weak type discrete Morrey
spaces. In each section, we prove the inclusion relations between the spaces. In particular, in the
last two sections, we prove necessary and sufficient conditions for the inclusion property among
the generalized discrete Morrey spaces and also among the generalized weak type discrete Morrey
spaces. Our main results are presented in Theorems 4.3 and 5.4.

2 Discrete Morrey Spaces

We begin with the following proposition, which tells us that the discrete Morrey space ℓp
q contains

ℓp, for p ≤ q.

Proposition 2.1. For 1 ≤ p ≤ q < ∞, we have ℓp ⊆ ℓp
q and ‖x‖ℓp

q
≤ ‖x‖ℓp for every x ∈ ℓp. For

1 ≤ p < q < ∞, the inclusion is strict.

Proof. Let x = (xk)k∈Z ∈ ℓp. We have for all m ∈ Z and N ∈ ω, 0 < |Sm,N |
1

q
− 1

p ≤ 1, and thus

|Sm,N |
1

q
− 1

p





∑

k∈Sm,N

|xk|p





1

p

≤





∑

k∈Sm,N

|xk|p





1

p

.

Taking the supremum over m ∈ Z and N ∈ ω, we get ‖x‖ℓp
q

≤ ‖x‖ℓp .

To show that the inclusion is strict for 1 ≤ p < q < ∞, consider the sequence x = (xk)k∈Z given by

xk := |k|−
1

q when k 6= 0 and x0 := 1. Since p
q < 1, the series

∑

k∈Z

|xk|p = 1 + 2
∞
∑

k=1

k
− p

q

is divergent, thus x 6∈ ℓp(Z). Next, for all m ∈ Z and N ∈ ω, we have

∑

k∈Sm,N

|xk|p ≤
∑

k∈S0,N+1

|xk|p = 1 + 2
N+1
∑

k=1

k− p

q .

Using the lower Riemann sum of
N+1
∫

1
x

− p

q dx, we see that

N+1
∑

k=1

k− p

q ≤ 1 +

∫ N+1

1
x− p

q dx = 1 −
q

q − p
+

q

q − p
(N + 1)1− p

q .

Since (2N + 1)
p

q
−1 ≤ 1 and N + 1 ≤ 2N + 1, we have

|Sm,N |
p

q
−1

∑

k∈Sm,N

|xk|p ≤ (2N + 1)
p

q
−1
(

3 −
2q

q − p
+

2q

q − p
(N + 1)

1− p

q

)

≤ 3 +
2q

q − p
.

Taking the p-th roots and then the supremum over all m ∈ Z and N ∈ ω, we obtain

sup
m∈Z,N∈ω

|Sm,N |
1

q
− 1

p





∑

k∈Sm,N

|xk|p





1

p

≤

(

3 +
2q

q − p

) 1

p

,

and thus x ∈ ℓp
q.
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Proposition 2.2. For 1 ≤ p ≤ q < ∞, the mapping ‖ · ‖ℓp
q

defines a norm on ℓp
q. Moreover,

(ℓp
q , ‖ · ‖ℓp

q
) is a Banach space.

Proof. It is easy to see that ‖x‖ℓp
q

≥ 0 for every x ∈ ℓp
q, and that ‖x‖ℓp

q
= 0 iff x = 0. Next, we have

‖αx‖ℓp
q

= |α|‖x‖ℓp
q

for every x ∈ ℓp
q and α ∈ K. Now, let x = (xk)k∈Z, y = (yk)k∈Z ∈ ℓp

q , m ∈ Z, and
N ∈ ω. By using Minkowski’s inequality, we have

|Sm,N |
1

q
− 1

p





∑

k∈Sm,N

|xk + yk|p





1

p

≤ |Sm,N |
1

q
− 1

p





∑

k∈Sm,N

|xk|p





1

p

+ |Sm,N |
1

q
− 1

p





∑

k∈Sm,N

|yk|p





1

p

.

Taking the supremum over m ∈ Z and N ∈ ω, we get ‖x + y‖ℓp
q

≤ ‖x‖ℓp
q

+ ‖y‖ℓp
q
. All these show

that ‖ · ‖ℓp
q

defines a norm on ℓp
q .

We shall now show that (ℓp
q , ‖·‖ℓp

q
) is a Banach space. Let ε > 0 and (x(n))n∈N be a Cauchy sequence

in ℓp
q . Then there exists nε ∈ ω such that

sup
m∈Z,N∈ω

|Sm,N |
1

q
− 1

p





∑

k∈Sm,N

|x
(i)
k − x

(j)
k |p





1

p

< ε, (2.1)

for i, j ≥ nε. Consequently, for every m ∈ Z and N ∈ ω, we have

|Sm,N |
1

q
− 1

p





∑

k∈Sm,N

∣

∣x
(i)
k − x

(j)
k

∣

∣

p





1

p

< ε,

for i, j ≥ nε. By taking N = 0, we obtain for each k ∈ Z

∣

∣x
(i)
k − x

(j)
k

∣

∣ < ε,

for i, j ≥ nε. Thus (x
(n)
k )n∈N is a Cauchy sequence in K for each k ∈ Z. Define x := (xk)k∈Z where

xk := lim
n→∞

x
(n)
k , k ∈ Z.

