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ABSTRACT 

A fatal light aircraft crash, within the Kareedouw mountains, highlighted the need 

to equip forecasters with the knowledge of the turbulence produced when wind flow 

encounters complex small-scale terrain near a cold front. With this in mind, an experiment 

was designed, according to the 6 W’s (why, who, where, when, what, whereby) of design, 

to measure and address the unanswered questions regarding blocking, gap flow and 

mountain waves. Experiments were conducted with party balloons, dronesondes, 

dropsondes, thethersondes, parasails, simultaneous ascents and smoke grenades within 

the Kareedouw Pass. The topographical extent of the pass is the smallest where such a 

field experiment have ever been conducted.  

Data were collected during six radiosonde field experiments and from an installed 

Automatic Weather Station network. Numerous parameters were calculated, where 

features were successfully characterised by the; Burger-, Froude number, Froude derived 

height scale and thermal wind equation. The upwind blocking region rendered the 

Bernoulli equation, which governs gap flow, unusable. Gap flow was identified by 

pressure- and temperature gradients during non-blocking and weak synoptic conditions. 
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The nocturnal inversion positively influenced gap flow, in a Venturi-type effect. Mountain 

wave trapping criteria and the Scorer parameter were ineffectual, due to the constantly 

changing and unstable upwind conditions. Turbulence was identified using potential 

temperature, cumulative normalised ascent rate, Ellrod Turbulence Index, vorticity, 

Richardson number, standard deviation from the gust and also by subjectively judging the 

wind directional and speed shear.  

Blocking jets reached wind speeds up to 26ms-1 producing virtually no turbulence 

with scales of 600m deep, 80km wide and penetrating to 30km downwind of its exit 

region. The blocking wind speed measured second strongest wind speed, second to the 

ridge; (44.7ms-1) due to the compressional effect. The blocking jet changed the synoptic 

scale surface wind and sea-level pressure, while driving gap flow and altering the 

mountain wave formation criteria; via a dynamic barrier. Gap flow, weakened the blocking 

region and measured below average wind speeds, while remaining the most turbulent 

feature. Phenomena observed at the gap exit included, divergence, hydraulic 

jump/expansion fan, eddies, maximum updraft and downdraft observations as well as 

large wind directional and speed shear.  

Mountain waves, and its associated severe rotors, were found to be the second 

most turbulence producing feature and measured the most severe ever measured in 

South Africa, while being the smallest in wavelength and amplitude. Mountain wave 

formation criteria were updated given that mountain waves were observed during 

previously defined unfavourable conditions. Erratic-moving and complex-shaped mountain 

waves formed during unstable conditions with the wind almost perpendicular to the ridge. 

Severity of these mountain waves was found to be unpredictable; a nomogram or 

numerical weather prediction product is suggested. The results of this study are widely 

applicable, from the aviation industry to the renewable energy sector. Pilots are 

recommended, to keep a ground clearance of at least 1.5-2 times the highest topography; 

in a 10km upwind radius. It is recommended that forecasters keep in mind the blocking-

induced dynamic barrier and to not exclude mountain waves under unstable conditions as 

well as to use a cross-barrier wind speed ≥7ms-1. 

 
 
I, Markus Geldenhuys declare that the dissertation, which I hereby submit for the degree MSc 
Meteorology at the University of Pretoria, is my own work and has not previously been submitted 
by me for a degree at this or any other tertiary institution.  
SIGNATURE:……………………… 
DATE: ……04/05/2018………………  

  



 

 iv 

ACKNOWLEDGEMENT  

 

I would like to express my sincere gratitude to: 

 God for providing me with a sound mind and ability to have completed this study. 

 Eshanè Geldenhuys, my loving wife, for all her support, encouragement and all the 

proof reading into the late hours of the evening. Without your support, this would 

not have been possible! 

 Dr LL Dyson, my Academic supervisor, for all her guidance and support during the 

project. 

 Mr D van der Mescht, my field work supervisor, for all his assistance, guidance 

and patience under trying conditions during the field campaign. Climbing the 

gruelling Africa Peak multiple times in extreme weather conditions; ranging from 

40°C in temperature to -7°C apparent temperature and 160km/h winds. 

 Mr E Engelbrecht, for always availing himself during field campaigns and for not 

complaining to climb Africa Peak during 160km/h winds and -7°C apparent 

temperature. 

 The late Prof. J van Heerden, for teaching me everything I know with regards to 

experiment design. We will miss him dearly. 

 Ms A Demertzis and Ms K Oxley, the South African Weather Service Library staff, 

for all the assistance in digging up all the un-digitised reading material that formed 

the basis of this dissertation. 

 Ms J Savy for the compilation of Figure 6.1. 

 Mr H van Niekerk and the South African Weather Service Eastern Cape 

forecasting team, without your support and standing in for my shifts, this project 

would have been a failure. 

 South African Weather Service for the time you provided me with and the study 

bursary. 

 InterMet Africa Systems for sponsoring 20 radiosondes for my use and for Air 

Liquide for sponsoring Hydrogen gas. 

 

  



 

 v 

 

TABLE OF CONTENTS 

 

1. CHAPTER 1: INTRODUCTION ........................................................... 1 

1.1 BACKGROUND ................................................................................................... 1 

1.2 MOTIVATION ....................................................................................................... 2 

1.3 AIMS AND OBJECTIVES ..................................................................................... 3 

1.4 DISSERTATION OUTLINE .................................................................................. 4 

2. CHAPTER 2: LITERATURE REVIEW ................................................. 5 

2.1 WIND FLOW INTERACTING WITH TERRAIN ..................................................... 5 

2.1.1 Blocking ..................................................................................................... 6 

2.1.2 Gap winds .................................................................................................10 

2.1.3 Mountain waves ........................................................................................13 

2.2 TURBULENCE ....................................................................................................18 

2.3 SUMMARY .........................................................................................................21 

3. CHAPTER 3: SETTING ......................................................................22 

3.1 CLIMATOLOGY ..................................................................................................22 

3.2 STUDY AREA .....................................................................................................23 

3.3 DATA ..................................................................................................................24 

3.3.1 Surface data..............................................................................................25 

3.3.2 Upper air data ...........................................................................................26 

3.3.3 Data quality control ...................................................................................27 

3.4 METHODS ..........................................................................................................29 

3.4.1 Surface data analysis ................................................................................29 

3.4.2 Event analysis ...........................................................................................30 

3.4.3 Turbulence in general ...............................................................................34 

3.5 SUMMARY .........................................................................................................36 



 

 vi 

4. CHAPTER 4: EXPERIMENT DESIGN ................................................37 

4.1 AWS NETWORK DESIGN ..................................................................................37 

4.2 UPPER AIR OBSERVATION DESIGN ................................................................40 

4.2.1 Geographical location ...............................................................................41 

4.2.2 Ascent rate ................................................................................................42 

4.2.3 Decision taking on the event day ...............................................................43 

4.3 OTHER EXPERIMENTS .....................................................................................44 

4.3.1 Tethersondes ............................................................................................44 

4.3.2 Parasails ...................................................................................................45 

4.3.3 Simultaneous ascents/different buoyancy balloons ...................................46 

4.3.4 Dropsondes...............................................................................................46 

4.3.5 Smoke grenades .......................................................................................47 

4.3.6 Dronesondes .............................................................................................48 

4.4 SUMMARY .........................................................................................................48 

5. CHAPTER 5: DATA ANALYSIS .........................................................49 

5.1 LONGER TERM ANALYSIS ...............................................................................49 

5.2 EVENT ANALYSIS ..............................................................................................56 

5.2.1 Event investigation ....................................................................................57 

5.2.2 Diagnosing incoming flow interacting with terrain ......................................61 

5.3 SUMMARY .........................................................................................................80 

6. CHAPTER 6: DISCUSSION ...............................................................81 

6.1 EXPERIMENT .....................................................................................................81 

6.2 BLOCKING, GAP FLOW AND MOUNTAIN WAVE INTERACTION ....................81 

6.3 EVALUATION OF BLOCKING, GAP FLOW AND MOUNTAIN WAVE 

PARAMETERS ...................................................................................................84 

6.4 COMPARISON TO OTHER STUDIES ................................................................85 

6.5 TURBULENCE ....................................................................................................85 



 

 vii 

6.5.1 Forecasting mountain wave and its associated turbulence ........................86 

6.6 SUMMARY .........................................................................................................87 

7. CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS .............88 

7.1 INTRODUCTION ................................................................................................88 

7.1.1 Objective 1: Experiment design .................................................................90 

7.1.2 Objective 2: Analyse data using parameters .............................................91 

7.1.3 Objective 3: Determine and compare the characteristics of blocking, gap 

flow and mountain waves, to other studies. ...............................................92 

7.2 CONTRIBUTION TO THE FORECASTING OF TURBULENCE ..........................93 

7.3 RECOMMENDATIONS .......................................................................................94 

7.4 SCIENTIFIC CONTRIBUTION ............................................................................95 

REFERENCES  ...........................................................................................................96 

 

 

 

 

 

  



 

 viii 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

A  Cross-sectional area  

Agl Above ground level 

Amsl Above mean sea level  

AWS Automatic Weather Station 

B Burger number 

CAA Civil Aviation Authority 

CAT Clear air turbulence 

cm Centimeter 

cp  Specific heat for dry air at constant pressure 

CSIR Council for Scientific and Industrial Research 

DEF Deformation 

DSH Shearing deformation 

DST Horizontal stretching deformation  

E East 

ERA  European Re-analysis 

ETI Ellrod Turbulence Index 

f Coriolis parameter 

FGas Force of gas 

FGravity Force of gravity 

FM Froude calculated to mountain top 

Fr Froude 

FW Force of wind 

g Gravitation 9.81ms-1 

GMT Greenwich Meridian Time 

H Depth of lower layer 



 

 ix 

h Height difference 

hm   Mountain height 

hPa Hectopascal 

Hrs Hours 

h1 Froude derived height scale 

ICAO  International Civil Aviation Organization 

J Joule 

JB  Joubertina 

K Kelvin 

k   Horizontal wavenumber 

kg Kilogram 

l  Scorer parameter 

LM  Mountain halfwidth 

LR  Rossby Radius 

m Meter 

m2 Square meter 

m3 Cubic meter  

Min Minute 

ms-1 Meters per second 

N  Brunt-Väisälä frequency  

Nw Newton 

NWP Numerical Weather Prediction 

p Pressure 

PB  Plettenberg Bay  

PE  Port Elizabeth  

Q-GIS Quantum GIS 

R Gas constant 



 

 x 

Ri Richardson number 

S South 

s Second 

T  Temperature 

TTK  Tsitsikamma  

TV Virtual Temperature 

U Total wind vector in i, j and k directions 

u u wind speed 
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CHAPTER 1 : INTRODUCTION 

1.1  BACKGROUND 

On 16 December 2015, a Cessna 182Q aircraft crashed en route from Graaff-Reinet 

to Plettenberg Bay, killing two passengers and injuring the pilot. The crash took place near 

Kareedouw in the Kareedouw-Tsitsikamma Mountains, South Africa (A in Figure 1-1). The 

pilot reported severe turbulence which knocked him unconscious moments before the crash. 

Analysis of meteorological information revealed that mountain waves were present, and the 

associated turbulence was most likely the cause of the crash (Van der Mescht & 

Geldenhuys, 2017). Other turbulence producing processes in the area included blocking and 

gap flow. This document is a description of the experiment designed to measure these 

processes, the observations made and the calculated parameters explaining these 

processes and the turbulence generated.  

According to the Australian Government (2014), turbulence is a normal, frequent and 

a threatening phenomenon. Turbulence is driven by kinetic energy and is handed down from 

larger to smaller masses until finally converted to thermal energy at molecular scale 

(American Meteorological Society, 2012; Ahmad & Proctor, n.d.). Turbulence is defined as 

having the attribute of rapid temperamental changes through all three velocity components. 

For this to take place, the horizontal and vertical wind component needs to change, 

producing wind shear (American Meteorological Society, 2012). In aviation wind shear is 

responsible for the most weather-related in-flight injuries. Besides threatening the structural 

integrity of a light aircraft, wind shear may cause flying luggage or even, the pilot to lose 

control of the aircraft; both a threat to passengers and crew (Australian Government, 2014). 

Other effects of turbulence include increased flying time, due to reduced airspeed and 

increased fuel consumption. This translates into an economic impact, combined with a 

negative public image - an uncomfortable flight arriving late (Ellrod, 1992 cited in De Villiers 

& Van Heerden, 2001). A $100 million is spent annually on wind-shear-related injuries, by 

the worldwide aviation industry (Australian Government, 2014). 

“Turbulence is a hazard to both commercial and general aviation” (Uhlenbrock et al., 

2006). In 2014, a commercial pilot crashed, into the Tsitsikamma Mountains (A in Figure 1-

1), while crop spraying in a Cessna A188B. The pilot experienced a significant loss in 

airspeed and inevitably crashed into the side of the mountain. According to Civil Aviation 

Authority (CAA), this crash was a product of mountain wave turbulence (CAA, n.d.). Multiple 
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other CAA Incident Reports of crashes exist; all relating to turbulence of which mountain 

wave turbulence is most prominent. Not one CAA Accident and Incident Report were found 

mentioning gap flow or blocking. This indicates one of two things; either, the phenomena are 

rarely hazardous enough to result in a crash, or, the phenomena is unrecognized in the 

South African aviation industry.  

 

Figure 1-1: Topographical map surrounding the study site. The A in the inset indicates the 

crop spraying mountain wave induced crash site, the Kareedouw crash, and the study site in 

relation to the rest of South Africa. The study gap is indicated by the block.  

1.2  MOTIVATION 

Literature suggests three main wind flow patterns as wind encounters topography. 

These patterns are; blocking, gap flow and mountain waves. These regimes take form in 

isolation or in a combined ‘chaotic’ wind flow pattern. A blocking jet coming at a crosswind, in 

relation to the gap jet, provides a significant hazard to aircraft. Gap flow creates; a low-level 

jet, confluence and difluence; pushing an already slightly tilted plane into a wayward 

direction. The mountain wave regime, as defined by Gaberšek & Durran (2004), is a good 

example of a combination of gap flow and mountain waves. During a low-level flight into a 

mountain-wave-gap-flow environment, a pilot experiences a chaotic environment full of 

turbulence with constant increased and decreased flow over the wing. Exiting this 

environment into a blocking jet provides a new hazard; a possible severe jet coming at a 90° 

crosswind. Mountain waves create; small turbulent pockets of rotors, areas of increased and 
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decreased wind speeds as well as fluctuations in lift. A singular or combined effect of these 

can be catastrophic, if the pilot is unaware of the flow in mountainous terrain. 

Unfortunately, gap flow is a phenomenon which is not recognised nor forecast in 

South Africa. According to UCAR (2012), gap flow is only accurately forecast by numerical 

weather prediction if a mesoscale model, with at least a few grid points inside the gap, is 

available. The South African Unified Model with a horizontal resolution of 1.5km (the finest 

resolution available to forecasters) (Landman, 2016), is usable to forecast gap flow in gaps 

wider than 3km. Most of the Eastern Cape mountain gaps are less than 1.5km wide, 

therefore; gap flow is extremely difficult to predict for operational forecasters. Numerical 

weather predictions with ‘sufficient’ resolution predicts blocking jets, given, it’s such a ‘large’ 

scale phenomena that it alters synoptic conditions (Overland & Bond, 1995). No mountain 

wave numerical weather prediction support exists for operational forecasters in South Africa. 

Until recently (Van der Mescht & Geldenhuys, 2017), the character and intensity of 

non-northwesterly driven mountain waves, were largely unknown in South Africa. Along the 

South Coast, these mountain waves take shape in westerly to southwesterly flow in the 

vicinity of a passing frontal system. The 16 December 2015 aircraft crash highlighted these 

southwesterly waves (which were previously regarded by forecasters as insignificant waves) 

as possibly severe (Van der Mescht & Geldenhuys, 2017). 

Wind flow in a ‘normal’ mountainous terrain can be complicated. Making the terrain 

more complex, by adding a gap, and reducing the scale of the topography, creates an 

unstudied environment with a research problem. No observational study of blocking, gap 

flow and mountain waves, on such small-scale terrain, was found in literature; highlighting 

the urgency and extent of the research problem. This dissertation will aid in the forecasting 

and understanding of wind and turbulence in small-scale coastal and complex mountainous 

terrain. Some of the advantages of this dissertation include; improved forecasting by aviation 

forecasters, improved safety, expanding mountain wave research in South Africa, initiating 

blocking and gap flow research in South Africa, as well as improved understanding by pilots, 

flight schools and aeroplane builders. 

1.3  AIMS AND OBJECTIVES 

The first aim of this study is to design an experiment to measure blocking, gap flow 

and mountain wave interaction produced by southwesterly winds in small-scale terrain. The 
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second aim is to describe the turbulence created by the interaction of blocking, gap flow and 

mountain waves, over a complex, low-elevation, coastal mountain range. 

In order to achieve these aims the following objectives will be applied: 

 Set-up an experiment  

 Analyse the synoptic conditions and observed data of events using multiple 

parameters (Froude, Rossby Radius, Scorer parameter, Ellrod Turbulence Index, 

Richardson Number and Horizontal Vorticity) 

 Determine the characteristics of blocking, gap flow as well as mountain waves and 

compare with other studies 

1.4 DISSERTATION OUTLINE 

Chapter 2 includes an overview of wind flow in a mountainous terrain. A discussion of 

the processes involved (including, blocking, gap flow and mountain waves) and the physics 

behind these processes are included. This is followed by a literature review of the findings of 

other larger scale observational and numerical studies around the world. 

In Chapter 3, data and methodologies employed to achieve the aims are discussed. 

This chapter creates a setting for the following chapters by, including the analysis of the 

study area, data collected and methods applied to obtain and analyse the data. 

Experimental design is discussed in Chapter 4. A detailed account is given of the 

rationale of the experiment.   

Chapter 5 covers all data analysis. Data analysis consists of an investigation of 

‘longer-term’ data followed by a synoptic discussion of case studies on event days. This 

chapter incorporates the scrutiny of automatic weather station data, upper air observations 

and all calculations applied to the data. 

Chapter 6 incorporates all discussions of data and data analysis. In this chapter, 

results are compared to other studies in South Africa and the rest of the world.  

Chapter 7, the final chapter, comprise of the conclusions followed by this 

dissertations contribution to science, the study gaps identified, as well as the 

recommendations of this study. 
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CHAPTER 2 : LITERATURE REVIEW 

In this chapter, literature regarding blocking, gap flow and mountain waves are 

discussed. The discussion begins where wind flow interacts with terrain and the outcome 

that ensues. This chapter considers the observations and different parameters proposed by 

other studies and which will be calculated in later chapters. Following this, turbulence indices 

and where available, severity classification methods of the relevant parameters are explored. 

2.1 WIND FLOW INTERACTING WITH TERRAIN 

Wind flow in a mountainous terrain can take many different patterns, three of these 

are; mountain waves, gap flow and blocking (Gaberšek & Durran, 2004). As wind 

approaches a barrier, firstly, the barrier blocks the wind, secondly, the wind takes the 

approach of least resistance around the barrier (gap flow) and lastly, if sufficient momentum 

is available, the wind overshoots the barrier creating mountain waves. In order to understand 

the three wind flow processes, a good understanding of stability is required. 

Literature suggests that statically stable conditions are a pre-requisite for the 

parameters governing blocking, gap flow and mountain waves. Static stability refers to the 

ability of a parcel at equilibrium to become turbulent or laminar, as buoyancy affects it. A 

statically unstable parcel tends to remain turbulent, while statically stable refers to a parcel 

that wishes to remain laminar. In unstable air, a turbulent parcel becomes less turbulent with 

time – as static instability is eliminated, except when an external force continues to 

destabilize the air (American Meteorological Society, 2012). The measure of stability applied 

by most equations is the Brunt-Väisälä frequency. 

The Brunt-Väisälä frequency is the period a parcel takes to achieve one successful 

oscillation after displacement. Once a parcel of air is displaced it tends to return to 

equilibrium (usually its original position). As the parcel attempts to correct itself, it often 

overshoots its equilibrium and oscillates. The frequency is an indication of the strength of the 

buoyancy of that specific atmospheric layer. The Brunt-Väisälä frequency is measured in s-1 

(N – Equation 2.1). The frequency is not defined for statically unstable air and is zero in 

statically neutral air (American Meteorological Society, 2012). The events discussed in this 

dissertation are not idealised cases and did not always display statically stable conditions. In 

these cases, a mixture between statically stable and statically unstable layers exists. Given 
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the lack of parameters for an unstable atmosphere, the Brunt-Väisälä frequency formed the 

basis of all calculations. 

N=√(
g

θ̅
⁄ )(

∂θ

∂z
);   Equation 2 . 1 

Where; θ = potential temperature (θ=T(
1000

p
)
R

Cp⁄
, R=287JK

-1
kg

-1
, Cp=1004JK

-1
kg

-1
), g = 

gravitation, θ̅ is the layer-averaged value over the depth of the layer and  
∂θ

∂z
 is the vertical 

gradient of the potential temperature. 

To determine whether blocking, gap flow and mountain waves exist, the Brunt-

Väisälä frequency is applied in the Froude number. The Froude number demonstrates the 

impact of terrain on wind flow (De Foy et al., 2006). Froude values (Equation 2.2) is divided 

into subcritical (Fr<1) and supercritical (Fr>1) values. Subcritical upwind Froude values 

indicate that the dominant airflow is around the mountain barrier (Wallace & Hobbs, 2006). 

Barry (1981) states that a smooth disturbance forms over the barrier but no lee waves forms 

for Fr≪1. Values approaching zero indicate upwind blocking of flow is complete, and 

transitional values indicate that a downstream hydraulic jump is possible. 

