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Abstract 
In this paper, we analyse the role of oil price shocks, derived from expectations of consumers, 
economists, financial market, and policymakers, in predicting volatility jumps in the S&P500 
over the monthly period of 1988:01 to 2015:02, with the jumps having been computed based on 
daily data over the same period. Standard linear Granger causality test fail to detect any evidence 
of oil shocks causing volatility jumps. But given strong evidence of nonlinearity and structural 
breaks between jumps and oil shocks, we next used a nonparametric causality-in-quantiles test, 
since the linear model is misspecified. Using this data-driven robust approach, we were able to 
detect overwhelming evidence of oil shocks predicting volatility jumps of the S&P500 over its 
entire conditional distribution, with the strongest effect observed at the lowest considered 
conditional quantile. Interestingly, the predictive ability of the four oil shocks on volatility jumps 
are found to be both qualitatively and quantitatively similar. 
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1. Introduction 

Theoretically, oil shocks are known to affect the stock market movements through, at least, five 

different channels: stock valuation, monetary, output, fiscal and uncertainty (see, Degiannakis et 

al., (2017) for a detailed discussion in this regard). To examine these channels empirically, one 

would need measures of oil shocks, which in turn, have been traditionally done using vector 

autoregressive models whereby the shocks is identified based on certain structural 

decomposition (Kilian and Park, 2009). More recently Baumeister and Kilian (2016), suggests the 

use of the gap between the price of oil that was expected and its eventual outcome as a measure 

of an oil price shock. More importantly, these authors illustrate that the same change in oil prices 

may be perceived quite differently by households, policymakers, financial markets, and 

economists, depending on how they form expectations. Given that this insight suggests different 

measures of oil shocks used by different agents in the economy to make their decisions, it is 

likely to have potentially important implications for understanding and modeling the 

transmission of oil price shocks to the economy, including financial markets.   

 

Against this backdrop, the objective of this paper is to analyze the predictive ability of oil 

price shocks as perceived by households, policymakers, financial markets, and economists on 

volatility jumps of the S&P500 over the monthly period of 1988:03 to 2015:02, with the jumps 

having been computed based on daily data over the same period. Note that financial market 

volatility is used as an important input in investment decisions, option pricing and financial 

market regulation (Poon and Granger, 2003). In light of this, financial market participants care 

not only about the nature of volatility, but also about its level, with all traders making the 

distinction between good and bad volatilities (Giot et al., 2010). Good volatility is directional, 

persistent and relatively easy to predict, while, bad volatility is jumpy and comparatively difficult 

to foresee. Therefore, good volatility is generally associated with the continuous and persistent 

part, while bad volatility captures the discontinuous and jump component of volatility. Given 

this, it has been stressed that modeling jumps can improve the overall fit of volatility models 

(Duffie et al., 2000; Eraker et al., 2003; Broadie et al., 2007; Todorov and Tauchen, 2011). 

Understandably, a large literature has developed trying to not only model jumps, but also to try 

and explain the causes behind such jumps based on financial variables (Caporin et al., 2016), and 

news based on text-search (Cutler et al., 1989; Boudoukh et al., 2015; Baker et al., 2018; Gkillas 

et al., 2018).  

 

With an already large number of studies investigating the the impact of oil shocks on 
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stock market returns and volatility (see, Gupta and Wohar (2017), and Smyth and Narayan 

(2018) for detailed reviews), our paper is a departure from this line of research, and aims to add 

to the literature on the drivers of volatility jumps by analysing for the first time, the predictive 

ability of oil price shocks as perceived by various agents in the economy. For our predictability 

analysis, we rely on the nonparametric causality-in-quantiles test of Jeong et al., (2012), and 

hence, in the process capturing various phases (sizes) of volatility jumps. Understandably, the 

causality-in-quantiles test used here is inherently a time-varying approach as various parts of the 

conditional distribution of volatility jumps would relate to various points in time associated with 

the evolution of jumps. The causality-in-quantile approach has the following two main novelties: 

First, it is robust to misspecification errors as it detects the underlying dependence structure 

between the examined time series. This is particularly important as we show that volatility jumps 

are nonlinearly associated with the oil shocks – a result that should not come as a surprise, that 

there is ample evidence of financial market variables being nonlinearly related to their predictors, 

including oil shocks (Jiménez-Rodríguez, 2015). And second, using this methodology, we are 

able to test not only for causality-in-mean (1st moment) (see for example, Heimstra and Jones, 

1994; Diks and Panchenko, 2005, 2006), but also for causality that may exist in the tails of the 

joint distribution of the variables. This is again of tremendous importance since our dependent 

variable, i.e., volatility jumps is shown to have fat-tails – a feature also outlined in Bollerslev et 

al., (2013).  

