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Abstract 

Application of seasonal forecasts in agriculture has significant potential and realized utility. 

Other sectors that may also benefit from using seasonal forecasts include (but are not limited 

to) health, hydrology, water and energy. This paper shows that seasonal forecast model data, 

satellite Pour l’Observation de la Terre (SPOT) dry matter productivity (DMP) data (proxy of 

grass biomass) along with other sets of data are effectively used to estimate Grazing capacity 

(GC) over a 12-year test period (1998/99-2009/10) in Limpopo Province. GC comprises a vital 

consideration in agricultural activities, particularly for a province in South Africa like 

*Correspondence to: Phumzile Maluleke
ARC-ISCW 
Private Bag X79, Pretoria 0001, South Africa 
Tel: +27123102628; Fax: +27123231157 
Email: malulekep@arc.agric.za / phumzimaluleke@gmail.com 

1



 
 

Limpopo, due to its varying climate. The Limpopo Province capitalizes on subsistence farming, 

including livestock and crop production. Grazing should thus be regulated in order to conserve 

grass, shrubs and trees thereby ensuring sustainability of rangelands. In a statistical 

downscaling model, the predictor is the 850 geopotential height fields of a coupled ocean-

atmosphere general circulation (CGCM) over Southern Africa to predict seasonal DMP values. 

This model shows that the mid-summer rainfall totals are important predictors for the 

November through April (NDJFMA) DMP (as well as grazing capacity) growing season. 

Forecast verification is conducted using the relative operating characteristics (ROC) and 

reliability diagrams. The CGCM model shows skill in discriminating high and low DMP (GC) 

seasons in the Limpopo Province, as well as reliability in the probabilistic forecasts. This paper 

demonstrates the development of a tailored forecast, an avenue that should be explored in 

enhancing relevance of forecasts in agricultural production. 
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1 Introduction 

Rangelands are essential for livestock grazing purposes in South Africa. It is thus important to 

estimate or forecast veld conditions in order to regulate grazing patterns in preparation for an 

approaching season. Grazing should thus be regulated in order to conserve grass, shrubs and 

trees, thereby ensuring sustainability of rangelands. In South Africa, the existing national 

grazing capacity (GC) potential map estimate was developed in 1993, and updated in 2005 

using National Oceanic and Atmospheric Administration Advanced Very High Resolution 

Radiometer (NOAA-AVHRR) MODIS satellite data (Department of Agriculture, Forestry and 

Fisheries, 1993). It is important to note that grazing capacity is sometimes referred to as 

carrying capacity. Largely due to changing land use practices (as well as changing data 
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availability), there exists a clear need to create a new capacity estimate through the use of 

current available data including climate and forecast data, remote sensing, etc.  

 

For Limpopo, a province shown to be prone to recent degradation, developing such an updated 

GC product (adjusted monthly according to seasonal forecasts and monitoring data) may help 

support more sustainable agricultural practices (De Leeuw and Tothill, 1990; Stroebel et al., 

2008; Palmer and Bennet, 2013). Mid-summer climatic characteristics, including predicted 

characteristics, provide a good estimate of how the entire rainfall season may behave for 

Limpopo Province (Landman et al., 2012). Decision making in the agriculture, hydrology, 

health, water and energy sectors is largely influenced by climatic conditions therefore seasonal 

forecasts should be incorporated into planning and management strategies. GC over the 

Limpopo Province is strongly linked to seasonal rainfall totals, and, since seasonal forecast 

skill over the area is relatively high compared to other areas over South Africa, employing 

seasonal forecasts over the region should lead to positive and useful results to improve 

agricultural management and operations (Malherbe et al., 2014). It should be noted, however, 

that climate models have caveats which may affect results negatively (Sivakumar, 2006; 

Landman & Beraki, 2012). 

 

This paper focuses on estimating GC in the Limpopo Province where convective systems are 

responsible for rainfall received mainly in the summer season from October to April. 

Unsustainable grazing may lead to severe impacts on the environment, such as land 

degradation, erosion and depletion of non-renewable natural resources (De Leeuw and Tothill, 

1990; Pickup et al., 1994; Calvao and Palmeirim, 2004; Kurtz et al., 2010). Several factors 

contribute to land degradation; including erosion, soil compaction, salinization, as well as, and 

linked to human activities – dating back to land policies – leading to overgrazing (Archer, 2004; 
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Vanderpost et al., 2011).  Current and former communal grazing areas in the provinces of 

KwaZulu-Natal, Eastern Cape and Limpopo have suffered effects of sharing land for 

settlement, farming and grazing – later often resulting in inappropriate land use practices. The 

latter effects have contributed to the intensity of land use exceeding the productive potential.  

