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ABSTRACT

Some characteristics of the normal distribution may not be ideal to model in many applications. We develop a skew

generalised normal (SGN ) distribution by applying a skewing method to a generalised normal distribution, and
study some meaningful statistical characteristics. Computational methods to approximate, and a well-constructed

efficient computational approach to estimate these characteristics, are presented. A stochastic representation of

this distribution is derived and numerically implemented. The skewing method is extended to the elliptical class

resulting in a more general framework for skewing symmetric distributions. The proposed distribution is applied

in a fitting context and to approximate particular binomial distributions.
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representation.
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1 Introduction

Azzalini (Azzalini 1985) introduced the skew-normal (SN ) distribution, which includes the standard normal dis-
tribution as a special case, and studied the basic mathematical properties thereof. The skewing methodology that

is used to skew existing symmetric probability density functions (PDFs) is stated:

Proposition 1 (Azzalini 1985) Denote by 0 (·) a probability density function (PDF) on R by 0 (·) a continuous
cumulative distribution function (CDF) on R, and by  (·) a real-valued function on R such that 0 (−) = 0 (),

 (−) = − () and 0 (−) = 1−0 () for all  ∈ R  ∈ R Then

 () = 20 ()0 { ()} (1)

is a PDF on R

Note that 0 is termed the symmetric base PDF, 20 { ()} is termed the skewing mechanism and  is

termed the skewed version of the symmetric base PDF.

Azzalini’s innovation of coupling the symmetric component with a skewing mechanism generates distributions with

flexible tail behaviour. This methodology provides a platform for considering other candidates rather than the

normal distribution as the symmetric component.

(Azzalini 2013) remarked that the SN distribution has short tails making it unsuitable for use when there

is a need for a model to have heavier tails than the normal distribution. One method to solve this problem, as

suggested in (Azzalini 2013), is to use a symmetric base PDF 0, (see Proposition 1) with heavier tails than the

normal distribution. Following this motivation, this paper focuses on the use of Subbotin’s generalised normal

distribution (Subbotin 1923) as 0, which provides enough flexibility to allow for tails heavier than that of the

normal distribution. This idea has been briefly discussed in (Salinas, Arellano-Valle, and Gómez 2007; Azzalini

2013) and is used as a point of departure. The purpose of this paper is to enrich and develop theory in this area

and provide novel methods of estimating the characteristics of this distribution. Literature on Azzalini’s model

and related models are widely presented in literature (Azzalini and Regoli 2011; Arellano-Valle, Del Pino, and

San Martın 2002; Bahrami and Qasemi 2015; Arnold, Beaver, Azzalini, Balakrishnan, Bhaumik, Dey, Cuadras, and

Sarabia 2002; Pourahmadi 2007; Yadegari, Gerami, and Khaledi 2008).

In Section 2 the generalised normal distribution (Subbotin 1923) is given and a stochastic representation is

presented. Thereafter, the use of the generalised normal (GN ) distribution as a symmetric base (see Proposition
1) gives rise to a skew generalised normal distribution termed the SGN distribution. Methods to calculate basic
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statistical properties of the SGN and a corresponding stochastic representation is presented in Section 3. In Section

4 a generalised skewing mechanism is coupled with the generalised normal distribution. In Section 5 the SGN is

firstly applied in a distribution fitting context. Thereafter, the SGN distribution is considered as a candidate to

approximate the binomial distribution. Final remarks are made in Section 6.

2 Skew generalised normal distribution

In this section the GN distribution is revisited and a sampling scheme to generate random variates from this

distribution is proposed. Thereafter, the SGN distribution is focussed on. Three methods of evaluating the

characteristics (i.e. expected value, variance, skewness and kurtosis) of this distribution are presented. Finally, a

stochastic representation of the SGN distribution is developed.

Definition 2 (Subbotin 1923) A random variable  has the generalised normal distribution with location parameter

 and scale parameter  if its PDF is given by

∗ (;  ) = 

2Γ( 1 )
−|− |



  ∈ R (2)

where Γ (·) denotes the gamma function,  ∈ R and   ∈ R+. This is denoted by  ∼ GN (  ).

Following a similar approach in (Azzalini 2013), a stochastic representation of the GN ( ) distribution is

proposed. This provides a method to generate random numbers from  ∼ GN ( ).

