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Abstract

Growth models are often used when modelling various processes in life
sciences, ecology, demography, social sciences etc. Dynamical growth models
are usually formulated in terms of an ODE (system of ODS’s) or by an ex-
plicit solution to an ODE, such are e.g. the logistic, Gompertz and Richardson
growth models. In order to choose a suitable growth model it is useful to know
the physics-chemical meaning of the model. In many situations this meaning
is best expressed by means of a reaction network that possibly induces the
dynamical growth model via mass action kinetics. Such reaction networks are
well-known for a number of growth models, such as the saturation-decay and
the logistic Verhulst models. However, no such reaction networks exist for the
Gompertz growth model. In this work we propose some reaction networks us-
ing mass action kinetics that induce growth models that are (in certain sense)
close to the Gompertz model. The discussion of these reaction networks aims
to a better understanding of the chemical properties of the Gompertz model
and “Gompertzian-type” growth models. Our method can be considered as an
extension of the work of previous authors who “recasted” the Gompertz dif-
ferential equation into a dynamical system of two differential equations that,
apart of the basic species variable, involve an additional variable that can be
interpreted as a “resource”. Two new growth models based on mass action
kinetics are introduced and studied in comparison with the Gompertz model.
Numerical computations are presented using some specialized software tools.
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1 Introduction

When studying the time evolution of various growth processes from the fields of
life sciences, ecology, demography, social sciences etc. , we often have a set of
measurement data of the form (ti, yi), where yi is an experimental measurement (or
a vector of such measurements) value obtained at the time moment ti, i = 1, ..., n.
We then have to choose a model (vector) function y = f(t) that fits the measurement
data. In some cases the function f is chosen from a class of explicitly defined
functions, e.g. the class of linear functions of the form f = at+b, in other situations
the function f is determined as a solution to a class of dynamical systems. The
dynamical system involves the rates of certain characteristics of the process, which
allows for a better interpretation of the intrinsic properties of the process. It is still
more useful to be able to find, if possible, a reaction network that induces (precisely)
the dynamical model via reaction kinetics [22, 18].

In this way we obtain a physics-chemical interpretation of the dynamical model
and its ingredients (rate constants, reacting variables, interaction relations, etc.).
Such reaction networks are known for a number of basic dynamical growth models,
such as the saturation-delay and the logistic Verhulst models. However, no reaction
network exists that induces the Gompertzian growth model, which is often used
in modeling various dynamical processes (in demography, cancer research, etc.). In
this work we focus attention to Gompertzian type growth models, proposing several
reaction networks that induces dynamical models that are close to the Gopmertzian
one. Our method can be considered as an extension of the work of previous au-
thors who “recast” the Gompertz differential equation into a dynamical system of
two differential equations that, apart of the species variable, involve an additional
variable that can be interpreted as “resource”. Let us mention that vast literature
has been devoted to such a “recasting” procedure [19], [20], [23], [24], [25], [26], [27],
[28], [29]. Numerical computations are presented using specialized software tools.

Growth models and their interpretation. We shall be interested in growth
models that can be formulated solutions of differential equations. For simplicity
we shall consider growth functions defined in [0,∞) with values ranging in the
interval [0, 1]. In many situations the dynamical system provides some insight
of the behavior of the solutions. In this work we shall demonstrate two powerful
methods that, if possible to apply, provide more information for the nature of the
growth proves: i) the method of “recasting” the dynamical model into a system
having additional species, and ii) the method of finding realization of the system in
the form of a reaction network possibly satisfying mass action kinetics. For some
references on related areas the order may consult [3–17, 30–32]. The next section
is of preliminary character and may be ignored by expert readers.
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Figure 1: Solutions to reaction A+B
k→ C; k = 1.0, A(0) = B(0) = 1, C(0) = 0.

2 Preliminaries: mass action kinetics reaction net-
works, examples

Recall the mass action kinetic (MAK) on the simple reaction network:

A+B
k→ C (∗)

Applying the MAK principle, reaction (∗) is “translated” into the dynamical
system:

c′ = kab, a′ = b′ = −kab (P )

where k is a rate constant. System (P) possesses the conservation relations:

c+ a = C1 = const, c+ b = C2 = const (CL)

which allows to reduce (P) to a differential equation for a single variable, say c′ =
k(C1 − c)(C2 − c).

We can then formulate a mathematical problem, e.g. an initial value (IV) ODE
problem and find an algebraic or numerical solution to it. For example, an initial
value (IV) problem related to (P): c(0) = 0, a(0) = b(0) = 1 yields solutions for
a = b and c as function of time t. The solutions can be expressed analytically or
computed numerically and visualized as shown on Fig.1. Note that the solutions
are symmetric relative to the line y = (C1 +C2)/2, as can be expected from relation
(CL).

