SUPPLEMENTARY MATERIAL

Appendix 1

Equations used for calculations: equations 1, 2, and 3 (Cintron & Schaeffer-Novelli, 1984; Dahdouh-Guebas & Koedam, 2006), equations 4 and 5 (Holdridge et al., 1971; Bosire, Dahdouh-Guebas, Kairo & Koedam, 2003; Bandeira et al. 2009) and Equations 6, 7, 8 and 9 (Cintron and Schaeffer-Novelli, 1984; Curtis, 1959; Dahdouh-Guebas & Koedam, 2006), where D_{130j} is stem diameter for tree *j* of species *i* at 1.3 meters, G_{130} is stem girth at 1.3 meters, d_{ij} is the sampling point to nearest tree distance for tree *j* of species *i*, n_i , number of trees sampled for species *i*; m, number of species; Ba_{ij} , basal area of tree *j* for species *i*; Ba_i , basal area for all trees of species *i*; *h*, mean stand height; F_i , number of plots in which species *i* is represented multiplied by 100.

Tree diameter	D_{130j} (in cm)= $\frac{G130}{\pi}$	(1)
---------------	--	-----

Basal area	Ba _{ij} (in m ²) = $\frac{\pi \times \left(\frac{D \cdot 130 \cdot j}{2}\right)^2}{10000}$	(2)

- Density $De = \sum_{i=1}^{m} \frac{1}{(\sum_{j=1}^{ni} \binom{dij}{ni})^2}$ (3)
- Basal area $Ba = \sum_{i=1}^{m} \sum_{j=1}^{ni} \frac{Baij}{ni}$ (4)
- Complexity Index C.I. = $\frac{m \times \text{Ba} \times h \times \text{De}}{1000}$ (5)
- Relative density $De_r = \frac{100ni}{\sum_{i=1}^n ni}$ (6)
- Relative dominance $Do_{ri} = \frac{100Bai}{Ba}$ (7)
- Relative frequency $F_{\rm ri} = \frac{100Fi}{\sum_{i=1}^{m}Fi}$ (8)
- Importance Value I.V. = $De_{ri} + Do_{ri} + F_{ri}$ (9)