Theorem 3 If  ∼ GN (  ) then,

 =

(
+ 

1
  with probability 1

2

− 
1
  with probability 1

2

where  ∼ 
³
1

 1
´
.

Proof. Let  =
¯̄̄
−


¯̄̄
. The property, P [ −   0] = P [ −   0] = 1

2
, follows from the symmetry of

 ∼ GN ( )  It follows from (Bain and Engelhardt 1992) that

 () =

2X
=1


¡
−1 ()

¢ ¯̄̄̄ 


−1 ()

¯̄̄̄
=

1

Γ
³
1


´− 1

−1

for  ∈ R+, and the result follows that  ∼ 
³
1

 1
´
.

Since software that can generate gamma distributed random numbers is readily available, Theorem 3 provides a

representation to easily generate random numbers from a generalised normal distribution.

Using the same notation defined in Proposition 1, the case where 0 = ∗ 0 = Φ (with ∗ denoting the PDF
defined in (2), Φ (·) representing the standard normal CDF) and where  () = √2 for  ∈ R yields the following
definition of the SGN distribution.

Definition 4 A random variable  has the SGN distribution with location parameter  and scale parameter  if

its PDF is given by

 (;  ) = 2

∗
¡
−

;
¢
Φ
¡√
2
¡
−


¢¢
  ∈ R (3)

where  ∈ R,   ∈ R+ and  ∈ R. This is denoted by  ∼ SGN (   ).

When  = 0,  =
√
2 and  = 2 the SGN distribution with PDF as in (3), the PDF collapses to that of

Azzalini’s SN (Azzalini 1985).

3 Statistical Properties

In this section, three methods are proposed to evaluate some statistical characteristics (expected value, standard

deviation, skewness and kurtosis) of the SGN distribution. Four different parameter structures of the SGN are

considered as candidates and the results are tabulated. Finally, a stochastic representation of the SGN distribution

is proposed.
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3.1 Method 1

The acceptance-rejection (AR) method (Lange 2010) is used to generate random skew generalised normal variates

from SGN (   ) distribution with PDF given by (3). Fig. 1 shows the results of the AR algorithm for the

first parameter structure considered. The green and red points indicate the random numbers that are respectively

accepted and rejected as candidates from the SGN (  ) distribution with PDF given by (3).

Figure 1. Histogram of the realised random variates drawn from SGN (   ) with theoretical PDF given by

(3) overlaid for the first parameter structure i.e. ( = 0  = 4  = 2  = 2) 

Estimates of the characteristics of the SGN (   ) distribution can be obtained by performing calculations

on the realised random variates. The drawback of this method is that the AR algorithm may perform poorly or

fail outright for certain parameter structures.

3.2 Method 2

This method uses the stochastic representation of the GN distribution as derived in Section 2.

Theorem 5 If  ∼ SGN (   ) with PDF as defined in (3) then

E [] = E∗

∙
2
∗Φ
µ√

2

µ
∗ − 



¶¶¸
where ∗ ∼ GN ( ) has PDF as in (2).

Proof. By definition

E [] =

Z
R




Γ
³
1


´−|− |Φµ√2µ− 



¶¶


= E∗

∙
2
∗Φ
µ√

2

µ
∗ − 



¶¶¸
where ∗ ∼ GN (  ) has PDF as in (2).

Since Theorem 3 can be used to generate random GN variates, Theorem 5 provides a method to calculate the

moments of  ∼ SGN (   ) with PDF given by (3), which are then used to calculate the characteristics of

the respective distribution.
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3.3 Method 3

A novel expression for the moments of  ∼ SGN (   ) with PDF given by (3), is presented.

Theorem 6 If  ∼ SGN (   ) with PDF given by (3) then

E [] =

X
=0

µ




¶
−E

£

¤

(4)

where

E
£

¤
=

⎧⎪⎨⎪⎩
Γ( +1 )
Γ( 1 )

 for  even

Γ( +1 )
Γ( 1 )

n
2E

h
Φ
³√
2

1


´i
− 1
o

 for  odd

where  ∼ 
³
+1


 1
´
.

