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Abstract 

This paper aims to provide empirical evidence to the theoretical claim that rare disaster risks 

affect government bond market movements. Using a nonparametric quantiles-based 

methodology, we show that rare disaster-risks affect only volatility, but not returns, of ten-

year government bond of the US over the monthly period of 1918:01 to 2013:12. In addition, 

the predictability of volatility holds for the majority of the conditional distribution of the 

volatility, with the exception of the extreme ends. Moreover, in general, similar results are 

also obtained for long-term government bonds of an alternative developed country (UK) and 

an emerging market (South Africa).     
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1. Introduction 

Following the early work of Rietz (1988), a growing number of calibrated theoretical models 

have recently provided evidence of the ability of rare disaster risks in affecting movements 

(returns and volatility) of asset prices (see for example, Barro (2006, 2009), Gourio (2008a, 

b, 2012), Barro and Ursúa (2008, 2009, 2012), Barro and Jin (2011), Gabaix (2012), 

Nakamura et al., (2013), Wachter (2013), Farhi and Gabaix (2016), and Lewis and Liu 

(2017)).  

A major obstacle, however, to full-fledged empirical verification of the rare disaster 

models is that individual countries rarely face actual major disasters, resulting in a small 

sample problem inherent in the use of actual rare disasters, which in turn, explains the 
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reliance of the above-mentioned papers on calibration. In this regard, Berkman et al. (2011, 

2017), provides a solution to the small sample problem that would make empirical estimation 

of these models possible, by recommending to focus on a much larger sample of potential 

disasters (international political crises) that are likely to cause changes in perceived rare 

disaster probabilities. Using a detailed database of all international political crises, namely the 

International Crisis Behavior project (ICB) database developed by the Center for 

International Development and Conflict Management, Berkman et al. (2011, 2017) provides 

empirical evidence that various international crises, over the period of 1918 to 2006, does 

indeed affect equity returns and volatility of large number of developed and emerging 

economies. 

Using an extended version of the ICB database, the goal of this paper is to examine, the 

predictive power of rare-disaster risks for the return and volatility dynamics of ten-year 

government bonds of the U.S. over the monthly period of 1918:01-2013:12. As a matter of 

comparison, we also analyze the same for the long-term government bonds for another 

developed country (UK) over the period of 1933:01-2013:12 and an emerging market (South 

Africa) covering 1918:01-2013:12.     

To achieve our objective, we conduct the predictability analysis based on the k-th order 

nonparametric causality-in-quantiles test recently developed by Balcilar et al. (2017). As 

indicated by Balcilar et al. (2017), the causality-in-quantile approach has the following 

novelties: Firstly, it is robust to misspecification errors as it detects the underlying 

dependence structure between the examined time series. Secondly, via this methodology, we 

are able to test for not only causality-in-mean (1st moment), but also causality that may exist 

in the tails of the distribution of the variables. Finally, we are also able to investigate 

causality-in-variance and, thus, study higher-order dependency. Understandably, this test is 

comparatively superior to the conditional mean-based standard linear Granger causality test, 
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as it not only studies the entire conditional distribution of both returns and volatility, but, 

being a data-driven nonparametric approach, also controls for misspecification due to 

possible nonlinearity – as discussed in detail by Gargano et al., (2017) and Byrne et al., 

(forthcoming). In this regard, while nonlinear causality tests of Hiemstra and Jones. (1994), 

and Diks and Panchenko (2005, 2006) can control for misspecification due to nonlinearity, 

they are restricted to the conditional mean of the first-moment of exchange rates only. 

Finally, the causality-in-quantiles test is also superior to the standard GARCH models, since 

the latter specifies a linear relationship between returns and volatility with the predictors 

being studied, besides being restricted to the analysis of the conditional mean.    

To the best of our knowledge, this is the first paper that evaluates the predictive power 

of rare disaster risks for long-term government bond returns and volatility based on a 

nonparametric causality-in-quantiles framework. The rest of this paper is organized as 

follows: Section 2 presents a brief literature review and in the process describes the channels 

through which rare disaster risks can possibly impact the bonds market. Section 3 describes 

the econometric frameworks involving the higher-moment nonparametric causality-in-

quantiles test. Section 4 presents the data and discusses the empirical results, with Section 5 

concluding the paper. 