 

The remainder of the paper is organized as follows: Section 2 lays out the basics of the 

econometric methodologies involving volatility jumps and the causality-in-quantiles approach; 

Section 3 presents the data and results, with Section 4 concluding the paper. 

 

2. Econometric Methodologies 

2.1. Volatility Jumps 

We employ daily log returns 𝑅𝑡,𝑖 of the S&P500 to estimate the monthly median realized 

variance (𝑀𝑅𝑉𝑡). In each month 𝑡, we retrieve a monthly point estimate of the 𝑀𝑅𝑉𝑡 by 

employing all daily returns. We calculate monthly volatility by the median realized variance, 

𝑀𝑅𝑉𝑡, which is the best alternative jump-robust estimator of realized variance, as introduced by 

Andersen et al. (2012), as follows: 

𝑀𝑅𝑉𝑡 = 𝛾 (
𝛮

𝛮 − 2
) ∑ 𝑚𝑒𝑑(|𝑅𝑡,𝑖−1|, |𝑅𝑡,𝑖|, |𝑅𝑡,𝑖+1|)

2
                                                                 (1)

𝑁−1

𝑖=1
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where, 𝛾 = (
𝜋

6−4√3+𝜋
), 𝑅𝑡,𝑖 is the daily return for day 𝑖 within month 𝑡 and 𝑖 = 1, … 𝑁, where 𝑁 

is the total number of daily observations within a month. 

 

Following, Bekaert and Hoerova (2014) we employ the threshold bipower variation 

(𝑇𝐵𝑃𝑉𝑡) as a jump-free volatility estimator as defined in Corsi et al. (2010), as follows: 

𝑇𝐵𝑃𝑉𝑡 = ∑|𝑅𝑡,𝑖−1|, |𝑅𝑡,𝑖|𝐼{|𝑅𝑡,𝑖−1|
2

≤𝜃𝑖−1}
𝐼

{|𝑅𝑡,𝑖|
2

≤𝜃𝑖}
                                                                       (2)

𝑁

𝑖=2

 

where 𝐼{∙} is the indicator function and the threshold function, 𝑅𝑡,𝑖 is the daily return series and 𝑡 

represents the time in months. 

We calculate the jump statistic ( 𝑍𝐽𝑡
(𝑇𝐵𝑃𝑉)

) following Duong and Swanson (2015), as 

follows: 

𝑍𝐽𝑡
(𝑇𝐵𝑃𝑉)

= √𝑁 
(𝑀𝑅𝑉𝑡 − 𝑇𝐵𝑃𝑉𝑡)𝑀𝑅𝑉𝑡

−1

[(𝜉1
−4 + 2𝜉1

−2 − 5) 𝑚𝑎𝑥{1, 𝑇𝑄𝑡𝑇𝐵𝑃𝑉𝑡
−2}]1/2

                                                   (3) 

where 𝑇𝑄𝑡 is the realized tripower quarticity which is 𝑇𝑄𝑡 =

𝑁𝜉4 3⁄
−3 ∑ |𝑅𝑡,𝑖|

4 3⁄
|𝑅𝑡,𝑖+1|

4 3⁄
|𝑅𝑡,𝑖+2|

4 3⁄𝑁
𝑖=1  and converges in probability to integrated quarticity. 

The 𝑍𝐽𝑡
(𝑇𝐵𝑃𝑉)

 statistic follow a normal gaussian distribution. 

 

A jump is considered to be significant if the 𝑍𝐽𝑡
(𝑇𝐵𝑃𝑉)

 exceeds the appropriate critical 

value of the standard gaussian distribution, denoted by 𝛷𝑎, at a 𝑎 significant level. The jump 

component of volatility in monthly frequency is: 

𝐽𝑈𝑀𝑃𝑡
(𝑇𝐵𝑃𝑉)

= |𝑀𝑅𝑉𝑡 − 𝑇𝐵𝑃𝑉𝑡|𝐼
{𝑍𝐽𝑡

(𝑇𝐵𝑃𝑉)
>𝛷𝑎}

                                                                               (4) 

where 𝐼{∙} represents an indicator function of the 𝑍𝐽𝑡
(𝑇𝐵𝑃𝑉)

 exceeds of a given critical value of a 

Gaussian distribution.  