Proof. Consider a random variable  ∼ SGN (0 1  ) with PDF as defined in (3) then

E
£

¤
=

Z ∞
0




Γ
³
1


´−Φ³√2´  + (−1) Z ∞
0




Γ
³
1


´−Φ³−√2´ 
= 1 + 2

Let  =  then it follows that

 =
Γ
³
+1


´
Γ
³
1


´ E
h
Φ
³√
2

1


´i


Similarly,

2 =
(−1) Γ

³
+1


´
Γ
³
1


´ E
h
1−Φ

³√
2

1


´i


Therefore result (??) follows. To extend this approach for a random variable  =  + , so that  ∼
SGN (  ) with PDF given by (3), it follows from the binomial theorem that

E [] =

X
=0

µ




¶
−E

£

¤


3.4 Simulation results

Four different parameter structures of the SGN (   ) distribution are considered. The three methods presented

are used to estimate the characteristics of the distribution for a certain parameter structure. The time taken by

each of the methods to obtain a result is also recorded. The results of the simulation are summarised in Table 1.

Remark 7 It is clear that Method 2 performs comparatively poorly. Method 1 may outperform Method 3, however,

the latter will work for any valid parameter structure which is not the case with Method 1.

3.5 Stochastic representation

After noting that the AR algorithm is unable to draw appropriate samples from SGN (   ) for certain para-

meter structures, it was undertaken to investigate a more stable sampling scheme that generates random variates

from  ∼ SGN (   ) with PDF given by (3). A stochastic representation is developed that is useful for

generating random numbers from a SGN (   ) distribution. Contrary to the AR method, this stochastic

representation is able to draw random samples from  ∼ SGN (   ) with PDF given by (3) for any valid

parameter structure.
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Simulation 1 Simulation 2 Simulation 3 Simulation 4

4*Parameter structure  0 0 0 0

2 16 16 25 4

 2 5 3 2

 2 2 -2 25

3*Time taken (seconds) Method 1 1.09 0.094 0.110 0.111

Method 2 33.362 22.545 20.018 10.545

Method 3 0.094 3.017 4.094 0.219

Table 1: Time taken by each method to obtain estimates of the characteristics of  ∼ SGN ¡
 2  

¢
with PDF

given by (3)

Lemma 8 Let  and  be a random variables with respective PDFs  () and  () both symmetric about zero.

If  = − then

P [ +  0] = P [   ] =
1

2

Proof. Consider the random variable  = − with PDF  ().

Case 1:  6= 0 Since  is a symmetric random variable it follows that

P [ ≥ ] = P
h
 ≥ 



i
= P [ ≤ −] 

Symmetry of  follows since P [ ≥ ] = P [ ≤ −].
Let  =  + . Using the convolution of marginal PDFs of symmetric random variables  and  to obtain

 () = + ()

=

Z
R
 (− + )  (−)  (5)

= + (−) (6)

=  (−)  (7)

Therefore  =  + =  −  is a symmetric random variable around zero and it follows that

P [  0] = P [   ] =
1

2


Case 2:  = 0

P [  0] = P [  0] =
1

2

since  is symmetric random variables around zero.

Theorem 9 Let  ∼ GN () with PDF ∗ (·; 0 1 ) given by (2), and 1 ∼ N (0 1) with  and 1 independent.

If

 =  whenever 1 ≤
√
2

then  ∼ SGN (0 1  ) with PDF  (; 0 1 ) as in (3).

Proof. Let  =  |©1 ≤ √2ª. Then
P [ ≤ ] =

P
£
 ≤  1 ≤

√
2

¤
P
£
1 ≤

√
2

¤  (8)

Since  and 1 are independent it follows that

P
h
 ≤  1 ≤

√
2

i
=

Z 

−∞
∗ (; 0 1 )Φ

³√
2

´
 (9)
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Since  () and 1 (1) are both symmetric about zero, applying Proposition 1 it follows that

P
h
1 ≤

√
2

i
=

1

2
 (10)

Using (9) and (10) in (8) it follows that

P [ ≤ ] =

Z 

−∞
2∗ (; 0 1 )Φ

³√
2

´


with PDF 2∗ (; 0 1 )Φ
¡√
2

¢
which is the PDF given by (3).