2. Brief Literature Review and Channels Relating Disaster Risks with the 

Bond Market 

A strand of literature dealing with asset pricing, motivated by the failure of existing 

theoretical pricing models to replicate the movements in assets in the data, has focused on 

time-varying disaster risks as a factor that can explain the returns and volatility observed in 

the financial markets (see for example, Rietz (1988), Barro (2006, 2009), Gourio (2008a, b, 

2012), Barro and Ursúa (2008, 2009, 2012), Barro and Jin (2011), Gabaix (2012), Nakamura 

et al., (2013), Wachter (2013), Farhi and Gabaix (2016), and Lewis and Liu (2017))). While 
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Gourio (2012) argues that an increase in the probability of a disaster creates a collapse of 

investment and consequently drives the risk of a recession, Wachter (2013) relates the time-

varying risk of rare disasters to consumption shocks, which in turn drives returns and 

volatility in the asset markets. Similarly, Gabaix (2012) proposes a model that uses time-

variation in the probability of a rare disaster to explain volatility in financial asset returns. 

Similarly, using global political instability as a proxy for rare disaster risk, Berkman et al. 

(2017) document a positive intertemporal relation between disaster probability and financial 

market risks. Following the arguments by Barro, (2006, 2009), Gourio (2012), Wachter 

(2013), if uncertainty regarding the probability and size of disasters leads to a great deal of 

uncertainty in terms of investment growth or consumption patterns, then with asset prices 

being a function of the state of the economy, one obvious channel that could links disaster 

risks to asset markets movements, including government bonds, is the potential effect of rare 

disasters on growth expectations for both output and consumption.  

A second channel through which disaster risks can affect bond return dynamics is via its 

contribution to jump risk in bond prices. The presence of jump risk driving stock and bond 

returns is well documented in the literature (Maheu and McCurdy, 2004; Huang and 

Tauchen, 2005; Dunham and Friesen, 2007; Maheu et al. 2013; Guo et al., 2016; Caporin et 

al., 2016; Gkillas et al., 2018). In the context of asset returns, Wachter (2013) relates time-

varying disaster probabilities to large instantaneous changes, i.e. jumps, in aggregate 

consumption. Suggesting that the financial market is partially driven by the comovement of 

agents’ marginal utility and the price process for the assets in times of disaster (i.e. jump 

risk), Wachter (2013) shows mathematically that time-varying disaster risk contributes to the 

asset returns in the form of compensation for jump risk. Given this perspective, one can argue 

that time-varying rare disaster risks also contribute to the presence of jumps in bond returns 
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in the form of a compensation for consumption shocks such that an increase in the risk of rare 

disasters increases return and volatility in the bond market.  

Finally, given that disaster risks affect the financial markets via changes in the probabilities 

of consumption and investment shocks, one might expect a direct effect of disaster risks on 

safe havens, for example the US dollar (Farhi and Gabaix, 2016; Gupta et al., (forthcoming)), 

just like the effect on stocks and bonds. So when we consider bond returns of foreign 

economies in local currency, one could argue that higher probability of disasters may drive 

demand for safe havens and thus greater outflows from foreign denominated assets. In other 

words, rare disaster risks could affect asset markets, including the bond market, of foreign 

economies, via an exchange rate spillover channel. 

 In sum, whether it is by affecting the state of the economy, jump risks or via the 

exchange rate, bond markets are likely to be impacted by rare disaster risks in many possible 

ways, and hence, is an important empirical question to analyze. 

3. Econometric Framework 

In this section, we present the methodology for the detection of nonlinear causality via a 

hybrid approach as developed by Balcilar et al. (2017), which in turn is based on the 

frameworks of Nishiyama et al. (2011) and Jeong et al. (2012).  

We start by denoting government bond returns by yt and the predictor variable (in our case, 

various types of rare disaster risk-related events, as discussed in detail in the data segment) as 

xt. 

tx does not cause ty   in the  -quantile with respect to },...,,,...,{ 11 pttptt xxyy    if  

},...,|{},...,,,...,|{ 111 ptttpttpttt yyyQxxyyyQ                                           (1) 

tx  is a prima facie cause of ty  in the th  quantile with respect to },...,,,...,{ 11 pttptt xxyy   if 

},...,|{},...,,,...,|{ 111 ptttpttpttt yyyQxxyyyQ                                             (2) 
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where  }|{ tyQ   is the  th conditional quantile of ty  given ∙, which depends on t and 

10  .Define ),...,( 1 pttt yyY  , ),...,,,...,( 111 pttpttt xxyyZ   , ),( ttt ZXV  , and 

Fyt |Zt-1
(yt,Zt-1)and Fyt |Yt-1

(yt,Yt-1)  are the conditional distribution function of ty  given  1tY   and 

1tZ  , respectively.  