 

2.2. Causality-in-Quantiles 

This sub-section provides a brief description of the quantile based methodology based on the 

framework of Jeong et al. (2012). As mentioned earlier, this approach is robust to extreme values 

in the data and captures general nonlinear dynamic dependencies. Let yt denote volatility jumps 

and xt denote the predictor variable, in our case the various oil price shocks, considered in turn, 

as perceived by households, policymakers, financial markets, and economists (discussed in detail 

in the Data segment of the paper).  
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Formally, let ),...,( 11 pttt yyY   , ),...,( 11 pttt xxX   , ),( ttt YXZ   and 

),( 1| 1  ttZy ZyF
tt  

and ),( 1| 1  ttYy YyF
tt

 denote the conditional distribution functions of ty  given 

1tZ  and 1tY , respectively. If we denote )|()( 11   ttt ZyQZQ   
and )|()( 11   ttt YyQYQ  , 

we have  
}|)({ 11| 1 ttZy ZZQF

tt
 with probability one. Consequently, the (non)causality in the 

q -th quantile hypotheses to be tested can be specified as: 

                                H0 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}=1,    (5) 

                                H1 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}<1.   (6) 

 

Jeong et al. (2012) employ the distance measure )}()|({ 11  tzttt ZfZEJ  , where t  is 

the regression error term and )( 1tz Zf  is the marginal density function of 1tZ . The regression 

error t  emerges based on the null hypothesis in (1), which can only be true if and only if 

   }]|)({1[ 11 ttt ZYQyE  or, equivalently, ttt YQy    )}({1 1 , where 1{×}  is an 

indicator function. Jeong et al. (2012) show that the feasible kernel-based sample analogue of J  

has the following form: 

                                Ĵ
T

=
1

T (T -1)h2 p
K
Z
t-1

-Z
s-1

h

æ

è
ç

ö

ø
÷

s=p+1,s¹t

T

å
t=p+1

T

å ê
t
ê
s
.   (7) 

where )(K  is the kernel function with bandwidth h , 𝑇 is the sample size, 𝑝 is the lag order, and 

ê
t
is the estimate of the unknown regression error, which is estimated as follows: 

                                                
1

ˆ 1{ ( )}
t t t

y Q Y
 

    .   (8) 

)(ˆ
1tYQ  is an estimate of the  th

 conditional quantile of ty  given 1tY , and we estimate 

)(ˆ
1tYQ  using the nonparametric kernel method as 

                                                
1

1

1 | 1
ˆ ˆ( ) ( | )

t tt y Y t
Q Y F Y





  
  ,   (9) 

where 
1| 1

ˆ ( | )
t ty Y t t

F y Y



 is the Nadarya-Watson kernel estimator given by 

                F̂
y
t
|Y
t-1

(y
t
|Y
t-1

) =
L (Y

t-1
-Y

s-1
) h( )1(ys £ y

t
)

s=p+1,s¹t

T

å

L (Y
t-1

-Y
s-1

) h( )
s=p+1,s¹t

T

å
,        (10) 

with )(L  denoting the kernel function and h the bandwidth.  
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The empirical implementation of causality testing via quantiles entails specifying three 

important choices: the bandwidth h , the lag order p , and the kernel type for )(K  and )(L

respectively. In this study, we use p=1 based on the Schwarz Information Criterion (SIC). Note 

that, when it comes to choosing lags, the SIC is considered to be parsimonious compared to 

other lag-length selection criteria. The SIC helps overcome the issue of over-parameterization 

usually arising with nonparametric frameworks. The bandwidth value is chosen by employing the 

least squares cross-validation techniques.1 Finally, for 𝐾(∙) and 𝐿(∙) Gaussian-type kernels was 

employed. 

 

3. Data and Results 

3.1. Data 

Monthly data on oil price shocks is based on the work of Baumeister and Kilian (2016) on oil 

price expectations of consumers, policymakers, financial market and consumers.2 These authors 

employ a VAR model specification that includes the real price of oil, global crude oil production, 

global real economic activity, and changes in global crude oil stocks, and refer to the implied 

expectation of the price of oil as the economists’ expectation. The most common approach to 

inferring the expected price of oil for immediate delivery in the physical market (also known as 

the spot price). The convention has been to treat the price of the oil futures contract with 

maturity h as the h-period ahead market expectation of the nominal price of crude oil, which in 

turn, is used as the measure of the policymakers’ oil price expectation by Baumeister and Kilian 

(2016). Recently, Hamilton and Wu (2014) document that there is a large horizon-specific time-

varying risk premium in the oil futures market. Further, this risk premium is shown to vary with 

the hedging demands of oil producers and refiners, and the willingness of financial investors to 

take the other side of hedging contracts. Baumeister and Kilian (2016) then recover the oil price 

expectation of financial market by subtracting Hamilton and Wu’s (2014) estimates of the risk 

premium from the oil futures price for a given horizon. Finally, Baumeister and Kilian (2016) 

assume that consumers forecast the real and nominal prices of crude oil according to a simple 

no-change model such that the nominal price is expected to grow at the rate of inflation. This 

allows them to proxy consumer expectations about the nominal price of oil based on the current 

price of oil and an inflation forecast based on the Michigan Survey of Consumers about the price 

of gasoline (primarily determined by the price of crude oil) and inflation. Once these 

                                                           
1 For each quantile, we determine the bandwidth ℎ using the leave-one-out least-squares cross validation method of 
Racine and Li (2004) and Li and Racine (2004). 
2 We would like to thank Professor Christiane Baumeister for kindly providing us with this data.  
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expectations are derived, we, as in Baumeister and Kilian (2016), compute the corresponding 

perception of oil price shocks by subtracting these expectations from the realized (actual) West 

Texas Intermediate (WTI) spot price of that month, with the WTI oil data obtained from the 

FRED database of the Federal Reserve Bank of St. Louis.     