Corollary 10 Let  ∼ GN () with PDF ∗ (·; 0 1 ) given by (2) and 1 ∼ N (0 1) with  and 1 independent.

If

 = +  whenever 1 ≤
√
2

then  ∼ SGN (  ) with PDF given by (3).

Since there is readily available software that can generate normal distributed random numbers and the sampling

scheme in Section 2 can be used to generate generalised normal random numbers. Theorem 9 and Corollary 10

provide a representation to easily generate random numbers from a SGN distribution for any valid parameter

structure. Figure 2 shows histograms of the random samples taken from  ∼ SGN (   ) using the stochastic

representation in Corollary 10 with the corresponding theoretical PDF (3) overlaid.

Figure 2. Histograms of realised random samples of size 10 000 taken from  ∼ SGN  (  ) with the

corresponding theoretical PDF (3), overlaid for different values of    and .

4 Generalisation of the skewing mechanism

In this section a generalisation of (3) is proposed by assuming the skewing mechanism has the elliptically contoured

distribution (Arashi and Nadarajah 2017).

Definition 11 A random variable  has the skew elliptical generalised-normal distribution with location parameter

, scale parameter  and shape parameter  if its PDF is given by

 (;  ) =
2


∗
µ
 − 


;

¶
Φ

µ√
2

 − 



¶
(11)

where   ∈ R+  ∈ R and Φ (·) is the CDF of an elliptically contoured distribution (Arashi and Nadarajah
2017).
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The approach in (Chu 1973) is used to represent (11) as

 (;  ) =
2


∗
µ
 − 


;

¶Z ∞
0

W ()Φ(0−1)

µ√
2

µ
 − 



¶¶
 (12)

where  ∈ R+  ∈ R and Φ(0−1) is the CDF of a 
¡
0 −1

¢
distribution and whereW (·) is a weighting function

on (0∞)  If the weighting function used in (12) is W () =  (− 1), where  (·) is the dirac delta function, (11)
simplifies to (3).

Assuming now that W () =
( 2 )


2
−1

2Γ( 2 )

2
is used in (12), it results in a new contribution as stated in the following

definition.

Definition 12 A random variable  has the -skewed generalised-normal distribution with location parameter 

and scale parameter  if its PDF is given by

 (;    ) = 2

∗
¡
−

;
¢T ¡√2−



¢
  ∈ R (13)

where  ∈ R,  ∈ Z+ and   ∈ R+ and  ∈ R and where T (·) represents the CDF of a  distribution with degrees
of freedom  This is denoted by  ∼ SGNT (   ).
A stochastic sampling scheme similar to Corollary 10 is developed to draw samples from (13).

Corollary 13 If  ∼ GN () and 1 ∼  (), where  () denotes  distribution with  degrees of freedom, with 

and 1 independent then conditionally

 = +  whenever 1 ≤
√
2

then  ∼ SGNT (   ) with PDF  (;   ) as in (13).

Corollary 13 provides a representation to easily generate random numbers from a  distribution for any

valid parameter structure. Figure 3 shows histograms of the random samples taken from  ∼ SGNT (  )
using the stochastic representation in Corollary 13 with the corresponding theoretical PDF (13) overlaid.

Figure 3. Histograms of realised random samples of size 10 000 taken from  ∼ SGNT (   ) with the
corresponding theoretical PDF (13), overlaid for different values of     and .

5 Applications

5.1 Fitting to data

An Australian athletes data set containing various measurements on athletes specialising in different sports is used

(Telford and Cunningham 1991). The variable of interest is the caliper measurement obtained from each athlete,

which provides an indication of body-fat percentage. It is vital to perform a test on whether a distribution is a

candidate for fitting to a particular data set. The Kolmogorov-Smirnov () goodness-of-fit test is performed to

assess the suitability of fitting the SGN distribution to this data set. The standard critical values of the  − 

statistic do not apply when any parameters of the candidate distribution (SGN in this case) are estimated from

the data. A Monte Carlo approach must be used instead to construct an appropriate test and is outlined as follows:
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Level of significance,  Critical value, 1−
001 0.138527

005 0.145027

01 0.1562062

Table 2: Simulated critical values of the  −  goodness of fit test at various levels of significance