If we let j → ∞ in (2.1), then we have

sup
m∈Z,N∈ω

|Sm,N |
1

q
− 1

p





∑

k∈Sm,N

|x
(i)
k − xk|p





1

p

< ε,

for i ≥ nε. Hence x = x(i) −(x(i) −x) is in ℓp
q and the above result shows that x(i) → x as i → ∞.

The following lemma will be useful in studying the relation between two discrete Morrey spaces.

Lemma 2.3. For all 1 ≤ p1 ≤ p2 < ∞, m ∈ Z, and N ∈ ω, we have





1

|Sm,N |

∑

k∈Sm,N

|xk|p1





1

p1

≤





1

|Sm,N |

∑

k∈Sm,N

|xk|p2





1

p2

,

where xk ∈ K for all k ∈ Sm,N .
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Proof. Let 1 ≤ p1 ≤ p2 < ∞, m ∈ Z, and N ∈ ω. By Hölder’s inequality, we have

∑

k∈Sm,N

|xk|p1 ≤





∑

k∈Sm,N

|xk|p2





p1
p2





∑

k∈Sm,N

1





1−
p1
p2

= |Sm,N |
1−

p1
p2





∑

k∈Sm,N

|xk|p2





p1
p2

= |Sm,N |





1

|Sm,N |

∑

k∈Sm,N

|xk|p2





p1
p2

.

Thus

1

|Sm,N |

∑

k∈Sm,N

|xk|p1 ≤





1

|Sm,N |

∑

k∈Sm,N

|xk|p2





p1
p2

,

and this completes the proof.

Proposition 2.4. For all 1 ≤ p1 ≤ p2 ≤ q < ∞, we have ℓp2
q ⊆ ℓp1

q with ‖x‖ℓ
p1
q

≤ ‖x‖ℓ
p2
q

for every
x ∈ ℓp2

q .

Proof. The proof follows immediately from Lemma 2.3.

Remark. At the present we do not know whether the inclusion in Proposition 2.4 is strict, as we do
not have an example of a sequence which is in ℓp1

q but not in ℓp2
q for 1 ≤ p1 < p2 < q < ∞.

3 Weak Type Discrete Morrey spaces

For 1 ≤ p ≤ q < ∞, we define the weak type discrete Morrey space wℓp
q to be the set of sequences

x = (xk)k∈Z taking values in K such that ‖x‖wℓp
q

< ∞, where ‖ · ‖wℓp
q

given by

‖x‖wℓp
q

:= sup
m∈Z,N∈ω,γ>0

|Sm,N |
1

q
− 1

p γ
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

1

p .

Note that when p = q, we have wℓp := wℓp
p, which is a weak type of ℓp space. The following example

shows that wℓp
p has more elements that ℓp.

Example 3.1. The sequence x = (xk)k∈Z given by xk := |k|−
1

p when k 6= 0 and x0 := 1 is not in
ℓp. Nevertheless, for any m ∈ Z, N ∈ ω, and 0 < γ < 1, we have

γ|{k ∈ Sm,N : |xk| > γ}|
1

p ≤ γ|{k ∈ S0,N : |xk| > γ}|
1

p

≤ γ
(

1 + 2|{k ∈ N : 1 ≤ k ≤ N, k− 1

p > γ}|
1

p

)

< γ
(

1 +
2

γ

)

< 3.

Thus (xk)k∈Z is in wℓp
p.

Theorem 3.2. For 1 ≤ p ≤ q < ∞, ℓp
q ⊆ wℓp

q with ‖x‖wℓp
q

≤ ‖x‖ℓp
q

for every x ∈ ℓp
q.
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Proof. Let x ∈ ℓp
q, m ∈ Z, N ∈ ω, and γ > 0. We have

|Sm,N |
1

q
− 1

p γ
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

1

p = |Sm,N |
1

q
− 1

p

(

∑

k∈Sm,N ,|xk|>γ

γp
)

1

p

≤ |Sm,N |
1

q
− 1

p

(

∑

k∈Sm,N ,|xk|>γ

|xk|p
)

1

p

≤ |Sm,N |
1

q
− 1

p

(

∑

k∈Sm,N

|xk|p
)

1

p

.

Taking the supremum over m ∈ Z, N ∈ ω, and γ > 0, we obtain ‖x‖wℓp
q

≤ ‖x‖ℓp
q
. Therefore, if

x ∈ ℓp
q , then x ∈ wℓp

q .

Theorem 3.3. For 1 ≤ p ≤ q < ∞, ‖·‖wℓp
q

is a quasi-norm, so that (wℓp
q , ‖·‖wℓp

q
) is a quasi-normed

space.