 Fr=
v̅̀

Nhm
;    Equation 2 . 2 

h1=
v̅̀

N
; where Fr set to 1    Equation 2 . 3 

Where; v̅̀ = surface to mountaintop averaged wind component perpendicular to the 

mountain, ℎ𝑚 = the mountain height from surface to mountaintop and h1= Froude derived 

height scale 

2.1.1 Blocking 

Blocking (also called windward ridging, barrier flow or cold air damming) is defined as 

the obstruction of statically stable upslope flow on the upwind side of a mountain barrier. The 

colder stable air has difficulty in passing over the barrier and is rather blocked, with a 

deflected low-level upwind jet as a result (American Meteorological Society, 2012; Overland 

& Bond, 1995). Blocking is characterized by an increase in wind speed, an increase in 

pressure (as cold air dams against the ridge) and a direction wind shift to parallel to the 

ridge. The increased pressure gradient enhances the low-level jet (also called barrier jet or 

blocking jet) while building it outward. 
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A blocking jet observed in British Columbia at Vancouver Island displayed a 500m 

deep vertical scale and a 40 - 50km horizontal scale. A distinct transition zone, less than 

10km, was observed between the synoptic wind flow and the wind flow influenced by 

blocking. The Vancouver Island jet observed an increase from 10 to 15ms-1 in the along-

barrier wind speed using a RADAR equipped aircraft (Overland & Bond, 1995).  

Blocking was thoroughly observed in the Sierra Nevada mountains at California, 

employing; radiosondes, windprofilers and microwave satellite imagery. In these studies, a 

blocking jet was classified on two accounts. First by Smutz (1986 cited in Neiman et al. 

2010), when the along-barrier (ù) wind displayed a maximum greater than 0ms-1, below the 

mountain peak. Neiman et al. (2010) later identified blocking when the barrier aligned wind 

exceeded 12ms-1 with a decrease of at least 2ms-1, between the jet maximum and the 

mountaintop. Another pre-requisite of blocking was a weak cross-barrier wind component, in 

fact; strong blocking cases were expected to display stagnant cross-mountain components 

with Froude values between zero and one. The speed profile of such a blocking jet was 

found to be virtually constant up the upwind slope (Figure 2-1; found by Parish (1982) and 

substantiated again by Neiman et al. (2010)). The direction profile of the blocking jet was 

rotated by 10° - 12° with height, the outcome is that the cross-mountain component 

becomes larger with an increase in height (Figure 2-2 c & d). In the same study, another 

blocking jet was classified using microwave satellite imagery; this jet has a narrow and long 

horizontal extent; <1000km by >2000km. Another observation included the blocking jet 

acting as a ‘dynamic-barrier’, altering the localized environment and processes up to well 

above the barrier (Neiman et al., 2010).  

 

Figure 2-1: Blocking jet profile as observed by the Wyoming research aircraft on a case (13 

February 1979). Neiman et al. (2010), observed a similar vertical profile. Adapted from: 

Parish (1982 cited in Neiman et al., 2010). 
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Figure 2-2: Wind profiles as observed by Neiman et al. (2010) using two windprofilers. The 

first, CCO, being in the valley (41m above mean sea level (amsl)), while the second, GVY, 

was 689m up the ridge; ridge top was taken at 3km. The V-component was the along-barrier 

wind and the U-component the cross-barrier component. 

The Sierra Nevada blocking jet displayed a mean value of 17.5ms-1. The maximum 

strength on average occurred between 500-1000m agl (translating to the lowest 15-35% of 

the mountain height), but always below the upwind peak (similar to Figure 2-1). At times, the 

jet became as strong as 50ms-1 at 1200m agl (Neiman et al., 2010). 

Blocking has been observed to become so significant that it alters synoptic conditions 

on a small scale. During a blocking case, the synoptic mean sea level analysis was found to 

indicate that the isobars near the mountains be more parallel to the mountains than further 

off (Overland & Bond, 1995). Just as blocking influences synoptic conditions, synoptic 

conditions influence blocking. Pre- and post-frontal synoptic conditions were identified to 

lead to blocking (Overland & Bond, 1995; Chen & Smith, 1987). In the Sierra Nevada, 

blocking was mainly observed in pre-cold-frontal conditions. The strength of the blocking jet 
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portrayed a clear seasonality; being stronger in winter (as seen in Figure 2-2 a-d), simulating 

the climatology of extratropical cyclones. It was suggested that a pressure ridge maintains 

the blocking jet after the passage of the front (Neiman et al., 2010). 

Parameters such as Froude, Burger, Rossby Radius and the thermal wind equation 

govern the characteristics of blocking. Two cases were measured by Overland & Bond 

(1995). The first case exhibited a good formation of a blocking jet, when Froude was less 

than 1 (when Equation 2.2 was calculated from surface to mountain top (Fm)). The second 

case displayed almost no increase in wind speed, when Fm~6. The good case observed an 

increase in wind speed of 5ms-1, which was roughly consistent with the barrier perpendicular 

component. Assuming uniform wind speed and static stability, the vertical and horizontal 

scales of the jet were found comparable to theoretical calculations done (Overland & Bond, 

1995).  

To determine the different scales of the jet, Overland & Bond (1995) defined different 

hydrodynamic regimes. The regimes relate to the mountain Froude number (Fm) and the 

Burger number. The non-dimensional Burger number (Equation 2.4) indicates whether the 

slope is hydrodynamically steep. If B≪1 the flow is quasigeostrophic and the air flows over 

the mountain. If 0.1<B<1 the influence of the mountain is semigeostrophic and the slope 

influences the wind, however, keeping a predominant flow over the ridge (Pierrehumbert & 

Wyman, 1985 cited in Overland & Bond, 1995). Where the slope is hydrodynamically steep 

(B>1), the momentum balance is seen as ageostrophic and the barrier becomes a ‘wall’ and 

blocking is in full force. Overland & Bond (1995) expects a blocking jet of maximum strength 

if B>1, Fm~1 and N is small.  

B= hmN fLm⁄ ;    Equation 2 . 4 

Where; Lm is the mountain halfwidth, and f the Coriolis parameter (2 (7.292×10
-5) 𝑠𝑖𝑛∅) 

Blocking needs to be quantified if it occurs. The width of the jet (horizontal scale) is 

determined using the Rossby radius equation (Equation 2.5). The increase in along-barrier 

wind speed is calculated with the thermal wind equation (Equation 2.6), depending on which 

Froude condition is satisfied. The thermal wind calculated increase (∆V) is added to the 

along-barrier speed to yield final jet strength (Overland & Bond, 1995). If no ‘spilling’ occurs 

over the mountain (hm<h1 – where Fr is set to one in Equation 2.2), the vertical scale of the 

jet is determined by the Froude derived height scale (Equation 2.3). 
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LR= (
Nhm

f
) Fm=

v̀

f
; when Fm<1   (condition 1) Equation 2 . 5 

LR=Lm=
Nhm

f
; when Fm>1  (condition 2) Equation 2 . 5 

∆V=
N

2
h

2

fL
=v̀; when Fm<1  (condition 1) Equation 2 . 6 

∆V=hmN; when Fm>1 (condition 2) Equation 2 . 6 

Where; v̀ = wind component perpendicular to the mountain 

Blocking is not complete and the jet cannot reach maximum strength, or deformation 

starts to occur; if spilling does occur. Partially blocked airflow is another factor weakening a 

blocking jet. Spilling occurs during partially blocked conditions when the layer of blocked flow 

is deeper than the blocking barrier. Gaps scattered throughout a ridge is another means 

where blocked airflow can ‘spill’ to the lee-side, initiating gap flow. Overland & Bond (1995) 

found retardation in the blocking jet due to vertical or horizontal entrainment of less cold 

lower momentum air. 

Parameters calculated to quantify and explain blocking includes; Froude Number, 

Froude derived height scale, Burger Number, Rossby Radius equation and the thermal wind 

equation. 

2.1.2 Gap winds 

Gap winds (also gap flow, gap jet, jet-effect wind or canyon wind) are classified as a 

low-level accelerated wind phenomenon. Momentum, thermal forcing or pressure-gradient 

force accelerates the wind through a gap or channel in the topography. Airflow in 

mountainous terrain with a gap is defined by Gaberšek & Durran (2004) according to three 

sub-regimes; upwind blocking-, linear- and mountain wave regimes. Where blocking and gap 

flow co-exist, lateral convergence and pressure gradient forces produce the maximum gap 

wind at the gap entrance. During a linear regime, almost no enhancement of flow is 

observed in the gap. Lastly, in a mountain wave regime, downward transport from mountain 

waves occurs, inducing strongest winds at the gap exit. Gap flow substantially influences 

aircraft and ship operations (University of Washington, 2014; Brennan et al., 2010). 

Gap flow is frequently observed as cold post-frontal air is partially blocked by a 

mountain barrier (American Meteorological Society, 2012). The advection of dense, stable 

cold air is reluctant to ascend the barrier and prefer to advance through the gaps and valleys 

(Bradbury, 1992a). The accumulation of wind on the blocking side forms a localized high 
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pressure driving gap flow. The high pressure increases the pressure gradient (and pressure 

gradient force) between the upwind and lee side of the mountain. As the pressure gradient 

force increases the strength of the gap jet (the strongest core of wind emanating from the 

gap) increases and the jet extends further downstream (Colle & Mass, 2000). Similarly, the 

temperature gradient influences gap flow. 

The passage of a cold front along the South Coast of South Africa enhances the 

pressure- and temperature gradient. The warm pre-frontal sector (with lower pressures) is 

located over the interior, while the coastal temperatures drop and the pressure rise due to 

post-frontal air. However, weak synoptic conditions also frequently result in gap flow. 

Whenever different air masses exist on either side of the gap, flow is triggered (Gaberšek & 

Durran, 2004). Over the Mexico basin, gap jets are mainly thermally forced. Temperature 

gradients as determined by radiosondes at different heights were found to correlate with 

different jet strengths (De Foy et al., 2006).  

Globally, many gap flow studies were conducted (Table 2-1), however, none was 

found in South Africa. One of the earliest documented gap flow studies was done by Hurd 

(1929 cited in Pan & Smith, 1999) in the Tehuantepec Region Mexico. Early studies (such as 

Reed (1931) through to Jackson & Steyn (1994b)) comprised of weather station and 

radiosonde observations. Recent studies included the use of conventional weather stations 

combined with modernised technology; an aircraft tail Doppler RADAR (Colle & Mass, 2000), 

satellite-borne synthetic aperture RADAR (Pan & Smith, 1999), QuikSCAT scatterometer 

(Brennan et al., 2010), LIDAR and dropsondes (Marić & Durran, 2009). Recently modern 

studies consist of computerized studies (Gaberšek & Durran (2004) as well Zängl (2002)). 

The smallest-scale study found in literature was St. Vincent Island in the Caribbean, with an 

upper gap width of 5km. 

Gap flow is measured, calculated, and quantified using various different techniques 

in numerous studies. Multiple methods exist to calculate the gap jet speed. Where the gap 

top is open (no ‘lid’ to restrict upward flow) the Venturi effect (conservation of energy as flow 

passes a constriction in topography; or parcel pressure decrease and increase in speed as it 

flows through the ‘gap’ (American Meteorological Society, 2012)) is not appropriate to 

quantify the jet. The Bernoulli equation is a more accurate method to explain wind flow in a 

restricted environment. The Bernoulli equation for incompressible fluids, (Equation 2.7) was 

found to overestimate the jet strength greatly. Gaberšek & Durran (2004) found the Bernoulli 

equation for compressible fluids (Equation 2.8) to be more accurate in estimating jet 

strength. The Bernoulli equation for compressible fluids assumes; acceleration takes place 

only if the temperature at the gap exit is lower than the temperature at the entrance.
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Table 2 - 1: Previous gap flow studies, - indicates no data were found. Note the environmental wind is stronger than the gap jet in the 
Kareedouw gap (this dissertation); this was as a result of the blocking deflected jet, however, more on this in Section 6.2. 

Name, region Width 
(km) 

Length 
(km) 

Depth 
(m) 

Environment 

wind/max jet (ms-1) 

Reference 

Chivela Pass, Mexico 40 220 ±2000 -/33+ Brennan et al. (2010); University of Washington (2014) 

Bora, Croatia 30 - - - Smith (1987) cited in Pan & Smith (1999) 

Hawaii, USA 10 - - - Smith & Grubišić (1993) 

St. Vincent, Caribbean 5 ±6 600 - Smith et al. (1997) 

Wyoming Corridor, USA 50 - - - Marwitz & Dawson (1984) cited in Pan & Smith (1999) 

Mistral, France 100 - - - Pettre (1982); Jansa (1987); McAneny et al. (1988); Kaufmann & Weber (1996) 

Ebro Valley, France/Spain 50 - - - Masson & Bougeault (1996) cited in Pan & Smith (1999) 

Taku, Alaska 20 - - - Colman & Dierking (1992) cited in Pan & Smith (1999) 

Stampede Pass, Cascades 20 - - - Reed (1981); Colle & Mass (1998) cited in Pan & Smith (1999) 

Fraser River, British Columbia 30 - - - Mass et al. (1995) cited in Pan & Smith (1999) 

Shikoku Island, Japan 30 - - - Saito (1992) cited in Pan & Smith (1999) 

Juan de Fuca, British Columbia 20 140 1000 10/25 Reed (1931);  Overland (1984);  Colle & Mass (1996); Colle & Mass (2000) 

Strait of Gibraltar 20 - - - Scorer (1952) cited in Pan & Smith (1999) 

Howe Sound, British Columbia 10 - - - Finnigan et al. (1994); Jackson and Steyn (1994) cited in Pan & Smith (1999) 

Kamishak Bay, Alaska 30 - - - Macklin et al. (1990); Fett (1993) cited in Pan & Smith (1999) 

Shelikof Strait, Alaska 50 200 1300 15/- Macklin et al. (1984); Lackmann & Overland (1989) cited in Pan & Smith (1999) 

Western Chats, India 30 - - - Ramachandran et al. (1980) cited in Pan and Smith (1999) 

Wide Bay, Alaska 80 - - - Bond & Macklin (1992) cited in Pan & Smith (1999) 

Unimak, Alaska 15/40 - - - Pan & Smith (1999) 

Wipp Valley, Austria 15 50 1400 10/21 Marić & Durran (2009) 

Computerized Study 20 50 1400 10/22 Gaberšek & Durran (2004) 

Hood Canal, Olympic Mountains - - - -/50 Overland (1984) 

Kareedouw gap, South Africa 1.5 3 300 15/12.5 This study 



 

13 

 

v̅̀
2

entrance

2
=

v̅̀
2

exit

2
+

pentrance-pexit

ρ
;    Equation 2 . 7 

v̅̀
2

entrance

2
=

v̅̀
2

exit

2
+cp(Tentrance-Texit);    Equation 2 . 8 

Where; p= pressure, ρ= density, cp= specific heat for dry air at constant pressure 

(1004JK
-1

kg
-1

) and T = temperature 

A computerized gap flow model found that a gap induced wake penetrated to over 

100km downstream (Gaberšek & Durran, 2004). Wakes are defined as areas characterised 

by a different wind than the environment due to the influence of topography. Colle & Mass 

(2000) found that the jet wake diverges at the gap exit, at times taking shape as an 

expansion fan. At the gap exit, the rapid jet wind overhead and the slow environmental wind 

creates instability in the flow. The instability takes shape of ‘wavelike’ perturbations (gravity 

waves) similar to internal waves in water, or Kelvin-Helmholtz waves. Where supercritical 

Froude values (Equation 2.2) exist at the gap exit, internal waves form. The gap jet diverges 

and inhibits internal waves from moving upstream; ultimately producing an expansion fan. 

Colle & Mass (2000) state that as supercritical flow accelerates, becoming rapidly shallower, 

the flow frequently adjusts with a hydraulic jump as flow becomes subcritical. An expansion 

fan exhibits characteristics such as divergence, subsidence, and acceleration in the gap exit 

region (Winant et al., 1988 cited in Colle & Mass, 2000). Colle & Mass (2000) observed an 

expansion fan feature but attributed it to descending lee air from the lee slope interacting 

with the diverging gap jet. 

The Froude number and the Bernoulli equation (for an incompressible and 

compressible fluid) were the parameters utilized to evaluate gap flow in this dissertation. 

2.1.3 Mountain waves 

Mountain waves compliment gap flow in order to reach a maximum gap jet 

(Gaberšek & Durran, 2004). Mountain waves can take the form of Lenticular cloud (if 

sufficient moisture available) or remain in clear air; categorized as clear air turbulence 

(CAT). A mountain wave (Figure 2-3) is an atmospheric gravity wave that takes shape in the 

lee of a mountain barrier; as statically stable air passes over a mountain. As the air is 

blocked and forced to rise by the barrier, a cooling in temperature takes place with a 

compression of air. The region of maximum compression occurs in the area of transition, 

above the upwind- and lee side of the mountain; the cap cloud region (Figure 2-3). In the cap 
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cloud region the compressional effect dominates the frictional effect (due to contact with the 

surface); with the result of stronger winds in the first 100m above the peak (Barry, 1981). As 

the wind overshoots the peak, the airflow is no longer forced upward by topography and the 

wave is reflected down due to stronger winds aloft or by the negative buoyancy effect. Flow 

is only bent down by the negative buoyancy effect if the stability is defined as statically 

stable (Bradbury, 1992a). 

 

Figure 2-3: Diagram of a mountain wave system with gravity waves on the lee-side. An 

idealised temperature and wind speed profile are indicated on the left. Adapted from: The 

COMET Program (2017) and Hertenstein & Kuettner (2005). 

The airflow falls with the lee side topography in a downdraft. The air parcel continues 

to accelerate downwards, overshooting the normal environmental temperature and pressure 

conditions due to momentum. As this happens, half the mountain wave wavelength is 

complete. The parcel continues in a downward motion until the buoyancy counteracts the 

downdraft into an updraft - forming the first wavelength of the wave. Flow does not 

necessarily need to be deflected upward for mountain wave formation to take place. Cold 

stable flow over a barrier initiates downslope winds (Figure 2-4) on the lee side correcting 

with a wave or hydraulic jump (Feltz et al., 2008).  
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Topography is a pre-requisite for mountain wave development. Ideal topographical 

features include; a long unbroken ridge with a significant height and a Witch-of-Agnesi 

shape. Idealised mountains are rare in nature and waves take form over any number of 

shapes; even isolated peaks initiate waves (Bradbury, 1992b).  

Flow across a mountain barrier takes multiple patterns (Figure 2-4) depending on the 

environmental conditions. Subcritical conditions (Fr<1) are characterized by a stable layer 

some height above the mountain barrier. In wind flow across the ridge, the stable layer drops 

very slightly over the barrier; simulating a type of Venturi effect. Under supercritical 

conditions (F>1) wind flow follows the topography to produce a standing wave. Transitional 

flow approaches horizontally but then follows the lee ridge; forming a very strong downdraft. 

Downwind of the lee slope, the first of a series of lee waves form (Bradbury, 1991). 

 

Figure 2-4: Different wind flows over a mountain barrier for subcritical, supercritical and 

transitional Froude flow. Adapted from: Bradbury, 1991. 

Lee waves will remain stationary as long as upwind conditions remain constant, as 

conditions change a wave can start drifting. Horizontal moving waves can move upwind 

(when Fr<1) or downwind (Drobinski et al., 2001). Upwind moving waves are slowed by the 

incoming wind, forming stationary waves (Bradbury, 1992a). Stationary waves (first type 

mountain wave) on satellite imagery display bars running upwind over the mountain itself 

with a few bars losing intensity downwind (See Figure 5-9 at 15:15). 

Trapped lee waves are the second type of mountain wave. A wave taking shape over 

a barrier and reflected in phase (by an inversion or strong winds aloft), a resonating system 
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forms a wave ‘train’ (Bradbury, 1992a; Caccia et al., 1997). Some studies observed wave 

trains of up to 300km (Feltz et al., 2008), however, due to leakage of energy, they seldom 

form more than eight downstream waves (Nance & Durran, 1997). The weaker the stable 

layer or jet responsible for the reflection, the more energy leaks out of the system; with every 

following wave a smaller amplitude and shorter wavelength (Bradbury, 1992b). During 

trapped waves, a single vertical propagating wave is observed over the ridge (Durran, 2013). 

The third wave type develops if a wave is untrapped and not reflected; forming vertical 

propagating waves (Bradbury, 1992a). 

Synoptic conditions leading to mountain waves are quite variable. The ICAO 

(International Civil Aviation Organization) noted that a passing cold front frequently triggers 

mountain waves over north-south orientated mountains (International Civil Aviation 

Organization, 2005). Then Feltz et al. (2008) observed the disintegration of a trapped wave 

system during the passing of a cold front. In South Africa, severe mountain waves often 

occur during northwesterly pre-frontal flow (Van der Mescht, 2012).  

According to Reichman (1978), Van der Mescht (2012), Barry (1981) and 

International Civil Aviation Organization (2005); optimal conditions for the formation of waves 

are:  

 Statically stable airmass in the vicinity of the peak  

 Wind speed at ridge crest ≥ 7ms-1  

 Wind speed increasing with altitude 

 Wind direction perpendicular to the barrier (within 30°) 

 Constant wind direction with height 

According to ICAO, mountain waves can be forecast but it is “often very difficult to 

forecast the actual wind speeds and wind shear” associated with this (International Civil 

Aviation Organization, 2005). Forecasting mountain waves, South African aviation weather 

forecasters simplistically only apply criteria 1 to 4. Not forecasted are the structure and 

movement of waves, while the severity is left to forecaster interpretation. However, Leeb-du-

Toit (2006 cited in Van der Mescht, 2012) estimated the minimum required speed to result in 

mountain waves in South African conditions to be a minimum of 8ms-1. 

The basic structure and movement of mountain waves are dependent on 

atmospheric variables as well as the size and shape of the mountain barrier. The vertical 

profiles of the wind direction, speed, moisture, temperature and stability influences the 

amplitude and wavelength of a wave (Durran, 2013). Atmospheric stability is defined, in 

almost all studies, to be of utmost importance during mountain wave cases. The more (less) 
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stable the airmass, the more (less) intense mountain waves are expected. Some sources, 

such as Bradbury (1992), state: waves can be found even when the air is “noticeably 

unstable.” Where no stable layer is present at the mountaintop, each mountain, ridge or 

peak produces its own wave with different wavelengths. This produces erratically moving 

waves (Bradbury, 1991). Optimal stability conditions are low stability conditions that flank a 

more stable layer in the middle (Leeb-du Toit, 2006 cited in Van der Mescht, 2012). 

Except for stability, wind speed is another determining factor for wavelength. A parcel 

proceeding at a slow (fast) speed over a barrier evolves into a short (long) wavelength wave. 

Wind direction at mountain peak is also linked to wave propagation. A wave running at an 

angle to the topography infers a mountaintop wind direction not fully perpendicular to the 

ridge, but at the same angle (Feltz et al., 2008).  