 

As indicated above in Sub-section 2.1, we use daily returns of the S&P500 to arrive at the 

monthly volatility jump values. Stock returns are computed as the logarithmic first difference of 

the daily S&P500 stock price index, with data on the S&P500 stock index obtained from 

Datastream of Thomson Reuters. Note that our analysis covers the monthly period of 1988:03 

to 2015:02 (i.e., 324 months), with the start and end date being purely driven by the availability of 

data on the oil price expectations. Figures A1(a) and A1(b) in the Appendix plot the volatility 

jump variable and the oil price shocks respectively, while Table A1 reports the summary statistics 

of the variables under consideration. The summary statistics highlight how different the various 

oil price shocks are from each other. While volatility in general is quite close to each other, with 

economists' oil price shocks having the highest volatility and consumers' version of the same the 

lowest, the mean values are quite different. The financial market and consumers' oil price shocks 

have positive means, but for the policymakers' and economists' oil price shocks, the means are 

negative. While excess kurtosis is observed for all the four oil shocks as well as for volatility 

jumps (JUMPS), negative skewness is observed for policymakers' and consumers' oil price 

shocks. More importantly, all the variables have non-normal distributions, as indicated by the 

overwhelming rejection (at 1 percent level of significance) of the null of normality under the 

Jarque-Bera test. The heavy-tail of the unconditional distribution of volatility jumps provide a 

preliminary justification for the causality-in-quantiles test used in the empirical analysis.  

[INSERT FIGURE A1 and TABLE A1] 

 

3.2. Empirical Findings 

Before we discuss the findings from the causality-in-quantiles test, for the sake of completeness 

and comparability, we first conducted the standard linear Granger causality test, with a lag-length 

of one, as determined by the SIC. The resulting 2(1) statistics, as reported in Table 1, suggests 

that the null that the various oil price shocks (consumers’, economists’, financial market, and 

policymakers’) does not Granger cause volatility jumps, cannot be rejected even at the 10 percent 

level of significance. Therefore, based on the standard linear test, one would conclude of no 

significant oil shocks-related effects on S&P500 volatility jumps. 

[INSERT TABLE 1] 
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Given the insignificant results obtained from the linear causality tests, we next statistically 

examine the presence of nonlinearity and structural breaks in the relationship between JUMPS 

and the four oil shocks. Nonlinearity and regime changes, if present, would further motivate the 

use of the nonparametric quantiles-in-causality approach, as the quantiles-based test would 

formally address nonlinearity and structural breaks in the relationship between the two variables 

under investigation. For this purpose, we apply the Brock et al., (1996, BDS) test on the residuals 

from the jump equation involving one lag of JUMPS and a specific oil shock. Table 2 presents 

the results of the BDS test of nonlinearity. As shown in this table, we find strong evidence, at 

highest level of significance, for the rejection of the null of i.i.d. residuals at various embedded 

dimensions (m), which in turn, is indicative of nonlinearity in the relationship between JUMPS 

and the four oil shocks, considered in turn. To further motivate the causality-in-quantiles 

approach, we next used the powerful UDmax and WDmax tests of Bai and Perron (2003), to 

detect 1 to M structural breaks in the relationship between JUMPS and the oil shocks, allowing 

for heterogenous error distributions across the breaks. When we applied these tests again to the 

jump equation involving one lag of JUMP and a particular oil shock under consideration GPR, 

we detected two breaks each for the economists’, financial market’s and policymakers’ oil price 

shocks at months 2004:12 and 2008:12, while, only one break was found under the case of the 

consumers’ oil price shock at 20018:11. Note that, while the early break date corresponds to 

sharp increases, the latter one is associated with a decline in the oil price, as well as a sharp 

increase in volatility jumps in the wake of the global financial crisis.  These finding indicate that, 

the results based on the linear Granger causality test, cannot be deemed robust and reliable. 