While it is sometimes difficult to indicate the key causes of land degradation, it remains 

increasingly problematic and a threat to food and livelihood security, hence optimal utilization, 

aided by estimates of grazing capacity, of rangelands is vital (Pickup et al., 1998; Kurtz et al., 

2010). 

GC is defined as the number of herbivores/livestock that the natural rangeland can support 

without the addition of external feeding sources. Such sources can potentially result in 

degrading the environment (De Leeuw and Tothill, 1990; Hayward et al., 2007). It is clear that 

the GC of a rangeland should be estimated – ideally before any livestock is introduced therein 

– in order to be able to manage and monitor its sustainability, acknowledging limitations on

such measurement (Roe, 1997; Archer, 2004). The latter has, however, not always been the 

case in South Africa as farmers and pastoralists in certain areas used to overstock rangelands 

(Wessels et al., 2007a). The assumptions behind this notion generally considered climate 

vagaries to be solely responsible for land degradation, hence overlooking the contribution made 

by humans and animal activities (De Leeuw and Tothill, 1990; Wessels et al., 2007b). 

2 Study area 

Limpopo Province is located in the most northern parts of South Africa, north of 22-25°S and 

west of 26-32°E (Fig. 1). The region is semi-arid, covers approximately 129 910 km2 of land 

and topography ranges from mountainous to flat land and the climate is hot and dry. In summer, 

the days and nights can be extremely hot with average maximum temperatures of 27˚C, but 

4



Fig. 1. Map of the Limpopo Province showing the topography of the Province and the location of weather stations used in the study 
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winter is mild with average minimum temperatures of 18˚C (Schulze, 1965). Limpopo is a 

summer rainfall region, with an annual rainfall of less than 350 mm in the lower lying areas, 

while the higher lying Drakensberg escarpment sees more than 1000 mm in certain places. 

Most parts of Limpopo are rural, supporting extensive livestock farming and ranching 

operations with irrigated crops (Vogel et al., 2010). These areas are in turn vulnerable to 

climate variability and extreme events (Moeletsi and Walker, 2012). The latter increases 

rangelands’ vulnerability to overgrazing, causing land degradation to worsen in many parts of 

the province. 

Grazing routines in the Limpopo Province, in certain areas, may not be in place or monitored 

– compounding problems of degradation.  It is thus important that GC and deviations thereof

for the province be estimated in order to assist in scheduling grazing patterns for farmers, 

planning for future seasons – based on forecast model outputs and looking into options of land 

restoration programmes. How the latter is implemented requires a tactful and participatory 

approach to farmers and local municipalities, including capacity building. 

3 Methods 

 In the past, estimation of GC used to be time consuming and costly. Nowadays, however, 

various techniques of estimating GC exist, depending on the specific biome, climatic variability 

and soil texture (Pickup et al., 1998; Xia and Shao, 2008). It is important to note that the use 

of technology has not, however, rendered null the need for fieldwork in order to collect data. It 

is true that grazing capacities may be estimated without making use of biomass data, but it is 

advisable to use concrete biomass data as an indicator of production (Morgenthal et al., 2004). 
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Fig. 2. Flow diagram showing the processes and products involved in estimating GC 
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Climate data, Remote Sensing (RS) and Geographic Information Systems (GIS) have already 

been employed for estimating GC, predicting crop yields, climate impact assessment, 

managing and monitoring of rangelands (Goodchild, 1994; Unganai and Kogan, 1998; Hunt et 

al., 2003; Prasad et al., 2006; Beye et al., 2007). These techniques have proved successful, 

time efficient and cost effective (Calvão and Palmeirim, 2004; Joshi et al., 2004; Xie et al., 

2008; Becker-Reshef et al., 2010). A range of products, data, and tools are used to estimate 

GC, but in this study, the application of seasonal forecasts in agriculture is emphasized. We 

have used a set of methods including seasonal climate forecasts, GIS, Earth Observation 

System data (EOS) and secondary ground truth data as shown on Fig. 2. 