The Froude and Scorer parameters represent all criteria responsible for mountain 

wave development (topography, stability, wind speed and direction). The Froude number 

(Equation 2.2) determines whether wave development takes place while the Scorer 

parameter dictates the vertical extent of the wave (Cronje & Van der Mescht, 2013). The 

Scorer parameter (Equation 2.9) represents the thermodynamic structure of the atmosphere. 

The parameter consists of barrier-orientated winds as well as the Brunt-Väisälä frequency 

and states; the frequency of mountain waves cannot exceed the local Brunt-Väisälä 

frequency (American Meteorological Society, 2012). The parameter derived from an upwind 

sounding or model data provides an estimate of the vertical extent of a wave. A uniform or 

increasing with height Scorer parameter produces a mountain wave that propagates upward 

and downwind. If the Scorer parameter decreases with height, the wave energy is deflected 

and trapped lee waves emerge (Caccia et al., 1997).  

𝑙2=
N

2

v̅̀
2 -

1

v̅̀

∂2v̀

∂z2
;  Equation 2 . 9 

Where; 𝑙 = Scorer parameter 

For trapped waves to form, the following condition must hold: 𝑙L
2-𝑙U

2>
π2

4H
2; where 𝑙L 

and 𝑙U is the Scorer lower and Scorer upper layers, while H is the depth of the lower layer. 

Where the two layers differ, exceeding the above condition; trapped waves form. Thus, the 

horizontal wave number (k) will satisfy 𝑙L< k < 𝑙U (where k=
2π

wavelength
) for resonant lee waves 

to form (Durran, 2013). 

In this dissertation parameters utilized to evaluate mountain waves were the Froude 

and Scorer parameters. 



 

18 

 

2.2  TURBULENCE 

All three the wind flow patterns (blocking, gap flow or mountain waves) in isolation, or 

in a combination, produce wind shear relating to severe turbulence. Turbulence is defined 

as; “Random and continuously changing air motions that are superposed on the mean 

motion of the air” (International Civil Aviation Organization, 2007). A turbulent region is 

experienced differently in different aircrafts and is contributed to the differing weight, 

wingspan and the aircraft cruise speed. For example, in mountain waves, the area of 

maximum energy is maximum lift for a glider plane (Bradbury, 1992a), but an aircraft 

travelling at a faster speed, penetrating this area, experiences increased turbulence. 

Blocking and gap flow predominantly produces turbulence caused by areas of increased 

wind in proximity to slower winds. This may be coupled with major wind direction changes 

but is easily avoided when not flying low level. 

Mountain waves differ in that they produce turbulence throughout the atmosphere 

and predominantly as a result of vertical motions. The Australian Bureau of Safety 

recommends that an aircraft needs to adopt a manoeuvring speed as well as keep clearance 

of at least the height of the barrier in order to keep safe in mountain wave turbulence 

(Australian Transport Safety Bureau, 2000). 

In South Africa, research concerning mountain waves and their associated 

turbulence has been largely neglected. In 2001, De Villiers & Van Heerden found mountain 

waves extending up to 7600m amsl over the Drakensberg in 25ms-1 wind speeds and low 

stability conditions. In 2013, Van der Mescht & Eloff defined a methodology in measuring 

mountain waves in the Hexriver Mountains. Cronje & Van der Mescht (2013) followed this 

study by investigating limiting conditions in mountain wave rotor formation. Both of the last 

named studies were conducted during northwesterly pre-frontal conditions. Until the study of 

Van der Mescht & Geldenhuys (2017), the character and intensity of mountain waves, from 

non-northwesterly pre-frontal conditions, were largely unknown in South Africa.  

The intensity of mountain waves is classified according to three attributes (Table 2-

2); wavelength, amplitude and vertical velocity (Grubišić & Lewis, 2004). A greater amount of 

energy occurs with large amplitude waves (Bradbury, 1992a); which usually entails the first 

wave downstream of the peak (Suarez & Stauffer, n.d.). The area of maximum vertical 

velocity is roughly in the middle of the ridge and trough (Feltz et al., 2008). The vertical rate 

of flow creates a severe hazard, especially for aircraft with limited performance (most light 

aircraft) (CAA, n.d.b). Grubišić & Billings (2007) measured severe mountain waves in the lee 
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of Sierra Nevada Mountains with a downdraft speed of 10ms-1. The Sierra Nevada 

Mountains has an average climb of 3000m over 10km (Grubišić & Billings, 2007). Another 

case of severe waves, as classified by pilots in the Rockies during a non-linear wave 

system, exhibited a 4ms-1 vertical velocity (Feltz et al., 2008). Van der Mescht & Eloff (2013) 

classified waves severe according to the strength of the wave-induced rotors as well as the 

updraft and downdrafts (6.1 and 7.2ms-1 respectively). The Australian Government and the 

International Civil Aviation Organization classified mountain waves as severe when the 

downdraft exceeds 3ms-1 and moderate when values reach between 1.75 – 3ms-1 

(Australian Transport Safety Bureau, 2000; International Civil Aviation Organization, 2007). 

No internationally used criteria exists for severe mountain waves, but the phenomena pose a 

significant risk to aviation. 

Table 2 - 2: Intensities of Mountain Waves. Adapted from Grubišić & Lewis, 2004. 

Intensity of mountain waves Strong Moderate Weak 

Wavelength (m) 13-32 8-13 4-8 

Altitude variation (m) 1200-2400 600-1200 150-600 

Vertical velocities (ms-1) 9-18 4.5-9 1.5-4.5 

Mountain wave turbulence is induced by vertical shear and is a product of oscillating 

air currents (Uhlenbrock et al., 2006). The three main sources of turbulence in a mountain 

wave system includes; breaking waves, interference, and rotors. During these three 

processes, airflow does not remain laminar but becomes turbulent in nature (American 

Meteorological Society, 2012; Stiperski & Grubišić, 2010). Breaking waves form when a 

wave builds up and finally topples over to diminish. Interference takes shape as multiple 

waves interact to form a combination wave with different characteristics (American 

Meteorological Society, 2012). A rotor (roll cloud in Figure 2-3) is a circulation of flow below 

the peak of the wave, around a horizontal axis parallel to the mountain range (American 

Meteorological Society, 2012). In the experiment conducted, observations (using satellite 

imagery) of interference waves were limited. Literature suggests that breaking waves occur 

more frequently in large amplitude waves where waves can tilt upwind and topple over; small 

amplitude waves remain sinusoidal (Bradbury, 1992a). For the above reasons interference 

waves and breaking waves were not the focus of this dissertation. 

Rotors are a narrow vortex of rotating winds. Rotor vortices, produced by mountain 

waves, propagate at the speed of its corresponding wave (Suarez & Stauffer, n.d.). The 
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transient nature of rotor circulations (extreme speed and direction changes) is associated 

with strong wind shear and poses a significant aviation risk (Reichman, 1978). In the 

Hexriver Mountains, downdrafts and rotors were the main parameters classifying the severity 

of mountain waves. Reversed flow, constant potential temperature, vertical wind shear, 

vorticity and the Richardson number are all used to identify rotors and their associated 

strength (Van der Mescht & Eloff, 2013). Rotor induced reversed flow is indicated by a 

constant potential temperature at ridge height. Multiple studies implemented constant 

potential temperature to indicate areas of constant wind (Overland & Bond, 1995; Van der 

Mescht, 2012; Feltz et al., 2008). The Richardson number is an indication of whether 

turbulence exists (American Meteorological Society, 2012). The Terrain-Induced Rotor 

Experiment (T-REX) classified Richardson values below 0.25 as critical. Critical values 

demarcate, convective overturning and turbulence are generated (Doyle et al., 2009). Rotors 

are classified severe where the Richardson number (Equation 2.10) reaches a critical limit 

(0.25) and where absolute vorticity values are ‘higher’ (Van der Mescht & Eloff, 2013). 

Vorticity (Equation 2.11) during mountain wave events are aligned parallel to the ridge. 

Higher absolute vorticity values indicate stronger rotation in a rotor. In the Southern 

Hemisphere (opposite to the Northern Hemisphere), positive vorticity values indicate anti-

clockwise rotation, while negative values indicate clockwise rotation (Hertenstein & Kuettner, 

2005).  

Ri=
(
g

θ⁄ )(∂θ
∂z

⁄ )

(∂u
∂z

⁄ )
2
+(∂v

∂z
⁄ )

2;     Equation 2 . 10 

ƞ=∇×U;     Equation 2 . 11 

Where; ƞ=Vorticity, ∇=Nabla operator and U=is the total wind in i, j and k directions 

“No hard and fast rules” are available to determine the severity of turbulence (De 

Villiers & Van Heerden, 2001). However, multiple rules and parameters exist in order to 

attempt to predict the severity of turbulence. It is mentioned that the presence of directional 

shear combined with horizontal shear has a compounding effect on the intensity of 

turbulence. The South African Weather Bureau1 implemented the dimensionless Ellrod 

Turbulence Index (ETI – Equation 2.12) (Ellrod & Knapp, 1992) to aid in forecasting clear air 

turbulence above ±7000m. The ETI highlights turbulence generated by multiple systems 

                                                

 

1 Now the South African Weather Service 
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including, mountain waves. De Villiers & Van Heerden (2001) noted that the index does not 

predict all turbulent cases and the associated severity successfully. 

ETI=DEF×VWS 
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Where; DEF=deformation, VWS=vertical wind shear, DST=horizontal stretching deformation 

and DSH=shearing deformation 

A reported weakness of turbulence indices is that it does not consider air density. 

Turbulence is merely a measure of differences in airflow over the aircraft wing and does not 

consider density. For example, the effect of a 10ms-1 wind change with height is not the 

same at 1000m, in dense air, and at 10000m, in less dense air. In less dense air, the net 

change in airflow over the aircraft wing is less and less turbulence is experienced. 

The Richardson number and the Vorticity equations were parameters utilised in this 

dissertation to highlight turbulence induced by mountain wave rotors. The ETI was tested in 

this dissertation, in the blocking, gap flow and mountain wave regimes, to determine the 

usability of the index on the forecasting desk.  

2.3 SUMMARY 

This chapter discussed the three main wind flow patterns in mountainous terrain, 

namely; blocking, gap flow and mountain waves. The processes responsible for the 

formation and the characteristics of the patterns were highlighted. Observations conducted 

by other studies and the parameters that were found to govern the flow and its 

characteristics were detailed. This section was concluded with a discussion on turbulence 

parameters. 
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CHAPTER 3 : SETTING 

In this chapter a brief climatology of the Cape South Coast (where the study site is 

located) is discussed, followed by an overview of the study site and topographical features. 

A review of the data follows with the associated weaknesses and strengths of the different 

data types. This flows into the methodology applied to the data in order to achieve the aims. 

Experimental design formed part of the aims and is not discussed in the methodology, but is 

outlined in Chapter 4. 

3.1 CLIMATOLOGY 

The Cape South Coast is located in the westerlies latitude region and experiences 

frequent frontal weather. According to Carter (2005), the weather systems influencing South 

African weather is broadly summarized by a sequence; influencing the country every so 

often. The sequence lasts roughly six days and starts with the country being dominated by 

subtropical high pressures. By day three the low-pressure centre of the cold front, located in 

the westerly belt, approaches South Africa. Day four and the cold front exits the continent 

with the Atlantic high-pressure system commencing to ridge from west to east. By day five 

and six the Atlantic high slips eastwards, south of the continent, towards the Indian high-

pressure circulation. End of day six, the ridging high pressure merges with the Indian high 

with no effect on South Africa; returning to day one of the sequence (Preston-Whyte & P.D, 

1988 cited in Carter, 2005).  

Along the South African coastline, the passing of a cold front is preceded by a 

coastal low. A coastal low is a shallow system turning winds in passing from offshore 

directions to onshore southwesterlies. A few hours after the passage of the coastal low the 

cold front approaches the area. On average, in a 10-year climatology, five coastal lows 

influence the coastline per month (Carter, 2005), relating to the passage of five cold fronts 

per month. Taking coastal lows, cold fronts and highs slipping south of the coast into 

consideration, an approximate westerly and easterly wind direction (zonal wind) are 

expected. 
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3.2  STUDY AREA 

The study area is known as the Kareedouw Pass (Figure 3-1 & Figure 3-2). The pass 

(34° 01’ 49.37” S and 24° 27’ 51.76” E), situated between the Tsitsikamma-Kareedouw ridge 

(Figure 3-1 and Figure 3-2), is located in the Cape Fold Mountains along the Cape South 

Coast. The study ridge orientation is 290 - 110° (Figure 3-3) and peak heights vary from 

530m to 820m amsl. The upwind and lee surface height varies between 220m to 350m amsl. 

A few gaps are scattered along the ridge that measures 150 to 350m deep and 1 to 2km 

wide; when measured at the top of the gap.  

 

Figure 3-1: Topography of the study site and surrounding terrain. Green dots and triangles 

indicate initial positions which was later moved to new locations. Radiosonde release 

locations include letters A through to E. The permanent AWS network consists of Gibson 

Bay windfarm, Cape St Francis, and Port Elizabeth (indicated on larger window), while in the 

smaller window the semi-permanent stations are named in the table with their respective 

height above sea level. 
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Figure 3-2: Left: Cross-section of Africa Peak (from South to North), forming the western 

flank of the study gap. The observable mountain height measures 469m. Red diamonds 

indicate Africa Peak AWS (top – station 1 in Figure 3-1) and St1_baro AWS (bottom – 

station 2 in Figure 3-1). Lines indicate the foot and the halfwidth of the mountain. Right: 

Cross-section of the study gap from west to east. Lines indicate the gap width at its widest 

point and the half gap width.  

The study gap is flanked by Africa Peak to the west and an unnamed peak to the 

east (819m and 744m amsl respectively as in Figure 3-2). The gap height; deepest point of 

the gap, measured at 460m amsl, making the gap between 280 and 350m deep. All 

calculations applied the gap depth from 460 to 819m. The gap width of 1400m was 

determined at the fixed altitude of 744m amsl. The observable mountain height of 469m was 

applied in all calculations with a mountain halfwidth averaged at 861m. The eastern peak is 

broader and lower in elevation in comparison to Africa Peak and rises by 394m to the peak 

with a mountain halfwidth of 986m.  

3.3  DATA 

Data obtained during this study were on event and longer-term basis. In this 

dissertation, an event refers to a time period when a field visit with radiosondes was 

conducted. The duration of all events was classified from the time of the first radiosonde up 

to the termination of the last radiosonde. Event analysis consists largely of radiosonde data, 
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while longer-term analysis consists of Automatic Weather Stations (AWSs) data, 

represented in period by Table 3-1. Details on the AWS and radiosonde sites are provided in 

Chapter 4 – Experimental design.  

Table 3-1: Availability periods of all temporary AWSs. The table is a representation of the 
periods used in analysis throughout the rest of the study. 

Station name Availability period (number of 

days available/total days in field) 

Comments 

Africa Peak AWS 19/01/2017-13/12/2017 

(320/321) 

Wind speed regarded as under-

estimation throughout the period 

(discussed in Section 3.3.3). 

Camo AWS Old position 10/02/2017-24/05/2017 

(103.9/104 days) 

Data was evaluated as 

unfavourable and the station was 

relocated to obtain better 

exposure 

St1_baro AWS Old 

position 

01/04/2017-11/05/2017 

(40/40 days) 

St1_baro AWS new 

position 

25/05/2017-28/02/2018 

(279/280 days) 

 

Camo AWS new position 25/05/2017-28/02/2018  

(280/280 days) 

 

Midvalley AWS 16/11/2017-13/12/2017 & 

04/02/2018-28/02/2018 

(51/52 days) 

  

Cape St Francis & Port 

Elizabeth AWS 

19/01/2017-28/02/2018 

Cape St Francis – (387.3/406 days) 

Port Elizabeth – (402.15/406 days) 

 

Windfarm AWSs 19/01/2017-31/12/2017 

(347/347 days) 

 

3.3.1 Surface data 

Surface data comprised of 11 months of continuous 10min AWS data. The AWS 

network consisted of; four semi-permanent AWSs and three permanent AWSs (Figure 3-1). 

The permanent AWSs are a fixed structure used by the South African Weather Service and 

Council for Scientific and Industrial Research (CSIR) on a permanent basis. The semi-

permanent stations were erected specifically for this research. The semi-permanent stations 

included Africa Peak, St1_baro, Camo and Midvalley AWS (numbered 1-4 in Figure 3-1). 



 

26 

 

The permanent AWSs included; the South African Weather Service owned Cape St Francis 

and Port Elizabeth AWSs and lastly, the CSIR owned Gibson Bay windfarm AWS. All 

stations measured wind direction, wind speed and temperature. All permanent stations as 

well as Africa Peak, St1_baro, and Midvalley AWS also reported pressure. 

Data were collected with a variety of sensors and types of AWSs. Africa Peak, Camo, 

Midvalley, Port Elizabeth and Cape St Francis AWSs consisted of Campbell Scientific 

loggers, mounted with RM Young wind sensors. Midvalley AWS was mounted with a Davis 

wind sensor. The St1_baro AWS consisted of a climatological designed MC Systems station; 

which has a reported weakness for measuring variability on a short timescale. The type of 

AWS at the windfarm was unknown, but the nature of its application requires calibrated and 

accurate data. The windfarm comprised of an extensive network and wind measurements 

were taken at 10m, 20m and 62m. The data owners of the windfarm (CSIR) as well as the 

Cape St Francis and Port Elizabeth AWS (South African Weather Service), confirmed the 

data accurate. 

 All permanent stations passed calibration and wind exposure tests (with exception of 

the windfarm which was not inspected). All semi-permanent weather stations were fully 

calibrated and tested before deployment in the field. The instrumentation bias of all sensors 

were comparable (Table 3-2), which facilitated easy comparison. Availability of AWS data 

varied due to all stations not being deployed at the same time. Semi-permanent stations 

were left in the field as long as possible to maximise data span (Table 3-1). To make 

analysis comparable, a period similar to the semi-permanent stations were applied to all 

permanent AWS. 

Table 3-2: Automatic weather station instrumentation bias and specifications. Source: MC 
Systems (2010), Campbell Scientific (2018) and RM Young (2018). 

Sensor, Brand Accuracy 

Thermometer, Vaisala ±0.6°C 

Thermometer, MC Systems ±0.2°C 

Barometer, RM Young 0.3hPa 

Barometer, MC Systems 0.2hPa 

Wind anemometer, RM Young Direction: ±3°                  Speed: 0.3m.s-1 or 1% 

Wind anemometer, MC Systems Direction: ±5°                  Speed: 2% 

Wind anemometer, Davis Direction: ±3°                  Speed: 1m.s-1 or 5% 
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In this study, the Port Elizabeth AWS was furthest removed from topography and 

thereby, deemed least influenced by it. As data from this AWS were regarded as least 

influenced by the topography (and blocking terrain), the data represented environmental 

conditions. This proved useful; to have a dataset to which data from other AWSs can be 

compared to. 

3.3.2 Upper air data 

Upper air data were collected using InterMet Africa 0.2kg radiosondes. Radiosondes 

transponded temperature, relative humidity, height, latitude and longitude data every 1 

second. The program receiving the data (D-Met) calculated the wind direction, speed and 

pressure. Pilot balloons were inflated with Hydrogen gas (as opposed to Helium), sponsored 

by Air Liquide. Given the price difference and the environmental impacts in generating 

helium, hydrogen seemed the sensible choice. All South African Weather Service balloons 

and all previous South African mountain wave studies utilised Hydrogen; making the study 

comparable to other studies (Van der Mescht (2012) and Cronje & Van der Mescht (2013)). 

The balloon was inflated to lift a 0.5kg weight and a radiosonde was attached via a dereeler. 

The radiosonde data were transponded, at the site, using an InterMet Africa portable 

receiving station connected to a laptop. Radiosonde biases displayed a good overall 

accuracy (Table 3-3) and facilitated easy quality control. 

Table 3-3: InterMet Africa radiosonde instrumentation bias and specifications. Source: 
InterMet Africa Systems, 2016. 

Sensor Range Accuracy Resolution Response time 

Temperature -95 to +50°C ±0.2°C <0.01°C 2s @ 1000hPa 

Humidity 0 to 100% 5% 0.1% 2s @ 25°C 

60s @ -35°C 

GPS  10m – horizontal 

15m – vertical 

 1Hz 

Wind speed  1m.s-1  1Hz 

3.3.3 Data quality control 

In all field studies, data need to be intensely quality controlled as human error and 

faulty equipment influences measurements. Throughout the study, suspicious data were 

discarded and not used in the analysis. There were two instances where suspicious data 
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were included in the data set, after some manual manipulation. The radiosondes used in the 

study did not have a barometer but calculated the pressure values by applying the 

Hypsometric equation (Equation 3.1). Applying this equation required an accurate initial 

pressure value. This was unknown at the time of the first event and an approximate pressure 

value was entered, rendering pressure data unusable. To circumvent this, the pressure of 

St1_baro were utilised to determine a more accurate initial pressure. Applying this new 

value, the pressure was manually calculated for all levels by implementing Equation 3.1. 
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e
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⁄
;     Equation 3 . 1 

Where; h = height difference, Tv= Virtual Temperature 

The second exception concerned the Africa Peak AWS. The anemometer on Africa 

Peak produced faulty wind speed and direction for an extensive period. Omitting the data 

would have resulted in too large a gap in the data and the decision made was to correct the 

data and to use this with caution. The wind direction became faulty due to a screw rattling 

free and with the direction reference box unsecured, the direction measurement became 

faulty. The anemometer wire caught on other equipment, settling the reference box on 40°; 

instead of the required 180°. Photos three months prior to the discovery of the fault, revealed 

the box in the same position as it was discovered; suggesting it remained stationary for the 

period. To determine the date the sensor became inaccurate, Port Elizabeth southwesterly 

winds exceeding 7ms-1 were compared to Africa Peak data. All untrusted data were 

corrected by 140°, after which the two graphs compared reasonably well with one another.  

The Africa Peak wind speed sensor was more complicated to correct. The propeller 

gear protrusions came out of its hollow; abrading them due to friction yielding a reduced 

wind speed measurement. An attempt to devise a correction formula was launched; with a 

station erected next to the faulty one. Upon retrieval of the second station, it became evident 

that the wind blew the secondary anemometer to pieces – rendering measurements 

unusable. Inspection of the original Africa Peak station, revealed the station out of order and 

all attempts at fixing the station were abandoned. The Africa Peak direction data were thus 

used with caution and the speed as an under-representation. 
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3.4  METHODS 

This section describes the methodology applied to all data; to achieve an output to 

interpret. The bulk of the data analysis was conducted in Excel with some minor parts being 

conducted with Python and Grads. The program, D-Met, produced the skew-T plots and 

WRPlot the windroses. Radiosonde flight paths were depicted on Google Earth using HTML 

coding in WordPad and all topographic analysis were administered using Q-GIS. Satellite 

imagery was compiled and analysed in SUMO. In analysis, all times mentioned and applied 

were in South African standard time; GMT +2. All heights mentioned in the study were in 

amsl, unless otherwise stated.  