 

[INSERT TABLE 2] 

 

Given the strong evidence of nonlinearity and structural break(s) in the relationship 

between volatility jumps and oil shocks, we now turn our attention to the causality-in-quantiles 

test, which is robust to linear misspecification due to its nonparametric (i.e., data-driven) 

approach. As can be seen from Figure 1, which reports this test for the quantile range of 0.05 to 

0.95, the null that the four oil shocks (considered sequentially) does not Granger causes JUMPS 

is overwhelmingly rejected at the 5 percent level of significance (given the critical value of 1.96), 

with the strongest evidence of predictability observed at the lowest quantile of the conditional 

distribution of JUMPS. Note that, to study which of these oil shocks has a stronger impact on 

JUMPS, we standardized the oil shocks by dividing with their respective standard deviation. 
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Interestingly, the strength of causality is found to be quite similar across the four oil shocks 

considered. But more importantly, our results highlight that when we account for nonlinearity 

and structural breaks using a nonparametric approach, we are able to find strong evidence of 

predictability emanating from oil shocks onto volatility jumps of the S&P500, unlike what was 

observed under the linear framework. To put it alternatively, we observe that oil shocks can 

predict volatility jumps of the S&P500, irrespective of the magnitude of the jumps as captured by 

the various quantiles of the conditional distribution of JUMPS. 

[INSERT FIGURE 1] 

 

To get additional insights into the results obtained, we conducted three additional analyses, 

and report them in the Appendix of the paper. First, we repeate our analysis using the cross-

quantilogram approach of Han et al., (2016). The cross-quantilogram measures quantile 

dependence and tests for directional predictability between two time series.3 Using this approach, 

as reported in Figure A2(i)-(viii), we observe that oil shocks do positively and significantly affects 

volatility jumps, with this effect being particularly strong at higher quantiles, i.e., for higher 

magnitude of the various oil price shocks. In other words, in line with the extant literature on the 

asymmetric effect of oil shocks on stock markets (see for example the discussion in Alsalman 

and Herrera (2015)), larger shocks tend to cause bigger volatility jumps. Second, just as there is a 

large literature on the size of the oil shock, there are also many studies that have looked into the 

effect of the sign of shock, i.e., whether an oil shock is positive or negative (see for example, 

Narayan and Gupta (2015) for a detailed review). Given this, we decompose the various oil 

shocks into their positive and negative components by first defining two dummy variables, which 

takes a value of 1 when the shock is positive and 0 otherwise, and vice-versa (i.e., 1 when the 

shock is negative and 0 otherwise), and then we multiply these two dummy variables with the oil 

price shocks separately to obtain the positive and negative oil shocks for each of the four agents. 

As can be seen from Table A2, while the strongest predictability is observed at the lowest 

conditional quantile of JUMPS, there is hardly any evidence in favour of causality beyond the 

conditional median. This result tends to suggest that, disaggregating the oil shocks into its 

positive and negative components is not necessarily of value when it comes to predicting 

volatility jumps of the S&P500, as unlike the overall shocks, the predictability gets restricted to 

smaller volatility jumps only. Finally, we revisit our analysis by computing oil shocks at various 

horizons based on the financial market expectations of oil price at various horizons (3-, 6-, 9-, 

                                                           
3 The reader is referred to Han et al., (2016) for further details on the technical details of the cross-quantilogram 
methodology.  
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and 12-month-ahead), as recently developed Baumeister and Kilian (2017).4 Our results derived 

in the main text carries over to this measure of financial market’s oil price shock, as we observe 

from Table A3 that, irrespective of the horizon considered, the effect is strongest at the lower 

quantiles of JUMPS. One interesting observation is that at the longest-horizon of 12-month-

ahead, oil price shocks, unlike at horizons of 3-, 6- and 9-month ahead, fail to predict volatility 

jumps beyond the conditional quantile of 0.40, i.e., the predictive content of the oil price shock 

at the horizon considered is absent when it comes to explaining large volatility jumps. However, 

just in the case positive financial market’s oil shocks based on the Baumeister and Kilian’s (2016) 

data discussed above in the second point, the effect is restricted only at the lower quantiles of the 

conditional distribution of JUMPS. But unlike as discussed earlier under the second issue above, 

for the negative version of these financial market oil price shocks at various horizons, 

predictability is observed at certain moderately high quantiles excluding the region around the 

median, even for the 12-month-ahead horizon. This result tends to hint towards the fact that 

larger volatility jumps are likely to be driven by negative oil price shocks perceived by the 

financial the market.      

[INSERT FIGURE A2 and TABLES A2 AND A3] 

 

4. Conclusions 

In the recent volatility-related literature, it has been stressed that jumps in volatility can improve 

the overall fit of volatility models. Therefore, a large literature has developed trying to not only 

model volatility jumps, but also attempting to explain the causes behind such jumps based on 

financial variables, and more recently, news. Given this, in this paper we analyse the role of oil 

price shocks, derived from expectations of consumers, economists, financial market, and 

policymakers, in predicting volatility jumps in the S&P500 over the monthly period of 1988:01 to 

2015:02, with the jumps having been computed based on daily data over the same period. For 

our predictability analysis, we rely on a nonparametric causality-in-quantiles test, which in turn, is 

robust to misspecication due to nonlinearity and structural breaks being a data-driven procedure.  