Proof. From the definition of ‖ · ‖wℓp
q
, it is clear that ‖x‖wℓp

q
≥ 0 for all x ∈ wℓp

q . Let m ∈ Z, N ∈ ω,
and γ > 0. If x = 0, then {k ∈ Sm,N : |xk| > γ} is an empty set, and therefore its cardinality is
zero. Thus

|Sm,N |
1

q
− 1

p γ
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

1

p = 0.

Taking the supremum over m ∈ Z, N ∈ ω, and γ > 0, we obtain ‖x‖wℓp
q

= 0. Conversely, suppose
that ‖x‖wℓp

q
= 0. Then

∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣ = 0

for all m ∈ Z, N ∈ ω, and γ > 0. We conclude that for all k ∈ Z, we have 0 ≤ |xk| ≤ γ for all γ > 0.
Thus xk = 0 for all k ∈ Z, that is, x = 0.

Next let x = (xk)k∈Z ∈ wℓp
q and α ∈ K. When α = 0, clearly ‖αx‖wℓp

q
= |α|‖x‖wℓp

q
. Suppose α 6= 0.

We have

‖αx‖wℓp
q

= sup
m∈Z,N∈ω,γ>0

|Sm,N |
1

q
− 1

p γ
∣

∣{k ∈ Sm,N : |αxk| > γ}
∣

∣

1

p

= sup
m∈Z,N∈ω,γ>0

|Sm,N |
1

q
− 1

p γ

∣

∣

∣

∣

{

k ∈ Sm,N : |xk| >
γ

|α|

}∣

∣

∣

∣

1

p

= sup
m∈Z,N∈ω,δ>0

|Sm,N |
1

q
− 1

p δ|α|
∣

∣{k ∈ Sm,N : |xk| > δ}
∣

∣

1

p = |α|‖x‖wℓp
q
.

Now let x = (xk)k∈Z, y = (yk)k∈Z ∈ wℓp
q . For any m ∈ Z, N ∈ ω, and γ > 0, we observe that

{k ∈ Sm,N : |xk + yk| > γ} ⊆ {k ∈ Sm,N : |xk| + |yk| > γ}

⊆ {k ∈ Sm,N : |xk| >
γ

2
} ∪ {k ∈ Sm,N : |yk| >

γ

2
}.

Hence for any m ∈ Z, N ∈ ω, and γ > 0, we have

(

|Sm,N |
1

q
− 1

p γ
)p
∣

∣{k ∈ Sm,N : |xk + yk| > γ}
∣

∣

≤
(

|Sm,N |
1

q
− 1

p γ
)p
∣

∣{k ∈ Sm,N : |xk| >
γ

2
}
∣

∣+
(

|Sm,N |
1

q
− 1

p γ
)p
∣

∣{k ∈ Sm,N : |yk| >
γ

2
}
∣

∣.
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By writing δ = γ/2 on the right hand side of the above inequality, we get
(

|Sm,N |
1

q
− 1

p γ
)p
∣

∣{k ∈ Sm,N : |xk + yk| > γ}
∣

∣

≤ 2p
(

|Sm,N |
1

q
− 1

p δ
)p
∣

∣{k ∈ Sm,N : |xk| > δ}
∣

∣ + 2p
(

|Sm,N |
1

q
− 1

p δ
)p
∣

∣{k ∈ Sm,N : |yk| > δ}
∣

∣,

whence

|Sm,N |
1

q
− 1

p γ
∣

∣{k ∈ Sm,N : |xk + yk| > γ}
∣

∣

1

p

≤ 2

[

(

|Sm,N |
1

q
− 1

p δ
)p
∣

∣{k ∈ Sm,N : |xk| > δ}
∣

∣ +
(

|Sm,N |
1

q
− 1

p δ
)p
∣

∣{k ∈ Sm,N : |yk| > δ}
∣

∣

] 1

p

≤ 2

[

|Sm,N |
1

q
− 1

p δ
∣

∣{k ∈ Sm,N : |xk| > δ}
∣

∣

1

p

]

+ 2

[

|Sm,N |
1

q
− 1

p δ
∣

∣{k ∈ Sm,N : |yk| > δ}
∣

∣

1

p

]

≤ 2(‖x‖wℓp
q

+ ‖y‖wℓp
q
).

Taking the supremum over m ∈ Z, N ∈ ω, and γ > 0, we get ‖x + y‖wℓp
q

≤ 2(‖x‖wℓp
q

+ ‖y‖wℓp
q
).

Proposition 3.4. For 1 ≤ p ≤ q < ∞, wℓp
q is complete with respect to the quasi-norm ‖ · ‖wℓp

q
.

Proof. As before, we denote sequences in wℓp
q by (x(n))n∈N, where x(n) = (x

(n)
k )k∈Z for each n ∈ N.