The conditional distribution Fyt |Zt-1
(yt,Zt-1) is assumed to be absolutely continuous in ty  for 

almost all 1tV . If we denote )|()( 11   ttt ZyQZQ    and )|()( 11   ttt YyQYQ  , we have,  

Fyt |Zt-1
{Qq (Zt-1) | Zt-1} =q        w.p.1 

Consequently, the hypothesis to be tested based on definitions (1) and (2) are 

H0 = P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1}=q}=1 a.s.      (3) 

H1 = P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1}=q}<1 a.s.      (4) 

Jeong et al. (2012) employs a distance the measure )}()|({ 11  tzttt ZfZEJ   where t  is 

the regression error term and )( 1tz Zf  is the marginal density function of 1tZ .  The 

regression error t  arises from the fact that the null hypothesis in (3) can only be true if and 

only if     }]|)({1[ 11 ttt ZYQyE  or equivalently ttt YQy    )}({1 1 , where }{1   is the 

indicator function. Jeong et al. (2012) specify the distance function as 

J = E[{Fyt |Zt-1
{Qq (Yt-1) | Zt-1}-q}2 fZ (Zt-1)]                    (5) 

In equation (3), it is important to note that 0J   and the equality holds if and only if the null 

hypothesis 0H  in equation (5) is true, while 0J  holds under the alternative 1H  in equation 

(4). Jeong et al. (2012) shows that the feasible kernel-based test statistic based on J  has the 

following form: 
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 where )(K  is the kernel function with bandwidth h   and 
^

t is the estimate of the unknown 

regression error, which is estimated from 

})({1 1

^

   ttt YQy          (7) 

where )( 1

^

tYQ  is an estimate of the  th conditional quantile of ty  given 1tY . We estimate  

)( 1

^

tYQ  using the nonparametric kernel method as  

Qq

^

(Yt-1) = Fyt |Yt-1

-1
^

(q |Yt-1)                    (8) 

Here, F̂yt |Yt-1
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with the kernel function )(L   and bandwidth h .  

As an extension of Jeong et al. (2012)'s framework, Balcilar et al. (2017) develop a test for 

the second moment which allows us to test the causality between the various disaster risks on 

government bond market volatility. Causality in the m th moment implies causality in the k

th moment for mk  . To test for nonparametric Granger quantile causality in variance we 

employ the general nonparametric Granger quantile causality test by Nishiyama et al. (2011). 

Equation (10) is an illustration of the causality in higher order moments given as   

tttt XYgy  )()( 11                    (10) 
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where ),...,,( 211 ptttt xxxX   , t  is a white noise process, )(g   and )(  are unknown 

functions that satisfy certain conditions for stationarity.  The specification in equation (12), 

does not allow Granger causality from tx to ty  , but certainly allows predictive power (in the 

Granger causality test) from tx to 2

ty  . )(  is a general nonlinear function.  The Granger 

causality in variance definition does not require an explicit specification of squares of 1tX . A 

model like equation (10) has a null and alternative hypothesis for causality in variance given 

by 

1}}|)({{ 11|0
1

2  


 ttZy
ZYQFPH

tt

 a.s.               (11) 

1}}|)({{ 11|1
1

2  


 ttZy
ZYQFPH

tt

 a.s.              (12) 

To obtain the feasible test statistic for testing the null hypothesis 0H in equation (10) we 

replace ty  in equations (6)-(9) with 2

ty .  To overcome the problem that causality in the 

conditional first moment (mean) implies causality in the second moment (variance), we 

interpret quantile causality in higher order moments using the following model: 

tttt YXgy   ),( 11                     (13) 

Higher order quantile causality for this model can be specified as  

1}}|)({{ 11|0
1

 


 ttZy
ZYQFPH

t
k
t

 a.s. for Kk ,...,2,1              (14) 

1}}|)({{ 11|1
1

 


 ttZy
ZYQFPH

t
k
t

 a.s.     for Kk ,...,2,1              (15) 

Following this definition, tx  Granger causes ty  in quantile   up to K th moment. The null 

specified in equation (11) is used to construct the test statistic in equation (6) for each k . It is 

impossible to combine the different statistics for each Kk ,...,2,1  into one statistic for the 
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joint null in equation (11) because the statistics are mutually correlated (Nishiyama et al. 

(2011)). To address this problem, we follow the sequential testing approach in Nishiyama et 

al. (2011). This approach first tests for nonparametric Granger causality in the first moment

)1( k . Rejecting the null hypothesis of non-causality means that we can stop and interpret 

this result as a strong indication of possible Granger quantile causality in variance. However, 

failure to reject the null for 1k , does not automatically translate to no causality in the 

second moment and, thus, we can still construct the tests for 2k . This approach allows us 

to test the existence of causality only in variance as well as the causality in the mean and 

variance successively.  