2.1 The saturation-decay model

The above approach will be demonstrated in the examples to follow in the sequel.
The saturation-decay model (SD-model) is induced by the following reaction

network:

X
k→ Y (1)

Using MAK, we obtain the following dynamical system
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Figure 2: Solutions to SD-model X
k→ Y ; k = 1.0, X(0) = 1, Y (0) = 0.

x′ = −kx, y′ = kx (2)

The reactant x decays whereas the reactant y grows. We have x′ + y′ = 0,
leading thus to the conservation law

x+ y = const = a, (SDCL)

hence y is a solution to the differential equation

y′ = k(a− y), (3)

known as saturation growth model. The solution of model (3) can be explicitly
written as

y(t) = y(0)(a− e−t). (4)

The solutions to model (1-2) are visualized on Fig.2.

2.2 The iterated saturation-decay model

Reaction (3) can be iterated meaning that the product of each SD-reaction becomes
the substrate of another SD-reaction:

S1
k1→ S2

k2→ S3
k3→ · · · kn−1→ Sn (ISD)

As can be seen on Fig.3 the graph of concentration Sn is a sigmoidal function.
The iterated saturation-decay model is a special case of the general linear reac-

tion network considered in [5].

2.3 Catalyzed growth models

We shall next focus on so-called catalytic reaction networks that are characterized
by having a reactant simultaneously in both sides of the reaction.

The SD model (1) describing the transformation of a substrate S into a product
P (S → P ) can be catalyzed via a catalyst X according to the reaction network

S +X
k→ P +X. (CSD)
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Figure 3: Solutions to ISD-model S1
k1→ S2

k2→ S3
k3→ · · · kn−1→ Sn; n = 4, ki = 1.0,

S1(0) = 1, S2(0) = S3(0) = S4(0) = 0.

If X does not participate in other reactions that change its concentration, than
x is constant and plays the role of a coefficient that multiplies the rate constant in
the induced dynamical system. Hence, if x < 1, then X acts as inhibitor of the
reaction, and if x > 1, then X is an accelerator of the reaction.

Analogously to (ISD), the CSD-model can be repeatedly iterated in the sense
that the product of any single CSD-model becomes the substrate for another CSD-
model:

S0 +X
k1→ S1 +X

S1 +X
k2→ S2 +X
· · ·

Sn−1 +X
kn→ Sn +X

(ICSD)

Remarks. The catalyst X in the above reaction network may be different species
(having different rate constants). If the catalyst X in the reaction network varies
in time, say by adding some reaction like X→P , then the behavior of the reaction
network may totally change.

3 Autocatalytic reaction networks and growth mod-
els

In autocatalytic reaction networks a catalyst is also a product. Such is the case
with the logistic (Verhulst) reaction network. Vethust model is probably the most
important catalytic reaction. Its solution is S-shaped (sigmoidal). This model is
widely applicable in practice.

3.1 The logistic (Verhulst) growth model

The logistic (Verhulst) growth (V-model) is presented by the following differential
equation [2]:

x′ = kx(a− x) (V)
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We shall be interested in solutions of (V) ranging in the interval [0, 1], hence
we shall set a = 1 in (V) and consider initial conditions x(0) = x0, such that
0 < x0 < 1. An explicit solution has the form

V (t) =
1

1 + e−kt
. (V E)

Consider the dynamical system

s′ = −ksx, x′ = ksx (DV)

We have s′ + x′ = 0, hence the following conservation relation

s+ x = const = a (CR)

holds true.

Proposition 1. i) Assume that x is a solution to model (V) with initial con-
dition x(0) = x0 and let s(0) = a − x0. Then the functions x, s = a − x satisfy
the differential system (DV) with initial conditions x(0) = x0, s(0) = a − x0. ii)
Conversely, assume that the functions x, s = a − x satisfy the differential system
(DV) with initial conditions x(0) = x0, s(0) = a−x0. Then x is a solution to model
(V) with initial condition x(0) = x0.

Proof. Substituting s = a–x in (VD): x′ = ksx leads to (V ).

Remark. The procedure of passing from the dynamical model (V) to model (DV)
is called “recasting” in [24]. Such a procedure gains to a better understanding of the
physical meaning of the model. Indeed, the introduction of the additional variable
s suggests that the growth of species x happens for the expenses of another species
s that can be interpreted as a (nutritional) resource for the species x. Based on this
suggestion, we arrive to the following proposition that throws further light on the
interaction between the species x and s.

Proposition 2. [33]. The V-model is induced by the autocatalytic reaction
network

S +X
k→ X +X (V*)

Proof. Applying MAK to reaction network (V ∗) yields the dynamical system
(DV). According to proposition 1 system (DV) induces Verhulst model (V).