Starting off with the standard linear causality test, we were unable to detect any evidence 

of oil shocks causing volatility jumps. But, we indicate that linear Granger causality test results 

cannot be relied upon because formal tests reveal strong evidence of nonlinearity and structural 

breaks between volatility jumps and the four different oil shocks. Hence, linear Granger causality 

tests are misspecified. When we use the nonparametric causality-in-quantiles test instead, we 

                                                           
4 The data is available for download from the website of Professor Christiane Baumeister at: 
https://sites.google.com/site/cjsbaumeister/research, and covers the monthly period of 1992:01 to 2017:06 

https://sites.google.com/site/cjsbaumeister/research
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were able to detect overwhelming evidence rejecting the null hypothesis that oil shocks does not 

Granger causes jumps over the entire conditional distribution of the latter, with the strongest 

effect observed at the lowest considered conditional quantile. Interestingly however, even though 

the underlying nature of the oil shocks are quite different, the effect of the four oil shocks 

considered are found to be both qualitatively and quantitatively similar in predicting the S&P500 

volatility jumps. Thus, our results indicated that when we control for misspecification due to 

nonlinearity and regime changes, it is indeed true that oil shocks can predict movements in 

volatility jumps of the S&P500, irrespective of the size of such jumps. Interestingly however, the 

strength of causality is found to be quite similar across the four oil shocks considered. Though 

there exists a large literature on the effect of oil shocks on returns and volatility of equity 

markets, which caused us to concentrate only on volatility jumps, as part of future research it 

would be interesting to revisit the effect of these newly identified shocks as perceived by various 

agents on stock returns and volatility. In addition, one could also analyze the role of these oil 

shocks on volatility jumps of equity markets of other developed and developing countries, 

besides alternative asset classes like, currencies, bonds and commodities.   
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Table 1. Linear Granger Causality Test 

Dependent Variable Independent Variable 2(1) p-value 

JUMPS 

Consumers’ Oil Price 
Shocks 

0.0007 0.9783 

Economists’ Oil Price 
Shocks 

2.6810 0.1025 

Financial Market Oil 
Price Shocks 

1.0236 0.3124 

Policymakers' Oil 
Price Shocks 

2.0110 0.1571 

Note: The null hypothesis tests that the independent variable does not Granger cause JUMPS. 

 

 

Table 2. Brock et al., (1996, BDS) Test of Nonlinearity 

Independent 
Variable 

m 

2 3 4 5 6 

Consumers’ 
Oil Price 
Shocks 

3.1950* 3.2720* 3.7610* 3.8310* 4.4140* 

Economists’ 
Oil Price 
Shocks 

4.2950* 4.5490* 5.0070* 5.4830* 6.2360* 

Financial 
Market Oil 

Price Shocks 

3.725* 3.826* 4.237* 4.533* 5.243* 

Policymakers' 
Oil Price 
Shocks 

3.918* 4.030* 4.448* 4.868* 5.551* 

Note: Entries correspond to the z-statistic of the BDS test with the null of i.i.d. residuals, with the test applied to the 
residuals recovered from the jump equation with one lag each of JUMPS and the four different oil shocks 
considered in turn; * indicates rejection of the null hypothesis at 1 percent level of significance.  
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Figure 1. Causality-in-Quantiles Test Results for S&P500 Volatility Jumps due to Oil Shocks 

 

   
Notes: CV(5%)is the  5 percent critical value of  1.96. The horizontal axis measures the various quantiles while the 
vertical axis captures the tests statistic. The lines corresponding to consumers’, economists’, financial market’s, and 
policymakers’ oil price shocks show the rejection (non-rejection) of the null of no Granger causality from the 
various oil shocks to volatility jumps at the  5 percent level, if the lines are above (below) 1.96 for a specific quantile. 
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APPENDIX: 
 