The empirical implementation of causality testing via quantiles entails specifying three key 

parameters: the bandwidth (h), the lag order (p), and the kernel type for 𝐾(∙) and 𝐿(∙) in 

equations (6) and (9), respectively. We use a lag order based on the Schwarz information 

criterion (SIC), which is known to select a parsimonious model as compared with other lag-

length selection criteria, and hence, help us to overcome the issue of the over-

parameterization that typically arises in studies using nonparametric frameworks.1 For each 

quantile, we determine the bandwidth parameter (h) by using the leave-one-out least-squares 

cross validation method.2 Finally, for 𝐾(∙) and  𝐿(∙), we use Gaussian kernels for the cases of 

both returns and volatility. 

4. Data and Empirical Results 

The empirical analysis utilizes monthly data for ten-year government bond total return 

indices for US, UK and South Africa, and the count on various types of disaster risks. Barring 

the case of UK, the period covered is 1918:01 to 2013:12. In the case of UK, we start from 

                                                           
1 Hurvich and Tsai (1989) examine the Akaike Information Criterion (AIC) and show that it is biased towards 

selecting an over-parameterized model, while the SIC is asymptotically consistent. 
2 For each quantile, we determine the bandwidth using the leave-one-out least-squares cross validation method 

of Racine and Li (2004) and Li and Racine (2004). 
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1933:01. The start and end dates for US and South Africa are governed purely by the 

availability of data on disaster risks. While, in the case of UK, the start date corresponds to 

the availability of data on the bond index, but the end date again matches the end point of the 

variables measuring rare disaster risks. The ten-year government bond total return indices are 

sourced from the Global Financial Database, with returns computed as the monthly 

logarithmic change of the total return index multiplied by 100 to convert the returns into 

percentages, and volatility being measured by the squares of these generated returns. Note 

that, besides the US, the decision to consider UK as an alternative developed country, and 

South Africa as a representative emerging market, is purely driven by availability of data.   

Next we turn our attention to our measure of disaster risks of rare events as obtained from the 

International Crisis Behavior (ICB) database: https://sites.duke.edu/icbdata. The ICB 

database covers comprehensive information regarding 464 international political crises that 

occurred during the period of 1918 to 2013 at monthly frequency, involving 1,036 crisis 

actors.  As per the ICB database, the breakpoint of a crisis is an event, act or changes 

characterized by following three conditions: (a) a threat to basic value, (b) excessive chances 

of involvement in military hostilities, and (c) time pressure for response. The ICB database 

covers comprehensive dimensions of each crisis and we take into account many of these 

dimensions, following Berkman, et al., (2011, 2017), to analyze the impact of international 

political risk on exchange rate returns and volatility. The foremost variable of our study is 

total number of crisis (Crisis) in any month t. Some crisis can be more severe than others, 

therefore it is expected that more devastating crisis may have stronger effect. Following the 

Berkman, et al., (2011, 2017), we created the following crisis variables: (1) violent break 

(Violent Break) includes all the crisis that starts with violent act, (2) violent (Violent) crisis 

includes all the crisis that comprises either serious clashes or full scale war, (3) war (War) 

includes all the crisis that involves full-scale wars, (4) all crisis that involves grave value 

https://sites.duke.edu/icbdata
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threats (Grave Threat), (5) protracted conflicts (Protracted) includes all the crisis with 

protracted conflict, protracted and crisis outside this conflict, and (6) major power (Major 

Power) includes the crisis only if at least one superpower or great power is there in both side 

of conflict. Finally, we also construct a crisis severity index (Crisis Severity Index) that 

summarizes different aspects of crisis severity into one measure by aggregating the six 

variables above. For all the above crisis variables, we basically use the monthly count for the 

risk variables under the various categories. The disaster risk variables are normalized to have 

a variance of unity, so that we can compare the strength of predictability across them. 

Before we begin our discussion of the findings from the causality-in-quantiles tests, for 

the sake of completeness and comparability, we first provide the findings from the standard 

linear Granger causality tests with null hypothesis that a specific rare disaster risk does not 

affect bond returns. As shown in Table A1 in the Appendix of the paper, the standard linear 

Granger causality tests yield no evidence of causality that goes from any of the disaster risk 

variables to bond returns for the US, barring the case of Major Powers. While for the UK 

predictability is detected under All Crisis, Grave Threat, Violent Break and Violent Crisis, no 

causality is obtained for South Africa.  