The V-model can be repeatedly iterated in the manner applied to the SD-model,
that is, the product of a V-model becomes the substrate for another V-model.

3.2 A modified Verhulst growth model (VM-model)

The VM-model is presented by the following dynamical system

x′ = kx(a− x)n (VM)

Remark. The V-model is a special case of the VM-model for n = 1.
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Figure 4: Solutions to 2S +X
k→ 3X; k = 1.0; S(0) = 0.99, X(0) = 0.01.

Proposition 3. The VM-model is induced by the following autocatalytic reac-
tion network:

nS +X
k→ X + nX (VM*)

The biochemical interpretation of the VM-model is as follows: the VM-model
takes into account the interaction between various species (and resources), such as
various types of foods and other environmental resources (water, air, light, etc.).

According to [18], it is unlikely in reality that more than three species react
simultaneously. Therefore we shall focus our attention to the restriction n = 2.

The solutions for n = 2 are graphically presented on Fig. 4.

3.3 Another modified Verhulst growth model (VSM-model)

The VSM-model is presented by the following dynamical system

x′ = kx(a− x)(b− x) (VSM*)

Proposition 4. The VSM-model is induced via MAK from the following auto-
catalytic reaction network:

S1 + S2 +X
k→ X +X +X (VSM)

The solutions to model (VSM) for a = 1, b = 2, are visualized on Fig. 6.

4 The Gompertz model

The Gompertz growth function is a solution y = y(t) to the dynamical equation [1]

dy/dt = ky(c− ln y) (G)

4.1 Some properties of the Gompertz model

The following propositions hold true.
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Figure 5: Solutions to S1 + S2 +X
k→ X +X +X ; k = 1.0; X(0) = 0.01, S(0) =

0.99, a = 2, b = 3.

Proposition 5. The solution y to (G) is the exponent of the solution to the
SD-model.

Proof. Let z(t) = ln y(t). Then dz/dt = (dy/dt)/y. Substituting in (G) written
as

y′/y = k(c– ln y) (G*)

we obtain the ODE to the SD-model:

dz/dt = k(c–z). (G**)

Lemma 1. The solutions s, y to the dynamical system

ds/dt = −ks, dy/dt = ksy (SG)

satisfy the “conservation” relation

s+ ln y = c = const (gg)

Proof. From (SG) we have

ds/dt+ dy/dt/y = 0

hence (gg).

Proposition 6. The functions y, s, such that y is a solution to (G) and
s = c − lny, satisfy the dynamical system (SG). Conversely, if y, s are solutions
to system (SG), then y is a solution to (G).

Proof. According to the Lemma from (SG) we have the relation (gg), thus
s = c– ln y. Substituting s in the equation: dy/dt = ksy we obtain equation (G).

Remark. System (SG) is discussed in [20] and [23] as belonging to the class of
“synergistic and saturable systems” considered in [24]. System (SG) is considered
as “recasted” variant of equation (G) in the terminology of [24].
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Remark. If c = 0 in (gg), then ln y → 0 with t → ∞ (as s → 0), resp. y → 1.
The G-model then has the form

dy/dt = ky(– ln y) (G0)

or

y′/y = −k ln y = e−kt

known as Gompertz law of mortality.

Remark. System (SG) shows that the Gompertz model cannot be realized as a
MAK-network in the sense of [21]. Indeed, the first equation of system (SG) tells us
that the species S does not interact with the other species X, whereas the second
equation tells the opposite. Knowing this important fact, we shall look for MAK
networks that possibly possess the G-property.

4.2 The G-property

Definition. it G-property (Gompertz property). A (sigmoidal) growth function
y = f(t) defined in [0,∞), such that f(t) > 0 ,limt→∞f(t) = 1, has the G-property,
if it grows slower than the logistic curve v, that is, for every logistic curve v ∈
(0, 1),there exists f , such that f(t) ≤ v(t) for all t ≥ 0.

Remark. As mentioned, the Gompertz model possesses no realization in the
sense of [21], that is in terms of mass action reaction network. However, there are
sigmoidal curves induced by MAK, that possess Gompertzian property. To this end
we shall need the following Lemma.

Lemma 2. Let x0 ∈ (0, 1). For all x ∈ [x0, 1) the inequality

− lnx

− lnx0
≤ 1− x

1− x0
holds true.

Proof. Notice that for 0 < x ≤ 1, we have 1−x ≤ − lnx. Since function − lnx is
convex (has positive second derivative), 1− x ≤ l(x), where l(x) is the line passing
through the points (x0,− lnx0) and (0, 1) lying on − lnx. We have

l(x) = (− lnx0)((1− x)/(1− x0)).
Let us divide the lime by the value l(0) = (− lnx0)/(1−x0), then the line l/l(0)

coincides with the line 1 − x (both lines pass through the points (0, 1) and (1, 0)).
Hence, (− lnx)/l(0) ≤ 1− x, which proves the lemma.