3.1 Tailored forecasts 

The Climate predictability tool (CPT) software (Mason and Tippet, 2016) is obtained from the 

International Research Institute for Climate and Society (IRI) website 

(http://iri.columbia.edu/).  CPT is a statistical prediction and downscaling software that offers 

the following options: Principal Components Regression (PCR), Canonical Correlation 

Analysis (CCA), Multiple Linear Regression (MLR) and General Circulation Model (GCM) 

verification. The CCA option is used in this study since it analyzes linear relationship between 

two variables – in this case SPOT VEGETATION dry matter productivity (DMP), the 

representative of GC in this paper, and low-level circulation (850 hPa) of the coupled model. 

CCA further measures linear combinations of the two variables with maximum correlation, 

which meets the objective required from CPT. 
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CPT requires input data in the form of a predictor (typically an output from a climate model) 

and a predictand (in this case DMP). The domains of interest are selected next in order to 

represent the predictor domain which covers an area between the equator and 45°S, and 15°W 

to 60°E and the predictand domain, which covers an area between -22°S and -26°S, and 26°E 

to 32°E. Statistical downscaling from the climate models to observed data is performed with 

the CPT in order to represent verification statistics and to identify modes of seasonal-to-

interannual co-variability between the predictor and predictand fields during the 12-year 

period. 

3.2 Forecast verification 

Verification tests for the forecasts are carried out using relative operating characteristics (ROC) 

(Mason and Graham, 2002) and reliability (Hamill, 1997, Wilks, 2006) diagrams in order to 

test the discrimination and reliability attributes of the forecasts. ROC and reliability diagrams 

are defined and interpreted in more detail in Troccoli et al. (2008), Barnston et al. (2010) and 

Wilks (2011), amongst others with an application for South Africa found in Landman et al. 

(2014). Further, hindcasts (re-forecasts) of DMP are generated as probability forecasts using 

error variances, which are then verified (Troccoli et al., 2008). If the ROC score is 1.0 (we 

want low false alarm rates and high hit rates), then perfect discrimination is achieved, however 

if the ROC scores are ≤ 0.5, the forecasts show no skill. Reliability diagrams show to what 

extent forecast probabilities match observed frequencies and show whether or not a forecast 

system is well calibrated and the level of confidence in the forecasts. When the slope of a 

weighted reliability regression line lies above (below) the diagonal line of perfect reliability, 

the forecasts are said to be under-confident (over-confident)  ̶  however, if the regression line 

lies perfectly on the diagonal line then perfect reliability of the forecasts is achieved. 
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3.3 SPOT VEGETATION DMP data 

DMP data are used as a representative of GC in this paper. SPOT VEGETATION DMP for 12 

years (1998/99-2009/10) are obtained from the PROBA-V website (http://proba-

v.vgt.vito.be/). DMP satellite imagery are produced from a combination of RS and 

meteorological data from the European Centre for Medium-Range Weather Forecasts 

(ECMWF). The meteorological data considered in the estimations are solar shortwave radiation 

and temperature based on the eminent Monteith (1972) model (Nutini et al., 2011). Each 

satellite image represents the maximum value of DMP per month. The SPOT satellite captures 

high quality global images using the VEGETATION sensor which was launched in 1998, 

developed by a collaboration between France, European Commission, Belgium, Italy and 

Sweden (Fraser et al., 2000). Although the resolution of SPOT VEGETATION is 1 km, the 

sensor has numerous advantages such as high temporal resolution and multi spectral bands 

(Fraser et al., 2000; Xiao et al., 2002; Bartalev et al., 2003). The obtained data consist of DMP 

dekads (10 day composites) for each month, i.e. 1-10 days; 11-20 and 21 to the last day of the 

month. 

The calculations are based on satellite data per growing season for the years 1998/99-

2009/2010 (12 seasons). Products that are used in this study include gridded observed rainfall 

from Agricultural Research Council - Institute of Soil, Climate and Water (ARC-ISCW), tree 

density product_2003 (ARC-ISCW databank), vegetation map of 2009 

(http://bgis.sanbi.org/vegmap/map.asp), Moderate Resolution Imaging Spectroradiometer 

(MODIS) Net Primary Production (NPP) (http://www.nasa.gov/) and grass biomass field data. 

The data are analyzed using the following tools: Earth Resources Data Analysis System–

IMAGINE (ERDAS version 14.00) software (http://www.hexagongeospatial.com/), Excel 

2013, and the CPT. 
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4 Results and Discussions 

4.1 SPOT VEGETATION DMP and CPT data analysis 

In the CPT software, CCA is used to run tests between the coupled model rainfall data and 

SPOT VEGETATION DMP. The CCA is used to analyze correlation between these variables. 