Table A1. Summary Statistics 

 
Variable 

Statistic 
Financial Market Oil 

Price Shocks 
Policymakers' Oil 

Price Shocks 
Consumers’ Oil 

Price Shocks 
Economists’ Oil 

Price Shocks JUMPS 

Mean 0.9183 -0.4323 0.4415 -0.0016 0.0003 

Median -0.3333 -0.7942 0.3827 -0.9797 0.0000 

Maximum 36.1833 27.8137 16.6832 39.6887 0.0229 

Minimum -30.0989 -46.6125 -31.4363 -31.7466 0.0000 

Std. Dev. 8.3352 8.2878 6.9725 8.4571 0.0014 

Skewness 0.8050 -0.2617 -0.3629 0.8581 14.6105 

Kurtosis 5.7207 6.1447 3.7549 6.0802 240.2552 

Jarque-Bera 134.9217 137.2027 14.8059 167.8413 771442.9000 

p-value 0.0000 0.0000 0.0006 0.0000 0.0000 

Observations 324 
Note: Std. Dev: stands for standard deviation; p-value corresponds to the Jarque-Bera test with the null of 
normality. 
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Figure A1. Data Plots 
A1(a). S&P500 Volatility Jumps 
 

  
 
A1(b). Oil Price Shocks  
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Figure A2. Cross-Quantilogram Results 
 

 
Figure A2(i): Sample cross-quantilograms for 

2 0.1  to detect directional predictability from 

consumers’ oil price shocks to realized volatility jumps. Bar graphs describe sample cross-

quantilograms and red lines are the 95% bootstrap confidence intervals for 2,000 bootstrap iterations. 

Note that 
1 ,

2  correspond to the quantiles of JUMPS and oil shocks respectively. 
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Figure A2(ii): Sample cross-quantilograms for 

2 0.9  to detect directional predictability from 

consumers’ oil price shocks to realized volatility jumps. Bar graphs describe sample cross-

quantilograms and red lines are the 95% bootstrap confidence intervals for 2,000 bootstrap iterations. 

Note that 
1 ,

2  correspond to the quantiles of JUMPS and oil shocks respectively. 
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Figure A2(iii): Sample cross-quantilograms for 

2 0.1  to detect directional predictability from 

economists’ oil price shocks to realized volatility jumps. Bar graphs describe sample cross-

quantilograms and red lines are the 95% bootstrap confidence intervals for 2,000 bootstrap iterations. 

Note that 
1 ,

2  correspond to the quantiles of JUMPS and oil shocks respectively. 
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Figure A2(iv): Sample cross-quantilograms for 

2 0.9  to detect directional predictability from 

economists’ oil price shocks to realized volatility jumps. Bar graphs describe sample cross-

quantilograms and red lines are the 95% bootstrap confidence intervals for 2,000 bootstrap iterations. 

Note that 
1 ,

2  correspond to the quantiles of JUMPS and oil shocks respectively. 
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Figure A2(v): Sample cross-quantilograms for 

2 0.1  to detect directional predictability from 

financial market’s oil price shocks to realized volatility jumps. Bar graphs describe sample cross-

quantilograms and red lines are the 95% bootstrap confidence intervals for 2,000 bootstrap iterations. 

Note that 
1 ,

2  correspond to the quantiles of JUMPS and oil shocks respectively. 
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Figure A2(vi): Sample cross-quantilograms for 

2 0.9  to detect directional predictability from 

financial market’s oil price shocks to realized volatility jumps. Bar graphs describe sample cross-

quantilograms and red lines are the 95% bootstrap confidence intervals for 2,000 bootstrap iterations. 

Note that 
1 ,

2  correspond to the quantiles of JUMPS and oil shocks respectively. 
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Figure A2(vii): Sample cross-quantilograms for 

2 0.1  to detect directional predictability from 

policymakers’ oil price shocks to realized volatility jumps. Bar graphs describe sample cross-

quantilograms and red lines are the 95% bootstrap confidence intervals for 2,000 bootstrap iterations. 

Note that 
1 ,

2  correspond to the quantiles of JUMPS and oil shocks respectively. 
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Figure A2(viii): Sample cross-quantilograms for 

2 0.9  to detect directional predictability from 

policymakers’ oil price shocks to realized volatility jumps. Bar graphs describe sample cross-

quantilograms and red lines are the 95% bootstrap confidence intervals for 2,000 bootstrap iterations. 

Note that 
1 ,

2  correspond to the quantiles of JUMPS and oil shocks respectively. 
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Table A2. Causality-in-Quantiles Test Results for S&P500 Volatility Jumps due to Positive and Negative Oil Shocks 

Variable Quantile 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

Cons.(+) 50.15* 28.52* 18.21* 11.89* 7.65* 4.74* 2.79* 1.61 1.09 1.15 1.18 1.10 1.44 1.36 1.70 1.45 1.18 1.13 0.38 

Cons.(-) 65.53* 38.42* 25.51* 17.50* 12.00* 8.05* 5.19* 3.18* 1.87 1.38 1.36 1.11 1.09 1.07 1.05 1.16 1.22 0.62 0.46 

Econ.(+) 51.33* 28.71* 17.97* 11.43* 7.09* 4.18* 2.30* 1.27 0.97 1.00 0.97 1.18 1.60 1.47 1.75 1.40 1.11 0.96 0.32 