Data analysis formed two parts: surface data and event analysis. Provided the 

consistency and continuity of AWS data, it formed the basis of the surface analysis. 

3.4.1 Surface data analysis 

Windroses, produced from AWS data, provided an overview of wind in complex 

terrain. To isolate blocking, gap flow and mountain wave cases, another set of windroses 

were drawn when environmental (Port Elizabeth) winds were southwesterly. To disregard 

light and variable winds, without losing critical data, the Port Elizabeth required wind speed 

was set at the pre-requisite speed for mountain waves to develop; 7ms-1.  

Nocturnal, pressure- and temperature-gradient effects were investigated with 

windroses. The effect of the anticipated nocturnal low-level inversion, on gap flow, was 

determined by drawing windroses for nocturnal hours (18:00-05:50) and day hours (06:00-

17:50). The brief analysis did not take inversion height, strength and synoptic systems into 

consideration. To reduce the effect of synoptic winds and to isolate the effect of the inversion 

and gap, the data were normalised with the environmental wind; to produce a normalised 

windrose. This was done as follows; the Camo wind speed was subtracted by the Port 

Elizabeth wind speed to produce normalised winds. The normalised winds were offset by 

20ms-1, to ensure no negative wind speeds exist. To produce the true normalised windrose, 

the windrose legend was adjusted by the 20ms-1. 

 The across mountain pressure- and temperature-gradients were determined by 

subtracting the windfarm AWS from the Midvalley AWS data. The across-barrier gradients 

were classified and sorted to link to gap wind directions and wind speeds. Temperature 

classes included; 10<class 1<5°C, 5≤class 2<0°C, 0≤class 3<-5°C and -5≤class 4<-10°C. 
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The pressure gradient was calculated from the sea level pressure; which was calculated by 

assuming a column temperature equal to the station pressure. Pressure classes included; -

4.5<class 1<-3hPa, -3≤class 2<-2hPa, -2≤class 3<-1hPa and -1≤class 4<+0.5hPa. The 

different classes were used to draw windroses of the corresponding gap winds (Camo 

station). The Camo station was used, as opposed to the St1_Baro, given that it provided 

more favourable wind measurements for comparison. The St1_Baro provided slower wind 

speeds and also consisted of a different brand sensor to the Camo, Africa Peak, Cape St 

Francis and the environmental wind (Port Elizabeth) stations – making the data not readily 

comparable. 

In the final surface analysis, wind speed variability was analysed at all RM Young 

sensors and the windfarm. Wind speed variability not only provides indications of turbulence, 

but is also of importance to other applications, for example; wind energy, agriculture, etc. 

Speed variability from the maximum gust and for average winds were determined for all 

speeds exceeding 7ms-1, by calculating the standard deviation and variance (Equation 3.2 & 

3-3). 

σ=√∑ (Umax-U̅)
2

n-1
;      Equation 3 . 2 

σ2=
∑ (Umax-U̅)

2

n-1
;      Equation 3 . 3 

The different data types were analysed individually and in combination (e.g. AWS 

versus radiosonde data). Conclusions made during AWS analysis were tested on the other 

data types (e.g. radiosonde and satellite data). 

3.4.2 Event analysis 

Radiosonde data formed the basis of event analysis, but all available data were 

employed for full analysis. Events were identified and forecast when winds favoured 

blocking, gap flow and mountain wave formation. Literature suggests that more intense gap 

jets form (especially at the exit) when mountain waves are present (Gaberšek & Durran, 

2004). With this knowledge, emphasis was placed on mountain waves being present 

throughout all events. 

Winds favouring blocking, gap flow and mountain waves include southerly to 

southwesterly directions; exceeding 7ms-1 (see Chapter 2). The southwesterly to southerly 

directions refer to winds associated with frontal effects impinging on the topography (Figure 
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3-3), while the speed refers to the mountain wave formation criteria. To simplify the 

discussion of this study all winds between 180° and 270° were collectively referred to as, 

southwesterly winds. Environmental southerly winds exceeding 7ms-1 were found rare, 

resulting in all events consisting of flows between 230° and 270° (to avoid discussing results 

pre-emptively, see discussion on Port Elizabeth windrose of Figure 5-2). Visible waves 

afforded the opportunity of easy decision making in the field; whether to continue with 

radiosonde ascents or to terminate the event. Decision making consisted of visualising 

waves from the ground and by high-resolution visual satellite imagery. Other Eumetsat 

channels were less helpful in analysis, as the resolution proved inadequate to observe the 

waves. All events were analysed with a full synoptic analysis from the surface to 500hPa. 

Mountain waves were the highest propagating turbulence generating mechanism, and data 

above that were considered of lesser importance.  

 

Figure 3-3: Ridge orientation depicting a real v wind component (dashed line) and the barrier 

perpendicular v̀-wind used for calculating parameters. The ù wind component was calculated 

similarly. 
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All parameters dealing with event analysis applied a wind respective to the barrier, 

rather than total winds. A barrier-orientated wind field was created where along-barrier winds 

(ù) and cross-barrier winds (v̀), were represented by; ù=
u

cos20°
 and v̀=

v

cos20°
 (as in Figure 3-3). 

The rotated wind plane facilitated easy blocking, gap flow and mountain wave analysis. 

3.4.2.1 Blocking investigation 

The upwind radiosonde barrier respective components (ù and v̀) allowed comparison 

with other blocking studies. Graphs of the barrier respective winds were compared to Parish 

(1982) and Neiman et al. (2010). The profiles implemented were to substantiate parameters 

to indicate whether blocking occurred and to determine the region of maximum blocking.  

The first step to identifying and classifying wind flow regimes began with calculating 

the Froude and Burger parameters (see section 2.1). Both parameters were calculated from 

the upwind radiosonde; which was released in the blocking affected area. Ideally, the 

parameters should be calculated from data upwind of this area, however; this was not 

practical as the blocking region extended to over the ocean. For comparison and calculation 

purposes, incoming or upwind flow was assumed unchanged throughout the event. The 

Froude number (Equation 2.2), calculated from the upwind radiosonde, indicated whether 

blocking (Fr<1) or mountain waves (transitional Fr values) could exist. The Burger number 

(Equation 2.4) indicated whether flow was quasigeostrophic, semigeostrophic or if the slope 

acted as a hydrodynamic wall; blocking all flow. Depending on which Froude condition was 

satisfied, the Rossby radius equation (Equation 2.5) presented the expected jet width while 

the thermal wind equation (Equation 2.6) the expected speed increase.  

The blocking jet width and speed increase was compared with observations of 

scatterometer satellite imagery; depending on availability at that time. The vertical extent of 

the blocked flow was determined with the Froude derived height scale and tested on the 

barrier respective components. Whenever blocked flow occurred above gap height, gap flow 

formed through air spilling down the gap. 

3.4.2.2 Gap flow investigation 

Wind flow in the gap was expected during both blocking and mountain wave regimes. 

Observations from radiosonde and AWS data displayed gap jet strength and its associated 

directional shear. Radiosonde temperatures and pressures, averaged over the gap depth, 

were applied to the Bernoulli Equation (Equation 2.7 and 2.8). For this jet strength at the exit 

projection, the upwind radiosonde was assumed representative of gap entrance conditions 

and the Gap radiosonde (location B in Figure 3-1) of gap exit conditions. Aside from the 
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speed and directional changes of the gap jet, downdrafts and a hydraulic jump at gap exit 

were other turbulence generating features investigated. 

Repetitive variations of updraft to downdrafts and velocity disruptions indicate a 

hydraulic jump (Saito, 1992). Supercritical to subcritical changes in Froude values, 

calculated from the Gap radiosonde, acted as an indication that a hydraulic jump was 

possible (Colle & Mass, 2000). Froude changeover values combined with observed 

divergence (subjectively observed on radiosonde flight paths emanating from the gap), 

updrafts and downdrafts, were used to determine whether a hydraulic jump or an expansion 

fan was present. The result was tested on a potential temperature interpolated graph, to infer 

wind flow. 

Potential temperature has been employed by numerous studies to infer and depict 

wind flow (Overland & Bond, 1995; Van der Mescht, 2012; Feltz et al., 2008). The first step 

to compile the graph was to plot all radiosonde altitude values versus distance from release 

point. This produced an ascent profile, which was overlaid with topography, over which the 

radiosonde drifted. On the ascent line, potential temperature was plotted by hand, at the 

respective height and distance observed. The final step was to infer the wind flow by hand; 

by linking all similar potential temperature values. To ease the process, vertical velocities at 

the respective position provided key insights whether to draw updraft or downdrafts. To 

distinguish between a true expansion fan and a simulated expansion fan; from downslope 

mountain wave induced lee winds, Africa Peak AWS potential temperature was added to the 

plot. If the radiosonde observed, below peak height, potential temperature values similar to 

the peak, a downdraft down the lee slope was indicated. 

3.4.2.3 Mountain wave investigation 

Mountain wave detection in radiosonde data encompassed a close inspection of 

radiosonde ascent rate. Frequently the wave was not strong enough to induce the 

radiosonde to lose height, and in these cases, a reduced ascent rate was used to infer a 

mountain wave top. The mountain wave top and the type of mountain wave were identified 

using the Scorer parameter and its associated wavenumber criteria. To reduce noise in the 

Scorer graphs, the parameter (Equation 2.9) was calculated every 250m and averaged over 

500m. The Brunt-Väisälä frequency was calculated for every data point, but similarly 

averaged over 500m to produce stability graphs. To determine wave characteristics, satellite 

imagery and lee radiosondes were analysed in conjunction with the Scorer parameter. 

Wavelength, amplitude, updraft and downdraft speed were all features providing 

insight into the severity of waves. Wavelength was measured on satellite imagery, 
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cumulative normalised ascent graphs or inferred from potential temperature plots. A 

radiosonde penetrating the wave, provides insight into the amplitude of the mountain wave. 

Lastly, vertical velocities were observed on radiosonde data to compare mountain wave 

severity to the literature.  

Arguably, the most severe feature of mountain waves are rotors. Rotors were 

observed in raw radiosonde data or in calculated vorticity, potential temperature and 

Richardson values. Vorticity was calculated for all lee side ascents to determine areas of 

rotation perpendicular to the barrier – highlighting rotors. Vorticity perpendicular to the 

mountain ridge was derived from Equation 2.11 and yielded; ( ∂w
∂y⁄ )-( ∂v̀

∂z
⁄ ). Possible 

rotors were inspected for constant values potential temperature values and increased 

updraft and downdrafts in vicinity of ridge height. The highlighted rotors were examined for 

critical Richardson values (Equation 2.10); to determine severe rotors and thus severe 

turbulence. 

3.4.3 Turbulence in general 

All radiosonde ascents were inspected with turbulence indicating parameters, 

namely; Richardson number, ETI, vorticity, updraft/downdrafts as well as wind direction and 

speed changes. All parameters, except vertical velocity, facilitated easy interpretation on 

graphs by highlighting extreme values. Turbulent areas produced such variations in vertical 

velocity, that noise in the data made interpretation difficult. 

The normalised ascent rate, provided the radiosonde updraft and downdraft speed; 

i.e. the vertical velocity. The normalised ascent rate was calculated by the average balloon 

ascent rate subtracted from the actual ascent rate. The collective ascent rates throughout 

the ascent produced the average ascent rate (Van der Mesht & Eloff, 2013; Grubišić & 

Billings, 2007). Theoretically, the normalised ascent rate is zero until an updraft; a positive 

answer, or a downdraft; a negative answer is encountered. Different to Van der Mesht & 

Eloff (2013) as well as Grubišić & Billings (2007), visualising the normalised ascent rate was 

a problem as noise in turbulent regions made readings difficult to interpret (600 to 800m in 

Figure 3-4 left). A solution was provided by the cumulative normalised ascent rate. Adding 

the normalised ascent rates did not only provide a visually more pleasing display, but 

highlighted all the updrafts, downdrafts as well as the turbulent disruption of laminar flow 

(disruption of a smooth graph between 600 and 800m). 
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On the normalised ascent rate graph, negative values depict a downdraft. On the 

cumulative normalised ascent rate, all leftward slants indicate downdrafts and all rightward 

slants indicate updrafts. The steeper the slant of the graph the more intense vertical 

velocities were measured. A long steady slant was indicative of a near-normal ascent rate, 

or a long, steady and smooth updraft. The physical values of the cumulative normalised 

ascent rate were of little interest. Plotting multiple parameters (for example barrier corrected 

winds, Froude and potential temperature) when no quantative vertical velocity values were 

required, made the cumulative normalised ascent rate an easy graph to correlate with.  

 

Figure 3-4: Normalised ascent rate (left) versus cumulative normalised ascent rate (right) in 

order to reduce noise in the data. 

Another variant of the cumulative normalised ascent rate graph was obtained where 

cumulative normalised ascent rates were plotted versus distance; this made a useful overlay 

on radiosonde altitude versus distance graphs (for example, dash-dot line Figure 5-14). In 

the bottom inset within this figure, the downward sloping dash-dot line indicates a downdraft 

and is in good correlation to where the radiosonde altitude flattens; indicating a reduced 

ascent rate caused by a downdraft.  

All areas highlighted as turbulent, were analysed in order to determine the intensity 

and possibly the origin thereof. All turbulence-indicating observations were compared to 

other studies to correlate severity of the features in this environment. Lastly, a theoretical 

case was prepared, using longer-term and event data; to simulate what an aircraft would 

experience during such cases. 
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3.5 SUMMARY 

This chapter started with the discussion of the importance of small-scale 

topographical features. Different types of data and how they were measured were then 

detailed, followed by the methodology used to analyse and interpret the data, in order to 

quantify blocking, gap flow and mountain waves. This chapter should be going hand-in-hand 

with Chapter 4, which should not be viewed in isolation. 
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CHAPTER 4 : EXPERIMENT DESIGN 

The study's first aim was to design an experiment to measure blocking, gap flow and 

mountain wave interaction. In this chapter, a detailed account is provided of the rationale, 

successes and failures contributing to the design of the experiment. This is followed by a 

brief discussion on experiments not conducted as part of this dissertation, but which have 

potential for future studies. Provided that the experiment was adapted in time as certain 

results were obtained and realised, some pre-liminary results may appear in this section. 

However, excluding these pre-liminary results from this section, would result in the reader 

not understanding the rationale.  

Funding often severely limits field studies. In these cases, exceptional planning is 

required to allow for optimal results with limited equipment and supplies. Lack of funding 

limited this study to conventional equipment, namely; AWSs and radiosondes. To design a 

successful experiment, it is required to understand the strengths and weaknesses of the 

available equipment. 

A weakness of AWSs is that it is a surface measurement and no vertical 

measurement is taken. The vertical structure of the atmosphere is obtained from 

radiosondes, which are more economically viable replacements for SODAR, LIDAR and 

RADAR. A weakness of radiosondes is that only a once-off point measurement is made at 

the respective height, making it difficult to track phenomena. Depending on the complexity of 

the experiment, careful consideration of surface and upper air measurements are required. 

In this dissertation, surface station data are used to investigate features over a longer time-

scale, and predominantly applied in the gap flow analysis. Radiosondes were released on an 

event basis and the data obtained predominantly used in the mountain wave and blocking 

analysis. 

4.1 AWS NETWORK DESIGN 

The design of the automatic weather station network was preceded by in-depth 

topographic chart analysis and multiple site visits. The ideal placement of the AWSs was 

decided on after considering the literature of field experiments, experts on field studies, 

topographical features and meteorological footprints (Figure 4-1). Factors hampering the 

placement of the instruments, included; permission from landowners, accessibility as well as 

financial and security considerations. To maximise data coverage, an existing permanent 
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AWS network (from the South African Weather Service and CSIR) was used to supplement 

data (Figure 3-1).  

 

Figure 4-1: Meteorological footprints which indicate wind flow funnelling through the gap. 

Note how all the branches point from South to North (North arrow in the bottom right corner). 

This made a sensible location for gap flow measurements and Camo station (station 3 in 

Figure 4-2) is observed in the block and the inset. 

To study gap flow, incident measurements at the entrance, measurements in the gap 

and at the exit of the gap were required. Upwind AWS sites were important to determine 

gap-incident conditions. The permanent network in the area included three upwind and no 

downwind AWSs. As three permanent AWSs included (Figure 3-1 – repeated below as 

Figure 4-2, due to the large number of referrals in this chapter); Cape St Francis, Port 

Elizabeth and the windfarm a good upwind network existed and attention was therefore 

turned to the ridge itself. One AWS on the ridge were to provide insight into mountain waves 

and data for comparison with gap data. The AWS was placed on Africa Peak (1 in Figure 3-1 

& 4-2), the highest peak flanking the gap.  

The placement of AWSs to measure gap flow on the lee side had to be decided on. 

Initially, the gap jet was to be measured by radiosondes and focus was placed on measuring  
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Figure 4-2: Topography of the study site and surrounding terrain. Green dots and triangles 

indicate initial positions which were later moved to new locations. Radiosonde release 

locations include letters A through to E. The permanent AWS network consists of Gibson 

Bay windfarm, Cape St Francis, and Port Elizabeth (indicated on larger window); while in the 

smaller window the semi-permanent stations are named in the table. 

Figure 4-3: Africa 

Peak weather 

station (1 in Figure 

4-2). Photo is taken 

toward the west with 

the lee slope visible 

to the right of the 

photo. 
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the gap outflow. The initial plan was later altered to place the AWSs in the gap itself, rather 

than in the outflow. Initially the AWSs were placed in the gap exit in order to measure 

divergence of flow in the exit region. The two AWSs (St1_baro old and Camo old – 5 and 6 

in Figure 4-2) were erected downwind of the exit region; on the right and left flank of the gap. 

Unfavourable  results  of  the  wind  measured  by  the  AWSs  resulted  in the  moving of the 

stations a month after deployment. Initial measurements combined with site visits suggested 

below average wind speeds and the possibility that eddies was measured rather than gap 

flow divergence. The left flank direction sensor, spinning in all directions, was seemingly 

indicating a probable eddy (which was a good find but produced below average wind 

speeds). The initial plan to measure gap divergence was therefore abandoned and the two 

AWSs moved to the gap, where the wind in the centre of the gap was measured (St1_baro 

and Camo – 2 and 3 in Figure 4-2). The AWSs were placed an equal distance from the gap 

centreline and at similar heights; approximately the bottom third of the mountain. This 

allowed insight into the right versus left flank of the gap jet. There were consequently two 

additional stations in the gap itself.  

On the lee side of the gap, measurements came from the Midvalley AWS (4 in Figure 

4-2). Theory suggests pressure and temperature gradients form an important part to explain 

gap flow and are a pre-requisite for calculations (Gaberšek & Durran, 2004). The Midvalley 

AWS was used as the lee observation, while the windfarm provided measurements of the 

upwind regime. Gradients from these two stations provided the opportunity to explain the 

pre-existing gap conditions. The Midvalley AWS was positioned far from the gap and 

uninfluenced by the gap flow. 

4.2 UPPER AIR OBSERVATION DESIGN 

In determining the location of upper air measurements, it was essential that they 

complement the measurements done by the AWSs. The launching of radiosondes required 

accessibility by road as the gas canister, used to inflate the balloons, needed to be 

transported safely. Another factor to consider was the reception quality of the equipment. 

Reduced reception was attributed to topographical features blocking line-of-sight to the 

antenna. There were only a limited number of radiosondes available in this project and it was 

therefore essential to optimize their use during every field experiment. There were two main 

considerations in the design of the upper air experinement: geographical location and ascent 
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rate. Decisions also had to be taken on the days of the experiement, determined by how the 

weather system evolved and what was observed.  

4.2.1 Geographical location 

A mountain wave study usually consists of one upwind Scorer radiosonde and some 

lee radiosondes (Van der Mescht, 2012). The upwind radiosonde, determines the incident 

conditions and the lee radiosondes measure the wave features. In this experiment the 

upwind radiosonde was used for determining upwind conditions and for measuring blocking. 

The upwind location was initially selected for easy accessibility (E in Figure 4-2; 5km from 

the ridge). However, during the first field event, the upwind radiosonde rapidly passed over 

the ridge rendering it unrepresentative. It was therefore decided to adjust the release 

location an additional 4km upwind (A in Figure 4-2). There were also three lee radiosondes 

released per event. 

In order to identify the location of the lee radiosondes, smaller experiments were 

conducted first. Ten preliminary lee radiosonde locations were identified, based on where 

literature suggested prominent wave features would be located (Feltz et al., 2008; Van der 

Mescht, 2012 and Durran, 2013). On days when turbulence was likely, hydrogen filled party 

balloons were released at the 10 locations and visually observed for signs of turbulence. 

Several observers with binoculars followed the assent of the balloons and locations with the 

most updrafts, downdrafts and balloon shaking were noted. Three radiosonde release sites 

were consequently identified and indicated as Gap (B), Midvalley (C) and Suuranys (D) in 

Figure 4-2.The Gap radiosonde (B in Figure 4-2) were used to measure gap flow and to test 

if mountain waves existed over the valley. The party-balloon experiment indicated significant 

downdrafts at the gap exit – confirming this release location was of importance. The 

Midvalley release location (C in Figure 4-2) was selected between the Kareedouw and 

Suuranys ridge. Close to 50% of the party balloons released from this location shook heavily 

in ascent, indicating turbulance. This location also provided the opportunity to measure flow 

down the Langkloof valley – which according to the local residents was significant. More 

importantly, the radiosonde was expected to drift through the valley rotor or downstream and 

be able to measure the primary mountain wave over the Suuranys ridge (Figure 4-4). The 

rate of ascent of the balloon released from this location would indicate the presence of a 

mountain wave or rotor.  

The last release location was situated on top of the Suuranys ridge (D in Figure 4-2). 

The party-balloon experiment demarcated a significant downdraft followed by vigorous 
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turbulence in its ascent. Apart from the turbulence, this location could also possibly identify 

downstream mountain waves.  