The initial test is run using coupled model rainfall (predictor) and DMP data (predictand) from 

which a positive correlation is found. Largely positive correlations are seen between model 

rainfall and DMP (Fig. 3). Other variables than rainfall are explored as predictors namely 

coupled model regional circulation, e.g. 850 hPa data since models are generally more skilful 

in simulating circulation than rainfall. Four rainfall seasons are chosen after several tests are 

run in the CPT, which are November-December-January (NDJ), December-January-February 

(DJF), January-February-March (JFM) and February-March-April (FMA) respectively. Of 

these four 3-month seasons, DJF low level circulation season is shown to best predict the four 

DMP seasons i.e. NDJ, DJF, JFM and FMA. DJF is a proxy for rainfall hence it is chosen to 

be the only predictor for DMP. A cumulative value for all the four 3-month seasons is also 

tested as a predictand, ultimately showing DJF low level circulation data to be the best predictor 

of NDJFMA DMP.  In this study, probabilistic forecast verification tests are run retroactively 

for a 6-year period (2004/05-2009/10) to validate CPT output results. The initial training period 

for retroactive process is 6 years, extended by 1 year after each integration.  The graphs 

presented in this paper are for the NDJFMA season only. 

4.2 Ground truth data and Earth Observation data analysis 

The ground truth data are used to analyze the relationship between grass biomass and DMP 

data – by calculating the coefficient of determination (R2) using linear regression per veld type. 

11



Fig. 3. Spearman’s rank correlations for the coupled model DJF rainfall data used as predictor downscaled to NDJFMA DMP values over the Limpopo Province spanning

the 12-year period 
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The veld types that show high R2 values signify a positive relationship between DMP and 

ground truth data. Fig. 4 shows that what we observe on the ground is actually what can be 

seen in RS, therefore in this study RS is effectively used in estimating DMP.  The vegetation 

map is used to delineate the various vegetation types into 6 veld types in the Limpopo Province 

as follows: Mopane, Lowveld, Azonal, Alluvial, Zonal and Intrazonal and Central bushveld 

type. Subsequently, the tree density product is used to categorize the data into low (0-10%), 

medium (10-20%), high tree density (20-30%) and extremely high (30% and above) in order 

to obtain equations per respective veld type. These equations are later used when estimating 

GC in GIS models. 

4.3 Estimation of GC 

Finally, GC is estimated for the 12-year period per season (1998/99-2009/10) using ERDAS 

software where GIS models are built to estimate grass biomass. GC is estimated using an 

equation and expressed in hectares per large stock unit (ha/LSU). GC maps are drawn showing 

vegetation in different rainfall seasons spanning the 12-year test period (Fig. 5). The results 

show positively biased values for the 12-year period. The positive bias in the GC estimate may 

be related to the collection of Disc Pasture Meter data – as the grass may include remnants of 

the previous growing season (Morgenthal, 2015: Personal communication). Furthermore, the 

period during which the GC estimate is made for the current study is characterized by higher 

rainfall than the period during which the earlier estimates (reference to the 2005/1993) are 

made. Moreover, the current study is more focused on identifying potential deviations before 

summer than calculating the actual long-term average. It is crucial to have an estimate of GC 
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Fig. 4. Relationship between average NDJFMA DMP and grass biomass for all veld types (n = 12). The x-axis shows grass biomass whilst the y-axis shows DMP 
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Fig. 5. GC maps per season for the 12-year period, 1998/1999–2009/2010 in the Limpopo Province
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and to know the deviation from the capacity prior to and during a growing season due to climate 

variability. 

Fig. 6 shows that the coupled model regional circulation (850 hPa) can predict GC over the 

Limpopo Province. These positive results therefore prove the prospect of updating the GC 

product monthly during the growing season in Limpopo Province. 

Fig. 7 shows all three ROC curves (above-, below- and near-normal) lying on the left of the 

diagonal line. The below-normal curve lies to the left of the diagonal, whilst the near-normal 

lies closely to the diagonal line. The coupled DJF model thus shows good discrimination of the 

above- and below-normal GC seasons from other seasons, but its discrimination of the near-

normal GC seasons is poor. The reliability diagram (Fig. 8) shows higher GC probabilities for 

both high and low GC seasons, therefore the forecasts are under-confident. The forecast 

probabilities for high and low GC seasons show high reliability in the forecasts during 

NDJFMA. 