Let 1 ≤ p ≤ q < ∞, and let (x(n))n∈N be a Cauchy sequence in wℓp
q . We first note that (x(n))n∈N

must be bounded in wℓp
q . Next we show that there exists a sequence (xk)k∈Z taking values in K such

that x
(n)
k → xk as n → ∞, for each k ∈ Z. To do so, let 0 < ǫ ≤ 1. Choose M ∈ N such that for

every k0 ∈ Z and all i, j ≥ M ,

|Sk0,0|
1

q
− 1

p ǫ|{k ∈ Sk0,0 : |x
(i)
k − x

(j)
k | > ǫ}|1/p ≤ ‖x(i) − x(j)‖wℓp

q
< ǫ

1

p
+1.

Note that Sk0,0 = {k0} for every k0 ∈ Z. It thus follows that

|{k ∈ Sk0,0 : |x
(i)
k − x

(j)
k | > ǫ}| < ǫ.

for every k0 ∈ Z and i, j ≥ M . This implies that

|x
(i)
k0

− x
(j)
k0

| ≤ ǫ

for every k0 ∈ Z and i, j ≥ M . Hence, for each k ∈ Z, (x
(n)
k )n∈N is a Cauchy sequence taking values

in K. Therefore, lim
n→∞

x
(n)
k exists for each k ∈ Z. Now for each k ∈ Z, define xk := lim

n→∞
x

(n)
k , so that

x
(n)
k → xk as n → ∞.

We claim that x := (xk)k∈Z ∈ wℓp
q . Let C > 0 satisfy ‖x(n)‖wℓp

q
≤ C (n ∈ N), and let m ∈ Z, N ∈ ω,

and γ > 0. We observe that for any n ∈ N,

|Sm,N |
1

q
− 1

p
γ

2
|{k ∈ Sm,N : |xk| > γ}|

1

p

≤ |Sm,N |
1

q
− 1

p
γ

2

(∣

∣

∣

∣

{

k ∈ Sm,N : |xk − x
(n)
k | >

γ

2

}∣

∣

∣

∣

+

∣

∣

∣

∣

{

k ∈ Sm,N : |x
(n)
k | >

γ

2

}∣

∣

∣

∣

) 1

p

≤ |Sm,N |
1

q
− 1

p
γ

2

∣

∣

∣

∣

{

k ∈ Sm,N : |xk − x
(n)
k | >

γ

2

}∣

∣

∣

∣

1

p

+ |Sm,N |
1

q
− 1

p
γ

2

∣

∣

∣

∣

{

k ∈ Sm,N : |x
(n)
k | >

γ

2

}∣

∣

∣

∣

1

p

.

Since x
(n)
k → xk as n → ∞ for each k ∈ Z and Sm,N is finite, we can choose n0 ∈ N large enough so

that |x
(n0)
k − xk| ≤ γ

2 for k ∈ Sm,N . Then

|Sm,N |
1

q
− 1

p
γ

2

∣

∣

∣

∣

{

k ∈ Sm,N : |xk − x
(n0)
k | >

γ

2

}∣

∣

∣

∣

1

p

= 0.
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It follows that

|Sm,N |
1

q
− 1

p
γ

2
|{k ∈ Sm,N : |xk| > γ}|

1

p ≤ |Sm,N |
1

q
− 1

p
γ

2

∣

∣

∣

∣

{

k ∈ Sm,N : |x
(n0)
k | >

γ

2

}∣

∣

∣

∣

1

p

≤ ‖x
(n0)
k ‖wℓp

q
≤ C.

Taking the supremum over all m ∈ Z, N ∈ ω, and γ > 0, we have 1
2 ||x||wℓp

q
≤ C < ∞ and thus

‖x‖wℓp
q

< ∞. Therefore, x ∈ wℓp
q , as claimed.

Finally, we show that x(n) → x as n → ∞ in the quasi norm ‖ · ‖wℓp
q
. For this, let ǫ > 0. Fix

j ∈ N, m ∈ Z, N ∈ ω, and γ > 0. Since for k ∈ Z we have |xk − x
(j)
k | = lim

i→∞
|x

(i)
k − x

(j)
k |, we obtain

|xk − x
(j)
k | > γ if and only if there exists M ∈ N such that |x

(i)
k − x

(j)
k | > γ for i ≥ M . Using this

fact, one readily proves the identity

{k ∈ Sm,N : |xk − x
(j)
k | > γ} =

∞
⋃

M=1

∞
⋂

i=M

{k ∈ Sm,N : |x
(i)
k − x

(j)
k | > γ}.

Using the continuity of counting measure, we obtain

|Sm,N |
1

q
− 1

p γ|{k ∈ Sm,N : |xk − x
(j)
k | > γ}|

1

p

= |Sm,N |
1

q
− 1

p γ

∣

∣

∣

∣

∣

∞
⋃

M=1

∞
⋂

i=M

{k ∈ Sm,N : |x
(i)
k − x

(j)
k | > γ}

∣

∣

∣

∣

∣

1

p

= lim
M→∞

|Sm,N |
1

q
− 1

p γ

∣

∣

∣

∣

∣

∞
⋂

i=M

{k ∈ Sm,N : |x
(i)
k − x

(j)
k | > γ}

∣

∣

∣

∣

∣

1

p

.