Econ.(-) 66.89* 39.94* 27.15* 19.19* 13.68* 9.66* 6.68* 4.49* 2.95* 1.92 1.92 1.40 1.41 1.15 1.10 1.19 1.34 0.73 0.54 

FM(+) 48.34* 27.22* 17.17* 11.04* 6.97* 4.22* 2.44* 1.45 1.13 1.27 1.20 1.54 2.00* 1.73 1.70 1.48 1.05 1.00 0.37 

FM(-) 67.67* 40.06* 26.90* 18.73* 13.09* 9.01* 6.03* 3.88* 2.44* 1.84 1.95 1.32 1.33 1.10 1.00 1.12 1.34 0.63 0.45 

PM(+) 47.48* 26.42* 16.42* 10.36* 6.36* 3.71* 2.04* 1.17 1.02 1.13 1.02 1.37 1.82 1.65 1.98* 1.57 1.22 1.06 0.34 

PM(-) 69.97* 41.85* 28.46* 20.13* 14.35* 10.14* 7.01* 4.71* 3.08* 2.07* 2.01* 1.43 1.47 1.20 1.14 1.11 1.23 0.74 0.49 
Note: Cons. is consumers’ oil price shock; Econ. is economists’ oil price shock; FM is financial market’s oil price shock; PM is policymakers’ oil price shock; (+) or (-) indicate whether the 

shock is positive or negative; * indicates significance at the 5 percent level.  
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Table A3. Causality-in-Quantiles Test Results for S&P500 Volatility Jumps due to Financial Market’s Oil Shocks at Various Forecast Horizons 

Variable Quantile 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

3M 23.86* 15.41* 11.58* 9.31* 7.81* 6.80* 6.13* 5.71* 5.52* 5.68* 5.72* 5.46* 5.48* 5.14* 4.95* 4.47* 3.83* 3.23* 2.22* 

3M(+) 52.05* 29.86* 19.34* 12.88* 8.51* 5.46* 3.35* 1.97* 1.24 1.33 1.59 1.21 1.16 1.05 0.92 0.97 0.68 0.64 0.41 

3M(-) 33.07* 18.16* 11.13* 6.92* 4.22* 2.49* 1.51 1.13 1.29 1.50 1.52 2.12* 2.31* 2.44* 2.25* 1.58 1.97* 1.76 0.44 

6M 23.78* 15.68* 12.00* 9.81* 8.38* 7.41* 6.75* 6.34* 6.14* 6.13* 6.09* 5.99* 5.83* 5.59* 5.26* 4.85* 4.30* 3.68* 2.50* 

6M(+) 52.95* 30.72* 20.08* 13.49* 9.00* 5.83* 3.60* 2.13* 1.29 1.32 1.52 1.12 0.98 1.01 0.91 0.85 0.71 0.61 0.42 

6M(-) 29.14* 16.17* 10.02* 6.34* 3.98* 2.49* 1.65 1.36 1.55 1.74 1.75 2.59* 2.29* 2.66* 2.72* 2.39* 2.07* 1.79 0.53 

9M 24.88* 16.04* 12.04* 9.66* 8.09* 7.02* 6.30* 5.85* 5.62* 5.62* 5.72* 5.68* 5.44* 5.21* 5.11* 4.66* 4.05* 3.14* 2.24* 

9M(+) 53.46* 30.52* 19.67* 13.02* 8.54* 5.42* 3.27* 1.90 1.19 1.12 1.26 1.10 1.05 0.95 0.89 1.08 0.76 0.60 0.42 

9M(-) 35.89* 20.06* 12.57* 8.04* 5.06* 3.09* 1.86 1.23 1.13 1.20 1.30 1.68 2.23* 2.30* 2.03* 1.53 1.52 1.57 0.50 

12M 54.98* 31.85* 20.87* 14.10* 9.48* 6.22* 3.91* 2.35* 1.43 1.30 1.37 1.11 1.03 1.00 0.93 1.03 0.79 0.61 0.45 

12M(+) 54.98* 31.85* 20.87* 14.10* 9.48* 6.22* 3.91* 2.35* 1.43 1.30 1.37 1.11 1.03 1.00 0.93 1.03 0.79 0.61 0.45 

12M(-) 32.27* 17.78* 10.93* 6.83* 4.19* 2.52* 1.56 1.19 1.36 1.32 1.42 1.90 1.97* 2.34* 2.04* 1.67 1.41 1.46 0.50 
Note: 3M, 6M, 9M and 12M stands for financial market’s oil price shock at horizon of 3-month, 6-month, 9-month, and 12-month-ahead respectively; (+) or (-) indicate whether the shock is 
positive or negative; * indicates significance at the 5 percent level. 