5 Conclusions 

This paper shows that seasonal forecasts may successfully be used in agriculture to estimate 

GC and can thus be explored for more varied uses in different sectors. The ARC-ISCW is 

represented in the quarterly meeting of the National Agrometeorological Committee. Here, 
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Fig. 6 Spearman’s rank correlations for the coupled model DJF 850 hPa geopotential heights downscaled to NDJFMA GC values over the Limpopo Province spanning the 

12-year period 
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Fig. 7 ROC curves obtained by retroactively predicting GC probabilistically over 6 years (2004/2005–2009/2010) for the NDJFMA season for above-, below- and near-

normal tercile values of the climatological record. The areas underneath the respective curves are shown in parenthesis on the figure. The x-axis shows false alarm rate, whilst 

the y-axis shows hit rate 
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Fig. 8 Reliability diagram and frequency histogram for above- (66th tercile) and below- (33rd tercile) normal GC values obtained by downscaling the coupled model’s low-
level circulation. The thick black diagonal line represents perfect reliability. The thick (dashed) black curve and the thick (white) bars represent high (low) GC category. The 

thin solid black (dashed) line is the weighted least squares regression line of the high (low) GC reliability curve 
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various monitoring and early-warning products and messages are assembled and combined in 

an advisory that is distributed through the Provincial Department of Agriculture (DOA) to the 

extension service structure. The deviation from GC, as derived in this study, will play an 

important role in providing practical advice to livestock farmers in the north-eastern parts of 

South Africa. The motivation to have undertaken this study in the first place is to assist the 

Limpopo DOA with managing of rangelands and controlling grazing pastures on a seasonal to 

inter-annual basis. Seasonal forecasts (compiled from coupled global circulation model output) 

are employed to analyze predictability of DMP over the Limpopo Province. These models can 

produce probabilistic forecasts for favourable or unfavourable grazing in order to advise 

farmers regarding the available pasture in the coming season. As indicated earlier, such 

information provided to all relevant parties may guide good management practices, supporting 

proactive adaptive management. Where seasonal forecasts display sufficient skill, an 

opportunity is presented where monitoring data can be used in conjunction with such forecasts 

to make assumptions regarding expected deviations from a long-term average recommended 

GC. 

A recent scenario would be the current 2015/16 El Niño, characterized by drought and heat 

stress conditions, that has negatively impacted the livestock sector across South Africa with 

the following provinces: KwaZulu-Natal, North West, Free State, Limpopo and the Northern 

Cape classified as disaster areas. The costs for drought relief are an imminent setback to the 

country’s finances, especially for the above mentioned provinces. However,  if the described 

GC system had been in place prior to the 2015/16 El Niño drought, agricultural advisory could 

have guided livestock farmers with precautionary measures to minimize loss and damage, as 

well as finding cost effective means of obtaining supplementary feed for livestock as well as 

reducing the size of livestock herds. GC would have been estimated by substituting the relevant 
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inputs to estimate GC. The GC maps can as a result of this research be produced operationally 

and adjusted during a growing season. ROC and reliability diagrams are used for forecast 

verification and the results show that CGCM has skill discriminating above- and below-normal 

GC seasons. Reliability of the probability forecasts is good, showing underconfidence for both 

high and low GC thus these results can be used to warn farmers of approaching high and low 

GC conditions. 

 

The need for tailored forecasting in the agricultural sector should not be overlooked. The use 

of these forecasts for grazing can potentially minimize overgrazing, resulting in sustainable 

veld maintenance. The uptake of modelling and seasonal forecasts by farmers and decision 

makers remains, however, challenging. More effort needs to be channelled towards reaching 

out to farmers and communities by providing interactive training sessions focusing on seasonal 

forecasts and their use in agricultural production. Indigenous methods of weather forecasting 

and GC estimations are also potentially valuable topics to investigate. However, unavailability 

of documentation with regards to empirical methods, their implementation, results and/or 

verification remains a challenge. Finally, the technique may be improved by working from a 

more detailed baseline GC product. For future studies, more field data (30 years or more) 

should be acquired, together with relevant satellite data, to allow for an optimal correlation 

time period.  More field data could potentially yield improved results as there would be more 

data to be used for verification tests. 
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