Next we statistically examine the presence of nonlinearity in the relationship between 

bond returns and the predictor variables representing rare disaster risks. For this purpose, we 

apply the Brock et al., (1996, BDS) test on the residuals from the return equation used in the 

linear causality tests involving the rare disaster risks. The results of the BDS test of 

nonlinearity, presented in Table A2, provide strong evidence of rejection of the null 

hypothesis of i.i.d. residuals at various embedded dimensions (𝑚). Thus, we conclude that 

there exists nonlinearity in the relationship between bond returns and the rare disaster risk 

dummies. This evidence also indicates that the findings based on the linear Granger causality 

test as presented in Table A1 cannot be deemed robust and reliable.  
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In addition to the BDS test, we also report in Table A2, the Bai and Perron (2003) tests 

of multiple structural breaks on the bond return equation used to test linear Granger causality 

based on the various types of disaster risks. Using the powerful UDmax and WDmax tests, 

and allowing for a maximum of five breaks with fifteen percent endpoint trimming, as well 

as, heterogeneous error distributions across breaks, we detect two breaks in cases of the US 

and the UK and one for South Africa. The presence of these breaks further confirms our 

earlier findings, based on nonlinearity tests, that the linear model is misspecified.  

Given the strong evidence of nonlinearity and regime changes in the relationship 

between bond returns and the rare disaster risks, we now turn our attention to the causality-in-

quantiles test, which is robust to possible misspecification due to nonlinearity and structural 

breaks given its nonparametric (i.e. data-driven) structure. 

Figure 1 presents the findings for US government bond from the causality-in-quantiles 

tests estimated over the quantile range of 0.10 to 0.90. Panels A and B for the figure present 

the findings for ten-year US government bond returns and volatility (squared returns) 

respectively, with the null hypothesis that rare disaster risks does not Granger cause bond 

returns and volatility. Starting with returns, as observed from Figure 1(a), there is no 

evidence of predictability from any of the disaster risk variables considered. However, when 

we turn our attention to squared returns, all the disaster risks predict  volatility, barring the 

extreme end of its conditional distribution, i.e., when volatility is either quite low or high. 

The most important predictor is the Crisis Severity Index, both in terms of its coverage of the 

conditional distribution of volatility (0.20-0.80) and also in its strength, as is Violent Break, 

especially in terms of the size of its impact. Recall that, since all the predictors have been 

standardized, the higher is the test statistic corresponding to a predictor, the stronger it is in 

terms of its causal ability.   
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Figure 1(a). Causality-in-Quantiles Test Results for Returns of the Ten-Year Government 

Bond Yield of US 

 

Figure 1(b). Causality-in-Quantiles Test Results for Volatility (Squared Returns) of the Ten-

Year Government Bond Yield of US 

 

 
Notes: CV is the 5 percent critical value of 1.96. The horizontal axis measures the various quantiles while the 

vertical axis captures the tests statistic. The lines corresponding to All Crisis, Violent, War, Violent Break, 

Protracted, Major Powers, Grave Threat, and Crisis Severity Index shows the rejection (non-rejection) of the 

null of no Granger causality from the various measures of disaster risks on government bond returns or 

volatility at the 5 percent level, if the lines are above (below) 1.96 for a specific quantile. 

 

Turning to the results for UK and South Africa in Figures 2 and 3 respectively, as a 

matter of robustness check, we observe, as with the US, disaster risks fail to predict bond 
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returns in both these countries well, as shown in Figures 2(a) and 3(a). In terms of volatility, 

for UK, as shown in Figure 2(b), predictability is observed in all cases barring Violent Break 

and Grave Threats. Unlike the US, strongest predictability is observed under Major Powers 

over the quantile range of 0.40 to 0.75, followed by the Crisis Severity Index, which however, 

tend to have the widest coverage of the conditional distribution of volatility over the quantile 

range of 0.40 to 0.85. As far as volatility of South African government bonds are concerned, 

as shown in Figure 3(b), just like the US, all the disaster risks show evidence of 

predictability, and in some cases, namely under War and Grave Threat, even at the extreme 

upper quantiles. These two disaster risks also tends to be most important of the predictors 

concerned in terms of strength of predictability as well. In sum, disaster risks are shown to 

affect ten-year government bond volatility, but not returns,3 with the result, in general, 

holding across an alternative developed country and an emerging market as well.4       

 

 

 

 

 