 

Figure 4-4: Anticipated theoretical isolines (dotted line) in the valley, explaining the rationality 

of the Midvalley release location (C in Figure 4-2). The thin lines depict two theoretical 

radiosonde ascents; ascent A – faster ascent rate, penetrating the theoretical valley rotor 

and ascent B – slower ascent rate, following winds in an updraft forced by the Suuranys 

ridge. 

4.2.2 Ascent rate 

In order to keep data comparable, it is important that the balloon has a constant 

ascent rate. A rapid ascending balloon provides fewer data points and passes an area of 

interest too rapidly. A slow ascent rate results in the balloon drifting too far downwind, 

ascending slowly, and thereby taking too long to reach the desired height. However, a 

radiosonde ascending slowly spends more time in the updraft and more easily follow it into a 

downdraft or rotor. In this experiment, one slow ascending balloon was used at the gap exit, 

in order to measure the downdraft and possibly the transition into a hydraulic jump correction 

or an expansion fan. With exception of this one balloon, it was decided to use a constant 

ascent rate of 3ms-1. This was achieved by selecting a weight the balloon had to lift upon 
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inflation. All balloons throughout the study lifted the same 0.5kg weight, keeping the ascent 

rate relatively constant. It was endeavoured to release four balloons per event (estimated to 

last approximately 6hrs). Considering travelling and set-up time, this allowed 1.5hrs per 

ascent. Ascents needed to be rapid enough to reach the required altitude (evaluated to be 

between 5 and 6km agl) and slow enough to provide quality data. Opting for a 0.5kg weight, 

the study was also made comparable to other South African studies. 

4.2.3 Decision taking on the event day 

On event days, decisions regarding the release of radiosondes and release times 

were based on multiple factors. Before every event, the forecast was scrutinized using South 

African Weather Service operational NWP products. Wind direction, wind speed and stability 

parameters (Section 2.1.3), formed the basis of the forecasting. The main factors which were 

considered were wind speed exceeding 7ms-1, wind speed increasing with height and a 

constant wind direction with height. The forecasts were based amongst others to expecting 

the direction to be 40-50° from perpendicular. There were times that the NWP wind speed 

forecast was less than 7ms-1 but mountain waves were nevertheless observed. For pre-

frontal events, the timing, position and angle of the front, in relation to the coast were 

considered. In this study a frontal tail, almost parallel to the coast, generally produced 

mountain waves – even when model winds and stability were indicating that conditions were 

unfavourable. This is significant as the mountain barrier stretch from west to east and cold 

frontal winds (west to south westerly) are more parallel to the barrier; than what it is 

perpendicular. 

A nowcasting approach was adopted while in the field. Nowcasting relied on 

observations obtained from the earlier assents done on the day, observing clouds from the 

ground and analysing real time high-resolution visual satellite imagery. Satellite images 

played an important role as they were assessed before all radiosonde releases. Mountain 

waves and their evolution over the study site and to the west were considered. Mountain 

waves to the west indicated that favourable conditions were still approaching. Where no 

waves existed to the west and waves in the study site altered from stationary to moving or a 

drop in amplitude occurred, the next ascent was put on hold. Compared to blocking and gap 

flow, mountain waves were shortest lived and on average lasted 3-5 hours. At times, this 

timeframe proved too short to complete data collection and the event experiment was ended 

pre-maturely. 
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4.3 OTHER EXPERIMENTS 

This section will detail other experiments and equipment that could be used in a field 

experiment, to identify the turbulent features. Some of these were tested for inclusion in this 

dissertation but was found to be unfeasible. They are included here in order to provide 

guidance to future experiments of this nature. Experimentation with tethersondes, parasail’s, 

simultaneous ascents, dropsondes, smoke bombs and dronesondes are discussed. 

4.3.1 Tethersondes  

A tethersonde is a radiosonde attached to a balloon which is fixed to the earth 

surface by means of a line. Tethersondes failed miserably as the balloon ascended only to 

descend again downwind. The experiment consisted of fishing line, 1km in length, attached 

to a balloon; which ascended downwind as the line unwound. After the fishing line finished 

unwinding, the balloon slowly descended to the surface. In experimentation, the balloon 

slowly descended up to the same height as the fixed point on the earth surface. The origin of 

the problem was the horizontal force (force of the wind – Figure 4-5) being stronger than the 

resultant upward force. The fixed line causes the balloon to move within a semi-circle, of 

which the radius was determined by the line. The upward buoyancy force initiated by the gas 

(50.3 Newton (Nw)) neutralise the force of gravity (6.6Nw – gravity acting on the radiosonde, 

balloon and gas combined) and produces a resultant upward force  of 43.7Nw. The 48.1Nw 

force exerted by a wind speed of 5ms-1 override the resultant upward force. In order for the 

balloon to drift in a horizontal direction with the wind, it must follow the semi-circle in a 

downward direction. Tethersondes will only be useful if the resultant upward force is stronger 

than the horizontal force enacted by the wind.  

To calculate the required wind strength for a balloon to ascend, the horizontal and 

vertical forces can be calculated. The horizontal force (force of wind – Fw) is calculated by 

Equation 4.1 and the vertical resultant force by Equation 4.2. These equations assume a 

constant balloon radius (1m), cross-sectional area (3.14m2) and volume (4.19m3). The mass 

of the radiosonde and balloon amounted to; 0.2 and 0.1kg respectively. In order to simplify 

the equation, the weight of the fishing line was not considered. By substituting the resultant 

vertical force into the horizontal force equation, the required wind speed to balance the 

system is calculated. The wind speed of 4.8ms-1 balances the forces, with the line at a 45° 
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angle to the surface. A stronger wind will affect the balloon to slowly descend, while a 

weaker wind cause it to slowly ascend; all in a semi-circle. 

 

Figure 4-5: Forces acting on the balloon in the tethersonde experiment. Forces are not 

drawn to scale. 
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Where; A = cross-sectional area and ρ
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= density of air at 1.225kgm-3 
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air
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gVol)-(mradiosonde+balloong+ ρ
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gVol) ;   Equation 4 . 2 

Where;  Vol= Volume, ρ
hydrogen

= 0.0899 and ρ
helium

= 0.179 kgm-3 

In strong winds, tethersondes are a good way of recycling a radiosonde – if sufficient 

patience is employed to untangle and retrieve 1km of fishing line. It could be expected that 

the temperature, pressure and height measured by the tethersonde, would have been 

accurate but the wind direction and speed would have been unusable.  

4.3.2 Parasails 

A parasail is a specialised parachute, pulled along by a moving vehicle to keep it in 

the air. Parasail’s exhibited some potential after brief testing. In this study, it was logistically 
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pointless to spend time and resources on a car driving up and down in order to keep the 

parasail in the air. 

4.3.3 Simultaneous ascents/different buoyancy balloons 

It was considered to deploy balloons simultaneous from different locations or to 

deploy balloons with differing buoyancies from the same location. Two balloons, from the 

same location with differing buoyancies will ascent differently (similar to the two ascents in 

Figure 4-4). Such an experiment would have yielded a 3-Dimensional look at a narrow band 

in the atmosphere. Software problems and limited number of radiosondes inhibited further 

experimentation. 

4.3.4 Dropsondes 

A dropsonde is a radiosonde attached to a parachute, dropped by an aircraft or from 

a mountain. Dropsondes are commercially available but the budget for this research did not 

allow for their use and low cost options were explored. These were initially considered 

feasible in this experiment but were eventually not used. It was found that the force of the 

wind was greater than the downward force resulting in the parachute being pushed closed 

by the wind and the equipment dropping to the surface. Three possible solutions were 

considered; only use dropsondes when wind speeds were lower, to make the descent of the 

parachute swifter or to keep the parachute open by stilts.  

To obtain sensible wind data from a dropsonde, it is necessary for the downward and 

horizontal motion to simulate that of an ascending balloon – but downwards. To achieve this, 

the cross-sectional area of the parachute needs to correlate to that of a balloon at similar 

heights – only then would the wind force on both be the same (Equation 4.1). However, if a 

downdraft or strong gust occurs, the parachute will most likely close with the equipment 

dropping to the ground.  

As part of the research for this dissertation an experiment was conducted by ejecting 

a parachute from an ascending balloon. The mechanism contained a balloon attached to a 

sparkler (a 15cm long sparkling stick when set alight) with a thin rope, followed by the 

parachute and finally the radiosonde (Figure 4-6). The sparkler was timed to burn the rope 

90s into the flight, ejecting the parachute. Once ejected, the falling parachute should deploy, 

drifting to the surface. During the dropsonde experiment the radiosonde signal was lost and 
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the balloon drifted out of sight before ejection took place. It was concluded that the sparkler 

was defective and the rope did not burn.  

Future experiments with these low cost dropsondes should replace the sparkler with 

dependable mechanical equipment. Turbulence could result in an explosion as the sparkler 

connects the highly flammable hydrogen-filled balloon. 

 

Figure 4-6: Dropsonde still attached to the balloon. As long as the balloon is in an 

upward direction the parachute is expected to remain closed. 

4.3.5 Smoke grenades 

Smoke could be a valuable tool for visualising the wind flow, its associated vorticity 

and turbulence. Research as early as 1969, introduced smoke to visualize wake vortices 

caused by, take-off and landing aircraft (Federal Aviation Administration, n.d). In this project, 

smoke grenades and homemade smoke bombs were used to produce smoke. 

Smoke was generated at the gap exit, on the surface and from the bottom of a 

balloon. The smoke highlighted one rotor with an unexpected orientation (see Chapter 5) – 

which otherwise would have remained undetected emphasizing the value of using smoke. It 

quickly became apparent that one grenade did not provide sufficient smoke to visualize the 

airflow. It is recommended that five to 10 grenades be triggered simultaneously. It is 

recommended to attach a line to the balloon and to attach two grenades every 3m. These 

experiments need to be conducted safely; enough distance is to be left between the balloon 

and smoke grenade, helium can be used instead of hydrogen or even better, a drone can 

carry the smoke grenade. However, with exception of good photos and improved 

understanding of features, smoke trails can’t be quantified scientifically. However, smoke 

remains good for visualisation and can play a major role in designing an experiment. 
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4.3.6 Dronesondes 

Research drones could be a viable option and may provide new dimensions to an 

experiment. The advantage of a drone is the flight path is dictated; making it more useful 

than free soundings. A drone could effortlessly measure in a grid, where free-soundings 

measure where the wind takes them. It was initially planned to incorporate measurements 

from a drone in this research; however, the drone company downscaled and withdrew from 

the project. Some background about drones used for meteorological measurements are 

provided here.  

The drone has to be strong enough to withstand the heights and wind strengths 

expected to be measured in the experiment. The downward force of the drone propellers 

could be too strong resulting in unusable atmospheric measurements. A way to circumvent 

this is to fit the equipment some distance above the propellers. It is also essential that the 

drone is programmed to produce drone tilt, location, height and time throughout the flight. 

These measurements, with the exception of drone tilt, could be achieved by attaching a 

radiosonde to the drone; with the added benefit of environmental temperature and pressure 

being reported. Lastly, the drone has to be fitted with the rest of the measurement 

equipment. 

Measuring wind strength and direction, is the greatest challenge. An old-fashioned 

wind anemometer, not perpendicular to the wind, rotates slower and needs to be corrected 

for. Vector analysis could be used to determine the true wind speed if the drone tilt and the 

sensors angle to the wind is known. A sine-type graph is expected – using this, the wind can 

be corrected by a factor if the tilt angle is available. However, a sonic wind sensor is 

recommended and will most likely render more accurate results. A correction with a sonic 

wind sensor and the drone tilt can easily be completed through vector analysis. A wind 

tunnel is ideal for preliminary tests. 

4.4 SUMMARY 

This chapter leads on from Chapter 3 and discusses the first aim of the project. The 

experiment design is laid out and the lead-up to the experiment forms the basis of the 

chapter. The location and rationale of all AWS and radiosonde release locations are 

discussed. The concluding section of this chapter discusses experiments which were 

explored, but not feasible for inclusion in the final experiment.  
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CHAPTER 5 : DATA ANALYSIS 

In this chapter, all data analysis is covered. The analysis consists of longer-term 

analysis (as defined in Section 3.3 and Table 3.1), and upper air analysis (which contains 

event data analysis). An analysis of all calculated parameters follow and features are 

analysed individually namely, blocking, gap flow or mountain waves. The features are also 

analysed to identify which feature exacts the greatest influence on its surrounding as well as 

which feature produces the most wind shear and the most turbulence. 

5.1 LONGER-TERM ANALYSIS 

This section discusses the AWS measured winds and how they correlate or differ 

qualitatively from the climatological wind. The windroses of Figure 5-1, present wind speeds 

and wind directions measured by all stations. A strong zonal wind component is observed in 

the windroses of the permanent stations (Port Elizabeth, Cape St Francis and the windfarm); 

which is in agreement to the climatology (see Section 3.1). An anti-clockwise wind direction 

shift, with height, is evident in analysing Africa Peak and upwind windroses (Figure 5-1 & 5-

2). The Cape St Francis and windfarm wind directions are parallel to the Kareedouw ridge 

thus, suggesting the barrier blocked and deflected the winds to parallel to the barrier. The 

Africa Peak wind directional shift from the blocking winds (winds parallel to the ridge) 

suggests, on average, that it is located above this blocking region; consistent with literature 

(Neiman et al., 2010). 

Throughout the study period, Africa Peak (1 in Figure 5-1) measured the strongest 

wind speed of 35.2ms-1; with a gust of 44.7ms-1. The Africa Peak wind speed dominates all 

other wind speeds in strength; which is attributed to the acceleration of the compressional 

effect above the ridge (similar to what Barry (1981) suggested). The increase in wind speed 

cannot be merely attributed to the normal speed increase with altitude, as radiosonde data 

indicated wind speeds dropping a few hundred meters above the Africa Peak height 

(however, this discussion is for AWS data and refer to Section 5.2.2.1.1.). Camo AWS (3 in 

Figure 5-1) measured the second highest wind speed with a  23.2ms-1 10-minute average 

wind speed and a gust of 32ms-1. The windfarm and Port Elizabeth observed, jointly, the 

third highest wind speed; followed by St1_baro and Cape St Francis. The low standard 

deviation of Camo average wind speeds shows that this is a more consistent average wind 

speed. Contradictory to this, the high standard deviation from the wind gust at this station, 
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shows this location experiences a large difference between the 10-min average wind speeds 

and wind gusts. This infers stronger gusts or gusts more frequently at the Camo station; 

second only to Port Elizabeth. Opposed to the Camo AWS (gap winds), the upwind AWSs 

indicate a lower uniformity in average wind speeds, together with a lower frequency of wind 

gusts. To isolate the effect of blocking, gap flow and mountain waves, Figure 5-2 considers 

cases where the environmental winds measured southwesterly wind directions (Port 

Elizabeth wind directions from 180 to 270°) with wind speeds greater or equal to 7ms-1. 

 

Figure 5 - 1: Map of the study site and surrounding area, where grey represents all 

topography exceeding 500m amsl. The semi-permanent windroses are numbered similarly 

to Figure 4-2. Windroses represent all winds and indicate the standard deviations below the 

rose; deviation from average wind speeds/deviation from gusts. All windroses are similarly 

plotted to Cape St Francis; on a 40% frequency windrose (meaning the outer ring represents 

40% of the winds). Note the vast change in wind direction from the dominant westerly 

component at the Windfarm, Cape St Francis and Port Elizabeth compared to the southerly 

wind component in the gap. 

Studying the windfarm windrose, almost all winds are deflected to an along-barrier wind 

direction. Provided that almost no wind directions at the windfarm exist that is close to 

perpendicular to the barrier; all southwesterly winds are blocked and deflected by the barrier 

during the study period. Interestingly, Port Elizabeth observes no southerly wind direction 

with a wind speed greater or equal to 7ms-1 (Figure 5-2); this is attributed to the study site 

being located in the mid-latitudes. However, this was an excessively dry season for this area  
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Figure 5 - 2: Windroses represent winds of when the environmental winds (Port Elizabeth) 

measured 180-270º (termed southwesterly) greater or equal to 7ms-1. Grey represents all 

topography exceeding 500m amsl and the AWSs are numbered similarly to Figure 3-1 & 5-1. 

All windroses are similarly plotted to Cape St Francis and represent a 70% frequency 

windrose. 

and might not be an absolute true representation. The Port Elizabeth windrose (Figure 5-2) 

suggests in this study all blocking, gap flow and mountain wave interactions occur when 

southwesterly winds occur (230 - 270°). The Cape St Francis windrose closely represent the 

windfarm windrose, while differing from the environmental windrose (Port Elizabeth). Given 

that the Cape St Francis windrose simulates the windrose in the blocking regime (windfarm 

windrose), it can be said that the blocking jet extends to Cape St Francis and thus beyond 

the end of the Kareedouw ridge; which is responsible for its formation. Windroses in the gap 

(bottom Figure 5-2), confirms gap flow is present in the 60 - 90° wind direction deviation from 

the blocking region; deviating to a more  southerly direction.  Wind speed in the gap is 

slower than in the blocking regime with limited observations greater than 15ms-1. Total 

average wind speeds (calculated over the availability periods) revealed; Cape St Francis 

with the strongest wind speed of 5.8ms-1, Port Elizabeth (environmental wind) in second 

place with 5.6ms-1 and Camo (gap wind) rivalling in third place with 5.5ms-1. Evaluated for 

wind strength, the blocking region dominates (windfarm and Cape St Francis winds), 

followed by environmental (Port Elizabeth) and gap (Camo) wind speeds. Even though the 

gap wind speeds are similar to the environmental wind speed, the 90° wind direction change 
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suggests gap flow is significant and will induce directional shear leading to turbulence 

(significant for low-level flying). To briefly apply this to the agriculture sector, the sharp 

directional changes in such a localized environment can have a marked influence on erosion 

and soil transport if correct agricultural practices are not employed. For example, if an 

orchard or tree lane in the gap region is planned according to the general wind direction of 

the blocking regime erosion of the topsoil would be rapidly eroded. This highlights the need 

for a fine scale study as opposed to large scale studies, not only for the agricultural sector, 

but all sectors. 

The southern section of the gap windroses mimics one another in Figure 5-1 and 5-2; 

from this one can say that gap flow takes place either, in conjunction with blocking or it is 

driven by blocking. The wind direction of the upwind blocking jet (windfarm) greatly 

minimises the exposure of the gap; reducing its cross-sectional area. Gap flow is, therefore, 

more likely driven by blocking. Blocking can enhance the temperature and pressure 

gradients and can result in the spilling of blocked flow through the gap; rather than the winds 

forcing their way through the gap (as in conventional Venturi theory). A typical example of a 

strong pressure gradient would be, when blocking increases the pressure upwind and the 

continental low is situated over the interior; keeping the Midvalley AWSs pressure low. 

Wind directions and wind speeds in Figure 5-3 plainly show the effect of across-

barrier pressure gradients on the wind. The strong negative pressure gradient windrose 

(Class 1 in Figure 5-3) exhibits 90% of flow from the southwest as well as, stronger winds 

(greater frequency of the 10-20ms-1 wind speeds) than in any of the other windroses. A 

slightly weaker pressure gradient (-3 to -2hPa – Class 2) presents 70% of wind flow from a 

southwesterly wind direction, with the largest portion of wind speed observations located in 

the 10-15ms-1 class. Class 3 (-2 to -1hPa), presents a decrease in the frequency of flow 

from the southwest and interestingly, 30% of flow now origninate from the northeast. A 

higher pressure in the Langkloof valley (Midvalley AWS – 4) and a lower upwind pressure 

(windfarm AWS) results in a dominant northeasterly wind direction in the gap (Class 4). The 

weakest pressure gradient (Class 4) accounts for the lowest frequency of wind flow from the 

south west and the lowest frequency of the 10-15ms-1 wind speed class. Another 

observation is that stronger negative pressure gradients (Class 1) result in an anti-clockwise 

turn with an increased frequency of south-southwesterly wind directions. An example of a 

strong negative pressure gradient would be on a clear day when blocking increases the 

upwind pressure and the daytime thermals north of the ridge rise to reduce the pressure on 

the lee side. This will result in strong windflow from south of the ridge to the north of the 

ridge. 
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Figure 5 - 3: Camo AWS windroses for four different pressure classes; determined by 

subtracting windfarm AWS from Midvalley AWS pressures which has been reduced to sea-

level pressure. The legend is slightly adapted, from previous windroses, to be more sensitive 

to weaker wind speeds. Note the dominant northeasterly component with a positive/weak 

gradient and southwesterly wind directions with a strong negative pressure gradient.  

The temperature gradient windroses of Figure 5-4 demarcate a similar but opposite 

tendency to the windroses in Figure 5-3. The 5 to 10°C temperature gradient (Class 1), 

results in ±65% of wind directions from the southwest. Class 2 exhibits ±60% of wind 

directions from the southwest, with a slightly greater than before westerly component. 

Interestingly, this class is associated with the maximum wind speed (thin strip of 15-20ms-1). 

Class 3, the weak negative temperature gradient, causes a definite changeover from 

dominant southwesterly wind directions to northeasterly wind directions. Contrary to the 

tendency observed in the pressure gradient winds, the stronger negative temperature 

gradient windrose (Class 4) depicts less defined wind directions and lower wind speeds. In 

the daytime, a warm continental interior and a cool oceanic temperature would cause a 

typical example of a positive gradient. 
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Figure 5 - 4: Windroses of Camo wind directions and wind speeds, for different temperature 

gradient classes, are determined by subtracting windfarm AWS temperatures from Midvalley 

AWS temperatures. Note that the strong southwesterly wind component for the positive 

temperature gradients. 

The daytime Camo windrose, in Figure 5-5, corresponds closely to Class 2, in Figure 

5-4. Similarly, the night-time windrose corresponds to Class 3, in Figure 5-4. Considering the 

gap location, this relates to a warmer daytime valley with a cooler upwind side as influenced 

by the ocean. Overnight cooling of the land, while the ocean retains its heat, provides a 

negative temperature gradient. Class 2 and 3, in Figure 5-4, mainly consist of day and night 

temperature gradients. 