1. The null hypothesis, 0 is that the data are from a SGN distribution;

2. Fit the SGN distribution to the original data using maximum likelihood estimation;

3. Calculate the  distance, ∗ between the data and the fitted SGN distribution;

4. Bootstrap the original data and fit the SGN distribution again;

5. Calculate  distance,  between the bootstrapped data and the fitted SGN distribution;

6. Repeat steps 4− 5  times to obtain the set  = {1 2 · · ·  };
7. Calculate the (1− )


sample quantiles 1− of  at levels of significance:

 = 001 005 01;

8. If ∗  1− the null hypothesis cannot be rejected at  level of significance and there is not enough evidence
to suggest that the data are not from a SGN distribution. If this is the case, the  test indicated that the

SGN distribution is a suitable candidate to fit to the data;

9. An approximate − can also be obtained as the proportion of time the elements in  are greater than

∗

The test is performed with  = 5000. The test statistic is calculated as ∗ = 01174142. The critical values at
different levels of significance are presented in Table 2.

Since ∗  1− for  = 001 005 01 and the approximate  −  is calculated as 0.545109, the null

hypothesis that the data are from a SGN distribution cannot be rejected. Therefore it is concluded that the SGN
distribution is a suitable candidate to fit to this data set.

In what follows, the SGN model, along with relevant alternative models which include the generalised Balakrishnan

skew-normal (GBSN ) model (see Definition 14) is fitted to the data set.
Definition 14 A random variable  has the generalised Balakrishnan skew-normal distribution with location pa-

rameter  and scale parameter  if its PDF is given by

 (;   1 2) =
(12)



¡
−


¢
Φ
µ

1(−)√
2+2(−)2

¶
  ∈ R (14)

where  ∈ R  ∈ R+,  ∈ R+, 1 ∈ R, 2 ∈ R+ and

 (  1 2) =
1

E

∙
Φ
µ

1(−)√
2+2(−)2

¶¸
with  ∼ N ¡

 2
¢
. This is denoted by  ∼ GBSN ¡

 2  1 2
¢
(Hasanalipour and Sharafi 2012).

The normal, SN (Azzalini 1985), SGN and GBSN distributions are fitted to the caliper measurement obtained

from each athlete. All distributions were fitted using the method of maximum likelihood. In particular, to fit the

SGN distribution, let 1 · · ·   be a random sample of size  from SGN (   ) and maximise the likelihood

function given by

L (  ) =
µ
2



¶ Y
=1

∗
µ
 − 


;

¶
Φ

µ√
2

µ
 − 



¶¶
using well-known optimisation techniques. The adequacy of the fit of the four distributions is assessed by the BIC

and AIC information criteria.
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̂ ̂2 ̂2 ̂ ̂ ̂1 ̂2 ̂ AIC BIC

N 2296 2862 - - - - - - 1001.336 997.336

SN 19.97 4132 - - 2.313 - - - 986.199 980.199

SGN 2080 - 38422 1381 1074 - - - 984.349 976.349

GBSN 19.76 42882 - - - 2.535 1.092 1.1613677 989.820 979.820

Table 3: AIC and BIC criteria obtained for each of the fitted distributions

As a visual assessment of goodness of fit, the estimated PDFs of the three distributions and the empirical

histogram are plotted in the Figure 4. The results in Table 3 identify the SGN (  ) distribution with PDF

 (; ) given by (3) as the best fit for the given data.

Figure 4. Empirical histogram of data with overlaid fitted PDFs.

5.2 Approximating the binomial distribution

Consider a random variable  ∼  ( ). A normal distribution with expected value  and variance

(1 − ) is usually used to approximate the binomial distribution when  is large or when  is close to 0.5 (in

which case the binomial distribution PDF is approximately symmetric). However, it is well known that the PDF is

not symmetric for  6= 05 and exhibits a non-negligible degree of skewness for both large and small values of  It
is therefore of interest to consider approximating the binomial distribution using the SN and SGN distributions

(as Chang et. al. 2008 considered) in order to account for the skewness present.

Methodology

The adopted methodology is different compared to the approach of Chang et. al. (2008).