                                                           
3 We also used the aggregate, natural disasters and war components of the recently developed news-based 

volatility index (NVIX) of Manela and Moreira (2017) to recomputed our causality tests. These authors base the 

index on the title and abstract of all front-page articles of the Wall Street Journal. The NVIX components 

capture uncertainty stemming from (with the words searched for in brackets) government policy (tax, money, 

rates, government, plan), intermediation (banks, financial, business, bank, credit), natural disaster (fire, storm, 

aids, happening, shock), securities markets/stock markets (stock, market, stocks, industry, markets), and wars 

(war, military, action, world war, violence). There is also available data for an “unclassified” component (U.S., 

special, Washington, treasury, gold). The data is available for download from: 

http://apps.olin.wustl.edu/faculty/manela/data.html. Again, we observed impact of the aggregate NVIX, natural 

disasters and wars on bond market volatility, but not returns for the three economies under consideration. 

Complete details of these results are available upon request from the authors.  
4 Based on the suggestion of the editor, we re-estimated our models over the period of 1950:01 to 2013:12. Our 

results continued to be robust for this shortened sample period in the sense that, rare disaster risks were again 

found to cause only bond market volatility, but not returns. Complete details of these results are available upon 

request from the authors. These results also highlighted the fact that, fixed exchange rate regime does not 

necessarily imply bigger effects of rare disaster risks on bond market volatility, which is a possibility if the 

currency is pegged to the US dollar, since the assets will have greater sensitivity to disaster risks as they will be 

directly influenced by whatever is driving the volatility in the value of the dollar. On the other hand, if the 

currency is floating, the market is likely to consider local factors which may ease the volatility effects. 

http://apps.olin.wustl.edu/faculty/manela/data.html
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Figure 2(a). Causality-in-Quantiles Test Results for Returns of the Ten-Year Government 

Bond Yield of UK 

 

Figure 2(b). Causality-in-Quantiles Test Results for Volatility (Squared Returns) of the Ten-

Year Government Bond Yield of UK 

 

 

Notes: See Notes to Figure 1. 
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Figure 3(a). Causality-in-Quantiles Test Results for Returns of the Ten-Year Government 

Bond Yield of South Africa 

 

 

Figure 3(b). Causality-in-Quantiles Test Results for Volatility (Squared Returns) of the Ten-

Year Government Bond Yield of South Africa 

 

 

Notes: See Notes to Figure 1. 
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partial derivatives for nonparametric models can experience complications because 

nonparametric methods exhibit slow convergence rates, which can depend on the 

dimensionality and smoothness of the underlying conditional expectation function. What one 

could however do is to look at a statistic that summarizes the overall effect or the global 

curvature (i.e., the global sign and magnitude), but not the entire derivative curve. In this 

regard, a natural measure of the global curvature is the average derivative (AD). One could 

use the conditional pivotal quantile, based on approximation or the coupling approach of 

Belloni et al., (2017), to estimate the partial ADs. The pivotal coupling approach additionally 

can approximate the distribution of AD using Monte Carlo simulation. Given that in our case, 

the focus is on predictability of the bond market movements, and not necessarily on the sign 

(direction) of the effect at this stage, we report the results in Figures A1 to A3 for bond 

market volatility only (as there is no statistically significant predictability for bond returns) in 

the Appendix of the paper. As can be seen from these figures, rare disaster risks are found to 

increase bond market volatility – a result we would intuitively expect, i.e., increases in these 

risks should also make the bond market riskier. 

Note that, based on the theoretical models discussed in the introduction, rare disasters 

increase the probability of government default, and hence, affects bond returns. The fact that 

we do not observe the international political crises to predict the government bond returns, is 

possibly due to the perception on behalf of the investors that these disaster risks that we are 

measuring are not high enough to cause a default on part of the government (Brookes and 

Daoud, 2012). However, when it comes to volatility, which can also be interpreted as risk in 

the government bond markets are more likely to be affected, primarily through the jump-risks 

(bad-volatility) channel has discussed in Section 2.5 This is because, we are analysing the 

                                                           
5 Based on the suggestion of an anonymous referee, we modelled volatility using a GARCH(1,1) model and re-

conducted the causality-in-quantiles test. While, predictability was observed from the rare disaster risks on bond 

market volatility of the US, no-causality could be detected for the UK and South Africa.  As suggested by 

Balcilar et al., (2018), that since squared returns as a measure of volatility follows directly from the k-th order 
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impact of disaster risks, which in turn, are more important for the second moment 