For any M ∈ N,

|Sm,N |
1

q
− 1

p γ

∣

∣

∣

∣

∣

∞
⋂

i=M

{k ∈ Sm,N : |x
(i)
k − x

(j)
k | > γ}

∣

∣

∣

∣

∣

1

p

≤ |Sm,N |
1

q
− 1

p γ
∣

∣

∣{k ∈ Sm,N : |x
(M)
k − x

(j)
k | > γ}

∣

∣

∣

1

p

≤ ||x(M) − x(j)||wℓp
q
.

Since (x(n))n∈N is Cauchy in wℓp
q , there exists P ∈ N (which does not depend on m, N , or γ) such

that if M, j ≥ P , then
‖x(M) − x(j)‖wℓp

q
< ǫ.

Thus for j ≥ P ,

lim
M→∞

|Sm,N |
1

q
− 1

p γ

∣

∣

∣

∣

∣

∞
⋂

i=M

{k ∈ Sm,N : |x
(i)
k − x

(j)
k | > γ}

∣

∣

∣

∣

∣

1

p

< ǫ.

Summarizing, we have for j ≥ P ,

|Sm,N |
1

q
− 1

p γ|{k ∈ Sm,N : |xk − x
(j)
k | > γ}|

1

p < ǫ.

Taking the supremum over all m ∈ Z, N ∈ ω, and γ > 0, we obtain for j ≥ P ,

‖x − x(j)‖wℓp
q

< ǫ.

Hence x(n) → x as n → ∞ in wℓp
q , and this ends the proof.
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The next proposition gives the inclusion property between two weak type discrete Morrey spaces.

Proposition 3.5. Let 1 ≤ p1 ≤ p2 ≤ q < ∞. Then wℓp2
q ⊆ wℓp1

q with ‖x‖wℓ
p1
q

≤ ‖x‖wℓ
p2
q

for every
x ∈ wℓp2

q .

Proof. Let x ∈ wℓp2
q and γ > 0. By definition, we have

|Sm,N |
1

q
− 1

p2 γ
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

1

p2 ≤ ‖x‖wℓ
p2
q

,

for any m ∈ Z and N ∈ ω. Assuming that |{k ∈ Sm,N : |xk| > γ}
∣

∣ 6= 0, we have

γ ≤
|Sm,N |

1

p2
− 1

q

∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

1

p2

‖x‖wℓ
p2
q

.

Therefore, for any m ∈ Z and N ∈ ω , we have

|Sm,N |
1

q
− 1

p1 γ
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

1

p1 ≤
|Sm,N |

1

p2
− 1

p1

∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

1

p2
− 1

p1

‖x‖wℓ
p2
q

=

(
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

) 1

p1
− 1

p2

‖x‖wℓ
p2
q

≤ ‖x‖wℓ
p2
q

.

We see that the inequality also holds when |{k ∈ Sm,N : |xk| > γ}
∣

∣ = 0. Taking the supremum over
m ∈ Z, N ∈ ω, and γ > 0, we obtain ‖x‖wℓ

p1
q

≤ ‖x‖wℓ
p2
q

, and the proof is complete.

4 Generalized Discrete Morrey Spaces

The generalized discrete Morrey space ℓp
φ is equipped with two parameters, that is, 1 ≤ p < ∞ and

a function φ ∈ Gp, where Gp = Gp(2ω + 1) is the set of all functions φ : 2ω + 1 → (0, ∞) such that φ
is almost decreasing (that is, there exists C > 0 such that φ(2M + 1) ≥ C φ(2N + 1) for M, N ∈ ω

with M ≤ N), and the mapping (2N + 1) 7→ (2N + 1)
1

p φ(2N + 1) is almost increasing (that is, there

exists C > 0 such that (2M + 1)
1

p φ(2M + 1) ≤ C (2N + 1)
1

p φ(2N + 1) for M, N ∈ ω with M ≤ N).
Note that φ ∈ Gp implies that φ satisfies the doubling condition, that is, there exists C > 0 such
that

1

C
≤

φ(2M + 1)

φ(2N + 1)
≤ C

whenever 1
2 ≤ 2M+1

2N+1 ≤ 2.

For 1 ≤ p < ∞ and φ ∈ Gp, the generalized discrete Morrey space ℓp
φ is defined as the set of all

sequences x = (xk)∞
k=1 taking values in K such that

‖x‖ℓp

φ
:= sup

m∈Z,N∈ω

1

φ(2N + 1)





1

|Sm,N |

∑

k∈Sm,N

|xk|p





1

p

< ∞.

Note that the discrete Morrey space ℓp
q (1 ≤ p ≤ q < ∞) may be obtained from ℓp

φ by choosing the

function φ(2N + 1) = (2N + 1)− 1

q , N ∈ ω.

The proof of our next proposition is similar to the proof of Proposition 2.2.
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Proposition 4.1. For 1 ≤ p < ∞ and φ ∈ Gp, the mapping ‖ · ‖ℓp

φ
defines a norm on ℓp

φ. Moreover,

(ℓp
q , ‖ · ‖ℓp

φ
) is a Banach space.