1. Let  ∼  ( );

2. Let the classic normal approximation to the binomial distribution be  ∼ N ¡
̂ =  ̂2 =  (1− )

¢
with

PDF  (; ̂ ̂) and calculate  = max0≤≤ | (; )−  (; ̂ ̂)|;

3. Let the SN approximation be  ∼ SN
³
̂ ̂2 ̂

´
with PDF 

³
; ̂ ̂ ̂

´
as in (Azzalini 1985) with esti-

mated parameters numerically minimising the maximum distance between  (; ) and 

³
; ̂ ̂ ̂

´
(i.e

minimising  = max0≤≤
¯̄̄
 (; )− 

³
; ̂ ̂ ̂

´¯̄̄
);
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̂ ̂2 ̂2 ̂ ̂ 

N 28.5 019372 - - - 0.06289

SN 28.624 12322 - - 0.140 0.01944

SGN 29.672 - 20832 1.696 -1.702 0.01165

Table 4:  obtained for each of the distributions approximating the  (30 095) distribution

4. Let the SGN approximation be  ∼ SGN
³
̂ ̂ ̂ ̂

´
with PDF 

³
; ̂ ̂ ̂ ̂

´
as in (3) with estimated

parameters numerically minimising the maximum distance between  (; ) and 

³
; ̂ ̂ ̂ ̂

´
(i.e

minimising  = max0≤≤
¯̄̄
 (; )− 

³
; ̂ ̂ ̂ ̂

´¯̄̄
);

5. The initial values in the optimisation algorithm used to estimate the parameters of the SN approximation are

{  } =
n


p
 (1− ) 0

o
.  is set zero so that the optimisation algorithm begins with a symmetric

distribution;

6. The initial values in the optimisation algorithm used to estimate the parameters of the SGN approximations

{   } =
n


p
(1−  2 0

o
.  is set to two and  is set to zero so that the optimisation algorithm

begins with a symmetric distribution with normal tail behavior;

7. In Step 5 and Step 6, the parameters are set in this way to ensure that the algorithm used does not favour

one distribution over another;

8. The approximation error is calculated for  = 0 · · ·   as
(a)  (; )−  (; ̂ ̂) for the N distribution;

(b)  (; )− 

³
; ̂ ̂ ̂

´
for the SN distribution and

(c)  (; )− 

³
; ̂ ̂ ̂ ̂

´
for the SGN distribution.

Case 1:  = 30  = 095

Table 4 and Figure 5 below summarise the results obtain when the N , SN and SGN are used to approximate

 ∼  (30 095):

Figure 5. N , SN (see (Azzalini 1985)) and SGN (see (3)) approximations to  (30 095) distribution.

It is observed that using the SGN distribution to approximate a binomial distribution with  either large or

small results in a overall more accurate approximation compared to both the N and SN distributions. This is

due to the SGN having two parameters, i.e.  and , adding flexibility in accounting for skewness of the binomial

distribution exhibited when  is large or small. In both cases above, the SGN resulted in the minimum , and by this

measure it is conclude that the SGN distribution outperforms both the N and SN distributions in approximating

a binomial distribution with  either large or small.
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6 Final remarks

A stochastic representation of the GN distribution is derived and the characteristics of the SGN distribution are

computationally investigated. An acceptance-rejection algorithm is employed to sample from the SGN distribution

and shortfalls of this approach are noted. Thereafter, two further methods which approximate the characteristics of

the SGN distribution are derived and compared. Given the shortfalls of the acceptance-rejection algorithm, it was

then undertaken to derive a stochastic representation for the SGN distribution. Combining the generalised normal

distribution with a skewing mechanism belonging to the elliptical class provides a new, more general framework for

skew-symmetric distributions. A special case where the weighting function in the new framework resulted in the

CDF of the t-distribution to act as the skewing mechanism is illustrated and a stochastic representation of this case

was developed. A distribution fitting application is presented and it is found that the SGN distribution was the best

fit for the given data, outperforming the GBSN distribution. A second application which involves the approximating

the binomial distribution using the N , SN and SGN distributions is also presented. It is determined the the SGN
distribution outperforms the N and SN distributions in approximating particular binomial distributions. Further

possible extensions include using the GN distribution in the skewing mechanism and using the SGN distribution

in the form of a beta generated distribution defined in (Mameli and Musio 2013).
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