(Bonaccolto et al., 2018), especially when volatility is not exceptionally low or high (i.e., not 

at the extreme ends of the distribution). Understandably, when volatility is low (i.e., markets 

are calm), agents do not require information from predictors (in our case rare disaster risks) to 

predict the path of future volatility, and when volatility is already at its upper end, 

information from disaster risks should be of no value in any case, given that agents are likely 

to be herding (Balcilar and Demirer, 2015).6          

5. Conclusion 

Recently developed theoretical models claim that rare disaster risks tend to move asset 

markets, including bond markets. Given this, using a causality-in-quantiles test, which 

captures higher order causality over the entire conditional distributions of returns and 

volatility, and an unique database of international political crises, we show that that rare 

disaster-risks affect only volatility, but not returns, of ten-year government bond of the US 

over the monthly period of 1918:01 to 2013:12. In addition, the predictability of volatility 

holds for majority of the conditional distribution of the volatility, with the exception of the 

extreme ends, i.e., relatively low and high quantiles. Moreover, our results carry over in 

                                                                                                                                                                                     
test and is independent of a model-based estimate of volatility (which could vary depending on what GARCH 

model we choose), the use of squared returns is more appropriate in our context. Complete details of these 

results are available upon request from the authors. 
6 The first anonymous referee was concerned that by the time the crisis is measured, it is no longer an indicator 

of crisis risk, it is actually a crisis. Hence, the impact of a political crisis on the bond market is likely to be very 

different from the impact of crisis risk. Given this, and based on the suggestion of the second anonymous 

referee, we repeated the analysis using alternative measures of rare disaster risks. In this regard, we used the 

news-based indexes of total geopolitical risks, and the same due to acts and threats, as recently developed by 

Caladara and Iacoviello (2018), details of which can be found at: https://www2.bc.edu/matteo-

iacoviello/gpr.htm. Caladara and Iacoviello (2018) construct monthly indices of GPRs by counting the 

occurrence of words related to geopolitical tensions in three leading international newspapers (The New York 

Times, the Chicago Tribune, and the Washington Post). The authors search for articles containing references to 

words associated with: explicit mentions of geopolitical risk, as well as mentions of military-related tensions 

involving large regions of the world and a U.S. involvement; nuclear tensions; war threats and terrorist threats; 

actual adverse geopolitical events (as opposed to just risks) which can be reasonably expected to lead to 

increases in geopolitical uncertainty, such as terrorist acts or the beginning of a war. Our results were 

qualitatively similar to those reported in the paper, and are available upon request from the authors. One 

exception was the impact observed on South African bond returns, not picked up previously by the rare disaster 

risks. But more importantly, the use of the threats index, accounts for the concern of the first anonymous 

referee. 

https://www2.bc.edu/matteo-iacoviello/gpr.htm
https://www2.bc.edu/matteo-iacoviello/gpr.htm
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general, for the ten-year government bonds of an alternative developed country and an 

emerging market, namely UK and South Africa respectively.  

Note that, when volatility is interpreted as uncertainty, it becomes a key input to investment 

decisions and portfolio choices in general. Further, to price an option, one needs reliable 

estimates of the volatility. Given this, the fact that rare disaster risks can predict volatility is 

of paramount importance to bond fund managers. In addition, as indicated by Pan and Chan 

(2017), government bond volatility can also play an important role in predicting the equity 

premium, which in turn, helps practitioners in finance for asset allocation, and academics in 

finance to produce more realistic asset pricing models, since they have important implications 

for tests of market efficiency (Rapach and Zhou, 2013).   As part of future research, it would 

be interesting to extend our analysis to a forecasting exercise, as in Bonaccolto et al., (2018), 

since in-sample predictability does not guarantee the same over- and out-of-sample.    
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APPENDIX 

Table A1: Granger Causality Test 

Country Disaster risk 2(p) probability 

US 

All crisis 0.0852 0.7704 

Crisis severity index 0.3279 0.5670 

Grave Threat 0.0026 0.9594 

Major Powers 4.3581 0.0371** 

Protracted 2.3966 0.1219 

Violent Break 0.1311 0.7174 

Violent crisis 0.0002 0.9900 

War 0.0934 0.7599 

UK 

All crisis 4.1593 0.0417** 

Crisis severity index 3.1492 0.0763 

Grave Threat 5.5567 0.0186** 

Major Powers 3.4632 0.0631 

Protracted 0.1009 0.7508 

Violent Break 5.1251 0.0238** 

Violent crisis 4.1462 0.0420** 

War 0.8528 0.3560 

South Africa 

All crisis 0.0717 0.7889 

Crisis severity index 0.0496 0.8237 

Grave Threat 0.5616 0.4538 

Major Powers 3.5937 0.0583 

Protracted 0.1005 0.7513 

Violent Break 2.9724 0.0850 

Violent crisis 0.5403 0.4625 

War 1.0780 0.2994 

Note: * represents rejection of the null hypothesis of no Granger causality from the various rare disaster risks to 

bond returns at the 5% level of significance; p is the lag-length chosen based on SIC. 
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Table A2: Brock et al., (1996, BDS) test of nonlinearity 