The following lemma gives an estimate for the norm of the characteristic sequences, which will be
useful later on.

Lemma 4.2. Let 1 ≤ p < ∞ and φ ∈ Gp. For m0 ∈ Z and N0 ∈ ω, let ξm0,N0 be the characteristic
sequence given by

ξm0,N0

k :=

{

1, if k ∈ Sm0,N0
,

0, otherwise.
(4.1)

Then there exists C > 0, independent of m0 and N0, such that

1

φ(2N0 + 1)
≤ ‖ξm0,N0‖ℓp

φ
≤

C

φ(2N0 + 1)

for every N0 ∈ ω.

Proof. We fix m0 ∈ Z and N0 ∈ ω. Then we have

‖ξm0,N0‖ℓp

φ
= sup

m∈Z,N∈ω

1

φ(2N + 1)





1

|Sm,N |

∑

k∈Sm,N

|ξm0,N0

k |p





1

p

≥
1

φ(2N0 + 1)

(

|Sm0,N0
|

|Sm0,N0
|

) 1

p

=
1

φ(2N0 + 1)
.

For the second inequality, take any m ∈ Z and N ∈ ω. If N ≤ N0, we use the fact that φ is almost
decreasing: there exists C1 > 0 such that φ(2N + 1) ≥ C1 φ(2N0 + 1), and that

∑

k∈Sm0,N

|ξm0,N0

k |p =

|Sm0,N |. Hence

1

φ(2N + 1)





1

|Sm,N |

∑

k∈Sm,N

|ξm0,N0

k |p





1

p

≤
1

φ(2N + 1)





1

|Sm0,N |

∑

k∈Sm0,N

|ξm0,N0

k |p





1

p

=
1

φ(2N + 1)

(

|Sm0,N |

|Sm0,N |

) 1

p

≤
1

C1φ(2N0 + 1)
.

If N ≥ N0, there exists C2 > 0 such that (2N0 + 1)
1

p φ(2N0 + 1) ≤ C2 (2N + 1)
1

p φ(2N + 1). In this
case, we have

1

φ(2N + 1)





1

|Sm,N |

∑

k∈Sm,N

|ξm0,N0

k |p





1

p

≤
C2(2N + 1)

1

p

(2N0 + 1)
1

p φ(2N0 + 1)

(

|Sm0,N0
|

|Sm0,N |

)
1

p

=
C2

φ(2N0 + 1)
.

The constants C1 and C2 are independent of m0, m, N0, and N . Taking the supremum over m ∈ Z

and N ∈ ω, we get ‖ξm0,N0‖ℓp

φ
≤ C

φ(2N0+1) , where C = max{ 1
C1

, C2}. This completes the proof.

Let X 6= ∅. For f, g : X → R, we write f . g (or g & f) if there exists a constant C > 0 such that
f(x) ≤ C g(x) for every x ∈ X.
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Theorem 4.3. Let 1 ≤ p1 ≤ p2 < ∞, φ1 ∈ Gp1
, and φ2 ∈ Gp2

. Then the following statements are
equivalent:

(i) φ2 . φ1 (on 2ω + 1).

(ii) ‖ · ‖ℓ
p1
φ1

. ‖ · ‖ℓ
p2
φ2

(on ℓp2

φ2
).

(iii) ℓp2

φ2
⊆ ℓp1

φ1
.

Proof. We first prove that (i) and (ii) are equivalent. Suppose that (i) holds. Let x ∈ ℓp2

φ2
. For any

m ∈ Z and N ∈ ω, we have

1

φ1(2N + 1)





1

|Sm,N |

∑

k∈Sm,N

|xk|p1





1

p1

≤
C

φ2(2N + 1)





1

|Sm,N |

∑

k∈Sm,N

|xk|p1





1

p1

≤
C

φ2(2N + 1)





1

|Sm,N |

∑

k∈Sm,N

|xk|p2





1

p2

,

for some C > 0 (independent of m and N). Note the use of Lemma 2.3 in the last inequality. Taking
the supremum over m ∈ Z and N ∈ ω, we obtain ‖ · ‖ℓ

p1
φ1

. ‖ · ‖ℓ
p2
φ2

(on ℓp2

φ2
). Thus (ii) holds.

Next suppose that (ii) holds. Let m0 ∈ Z, N0 ∈ ω, and ξm0,N0 be the characteristic sequence
defined by (4.1) in Lemma 4.2. By our assumption, ‖ξm0,N0‖ℓ

p1
φ1

≤ C1 ‖ξm0,N0‖ℓ
p2
φ2

for some C1 > 0.