A low-level inversion is more probable at night and should act as a lid, causing 

acceleration in wind speeds similar to the Venturi-effect. However, when examining the 

Camo windroses for the day and night hours, the day-time winds are stronger. This may 

present a falsely view; that the nocturnal inversion does not aid to accelerate wind speeds at 

night. However, the truth is that the across-barrier temperature gradient during the day 

results in stronger gap wind speeds and thus contaminating the nocturnal inversion 

investigation. The effect of the daytime temperature gradient is substantiated by, the 

environmental wind speeds (Port Elizabeth windrose in Figure 5-5) being stronger in the day 
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as well as the above-mentioned investigation; regarding Figure 5-4. To remove all 

temperature and synoptic forcing, the environmental wind speed (Port Elizabeth) was 

subtracted from the Camo wind speeds, producing normalised windroses (Figure 5-5 right). 

Night-time windroses, in Figure 5-5 & 5-6, has stronger wind speeds with a greater 

frequency of positive wind speeds. To briefly apply this to the renewable energy sector 

would mean that there is generally stronger winds during the day leaving a deficiency during 

the evening, no matter the location. This deficiency is exacerbated by solar panels not 

producing electricity at night. To make optimal use of the wind at night is thus key and a 

good position to do this is in the gap. 

 

Figure 5 - 5: Nocturnal effects on gap flow, illustrated by the environmental windrose (Port 

Elizabeth), the gap AWS windrose (Camo) and a normalised windrose for the day (6:00-

17:50) and night (18:00-5:50) hours. The Camo AWS represents the gap wind directions and 

wind speeds. The normalised windrose demarcates Camo wind directions and wind speeds 

accordingly (Camo wind speeds - environmental wind speeds). The normalised windrose 

shows that stronger winds occur under the nocturnal inversion.  

The peak shift during night hours, in Figure 5-6, suggests that wind speeds are differently 

affected at night than during the day. The higher number of positive normalised wind 

observations indicate that gap wind speeds are stronger than environmental wind speeds at 

night, suggesting that the nocturnal inversion positively influence gap wind speeds. 

Investigating event data, one event included radiosonde ascents at sunrise. However, 
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investigating an ascent temperature at sunrise (Figure 5-8), no low-level inversion close to 

ridge height is detected. One possible factor responsible for no inversion is the turbulent 

environment; that would quickly destroy a nocturnal inversion. Another possibility is that the 

inversion is not the responsible factor but rather another process. One such a process can 

be katabatic flow down the mountain enhancing speeds (as on Figure 5-6), but one have to 

question why anabatic winds at daytime not result in the same speed increase.  To study this 

effect of the nocturnal inversion, ascents are required during weak synoptic and non-

turbulent conditions. The reader is reminded that a very short data span were available for 

the Midvalley AWS (Table 3-1), on which this analysis was based.  

 

Figure 5 - 6: Day and night hours, normalised wind speed graph; depicting Camo wind 

speeds normalised by environmental (Port Elizabeth) wind speeds. The day hours have 

stronger negative wind speeds and the night hours stronger positive wind speeds. 

5.2 EVENT ANALYSIS 

Nineteen radiosonde ascents sampled six events, during the period of June to 

December 2017. The event of 26 October 2017 formed the basis of analysis as it comprised 

of the full experimental data and consisted of a good blend of blocking, gap flow and 

mountain wave processes. In this section, all discussions and figures pertain to the event on 

26 October 2017, unless otherwise stated. 
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5.2.1 Event investigation 

The event on 26 October 2017, consisted of five radiosondes; one at each release 

location and two in the gap location (Figure 3-1). A break of 2.5hrs, separated the two Gap 

radiosondes. The event span was from 06:30 to 13:30. During this period no precipitation 

was observed and the event is classified as uninfluenced by downdrafts; induced by 

precipitation. A weakened tail of a cold front is observed on the bottom right of the satellite 

image with showers offshore of the coast, in Figure 5-7. The unstable showers suggests an 

unstable environment; which is confirmed by the unstable skew-T in Figure 5-8. The skew-T 

indicates a conditionally unstable layer from the surface, capped by a strong inversion at 

2500m; which should reflect mountain waves if formed. Another factor possibly contributing 

to the instability, is the interaction of the post-cold frontal air drifting over the warm Agulhas 

current (which is identified by the line of showers stretching from Plettenberg Bay (PB – 

Figure 5-7 & 5-9) parallel up the coast toward the east).  

 

Figure 5 - 7: High-resolution visible Eumetsat Meteosat Second Generation satellite image at 

14:00. The arrow indicates the study site. The inset indicates a primary mountain wave over 

the Tsitsikamma/Kareedouw ridge. Towns within the inset include Plettenberg Bay (PB), 

Tsitsikamma (TTK), Port Elizabeth (PE) and lastly, in the Langkloof valley between the 

Tsitsikamma and Suuranys ridges - Joubertina (JB). Image copyright Eumetsat 2017. 
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Figure 5 - 8: Skew-T plot of the Upwind radiosonde on 26 October 2017. Note the unstable 

layer from 400m, capped by a strong inversion at 2500m. 

 

Figure 5 - 9: Evolution of mountain waves with time, as observed from the high-resolution 

visible Eumetsat Meteosat Second Generation channel. Image copyright Eumetsat 2017. 

The satellite image (Figure 5-7) portrays a primary mountain wave over the 

Tsitsikamma/Kareedow ridge. Four satellite images, in Figure 5-9, show the evolution of 

mountain waves throughout the day. At 9:15 there were multiple east-northeastward moving, 

short wavebars. These short wavebars coincide with more cellular clouds closer to the coast; 

suggesting a more unstable environment. Two hours after the initial development, the short 

wavebars dissipated and the Tsitsikamma/Karreedouw ridge shaped a stationary mountain 
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wave (similar to the 12:30 image). By 14:45 the system forms a second mountain wave over 

the Suuranys ridge and finally, 6hrs after initial development, three mountain wave bars are 

distinguished. 

Analysis of synoptic conditions, reveal a cold front passing south of the study site 

overnight. Data from European Re-analysis (ERA-interim in Figure 5-10 and 5-11) reveal the 

cold front, supported by a broad midlevel trough up to 500hPa. On the surface, the high 

pressure ridges in from behind the cold front. Satellite altimetry confirms offshore 

southwesterly wind directions; with wind speeds of 10 to 15ms-1 (south of the oval Figure 5-

12). The wind directions indicate a deflected alongshore wind with the wind speeds broadly 

increasing towards the coast; with near-shore wind speeds reaching 15 to 20ms-1. 

Unfortunately, the satellite did not pass directly over the study site, but general wind direction 

tendencies infer along-barrier wind directions, south of the study site. The change in wind 

direction near the coast is consistent with the pressure nose suggested by the mean sea 

level pressure map (Figure 5-10). The pressure nose forms as the pressure increases 

upwind of the barrier and in the blocking area, altering synoptic conditions. 

 

Figure 5 - 10: Mean sea level chart compiled from 75 x 75km ERA-interim data. A surface 

cold front is indicated in-line with the suggested isobars and the satellite imagery at the time. 

The arrow indicates the study site – as in all other similar figures. 
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The sea-level pressure along the coast in Figure 5-10, suggests a west-southwesterly 

geostrophic wind direction. Applying Feltz et al. (2008), the initial east-northeastward (Figure 

5-9) moving mountain waves, infer the same west-southwesterly wind direction at the 

mountaintop. The wind directions from Africa Peak (red windbarb 1 in Figure 5-13) confirm 

this concept; however, the Upwind Gap and Midvalley radiosondes (blue windbarbs A, B & 

C) at ridge height do not. Radiosonde measurements (blue windbarbs A, B & C in Figure 5-

13) at peak height indicate a westerly flow with a southwesterly turn at the Suuranys ridge 

(blue windbarb D). The Midvalley radiosonde (blue windbarb C) wind direction indicates a 

north-northwesterly channelling down the Langkloof valley. The surface stations indicate a 

significant wind direction deviation from the observed upper air wind direction, especially in 

the gap (red windbarb 1, 2 & 3). The maximum wind speed, in Figure 5-13, is observed by 

the Africa Peak AWS (red windbarb 1) at 25.1ms-1. The Cape St Francis AWS in the 

upwind/blocking region measures at 19.9ms-1 wind speed, while AWSs in the gap (red 

windbarb 2 & 3) measured the slowest wind speed. In relation to St1_baro (red windbarb 2), 

the stronger wind speed at the Camo AWS (red windbarb 3 in Figure 5-13) is contributed to 

the station being more exposed to west-southwesterly wind directions. 

 

Figure 5 - 11: Upper air analyses for 700 (left) and 500hPa (right) on 26 October 2017 at 

08:00. A broad upper trough is identified south of South Africa. The figures were compiled 

similarly to Figure 5-10. 
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Figure 5 - 12: Satellite altimetry wind directions and wind speeds from NOAA ASCAT-B at 

08:46 on 26 October 2017. The weak tail of the cold front is drawn in the bottom right and a 

wind direction change boundary, encircled. Black wind barbs indicate wind speeds 

influenced by precipitation and not trusted. A single flag on a barb indicates 5ms-1 and a 

short or half flag demarcates 2.5ms-1. 

The wind directions in Figure 5-13, clearly dictates the radiosonde flight paths as 

depicted in Figure 5-14. All flight paths have a dominant west-to-east direction, with 

deviations in places. The southwesterly components of the Gap AWS and the Suuranys 

radiosonde are visible in the interesting kinks in the Midvalley radiosonde (indicated by the 

stars in Figure 5-14) as well as the Gap radiosonde inset. Graphs in Figure 5-14, denote 

areas of radiosonde, increased and decreased, ascent rates. To highlight the updrafts and 

downdrafts more clearly, the cumulative normalised ascent rate (dash-dot line) is plotted on 

the height versus distance profiles. The vertical lines on the graphs indicate areas where the 

updrafts and downdrafts of the respective radiosondes correlate. Further analysis of the 

graphs, reveal updraft and downdrafts exceeding 5km in altitude. Figure 5-14, in detail, 

discussion to follow later in the chapter. 

5.2.2 Diagnosing incoming flow interacting with terrain 

The layered Froude number (Figure 5-15) has a minimum value of ~0.14, from 260 to 

460m. This minimum, below mountaintop, specifies the area of maximum blocking, while a 

sharp   increase   from   460  to  700m  implies  a  weakening  in  the  blocking  regime.   The  
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Figure 5 - 13: Map surrounding the study area depicting wind barbs. Red wind barbs indicate 

maximum wind speeds and average wind directions as observed by AWS stations during the 

event. Blue barbs indicate radiosonde measured wind directions and wind speeds at peak 

height (819m), and plotted at the release location. A triangle flag on a barb indicates 25ms-1, 

a single flag indicates 5ms-1 and a short or half flag demarcates 2.5ms-1. At this time the 

Africa Peak wind sensor was confirmed faulty and is used here as an underrepresentation of 

true values. The wind speed graph indicates the evolution of the 10-min maximum wind 

speed throughout the day, with the event hours highlighted in the block. Grey represents all 

topography exceeding 500m amsl. 

weakening of the regime is attributed to the height (460m) of the gap. The increase in the 

Froude number at gap level, suggests that air flows through the gap, weakening the blocking 

region and forming gap flow. The calculated mountain Froude number of 0.35-0.5 (by 

employing two different layered averaging methods), propose that mountain waves can form. 

However, considering the mountain wave formation criteria of section 2.1.3, the wind 

direction should limit mountain wave formation. 

5.2.2.1 Blocking 

Blocking parameters provide information and estimations on the blocking region and 

its associated jet.  The  Burger  number  (Equation 2.4)  was much greater than 1 and further  
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Figure 5 - 14: Radiosonde flight path overlaid on Google Earth. The top right inset depicts 

the first (1) and the second (2) radiosonde flight paths in the gap region. The radiosonde 

height profiles (solid lines) and the cumulative normalised ascent rates (dash-dot lines) are 

illustrated at the bottom. To make the Midvalley and Suuranys radiosondes more 

comparable, the Midvalley radiosonde were adjusted by the distance it is downwind from the 

Suuranys release location; 5km. The stars indicate the interesting kinks in the radiosonde 

flight path. 

indicates (with the Froude number) that blocking is complete. This implies that below 819m, 

flow runs not over the mountain, but is rather deflected. The Froude derived height scale 

(Equation 2.3), suggests a shallow blocking jet depth of 210-300m (depending on which 

layered averaging is employed). The jet top is thus, established between 420-510m amsl 

and correlates to the observations in Figure 5-15 & 5-16. In Figure 5-16 (right), the rapidly 

increasing ù (along-barrier) wind becoming abruptly constant, from 520m, confirms the jet 

depth. Provided the Froude number is less than one, condition 1 of Equation 2.5 and 2.6 is 
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applied. The Rossby Radius equation, suggests a jet width of 39km and the thermal wind 

equation proposes a 3.1ms-1  increase in the ù wind.  

Satellite altimetry observations, consistent with literature, illustrate an increase in wind speed 

with a wind direction change; to a barrier parallel wind direction (Overland & Bond, 1995). 

The encircled area in Figure 5-12, characterises the narrow zone between the environmental 

winds and the winds blocked by the Kareedouw-Tsitsikamma ridge. The satellite altimetry, in 

Figure 5-12, proposes a jet width of at least 80km; double the width the Rossby Radius 

suggested (39km). In Figure 5-12, the observed stronger winds are consistent with the 

thermal wind proposition as postulated in Section 5.2.1, but futher investigations are required 

to confirm this. Radiosonde data, in Figure 5-16 (middle), display a blocking jet with a 

maximum wind speed of 16.5ms-1; maintained from 520 to 680m before decreasing in wind 

speed of up to 1000m. The blocking jet is nearly parallel to the barrier and the maximum 

wind speed consists of 15.9ms-1 ù wind and 4.5ms-1 v̀ (cross-barrier) wind (Figure 5-16 

right). The v̀ wind increases from surface to well above the mountaintop; possibly attributed 

to an increase in height. An increase in height takes a parcel closer to the gap height, or if 

already above gap height, the gap widens and airflow can more easily spill to the lee side; 

ultimately increasing the v̀ wind with height. 

The strongest blocking event was observed on 8 June 2017 (Figures 5-17 & 5-18). 

The 8 June 2017 event is the only event that observes the maximum wind speed of the day 

in the blocking region (Figure 5-18 middle & right). The maximum wind measures 24ms-1 ù 

wind and a total wind speed of 26ms-1 from direction 270°. The maximum wind speed occurs 

at mountain height and increases by 11ms-1 from the surface measurement; of 15ms-1. The 

change in wind direction (Figure 5-18 left) and decrease in ù wind speed above mountain 

height, indicates a rapid deterioration in the blocking characteristics. The 8 June 2017 event, 

calculated a mountain Froude number of 0.5, with the height scale underestimating the 

blocking jet depth by 300m. The Rossby Radius suggests a width of 65km and the thermal 

wind equation a wind speed increase of 5ms-1; unfortunately, no satellite altimetry was 

available to test the accuracy of these parameters. 

The only event deviating from the general findings, as far as the blocking region is 

concerened, is 13 September 2017 (red line in Figure 5-17). Synoptics for 13 September 

2017 includes, a pre-frontal coastal low that passed the coastline and produced shallow 

southwesterly winds. This was influenced by warm prefrontal northwesterly winds above 

mountaintop; the induced mixing with the cool surface southwesterlies created unfavourable 

conditions  for blocking and  mountain wave  development.  The 13 September  2017  event,  
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Figure 5 - 15: Calculated parameters from the 

Upwind radiosonde released at 06:30 on 26 

October 2017. The graphs include the layered 

Froude parameter (layered from the surface 

to the respective height), Scorer parameter 

and the Brunt-Väisälä parameter. The block 

bracket stipulates where the wavenumber 

suggest trapped mountain waves to develop. 

The dotted line is the height of Africa Peak 

and the dashed line is the height where the 

radiosonde passed over the ridge (3350m), 

as in all other similar images. 

Figure 5 - 16: Upwind radiosonde observed wind direction, wind speed and barrier corrected ù and v̀ winds. 



 

66 

 

was also the only event without any mountain wave features in the data or on satellite 

imagery. The rest of the events followed in close simularity and are well represented in the 

26 October 2017 event. All observations different from the 26 October 2017 event, are 

discussed in this dissertation. 

5.2.2.1.1 Turbulence produced by blocked flow 

The blocking regime broadly portrays a turbulence free zone, and is indicated by the little 

to no fluctuations in the ETI (Figure 5-19). The uniform building to the blocking jet 

maximum, visible in Figure 5-16 & 5-18 (middle & right), results in little turbulence. Most 

blocking events highlighted turbulent areas directly above the blocking jet and the ridge 

height (800-1300m). This transition zone observes large wind direction and wind speed 

changes  (Figure  5-16  to  5-18);  responsible  for  the  associated  turbulent  fluxes.   This 

transition zone originates where deflected blocking jet returns to environmental flow, 

combined with winds interacting with the barrier as well as a frequently contrasting 

environmental wind flow. 

 

Figure 5 - 17: Barrier corrected v̀ and ù winds of all events. All events depicted a mountain 

Froude value less than one, indicative of blocking conditions. 
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Figure 5 - 18: Wind direction, wind speed and the barrier corrected winds of the Upwind 

radiosonde on 8 June 2017. Maximum wind speeds, throughout the ascent, occur at peak 

height. The dotted line is the height of Africa Peak and the dashed line is the height where 

the radiosonde had passed over the ridge. 

 

Figure 5 - 19: Ellrod Turbulence Index (ETI) in the blocking regime on 26 October 2017 

(left) and 8 June 2017 (right). The turbulent fluxes in the blocking region are significantly 

lower than the fluxes above ridge height. 

5.2.2.2  Gap flow 

The weakening in the blocking region, as seen in Figure 5-15 (left – Froude 

values), is evidence that gap flow is present. The 26 October 2017 event had two Gap 

radiosonde releases. The first Gap radiosonde deviated strongly to the east (Figure 5-14). 
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The second radiosonde continued in a north-northeastward direction, joining the mean 

westward flow down the Langkloof valley and losing signal at 970m amsl. The radiosonde 

track, in Figure 5-14, presents a deviation from the synoptic west-southwesterly flow and 

thereby confirming gap flow. Investigating the wind speed at gap level (460 to 819m), two 

maximums of 12.3 and 12.5ms-1 are observed; at 600 and 819m respectively in Figure 5-

16 (middle). Similar to the AWS data, the gap jet is significantly lower than the blocking jet 

(16.5ms-1). This demonstrates that when evaluated for wind strength only, the blocking 

region produces a stronger jet than the gap region. 

All wind direction and wind speed observations, of all the Gap radiosondes, are 

similar. The wind direction profiles indicate sheared environments, with rapid changes 

from a southerly to a westerly flow; from the surface to 700m (Figure 5-20 & 5-22). The 

above-mentioned directional shear, analysed with the top right inset in Figure 5-14, 

simulates gap divergence or an eddy. All Gap radiosondes (except  the 13 September 

2017 and the second 26 October 2017 Gap radiosondes) wind speeds increased rapidly 

with height up to ridge height whereby, the wind speeds weakened or remained constant 

in height (Figure 5-22 3rd graph from left).  

The 26 October 2017 event shows an interesting combination of features. The v̀ 

wind speed (Figure 5-20 right) remains approximately constant throughout the layer; with 

two minor peaks of 5.2ms-1 (470m) and 5.9ms-1 (630m). The ù wind speed increases 

sharply up to 11.1ms-1 at 630m, thereafter it remains almost constant in height. Also at 

630m, Froude values change from subcritical to supercritical values (Figure 5-20 left) and 

irregular potential temperatures are observed (Figure 5-21). Coinciding with this height, is 

an updraft changing into a downdraft suggesting a wavelike feature; as suggested by the 

cumulative normalised ascent rate in Figure 5-14. It is noted that the discussed changes, 

all fall within the radiosonde instrumentation bias; however, provided they all occur at the 

same height, three potentially severe turbulence producing possibilities are suggested. 

Firstly, a hydraulic jump feature/expansion fan (as expected by Saito (1992) – dotted line 

in Figure 5-21), secondly, downslope mountain winds penetrating from ridge height 

simulating an expansion fan (as observed by Colle & Mass (2000) – dash-dot line), and 

thirdly the radiosonde measured the change-over from eddy conditions at the gap exit to 

environmental conditions. The potential temperature analysis, in Figure 5-21, reveals 

inferred wind flow and displays two possible wavelike features. The analysis in Figure 5-

21 rules out the second possibility of winds penetrating from the ridge height; observed in 
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the Africa Peak potential temperature (287.5K) inferred wind flow not penetrating down 

the lee ridge. 

 

Figure 5 - 20: The second Gap radiosonde of 26 October 2017 depicting the layered 

Froude, wind direction and barrier corrected wind graphs. The vertical dotted line on the 

Froude graph stipulates the subcritical to supercritical transition at 630m. 

 

Figure 5 - 21: The potential temperature plot, of the 26 October 2017, second Gap 

radiosonde representing inferred wind flow at the gap exit. The hand-drawn plot suggests 

two possible flows. The dotted line indicates a possible expansion fan with a hydraulic 

jump at 2.2km, downwind of the gap centre-line. The dash-dot line indicates a downdraft 

from the gap, with a vertical correction simulating an expansion fan at 900m amsl, 

weakening rapidly downstream. The solid line is the actual radiosonde flight path. 

Potential temperature from the Africa Peak AWS was plot, in order to rule out downdrafts 

down the lee slope. 
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Figure 5 - 22: Gap radiosonde, on 8 June 2017, depicting wind direction, wind speed and 

the associated barrier corrected ù and v̀ winds with height. The barrier corrected v̀ wind 

speed, enlarged in the circle. 

The Gap radiosonde, on 8 June 2017, produced a similar irregular potential 

temperature plot, suggesting another turbulent gap exit region. The first 3km of its flight, 

included localised updrafts in a dominant downdraft; at times losing up to 50m altitude 

over 500m horizontal distance. The downdrafts triggered a profile similar to a mountain 

wave loop sounding (section 5.2.2.3) as observed in Figure 5-22 and 5-23 (circled). This 

event also revealed the sharpest increase in wind speed, with a change from 4.3ms-1 at 

the surface to 18.8ms-1 at peak height (Figure 5-22 3rd graph from left). The Froude profile 

(Figure 5-23 left) demarcates multiple back-and-forth changes from supercritical to 

subcritical values; between 460 and 610m. Examining the potential temperature profile of 

the first 100m, a turbulent region is evident (Figure 5-23 right encirclement). Another out 

of the ordinary observation, which correlates with the above mentioned heights, is the v̀ 

wind speed increasing and decreasing (Figure 5-22 right); this change, exceeded the 

instrumentation bias and is a definite observation. An unexplained phenomenon, is the v̀ 

wind mimicking the cumulative normalised ascent rate above ridge height; a decrease in 

the v̀ wind speed correlates with the downdraft and an increase with the updraft. 