Disaster risk Dimension 

2 3 4 5 6 

US 

All crisis 9.918*** 13.864*** 17.179*** 20.322*** 23.649*** 

Crisis severity index 9.895*** 13.832*** 17.153*** 20.292*** 23.612*** 

Grave Threat 9.969*** 13.896*** 17.206*** 20.345*** 23.671*** 

Major Powers 9.867*** 13.792*** 17.096*** 20.203*** 23.474*** 

Protracted 9.857*** 13.738*** 17.059*** 20.203*** 23.488*** 

Violent Break 9.964*** 13.907*** 17.215*** 20.361*** 23.691*** 

Violent crisis 9.961*** 13.892*** 17.203*** 20.345*** 23.674*** 

War 10.023*** 13.964*** 17.271*** 20.412*** 23.743*** 

UK 

All crisis 9.490*** 12.489*** 16.131*** 19.239*** 22.096*** 

Crisis severity index 9.602*** 12.569*** 16.217*** 19.331*** 22.200*** 

Grave Threat 9.819*** 12.734*** 16.363*** 19.529*** 22.481*** 

Major Powers 10.066*** 12.680*** 16.369*** 19.511*** 22.400*** 

Protracted 9.865*** 12.677*** 16.369*** 19.524*** 22.371*** 

Violent Break 9.822*** 12.761*** 16.396*** 19.512*** 22.408*** 

Violent crisis 9.610*** 12.528*** 16.211*** 19.326*** 22.214*** 

War 9.866*** 12.688*** 16.350*** 19.485*** 22.324*** 

South Africa 

All crisis 10.674*** 12.758*** 14.158*** 15.697*** 17.699*** 

Crisis severity index 10.663*** 12.780*** 14.209*** 15.781*** 17.815*** 

Grave Threat 10.784*** 12.932*** 14.373*** 15.947*** 18.004*** 

Major Powers 10.997*** 13.086*** 14.524*** 16.084*** 18.157*** 

Protracted 10.697*** 12.765*** 14.157*** 15.676*** 17.662*** 

Violent Break 10.614*** 12.832*** 14.345*** 15.972*** 18.045*** 

Violent crisis 10.651*** 12.804*** 14.247*** 15.826*** 17.883*** 

War 10.618*** 12.781*** 14.297*** 15.900*** 17.944*** 

Note: The table reports the z-statistic of the BDS test corresponding to the null of i.i.d. residuals, with the test applied to the 

residuals recovered from the bond returns equation used to test linear Granger causality. *** indicates rejection of the null 

hypothesis at the 1 per cent level of significance. 
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Table A3: Bai and Perron (2003) multiple structural break test 

Country Disaster risk Date 

US 

All crisis 1980:03, 1996:02 

Crisis severity index 1980:03, 1999:08 

Grave Threat 1981:10, 1999:09 

Major Powers 1980:01, 1996:02 

Protracted 1980:03, 1996:02 

Violent Break 1981:10, 1996:02 

Violent crisis 1981:10, 1999:09 

War 1981:10, 1996:02 

UK 

All crisis 1975:01, 1987:02 

Crisis severity index 1975:01, 1987:02 

Grave Threat 1975:01, 2001:02 

Major Powers 1975:01, 1987:06 

Protracted 1975:01, 1987:06 

Violent Break 1975:01, 1999:02 

Violent crisis 1975:01, 1987:06 

War 1975:01, 1994:02 

South Africa 

All crisis 1985:03 

Crisis severity index 1985:03 

Grave Threat 1982:08 

Major Powers 1985:03 

Protracted 1985:03 

Violent Break 1985:03 

Violent crisis 1985:03 

War 1985:03 

Note: The table reports the break dates obtained from the Bai and Perron (2003) test of multiple structural 

breaks, with the test applied to the bond returns equation used to test linear Granger causality.  
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Figure A1. Sign of the Impact of Rare Disaster Risks on Bond Returns Volatility (Squared 

Returns) in the US 

 

 

Figure A2. Sign of the Impact of Rare Disaster Risks on Bond Returns Volatility (Squared 

Returns) in the UK 
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Figure A3. Sign of the Impact of Rare Disaster Risks on Bond Returns Volatility (Squared 

Returns) in South Africa 
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