Meanwhile, Lemma 4.2 gives us

1

φ1(2N0 + 1)
≤ ‖ξm0,N0‖ℓ

p1
φ1

and ‖ξm0,N0‖ℓ
p2
φ2

≤
C2

φ2(2N0 + 1)
,

for some C2 > 0. Both C1 and C2 are independent of m0 and N0. We conclude that

1

φ1(2N0 + 1)
≤

C1C2

φ2(2N0 + 1)
, or equivalently, φ2(2N0 + 1) ≤ C1C2φ1(2N0 + 1);

and this tells us that (i) holds since the above inequality holds for any N0 ∈ N.

We shall now prove that (ii) and (iii) are equivalent. But (ii) clearly implies (iii), and so it remains
only to show that (iii) implies (ii).

For any x ∈ ℓp2

φ2
, we have ‖x‖ℓ

p2
φ2

< ∞ and by assumption we also know that ‖x‖ℓ
p1
φ1

< ∞. Define

|||x||| := ‖x‖ℓ
p1
φ1

+ ‖x‖ℓ
p2
φ2

for every x ∈ ℓp2

φ2
. Note that ||| · ||| is a norm on ℓp2

φ2
. Moreover, as in [9],

one may verify that (ℓp2

φ2
, ||| · |||) is a Banach space.

Now consider the identity mapping I : (ℓp2

φ2
, ||| · |||) → (ℓp2

φ2
, || · ||ℓp2

φ2

). If x(n) → x in (ℓp2

φ2
, ||| · |||),

then x(n) → x in (ℓp2

φ2
, ‖ · ‖ℓ

p2
φ2

) as well, since ‖ · ‖ℓ
p2
φ2

≤ ||| · |||. This tells us that I is a continuous

linear operator. Evidently, (ℓp2

φ2
, ||| · |||) is a closed subspace of (ℓp2

φ2
, ‖ ·‖ℓ

p2
φ2

). It follows from the Open

Mapping Theorem that I is open. Since I is bijective, we know that I−1 is continuous, and hence
bounded. It follows that there exists C > 0 such that |||x||| ≤ C‖x‖ℓ

p2
φ2

for every x ∈ ℓp2

φ2
. Therefore,

‖x‖ℓ
p1
φ1

≤ |||x||| ≤ C‖x‖ℓ
p2
φ2

.

for every x ∈ ℓp2

φ2
. This completes the proof.
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5 Generalized Weak Type Discrete Morrey Spaces

For 1 ≤ p < ∞ and φ ∈ Gp, the generalized weak type discrete Morrey space wℓp
φ is the set of all

sequences x = (xk)k∈Z taking values in K such that ‖x‖wℓp

φ
< ∞, where ‖ · ‖wℓp

φ
is defined by

‖x‖wℓp

φ
:= sup

m∈Z,N∈ω,γ>0

γ

φ(2N + 1)

(
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

) 1

p

.

The proof of our next proposition is similar to the proof of Proposition 3.4.

Proposition 5.1. For 1 ≤ p < ∞ and φ ∈ Gp, (wℓp
φ, ‖ · ‖wℓp

φ
) is a quasi-Banach space.

Proposition 5.2. For 1 ≤ p < ∞ and φ ∈ Gp, ℓp
φ ⊆ wℓp

φ with ‖x‖wℓp

φ
≤ ‖x‖ℓp

φ
for every x ∈ ℓp

φ.

Proof. Let x ∈ ℓp
φ, m ∈ Z, N ∈ ω, and γ > 0. We have

γ

φ(2N + 1)

(
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

) 1

p

=
1

φ(2N + 1)

(

γp
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

) 1

p

=
1

φ(2N + 1)





1

|Sm,N |

∑

k∈Sm,N ,|xk|>γ

γp





1

p

≤
1

φ(2N + 1)





1

|Sm,N |

∑

k∈Sm,N ,|xk|>γ

|xk|p





1

p

≤
1

φ(2N + 1)





1

|Sm,N |

∑

k∈Sm,N

|xk|p





1

p

.

Taking the supremum over m ∈ Z, N ∈ ω, and γ > 0, we obtain ‖x‖wℓp

φ
≤ ‖x‖ℓp

φ
. Therefore,

ℓp
φ ⊆ wℓp

φ.

Lemma 5.3. Let 1 ≤ p < ∞ and φ ∈ Gp. If m0 ∈ Z and N0 ∈ ω, and ξm0,N0 is the characteristic
sequence defined by (4.1) in Lemma 4.2, then there exists C > 0, independent of m0 and N0, such
that

1

2φ(2N0 + 1)
≤ ‖ξm0,N0‖wℓp

φ
≤

C

φ(2N0 + 1)
.

Proof. Let m0 ∈ Z and N0 ∈ ω. By definition, we have

‖ξm0,N0‖wℓp

φ
= sup

m∈Z,N∈ω,γ>0

γ

φ(2N + 1)

(
∣

∣{k ∈ Sm,N : |ξm0,N0

k | > γ}
∣

∣

|Sm,N |

)

1

p

≥
1
2

φ(2N0 + 1)

(
∣

∣{k ∈ Sm0,N0
: |ξm0,N0

k | > 1
2}
∣

∣

|Sm0,N0
|

)

1

p

≥
1

2φ(2N0 + 1)

(

|Sm0,N0
|

|Sm0,N0
|

) 1

p

=
1

2φ(2N0 + 1)
.
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Next, by using Lemma 4.2 and Proposition 5.2, there exists C > 0 independent of m0 and N0 such
that

‖ξm0,N0‖wℓp

φ
≤ ‖ξm0,N0‖ℓp

φ
≤

C

φ(2N0 + 1)
,

and this completes the proof.