In all events, the gap flow governing Bernoulli equations (Equation 2.7 & 2.8) 

yielded inaccurate wind speeds at the gap exit. This was because the colder blocked air 

produced  a  lower  temperature  at  the  entrance  than  at  the  exit;  which  is  a reported  
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Figure 5 - 23: Layered Froude number and potential temperature, on 8 June 2017, plotted 

with height. The enlarged areas represent the encircled areas on the main graphs. Flow 

turned from supercritical to subcritical and back to supercritical at 510m, and finally back 

to subcritical at 610m. 

weakness of the Bernoulli equation for compressible fluids (Gaberšek & Durran, 2004). 

The Bernoulli equation for incompressible fluids (Equation 2.7) performed better but 

underestimated the jet strength significantly, contrary to what Mass et al. (1995 cited in 

Gaberšek & Durran, 2004) suggested. 

5.2.2.2.1 Turbulence produced by gap flow  

On 26 October 2017, the two Gap radiosondes observed updraft and downdrafts 

in similar locations. The two radiosondes drifted at different altitudes and flight paths 

however, the onset and end of the downdrafts are at the same distance from the gap. The 

first Gap radiosonde, on 26 October 2017, produced a rapid ascent rate followed by its 

first downdraft at peak height (819m in Figure 5-14). The maximum updraft observed 

during this ascent, was 6.6ms-1. Of all Gap radiosondes, the 8 June 2017 event observed 

the strongest downdraft; 6.8ms-1 at 517m. This peak downdraft was followed by a peak 

updraft observation of 4.5ms-1 at 527m. Such turbulent variations in updraft and 

downdrafts were not uncommon and were observed by multiple Gap radiosondes.  
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Not indicated, is the vorticity values that attained peak clockwise rotational values 

at 630m; measured from the second radiosonde on 26 October 2017. Observations of 

secondary and tertiary clockwise peak rotations were at 480 and 540m respectively. The 

peak clockwise rotational values, which coincided with subcritical Richardson values, 

suggest severe rotors or a hydraulic jump; again coinciding with the observations 

discussed in Figures 5-20 and 5-21. The first anti-clockwise rotational peak observation 

was shortly above mountaintop; this was identified as a rotor and is expectantly mountain 

wave or thermal related. Thermals generated by the warm northerly slope, interacting with 

colder air spilling over the mountain, have the capacity to produce a rotor. All three 

rotational areas portrayed peak turbulence values on the Ellrod Turbulence Index, which 

performed well in this case.  

On 8 June 2017, Gap radiosondes were found to be the most turbulent. The 

radiosonde indicated extreme updraft and downdraft variations, the highest values of 

vorticity and contained a possible severe rotor. Van der Mescht (2012) suggested a 

constant potential temperature with height, peak rotational values and the Richardson 

number below 0.25, indicates a severe rotor. On 8 June 2017, the potential temperature 

remained constant up to 1600m (Figure 5-23 right); a chaotic vorticity region was 

indicated by multiple clockwise and anti-clockwise rotations with multiple Richardson 

values below 0.25 in the same layer. However, these observations extend to above 

mountaintop and suggests mountain waves interacted with the gap flow. In this event, the 

Ellrod Turbulence Index performed poorly, only highlighting the first 100m of the ascent as 

turbulent. 

During the event of 8 June 2017, the downdrafts recorded in the gap region 

(6.8ms-1) exceeded the downdrafts recorded above mountain height (2.1ms-1), i.e. 

mountain wave induced. Even though 8 June 2017 was only a modest mountain wave 

event, it is evident that on occasions, gap flow produces more severe vertical velocities 

than mountain waves. 

5.2.2.3 Mountain waves 

On 26 October 2017, multiple variations of mountain waves are visible in all four 

timeslots in Figure 5-9. The morning mountain waves progress, with the average wind 

direction, while the afternoon mountain waves are observed to be stationary. The short 

morning mountain waves presumably form over the mountaintops, similar to mountain 
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waves over an isolated peak. As the day progresses the short mountain waves move 

away; with mountain waves taking a linear shape (Feltz et al., 2008). The stationary 

mountain waves mirror the orientation of the barrier, even though the wind direction is 

blowing at an angle of 50° - 80° from perpendicular (Figure 5-16 right); where 30° from 

perpendicular is the prescribed minimum requirement for mountain wave formation.  

Multiple formation criteria are not met however, mountain waves are still observed. 

Apart from the undesirable wind direction (the winds were 50° - 80° from perpendicular; 

Figure 5-16 right), large wind directional shear (Figure 5-16) should have limited 

formation. Noted, is that not only the total wind speed but also the v̀ wind speed exceeds 

7ms-1 from shortly above peak height to 2000m. The Scorer profile, the stability increase 

and the wavenumber criteria suggest trapped mountain waves below 2500m (bracket in 

Figure 5-15). The large increase in stability values at 2500m, suggest that minimal wave 

energy should be lost at the mountain wave reflection point. The surface stable layer is 

located in the blocking region and not a representation of the lee conditions; such a layer 

at ridge height would complete an almost perfect stability profile. 

The Midvalley radiosonde (Figure 5-24) initially compares well to the Scorer profile 

(Figure 5-15 middle). The Midvalley radiosonde follows a steep updraft from the surface to 

2500m (Figure 5-24 right) before going into a downdraft. The downdraft continued for 

±500m horizontally and after a brief discontinuation of laminar flow, another updraft and a 

steep downdraft follow. Although the first mountain wave reflection point correlates to the 

Scorer profile, other mountain wave reflection points observed include 4000 and 5000m; 

suggesting non-trapped mountain waves (at least not trapped below 2500m). The 

radiosonde observed a peak upward ascent rate of 11.7ms-1 at 1450m, which translates 

to an updraft of 8.3ms-1; after the mean balloon ascent rate was subtracted. In this event, 

the maximum mountain wave induced downdraft reached 3.3ms-1 at 3950m; which is 

consistent with the steepest part of the cumulative normalised ascent rate and peak 

vorticity values as seen in Figure 5-24. The Ellrod Turbulence Index highlights the peak 

downdraft area and the disruption of laminar flow between 2800 and 3200m as turbulent, 

contrary to the updraft area. Figure 5-24 again shows the v̀ wind speed increasing in the 

updraft and decreasing in the downdraft of the cumulative normalised ascent rate. 

Similarly, the ù wind speed deviates between 2500 and 4000m, with the combined effect 

resulting in the sharp deviation in the Midvalley balloon flight path, as in Figure 5-14. 
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Figure 5 - 24: Midvalley radiosonde cumulative normalised ascent rate, ù (blue) and v̀ 

(red) winds, vorticity and the Ellrod Turbulence Index of 26 October 2017. 

The Suuranys radiosonde shows similar updraft and downdrafts to the Midvalley 

radiosonde, although shorter lived with a smaller amplitude (Figure 5-25 left). Maximum 

updraft and downdraft values included 7 and 4ms-1 respectively. The Ellrod Turbulence 

Index suggested maximum turbulence values at 3300m with vorticity values peaking at 

multiple heights between 3000 and 4500m. The Suuranys radiosonde corresponded less 

with the Scorer parameter, with the mountain wave reflection point occurring at 2000m. 

Between 2000 and 3300m, the potential temperature indicates a deviation in normal flow 

with a non-uniform cumulative normalised ascent rate. This suggests an increase in 

turbulence however, vorticity values and the Ellrod Turbulence Index demarcates a non-

rotating and non-turbulent flow. The cumulative normalised ascent rate indicates other 

possible mountain wave reflection points at 4000 and 5150m. 

 

Figure 5 - 25: Cumulative normalized ascent rate, potential temperature, ù and v̀ winds of 

the Suuranys radiosonde on 26 October 2017. 
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On two mountain wave occasions, downdrafts induced radiosondes to lose height 

for prolonged periods; on 31 August and 13 December 2017. The double information at 

4000m in Figure 5-26, on both skew-T’s, are examples of radiosondes losing altitude. On 

31 August 2017, an accidental slow ascending balloon was released measuring an 

average ascent rate of 0.8ms-1. The low ascent rate made the radiosonde more 

susceptible to updraft and downdrafts, producing an interesting skew-T (Figure 5-26 left). 

Weak downdrafts of 4.6ms-1 resulted in the radiosonde to lose 630m of altitude over 

4.5km (4400 to 3800m in Figure 5-27). Showers during the ascent rendered 

measurements questionable and possibly influenced by precipitation induced downdrafts. 

To eliminate the possibility of showers, the topography was plotted (blue line in Figure 5-

27) below the radiosonde ascent rate. The topographical influence is evident and the 

radiosonde probed vertical propagating mountain waves above the individual ridges and 

downstream mountain waves. The radiosonde flight path shows mountain waves out of 

phase with the topography at 30 and 42km however, at 55km a mountain wave in-phase 

with topography is identified (radiosonde followed an almost exact profile of the surface 

ridge in Figure 5-27) and suggests a vertical wavelength of 3500m (Durran, 2013); when 

the surface is used as 1000m. Assuming the reduced ascent rate at 60km is mountain 

wave-induced, the primary and downstream mountain waves demonstrate crests at the 

same height. This infers equal amplitude and thus little to no energy loss in the 

downstream mountain wave. A conserved mountain wave is normally reflected by a 

strong inversion or strong wind speeds; in this instance a wind speed increase of 8ms-1 

was identified as the responsible parameter that induced reflection. Another interesting 

feature is that, with exception of the mountain wave-induced drying of temperature on the 

skew-T, Figure 5-26 on the left can be regarded as unstable throughout; proving that 

stable conditions during mountain wave events are not a pre-requisite.  

On 13 December 2017, a loop sounding is observed (note the loop in the 

parameters in Figure 5-28) by a Gap radiosonde penetrating a visible mountain wave 

(lenticular cloud on the main photo in Figure 5-29). The Gap radiosonde measured an 

average ascent rate of 2.5ms-1 and a maximum downdraft of 5.1ms-1 at 3800m; losing 

200m altitude over 6.1km. In this event, updrafts in the gap region reached 6.7ms-1 and 

updrafts in a mountain wave reached 5.6ms-1 (3400m in Figure 5-28 left). Similar to 31 

August 2017, the temperature warms and the dewpoint temperature decreases in the 

downdraft (Figure 5-26 right), simulating false stable areas at  1200  and  2500m.  Another  
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Figure 5 - 26: Skew-T’s of the Suuranys radiosonde on 31 August 2017 (left) and the Gap 

radiosonde on 13 December 2017 (right). The dotted line on 13 December 2017 

demarcates the cumulative normalised ascent rate, indicating the updrafts (rightward 

slant) and downdrafts (leftward slant) of the ascent. The red line represents temperature 

and the blue line the dewpoint temperature. Note the warming of temperature in the 

downdrafts and the moistening of the profile in the updrafts. 

 

Figure 5 - 27: Altitude versus distance (red line) for 31 August 2017 Suuranys accidental 

low buoyancy balloon. The blue line represents the underlying topography below the 

radiosonde flight path. 

observation on the skew-T is the temperature following the moist adiabatic line to the top 

of the updraft (even though the parcel is not saturated). This updraft renders the mountain 
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wave parcel of air more stable than the environment, resulting in the onset of a downdraft 

driven by the buoyancy force. In the downdraft, the parcels warm-up and follow the dry-

adiabatic lapse rate (Figure 5-26 right). Studying the skew-T, multiple mixed layers are 

detected showing signs of a lifted mixing layer between 1000 – 2500m & 2500 – 3500m. 

These, reasonably well-mixed layers, highlight the importance of mountain waves in 

transporting air and momentum vertically. 

In a mountain wave system, Van der Mescht (2012) observed maximum wind 

speeds halfway between the updraft and downdraft. On 31 August and 13 December 

2017 (Figure 5-26 & 5-28), evidence of this exists with wind speeds initially increasing in 

the downdraft, becoming constant before decreasing as the downdraft near the end. In the 

updraft, a similar tendency is observed. 

 

Figure 5 - 28: Wind speed and the barrier corrected winds (ù and v̀) of the loop sounding 

of 13 December 2017; classified as such, due to the loop in the data at 3800m and not 

due to the radiosonde doing a physical loop. 

On 13 December 2017, the mountain wave lost intensity downwind; as seen by the 

decrease in amplitude in the potential temperature plot of Figure 5-30. The wavelength of 

the system is arguably conserved which is evident by studying the distance between 

consecutive mountain wave peaks. The mountain waves generated by the Kareedouw 

ridge are not in-phase with the Suuranys ridge, due to the wave peak not directly above 

the Suuranys mountaintop. However, the downdraft descends in-phase with the Suuranys 

lee slope, as is seen in the downdraft hugging the lee slope of the Suuranys ridge. A 

shorter wavelength would have resulted in the location of the downdraft above the upwind 

rise of the Suuranys ridge; destroying the mountain wave system leaving only a turbulent 

area. On 13 December 2017, the Scorer parameter indicated trapped mountain waves 

below 3400m. The drop in altitude at 3800m (Figure 5-30 at 20-25km) is evidence that the 
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Scorer parameter did not accurately predict the vertical extent of the mountain wave 

system. 

 

Figure 5 - 29: The main image depicts a visible lenticular mountain wave responsible for 

the drop in altitude on 13 December 2017. The photo views the mountain from the upwind 

side. Note how the different streamlines become visible and converge on top of the 

mountain wave. The three inset photos on top are from the same mountain wave system. 

The top left image depicts the start of Kelvin-Helmholtz waves on top of a mountain wave 

to the east of the main photo. The Kelvin-Helmholtz waves probably formed because of 

the streamlines converging on top of the mountain wave, resulting in instability in the 

system, as the more rapid wind speeds on top of the mountain wave and slower wind 

speeds in the mountain wave interact. The middle and right photos indicate lenticular 

clouds in the background with rotor clouds on the lee side of the Kareedouw ridge. 

It is worth mentioning that during the 13 December 2017 event, a smoke grenade 

attached to the Gap radiosonde revealed a rotor rotating along a north to south axis. This 

rotor was observed visually below mountaintop (at approximating 700m amsl) and of 

which the rotation axis of this rotor, made the rotor unexpected. Deductive reasoning 

points that these rotors are still mountain wave related and probably attributed to the 

mountain waves observed at 09:15 on Figure 5-9. Calculating the vorticity values along 

this north to south axis, confirmed this unexpected and unexplained rotation during all 

events (with exception of 9 September 2017) between 764 and 805m. 
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Figure 5 - 30: Potential temperature inferred plot of wind flow from the second Gap 

radiosonde on 13 December 2017. The plot was drawn by hand and suggests mountain 

waves (dashed line) triggered by the Kareedouw ridge, losing intensity downwind. The 

thick solid line demarcates the actual radiosonde flight path and the thin line, the 

underlying topography. The interpolated rotors as well as updrafts and downdrafts are 

indicated on the figure. 

5.2.2.3.1 Turbulence produced by mountain waves 

The severity of mountain waves, are linked by Grubišić & Lewis (2004) to vertical 

velocities, altitude variations and wavelength (see Table 2-2). Measuring the distance 

between mountain wave peaks on 26 October 2017 (bottom right inset in Figure 5-14), the 

Midvalley and the Suuranys radiosonde profiles indicate a wavelength of 8 and 15km. In 

order to measure this accurately, it is required that the radiosonde drifts perpendicular to 

the mountain waves so that the shortest distance between the crest and trough are 

measured. As the radiosondes drifted with the average wind direction and not 

perpendicular to the mountain waves, the derived wavelength cannot be trusted. 

Measuring the wavelength manually on satellite imagery yielded an 8-10km wavelength. 

In comparison, the Kareedouw ridge is 6-7km upwind of the Suuranys ridge in a 

southwesterly direction. The Grubišić & Lewis (2004) definition of the parameters 

measured on 26 October 2017 (wavelength = 8km, altitude variation = 1000m, updraft = 
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8.3ms-1 and downdraft = 6.8ms-1) suggest moderate mountain waves. Classifying criteria 

of most events, revealed a dominant moderate mountain wave and at times a mixture of 

criteria falling in the severe category. 

Rotors are another classifying factor for the severity of mountain waves. On 26 

October 2017, a severe anti-clockwise rotor was observed at ridge height in the Gap 

radiosonde (see section 5.2.2.2.1). The Midvalley radiosonde could be used to identify a 

severe rotor at 1500m, 3000m and 4000m. The Ellrod Turbulence Index showed the 

rotors as turbulent, with exception of the midvalley rotor at 1500m. 

5.3 SUMMARY 

This chapter evaluated the data obtained during this project to characterise 

blocking, gap flow and mountain waves. All parameters mentioned in Chapter 2 and 3 

were calculated and discussed. Event and AWS data were predominantly analysed 

separately. The 26 October 2017 event formed the basis of the event analysis, as it 

displayed a good spread of the three features. Other event data were only analysed if it 

portrayed a deviation from the information obtained from 26 October 2017. In this chapter 

blocking, gap flow and mountain waves were analysed individually to determine which 

feature produced the strongest wind, wind shear and the most turbulence. Chapter 6 

combines the analysis and discussion of all three features as a combined system.  
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CHAPTER 6 : DISCUSSION 

The complexities of real-life examples often result in features being individually 

analysed or simplified. There is no doubt that meteorological features are complex and 

influence one another, which makes individual analysis less accurate. In this chapter, the 

experiment design is discussed following into a discussion of the different features as a 

combined system. Closing this chapter, the analysed results are compared to other 

studies and discussed with regards to turbulence. 

6.1  EXPERIMENT 

The experimental phase revealed that careful consideration is required to optimally 

design an experiment. An in-depth study of theory and the environment needs to precede 

the design phase. The design is to be tested with smoke grenades in event conditions 

before the design is finalised. To determine the feasibility of the experiment, the 

equipment needs to be left in the field to observe an event. This is to determine whether 

all features are indeed observed. As Olivier & Rautenbach (2002) rightly states that 

accessibility is one of the most important factors when deciding where to place a 

measuring system. In this dissertation, the data from the best AWS location (Africa Peak 

AWS) proved fruitless; the reason being, it was inaccessible to visit frequently to 

determine functionality.  

6.2  BLOCKING, GAP FLOW AND MOUNTAIN WAVE 

INTERACTION 

The winds surrounding Cape St Francis (Figure 5-1, 5-2 and 5-12) indicate 

blocking jet characteristics downwind of the Kareedouw ridge; while Port Elizabeth winds 

do not. This suggests that the blocking jet (Figure 6-1) originates in the blocking regime 

and penetrates up to 30km downwind from its blocking barrier; similar to a gap jet 

penetrating downwind of its formation gap (Gaberšek & Durran, 2004). In this dissertation, 

a strong blocking jet that is 80km wide, and extends up to peak height (600m deep) is 

observed in the radiosonde data. The jet display similar characteristics to the Vancouver 
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Island in British Columbia, but simply on a larger scale (Overland & Bond, 1995). This 

blocking region positively and negatively influences the formation of both gap flow and 

mountain waves. The sea level pressure increase within the blocking region makes 

blocking the feature that exacts the greatest influence on its surroundings together with, 

enhancing the pressure gradient - driving gap flow. By applying the along-barrier 

momentum equation this pressure increase should be calculated in a follow-up study 

(Overland & Bond, 1995). Contrary to the blocking driving gap flow, the deflected blocking 

jet negatively impacts gap flow, by reducing the gap cross-sectional area exposed to the 

wind; resulting in gap wind speeds being slower than the blocked environmental wind 

speed. The v̀ wind (cross-barrier) marginally increases from the Upwind radiosonde to the 

Gap radiosonde, which indicates airflow through the gap; reducing the upwind pressure 

and thus weakening the blocking region (as the 26 October 2017 case depicts). It can be 

said that the blocking regime positively and negatively influences gap flow and in turn gap 

flow weakens the blocking regime. 

 

Figure 6 - 1: Flow processes observed in complex mountainous terrain. 

Following the release, the Gap radiosondes followed one of two contradicting 

tendencies; either maximum updrafts were observed, or the radiosonde rapidly lost 

altitude. A radiosonde losing altitude combined with divergence is attributed to cold stable 

air spilling through the gap. At times the diverging flow is associated with changing Froude 

values, varying potential temperature values, a wind speed acceleration and multiple 

small updrafts and downdrafts; forming an expansion fan (Figure 6-1). Rapid 
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discontinuities in the v̀ wind profiles of Gap radiosondes, suggest gap flow swiftly 

changing to environmental conditions at the exit; this is usually associated with a hydraulic 

jump. Diverging cases, without rapid updrafts and downdrafts, are attributed to rotating 

eddies; originating from the gap divergence (red circular arrows in Figure 6-1). A more 

pronounced right (eastern) flank divergence is attributed to the channelled flow down the 

Langkloof valley, superimposing itself on the divergence. In this dissertation it was found 

that the gap jet seemed uninfluenced by mountain waves; contrary to what most studies 

suggest (Gaberšek & Durran, 2004). Probable explanations for this is likely the small 

scale topography, the gaps within this ridge, the dynamic barrier of the blocking region 

and/or the unstable conditions surrounding the study site. 

Mountain waves were not influenced by gap flow but by rather by the blocking 

regime. The blocking regime presents a dynamic barrier (Neiman et al., 2010); and in 

experiements conducted in this dissertation the dynamic barrier transition zone lies in the 

area of rapid wind direction and speed changes above the ridge height (Figure 5-16). Air 

approaching the coast is forced to rise above the dynamic barrier, which ends abruptly 

and is walled by the mountain barrier. At ridge height, along-barrier blocked flow (hence 

the unfavourable mountain wave formation wind direction at ridge height) and the air 

above the dynamic barrier, accelerates downward into transitional flow (Figure 2-4); 

forming a mountain wave, similar to Feltz et al. (2008). The observations in this 

dissertation clearly indicate that the incident wind direction, during mountain wave 

formation, is not important. It is the theory that any cross-barrier wind speed (v̀) exceeding 

7ms-1, will result in mountain wave formation. This theory explains the formation of the 

cap cloud, but not the development of downstream mountain waves parallel to the barrier. 

The author is of the opinion that the unexplained variations in the v̀ wind speed, during 

mountain wave updrafts and downdrafts (discussed in section 5.2.2.1.1), possibly 

contribute to this. The multiple different forms of mountain waves observed, is consistent 

with literature on broad spectrum mountain waves (Smith & Kruse, 2017). It would be 

interesting comparing the momentum fluxes of the respective waves. 