Proposition 7. The Gompertz model (G) possesses the G-property.
Proof. We shall prove that for each logistic curve v(t), t ∈ [0,∞) there is a

Gompertz curve g(t), t ∈ [0,∞) that lies below the logistic one in the interval
t ∈ [0,∞). Consider model (V) with a = 1: x′ = kx(1 − x), and fix an arbitrary
initial condition x(0) = x0 and a rate constant k > 0. Consider the Gompertzian
model (G) with c = 0. Choose initial condition y(0) = x0, and determine the
Gompertzian rate constant h so that y′(0) = x′(0). Under these conditions the
chosen Gompertzian curve satisfies the initial value ODE problem:
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dy/dt = hy(− ln y), y0 = x0, (G0)

wherein h is determined from the conditions y0 = x0, y′(0) = x′(0), that is,
hy0(− ln y0) = kx0(a− x0), hence h(− lnx0) = k(1− x0), h = k 1−x0

− ln x0
.

We shall show that for all points in the phase plane (t, u), t ≥ 0, 0 < u < 1, the
slope of the Gompertz curve at (t, u) is less than the slope of the logistic curve at
the sane phase point (t, u), that is:

y′|(t,u) ≤ x′|(t,u),

hence
hu(− lnu) ≤ ku(1− u),

that is

k
1− x0
− lnx0

u(− lnu) ≤ ku(1− u)

.
Dividing the above inequality by ku > 0, we obtain

1− x0
− lnx0

(− lnu) ≤ (1− u),

or
(− lnu)/(− lnx0) ≤ (1− u)/(1− x0),

which is true according to Lemma 2.
We thus obtain the proof of the proposition.

Remarks. The solutions to the logistic and Gompertzian model as defined in the
proposition are visualized on Fig. 6. Fig. 6 presents the logistic function x = x(t)
and the Gompertz function y = y(t) in the interval t ∈ [0,∞), as solutions to the
following two ODE initial value problems

x′ = kx(1− x), k = 1, x0 = 0.01;

dy/dt = hy(− ln y), y0 = x0, h = k (1−x0)
(− ln x0)

.

Proposition 8. The modified Verhulst models (VM) and (VSM) possess the
G-property.

Remark. The proof is similar to the proof of the G-property of the Gompertz
model (Proposition 7). Proposition 8 is graphically visualized on Figures 7–9.

Solutions of the logistic and Gompertz models as well the two modified Verhulst
models are graphically presented on Fig. 7. and Fig. 8.

Fig. 9. Solutions to the logistic model (blue), Gompertz model (purple) and the
two modified Verhulst models.

5 Computational experiments

For numerical simulations we used SmoWeb – an open source web computational
platform (developed in Python) that provides an infrastructure for rapid develop-
ment of scientific applications with graphical user interface. The applications are
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Figure 6: The logistic (red) and Gompertz (blue dashed) curves starting from same
point with same slopes

Figure 7: Same as Fig. 6 plus the solution of the VM-model (green dashed)

Figure 8: Same as Fig. 6 plus the solution of the VSM-model
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Figure 9: Figures 6–8 plotted together

Figure 10: Software tools for animation and visualization in CAS Mathematica.

in the fields of thermodynamics, heat and fluid flow, and bioprocess modeling. All
computations are performed in Web Cloud [34].

A software tool has been developed in CAS Mathematica for testing the close-
ness between growth functions, a screenshot is visualized on Fig. 10. Figures
11–12 present graphically computer experiments fir testing the closeness between
the Gompertz model and the modified Verhulst models.

6 Conclusion remarks

A possible approach to achieve a G-property of a growth logistic-type model curve
using MAK is to introduce additional resources and reactions in the logistic reaction
network influencing the growth process. A general interpretation of this result is
that a more involved reproduction mechanism leads to the Gompertzian property.

Biological growth functions are usually presented in the literature by means
of their explicit form or as solutions of a dynamical system. In a situation when
the growth model possesses a realization in terms of a chemical reaction network,
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Figure 11: Comparison between x(t) from (VM) for n = 2 (blue) and G(t) (thick)
for α = 5.9 and β = 0.38

Figure 12: Comparison between x(t) from (VM) for n = 2 (blue) and G(t) (thick)
for α = 5.9 and β = 0.38 for large values of t.
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the modeler has an additional possibility of a (bio-)chemical interpretation of the
model. We have demonstrated this on the case of the Gompertz model, that cannot
be realized in terms of a reaction network; however there are reaction networks
that induce a model close to the Gompertzian one. In the process of constructing
reaction network to a specific growth model the approach of introducing additional
species (recasting) may be useful.
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