SUPPLEMENTARY MATERIAL

Appendix 1

Equations used for calculations: equations 1, 2, and 3 (Cintron \& Schaeffer-Novelli, 1984;
Dahdouh-Guebas \& Koedam, 2006), equations 4 and 5 (Holdridge et al., 1971; Bosire,
Dahdouh-Guebas, Kairo \& Koedam, 2003; Bandeira et al. 2009) and Equations 6, 7, 8 and 9 (Cintron and Schaeffer-Novelli, 1984; Curtis, 1959; Dahdouh-Guebas \& Koedam, 2006), where $\mathrm{D}_{130 \mathrm{j}}$ is stem diameter for tree j of species i at 1.3 meters, G_{130} is stem girth at 1.3 meters, d_{ij} is the sampling point to nearest tree distance for tree j of species i, n_{i}, number of trees sampled for species i; m, number of species; $\mathrm{Ba}_{i j}$, basal area of tree j for species i; Ba_{i}, basal area for all trees of species i; h, mean stand height; F_{i}, number of plots in which species i is represented multiplied by 100.

Tree diameter $\quad \mathrm{D}_{130 j}($ in cm$)=\frac{\mathrm{G} 130}{\pi}$

Basal area

$$
\begin{equation*}
\mathrm{Ba}_{\mathrm{ij}}\left(\text { in } \mathrm{m}^{2}\right)=\frac{\pi \times\left(\frac{D 130 j}{2}\right) 2}{10000} \tag{2}
\end{equation*}
$$

Density

$$
\begin{equation*}
\mathrm{De}=\sum_{i=1}^{m} \frac{1}{\left(\sum_{j=1}^{n i}(d i j / n i)\right)^{2}} \tag{3}
\end{equation*}
$$

Basal area

$$
\begin{equation*}
\mathrm{Ba}=\sum_{i=1}^{m} \sum_{j=1}^{n i} \frac{\mathrm{Ba} i j}{n i} \tag{4}
\end{equation*}
$$

Complexity Index C.I. $=\frac{m \times \operatorname{Ba} \times h \times \text { De }}{1000}$

Relative density

$$
\begin{equation*}
\mathrm{De}_{\mathrm{r}}=\frac{100 n i}{\sum_{i=1}^{n} n i} \tag{6}
\end{equation*}
$$

Relative dominance $\quad \mathrm{Do}_{\mathrm{ri}}=\frac{100 \mathrm{Ba} i}{\mathrm{Ba}}$

Relative frequency $\quad F_{\mathrm{ri}}=\frac{100 F i}{\sum_{i=1}^{m} F i}$

Importance Value

$$
\begin{equation*}
\text { I.V. }=\mathrm{De}_{r i}+\mathrm{Do}_{r i}+F_{r i} \tag{9}
\end{equation*}
$$