None of the events resulted in more than three downstream mountain wave clouds 

on satellite imagery; indicative of a low energy mountain wave system. The low energy 

system is attributed to; a less than perfect incident wind direction, large wind direction 

changes with height and no pronounced increase in stability at the ridge height. Mountain 

waves are observed in unstable conditions, but there seems to be a limit on the instability 
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that a mountain wave system can handle. For example, in the vicinity of cold unstable 

frontal showers, satellite imagery depicted mountain waves disappearing, however, only 

to re-appear shortly after the shower moved off. Even in these low energy mountain 

waves, parameters indicate severe rotors (Figure 6-1); associated with severe turbulence 

below the ridge height. 

6.3 EVALUATION OF BLOCKING, GAP FLOW AND MOUNTAIN 

WAVE PARAMETERS 

The different fluid dynamical equations exhibited variable stages of success. The 

Froude derived height scale and the Froude number proved accurate, if compared to 

radiosonde measured wind direction and wind speed. The Burger equation was useful but 

not required. Both Bernoulli equations, governing gap flow, proved less useful. Analysing 

the equations, a lower temperature in the blocking region (than the gap exit region) and air 

spilling, rather than funnelling into the gap, renders the equations not useful. The gradient 

windroses (Figure 5-3 and 5-4) clearly state the influence of the temperature gradient and 

pressure gradient on the gap wind direction and wind speed. Strong gradients would 

predominantly occur during strong synoptic conditions and weak gradients during weaker 

synoptic conditions; driving gap flow. Lack of satellite altimetry data made the evaluation 

of the blocking parameters: thermal wind equation and the Rossby Radius equation, 

difficult. 

The mountain wave Scorer parameter and the wave trapping condition performed 

poorly. The poor performance is attributed to the airmass being a mixture of stable and 

unstable layers and the close vicinity to the cold fronts. It is known that the Brunt-Väisälä 

frequency is undefined in unstable layers, however, due to the lack of other parameters; 

the frequency was nevertheless incorporated in the calculations of all parameters – 

producing uncertainty in the calculations. The moist Brunt-Väisälä parameter (Durran & 

Klemp, 1982) also did not render useful results. As Feltz et al. (2008) rightly mentions in 

the vicinity of a cold front, airmasses are continuously changing. This changing 

environment renders the Scorer parameter calculated from a single ascent not useful.  
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6.4  COMPARISON TO OTHER STUDIES 

The blocking regime correlated well with what Parish (1982) and Neiman et al. 

(2010) observed in the Sierra Nevada region. The v̀ wind speed mostly increases (Figure 

2-2) from the surface to well above the mountaintop and the ù wind strength always peaks 

below or at the mountaintop. This increase in v̀ wind speed with height, is attributed to the 

barrier deflecting less flow; as an increase in height produces a less continuous barrier 

(more gaps in the barrier).  

In this dissertation, the strongest gap flow jet (21ms-1), was observed below 

mountaintop on 31 August 2017. The highest wind speed increase in the gap (15ms-1 

over 250m) and the greatest wind direction change (55° over 100m); relating to the most 

turbulence, was observed on 8 June 2017. These observations reveals that this gap jet is 

the weakest gap jet (which is again attributed to the upwind blocking jet reducing the 

cross-sectional area of the gap); when compared to other studies (Table 2-1). However, 

the large wind direction and wind speed changes from upwind into the gap and to the lee-

side, indicates gap flow is still significant and deserves further investigation. 

To the knowledge of the author, these mountain waves are the most severe 

mountain waves measured up to date in South Africa; when classified according to 

vertical velocities. This shows that mountain waves originating in an unfavourable 

environment can be of equal or greater intensity to mountain waves forming over larger 

topographical areas and in more favourable atmospheric conditions. Mountain waves in a 

non-idealised environment, similar to the mountain waves in this dissertation, are thought 

of as more severe – as it is less predictable and often unexpected by pilot and forecaster.  

6.5 TURBULENCE 

The blocking region exhibits the strongest winds, also interestingly enough, the 

least turbulence. The constant increase in wind direction and wind speed (Figure 5-11, 5-

12 & 5-13), throughout the blocking layer, ensures no disruptions in flow. Above the 

blocking region, large changes in wind direction and wind speed are observed; indicating 

a turbulent region. A pilot should remain below the transition zone (changing from blocking 

to environmental conditions – usually below ridge height) to avoid turbulence. 
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Wind speeds in the gap flow regime are weaker than in the blocking regime. 

However, gap flow produced significant wind direction and wind speed changes. 

Turbulence was also identified by the Ellrod Turbulence Index, Vorticity values and the 

Richardson number. The large variety of features observed and its contrasting nature 

results in the gap region to be a complex area and best avoided by pilots. 

Broadly speaking results from this dissertation show that mountain waves and gap 

flow produce equally severe downdrafts. Occasionally, gap flow induced vertical 

velocities, exceeds mountain wave induced vertical velocities posing a greater hazard. 

However, in mountain waves, these vertical velocities exist over larger areas; influencing 

aircraft over a longer and more widespread area. In combination with the mountain waves, 

multiple observed severe rotors pose a hazard. 

To distinguish between the features responsible for turbulence below ridge height 

remains difficult. No direct influence of gap flow could be found on mountain waves, 

however, turbulence generated from gap flow does interact with mountain wave features. 

Similarly, mountain wave induced rotors and downdrafts influences gap flow; at times, 

muddling everything below mountain ridge as turbulent and again best avoided by pilots. 

The Ellrod Turbulent Index performed reasonably well in resolving the turbulent 

areas. The Richardson number as a standalone parameter, as used by Doyle et al. (2009) 

and Van der Mescht & Eloff (2013), was less practical. The parameter produced a lot of 

noise when applied to fine resolution data and highlighted turbulent areas throughout the 

atmosphere. The ascent rate as used by Van der Mesht & Eloff (2013) and Grubišić & 

Billings (2007) yields too much data which then becomes noise, rather than being 

interpretable. The cumulateive normalised ascent rate was a good solution to this and 

proved usefull in data analysis and interpretation. Although radiosondes and AWSs were 

sufficient in this experiment, no length scale could be measured for turbulent eddies. Fluid 

mechanics suggest the Reynolds number to quantify turbulence, however without the 

length scale this and the eddy dissipation rate cannot be calculated. 

6.5.1 Forecasting mountain wave and its associated turbulence 

This dissertation identifies stability and wind direction of lesser importance to 

mountain wave formation. Any cross-barrier wind component (v̀) exceeding 7ms-1 can 

result in mountain wave formation; even if the wind exists some distance above ridge 
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height. Wind direction changes and stability is found not to negatively impact on the 

severity of mountain waves, however, it does impact the range that this feature extends 

downwind. A frontal tail, almost parallel to the coast, greatly assisted in the forecasting of 

these mountain waves – even when model winds and stability were indicating 

unfavourable conditions. This is significant as this mountain run from west to east and 

perpendicular to what the International Civil Aviation Organization suggests. Contradicting 

another suggestion by literature is that these cold fronts seemed responsible for 

formation, rather than causing the breaking-up of the trapped mountain waves. 

Classifying severity of mountain waves with regards to wavelength and amplitude 

is not useful. Results in this dissertation indicate that mountain waves with a short 

wavelength produced greater vertical velocities than those with a longer wavelength. It is 

concluded in this dissertation that all mountain waves are severe, regardless of formation 

conditions, topography and shape of mountain waves; especially in the vicinity of 

topography. 

6.6  SUMMARY 

Directional shear is described to have a compounding effect on wind shear (Ellrod 

& Knapp, 1992), thus in this dissertation, blocking is defined as the least turbulent and the 

gap the most turbulent regime. In this environment, the three regimes cannot be looked at 

in isolation, but all needs to be considered together for a consolidated picture.  
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CHAPTER 7 : CONCLUSIONS AND 
RECOMMENDATIONS 

7.1 INTRODUCTION 

On 16 December 2015, there was a light aircraft crash, near a gap in the 

mountains close to Kareedouw, which sparked the research in this dissertation. Personal 

communication with the pilot of this aircraft revealed that he found himself unconscious 

after a sudden onset of turbulence, approximately 2km downwind of the final crash site. A 

mountain wave or its associated rotor was likely responsible for the burst of turbulence the 

pilot experienced. As the aircraft crash site was a further 2km upwind of the initial 

turbulence, it is theorised that one of the passengers took control of the aircraft before it 

crashed. The crash site was immediately upwind of the gap exit, where the wing first 

impacted the valley side ridge. It is likely that the passenger lost control within the gap; in 

the area that is now identified as a significantly turbulent gap region. No observations 

were available 16 December 2015 but the measurements done on 8 June 2017, as part of 

the research for this dissertation, describe similar meteorological conditions. In this 

instance, an aircraft flying at 500m, planning to exit through the gap from the lee side to 

the upwind side, would have observed a wind direction and wind speed change from 220° 

at 4.5ms-1 to 280° at 25ms-1. Such a wind change will result in severe turbulence and will 

be sufficient to bring down an experienced pilot. 

The ridge (Africa Peak) measured the maximum wind speed in the cases 

investigated as part of this research. The maximum wind speed forms as the 

compressional effect above the mountain increases the pressure gradient force, which 

dominates the frictional force, ultimately leading to a stronger wind. The blocking region 

was the second strongest wind speed region and the jet that protruded the furthest 

downwind of its exit region. Gap flow measured weaker than the ridge and blocking 

region, but measured stronger than the lee side surface wind speeds. However, the most 

turbulence-producing feature was; gap flow, followed by mountain waves and lastly 

blocking. 

In this dissertation, blocking, gap flow and mountain waves were analysed with the 

help of AWSs data (taken over a year between 2017/2018) and radiosondes data (of six 
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events within the same period). Observations of gap flow and blocking were evident in 

both radiosonde and AWS data but observations of mountain waves were only evident in 

radiosonde data. Automatic weather station data successfully captured gap flow, where 

across-barrier temperature and pressure gradients as well as blocked air spilling through 

the gap were the main driving forces. Radiosonde data captured blocking; where cold 

southwesterly winds from the vicinity of the cold front over the ocean, was the driving 

force. All events showed some indication of blocking and all, but one event observed 

mountain waves. Mountain waves were mostly short-lived and two events dissipated 

before all measurements were completed. This dissertation highlights the hazard that 

small-scale mountain waves pose to aviation and emphasises the lack of knowledge on 

this feature near unstable airmasses and small-scale topography. Other lesser important 

mountain wave characteristics observed in this study were; the deviation of the v̀ wind in 

the updraft and downdraft (mimicking the cumulative normalised ascent rate) and the 

important role mountain waves can play at distributing air vertically; changing the 

surrounding conditions and the vertical temperature and dewpoint profiles (as in Figure 5-

26).  

Even though gap flow was more successfully characterised using AWS 

measurements, radiosonde measurements highlighted some interesting features 

associated with gap flow. Contrasting features were measured from the gap exit; two 

events observed a feature simulating an expansion fan, two radiosondes measured 

extreme updrafts within the gap (exceeding mountain wave updraft measurements), and 

the remaining radiosondes lost altitude in a diverging flight path from the exit. The 

important conclusion is that all features within the gap region are turbulent and dangerous 

for the aviation sector. 

This dissertation does not go into depth of the application of the results to other 

sectors, such as the renewable energy sector. However, briefly, the consistency of the 

wind in the gap, combined with the stronger flow at night, transforms this into an optimal 

location for supplementing a micro-energy production network. The stronger flow at night 

would supplement the energy deficiency left by the day dependent solar panels; making 

the micro-network more viable. 
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The different objectives of this dissertation lead to the following conclusions: 

7.1.1 Objective 1: Experiment design 

The experiment designed for this dissertation was successful in measuring 

blocking, gap flow and mountain waves. The data obtained from the experiment 

successfully characterised the features and allowed preliminary insight into how the 

different features interact. However, to obtain an even better understanding of these 

interactions, some improvements to the experiment design are required: 

 This experiment was insufficient to effectively measure and resolve fine-scale 

features such as expansion fans, diverging eddies and rotors. Given the severity of 

these features, further in-depth studies are required with better equipment. 

 The link between the evolution of the blocking, gap flow and mountain wave 

regimes are such that a constant area monitoring is required in order to 

understand their correlation to one another. A Doppler RADAR or LIDAR will be 

perfectly suited for such a study. 

 Creative thinking is encouraged in designing an experiment such as this. For 

example, smoke or dronesondes can add a new aspect to a project while reducing 

the costs involved.  

 Consider the equipment bias if fine-scale features are expected. 

 To optimise data, observational events and the expected satellite pass-overs are 

to be synchronised. In this dissertation, only one event had satellite altimetry winds 

available; this greatly inhibited the blocking analysis. 

 The experiments conducted as part of this research rendered very much data, all 

of which have not been examined to its full potential. Future field studies, such as 

this, should consider that the number of events does not have to be vast but that a 

few events might already provide insight into the phenomena.  

  

To design an effective experiment, requires the consideration of many factors. To 

initiate the experiment design, it is required to answer the 6 W’s of design: 

 Why – Why is this important? Will the results warrant the financials and time 

required to complete the study?  
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 Who – Who can assist with this study? Who can benefit from this study? Who are 

the relevant role-players? From whom do you need to get permission to do the 

experiment? Who did similar work, and what can you learn from them? 

 What – What will be measured? What features and processes will follow from this? 

What is required to characterise these features? What are the initial conditions, 

and do this need to be measured? 

 Where – Where is the optimal location to measure these features and what are the 

limiting factors (such as accessibility)? Where does what equipment need to be 

placed? 

 When – When will this take place? How long will the experiment last? How 

frequent is this phenomenon observed? When are you most likely to have optimal 

results? Is a preliminary study required in order to understand when and where the 

phenomenon is expected? 

 Whereby – By which methods and means will this be achieved? How will this 

project be completed? 

Smoke should be deployed before the experiment design and if possible after the 

final design. This will greatly assist in designing an experiment and to test the rationale of 

the experiment. 

7.1.2 Objective 2: Analyse data using parameters 

The data were successfully analysed using parameters to identify and characterise 

the different features. However, some parameters proved not useful in the analysis. Fluid 

dynamics successfully characterised blocking with parameters such as, the Froude 

number, Burger number and the Froude derived height scale. The Burger number was 

useful but was not required; as the Froude number already described the flow 

successfully. Insufficient altimetry data limited the testing of the thermal wind equation and 

the Rossby Radius equation. Gap flow parameters performed poorly where the pressure 

increase and temperature decrease in the blocking region rendered the Bernoulli equation 

unusable. Another possible explanation can be that flow in the gap is turbulent and the 

Bernoulli equation is only valid for steady flow. In weaker temperature gradients, wind 

direction and wind speed in the gap agree better with the thermal wind theory. Additional 

investigation is required to determine the feasibility of using temperature and pressure 

gradients to characterise gap flow. The night-time inversion positively accelerates the 
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wind speed within the gap, as one can expect from the Venturi-effect. Mountain wave 

parameters were mostly unsuccessful in characterising mountain waves. The Brunt-

Väisälä parameter, only defined for stable conditions, resulted in an inaccurate Scorer 

parameter during most of the events, as the atmosphere was unstable. Not applying the 

Scorer parameter contradicts all that literature suggest. For occasions when the relative 

humidity was greater than 80%, the moist Brunt-Väisälä parameter (Durran & Klemp, 

1982) was tested; but this also did not render useful results. 

Turbulence indicating parameters, such as the Ellrod Turbulence Index, proved 

accurate while the vorticity equation proved useful in highlighting rotors and unexplained 

rotations. The Richardson number, contrary to what literature suggest, was unusable as a 

standalone parameter. The potential temperature plots and the cumulative normalised 

ascent rates proved extremely helpful to highlight a disruption in laminar flow. 

7.1.3 Objective 3: Determine and compare the characteristics of blocking, gap 

flow and mountain waves, to other studies. 

All events in this dissertation had some indication of blocking; even the most 

unfavourable event of 13 September 2017. Blocking was easily identified in the data and 

was comparable to other studies. When compared to literature (Table 2-1), this study was 

the only study where the gap jet was weaker than the upwind conditions. However, gap 

flow is evident in the data and was created by a different mechanism than most other 

studies; spilling from the upwind/blocking regime. Although the physical gap jet is weak, 

the features emanating from the gap exit (updrafts, downdrafts, divergence, expansion fan 

and horizontal rotating eddies; which frequently interacts with vertical rotating rotors) were 

significant. This identifies the gap region as the most turbulent region. The observation of 

mountain waves compared favourably to other studies and the vertical velocities were the 

strongest ever measured in a South African study (Van der Mescht & Eloff, 2013 and 

Cronje & Van der Mescht, 2013).  

In this study, blocking drives gap flow by increasing the pressure and decreasing 

the temperature. Hereby blocking drives gap flow through the pressure gradient force and 

the thermal wind. Gap flow in turn weakens the blocking region by decreasing the upwind 

pressure when air spills to the lee-side. Blocking also influenced and contributed to 

mountain wave formation through a dynamic barrier. Gap flow features interacted with 
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mountain wave induced rotors, however, no physical influence was found on the mountain 

wave itself. 

7.2 CONTRIBUTION TO THE FORECASTING OF TURBULENCE 

Mountain wave formation criteria were revisited in this dissertation, contrasting the 

recommendations by Reichman (1978), Van der Mescht (2012), Barry (1981) and 

International Civil Aviation Organization (2005). It was determined that in mountain wave 

forecasting, it is best not to eliminate mountain waves when the air is unstable. 

Furthermore, the cross-barrier wind speed (v̀) in the vicinity of the peak is more useful 

than considering the total wind speed and wind direction. In this study, all mountain wave 

events occurred when the cross-barrier wind speed exceeded 7ms-1, however, it is 

unknown whether a lighter cross-barrier wind speed will also induce mountain waves. A 

finding was that a mixture of different airmasses and weather systems limits mountain 

wave formation. The interaction of cool onshore air, behind a coastal low, and the warm 

dry northwesterly Föhn-type wind, limited mountain wave formation. Cold fronts frequently 

triggered mountain waves over this west to east mountain barrier, especially if the tail of 

the front becomes more parallel to the coast. Unstable conditions were found to positively 

influence the formation of irregular complex mountain waves (as Bradbury (1991) 

suggested); which has been found by Uhlenbrock et al. (2006) to be more severe than 

linear mountain waves. According to the broad-spectrum wave theory, a similar finding is 

that unstable conditions trigger mountain waves off the individual ridges and peaks (short 

spectrum of waves) where more stable conditions trigger waves over the entire ridge 

(longer spectrum of waves) (Smith & Kruse, 2017 and Van der Mescht & Geldenhuys, 

2017). 

The author is of the meaning that simplistic forecasting of mountain wave severity 

is not possible. Merely classifying the severity of mountain waves, according to; 

wavelength, altitude variation and vertical velocities proved inadequate in this dissertation. 

Relying on turbulence indices to highlight all mountain wave related turbulence and its 

intensity also failed at times. The International Civil Aviation Organisation (ICAO) agrees 

that mountain wave forecasting is possible, but it remains difficult to forecast the severity 

of the turbulence associated with this. The ICAO suggest that a nomogram can be 

effective at forecasting the intensity of mountain waves; using a sea-level pressure 
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difference across the ridge and the cross-barrier wind speed (v̀) as predictors 

(International Civil Aviation Organization, 2005). A numerical weather prediction product is 

another possible solution to attempt to forecast the severity of mountain waves. 

The area below ridge height on the lee side of any mountain is best avoided by 

aircraft and regarded as turbulent. It is a recommendation to keep a ground clearance of 

at least 1.5-2 times the highest topography; in a 10km upwind radius. This will not result in 

total turbulence avoidance, but provide the pilot with additional time to react and minimise 

the expected turbulence to mountain wave turbulence only; and not a compounding effect 

between different features. 

In conclusion, in real life, one cannot look at wind flow in complex terrain 

simplistically. The three features namely; blocking, gap flow and mountain waves are 

intertwined and cannot be seen as separate processes. 

7.3 RECOMMENDATIONS 

Conducting a field experiment, such as in this dissertation, is expensive. One way 

of limiting the cost is to analyse the data from the first experiment thoroughly in order to 

determine if additional data are required and to identify the shortcomings in the 

experiment design. Dronesoundings can provide a new dimension to experimental studies 

and definitely requires further investigation. In future experimental studies, different 

sectors should work together, as an interdisciplinary team, in order to optimise the funds 

available and the applicability of the data. This dissertation could easily have benefited 

from the input of experts from other fields, in order to ensure that the data are more 

applicable and widely used. 

In order to fully understand the life cycle of blocking and the features at the gap 

exit, high-resolution area observations are required; with a low instrumentation bias (for 

example a LIDAR/Doppler RADAR). Given the poor understanding of blocking in South 

Africa and its impact on the other features and on the surface pressure, it deserves further 

attention and a follow-up study. Gap flow requires an investigation during weak synoptic 

conditions to ascertain the effect of the nocturnal inversion and to correlate the effect of 

the weak synoptic conditions with the strong synoptic conditions effect. Mountain wave 

parameters require refinement for an unstable environment. A nomogram, to determine 

the severity of mountain waves, can greatly contribute to the tools of a forecaster. The 
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unexpected rotors, attributed to the west to east moving mountain waves (09:15 Figure 5-

9), observed in the smoke and the vorticity data, deserves an in-depth study. Lastly, an 

interesting study would test the influence of the mountain-wave-induced lifted mixing layer 

(similar to Figure 5-23) on the formation of severe thunderstorms.  

7.4 SCIENTIFIC CONTRIBUTION 

This project was a first of its kind in South Africa. The design of the experiment 

and the failures leading up to the design will be beneficial for other experimental based 

studies. Furthermore, the onset of the process to develop the dronesonde has the 

capability to largely impact in future experimental studies. Not only was this the first gap 

flow and blocking study in South Africa, it was the first study to look into the interaction of 

the three features. Numerical weather prediction commonly misses some finer scale 

features, which are then unaccounted for by many applications, studies and forecasters. 

Observational studies similar to this one act to question and validate the small-scale 

features (such as the expansion fan) observed in dynamical studies and modelling 

studies. A new approach, contrasting existing literature, is revealed to forecasting 

mountain waves on the forecasting desk. Some findings of this dissertation are widely 

applicable and to numerous applications, such as; the renewable energy sector, 

agriculture and aviation industry. 
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