Theorem 5.4. Let 1 ≤ p1 ≤ p2 < ∞, φ1 ∈ Gp1
and φ2 ∈ Gp2

. Then the following statements are
equivalent:

(i) φ2 . φ1 (on 2ω + 1).

(ii) ‖ · ‖wℓ
p1
φ1

. ‖ · ‖wℓ
p2
φ2

(on wℓp2

φ2
).

(iii) wℓp2

φ2
⊆ wℓp1

φ1
.

Proof. As before, we can prove first that (i) and (ii) are equivalent. Suppose that (i) holds. Let
x ∈ wℓp2

φ2
, m ∈ Z, N ∈ ω, and γ > 0. By definition, we have

γ

φ2(2N + 1)

(
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

)
1

p2

≤ ‖x‖wℓ
p2
φ2

,

or, assuming that |{k ∈ Sm,N : |xk| > γ}| 6= 0,

γ

φ2(2N + 1)
≤

(
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

)− 1

p2

‖x‖wℓ
p2
φ

.

Therefore, we obtain

γ

φ1(2N + 1)

(
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

)
1

p1

≤
Cγ

φ2(2N + 1)

(
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

)
1

p1

≤ C

(
∣

∣{k ∈ Sm,N : |xk| > γ}
∣

∣

|Sm,N |

) 1

p1
− 1

p2

‖x‖wℓ
p2
φ

≤ C‖x‖wℓ
p2
φ

,

for some C > 0 independent of m, N , and γ. Note that the inequality still holds when |{k ∈ Sm,N :
|xk| > γ}

∣

∣ = 0. Taking the supremum over m ∈ Z, N ∈ ω, and γ > 0, we obtain ‖x‖wℓ
p1
φ

≤ C ‖x‖wℓ
p2
φ

.

Thus (ii) holds.

Next suppose that (ii) holds. Let m0 ∈ Z, N0 ∈ ω, and ξm0,N0 be the characteristic sequence defined
by (4.1) in Lemma 4.2. Then we have ‖ξm0,N0‖wℓ

p1
φ1

≤ C1 ‖ξm0,N0‖wℓ
p2
φ2

for some C1 > 0 independent

of m0 and N0. By Lemma 5.3, we have

1

2φ1(2N0 + 1)
≤ ‖ξm0,N0‖wℓ

p1
φ1

and ‖ξm0,N0‖wℓ
p2
φ2

≤
C2

φ2(2N0 + 1)

for some C2 > 0 independent of m0 and N0. We conclude that

1

φ1(2N0 + 1)
≤

C

φ2(2N0 + 1)
, or equivalently, φ2(2N0 + 1) ≤ C φ1(2N0 + 1),

for some C > 0 independent of N0. This means that (i) holds, since N0 ∈ ω is arbritary.
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Since (ii) also implies (iii), it now remains to prove that (iii) implies (ii). Let x ∈ wℓp2

φ2
. Then

‖x‖wℓ
p2
φ2

< ∞, and by assumption we also have ‖x‖wℓ
p1
φ1

< ∞. Define |||x||| := ‖x‖wℓ
p1
φ1

+‖x‖wℓ
p2
φ2

(x ∈

wℓp2

φ2
). Note that ||| · ||| is a quasi-norm on wℓp2

φ2
and one may observe that (wℓp2

φ2
, ||| · |||) is a quasi-

Banach space.

Next, analogous to the proof of Theorem 4.3, we consider the identity mapping I : (wℓp2

φ2
, ||| · |||) →

(wℓp2

φ2
, ‖ · ‖wℓ

p2
φ2

). If x(n) → x in (wℓp2

φ2
, ||| · |||), then x(n) → x in (wℓp2

φ2
, ‖ · ‖wℓ

p2
φ2

) as well, since

‖ · ‖wℓ
p2
φ2

≤ ||| · |||. Thus I is a continuous linear operator. Now (wℓp2

φ2
, ||| · |||) is a closed subspace

of (wℓp2

φ2
, ‖ · ‖ℓ

p2
φ2

). Since the Open Mapping Theorem also holds for quasi-Banach spaces, it follows

that I is open. As I is bijective, I−1 is continuous and hence bounded. Thus there exists C > 0
such that |||x||| ≤ C‖x‖wℓ

p2
φ2

for every x ∈ wℓp2

φ2
. Therefore,

‖x‖wℓ
p1
φ1

≤ |||x||| ≤ C‖x‖wℓ
p2
φ2

for every x ∈ wℓp2

φ2
, and we are done.
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