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In this dissertation, mathematical research is performed to model nanofluid thermophysical properties 

in terms of multivariate probability density functions utilizing copulas from known verified and validated 

experimental data for water/alumina nanofluid mixtures. 

 

A comprehensive review of the available data from the open scientific literature is undertaken to first 

understand the accuracy limits of the combination of available experimental and theoretical data for 

nanofluids. The nanofluid data is then processed using multivariate statistical analysis techniques in 

order to mathematically incorporate the input process parameter’s intrinsic measurement uncertainties. 

Having analysed the verified data, optimal functional expressions for the effective thermal conductivity 

are then determined. This mathematical analysis is inclusive of estimates of the process parameter’s 

respective experimental statistical uncertainties through stochastic based Monte Carlo simulations by 

incorporating information of the nanoparticle morphology such as the nanoparticle size and volume 

fraction, and the nanofluid temperature. 

 

Numerical simulations are performed for the resulting copula-based PDF’s with custom developed 

multivariate sampling strategies which are derived and tested. These model predictions were verified 

and validated by comparing them to a MLP-NN scheme to check for consistency. Quantitative results 

from these simulations indicate that the copula mathematical model is able to achieve an 𝐴𝐴𝑅𝐷 =
3.0953% accuracy for predicted behaviours of the developed thermal conductivity database compared 

to an 𝐴𝐴𝑅𝐷 = 4.2376% accuracy for a conventional MLP neural network. The proposed mathematical 

modelling approach is a new novel original research technique that has been developed which is able to 

incorporate physical experimental measurement uncertainties such that the model is able to adaptively 

refine the predicted nanofluid model quantitative uncertainties in sub-domains of the input meta-

parameters which is not presently mathematically possible with existing neural network modelling 

approaches.  
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 Dataset of nanofluid thermal conductivity information, c.f. Eq(3.26) 
 Dataset of nanofluid viscosity information, c.f. Eq(3.27) 
 Hydrodynamic size of nanoparticles, c.f. Eq(3.41) 

 Ensemble average (statistical mechanics technique)  
 Agglomeration size (approimation of size of group of nanoparticles) 

 Normalized error, statistical consistency, c.f. Eq(3.54) 
 Knudsen number, indication of type of flow regime 

 Mean free path, c.f. Eq(3.62) 

LJ Lennard-Jones, a semi-empirical molecular interaction potential 

NEMD Non-Equilibrium Molecular Dynamics 

MCMC Markov Chain Monte Carlo (statistical analysis using a prior PDF’s)  

KL Kullback-Leibler, a type of statistical quality of statistical error 

MC Monte Carlo 
 Copula, a mathematical multivariate mapping , c.f Eq(3.84) 
 Cumulative distribution, c.f. Eq(3.85) 

 Bivariate joint PDF constructed with a copula, c.f. Eq(3.87) 
 Empirical copula, a copula defined entirely by data, c.f. Eq(3.103) 

CDF Cumulative Distribution Function, defined as  

GS1 GUM Supplement 1, technique for Monte Carlo based univariate UQ 

GS2 GUM Supplement 2, technique for monte Carlo based multivariate UQ 
 Conditional distribution function, c.f. Eq(3.124) 

AI Artificial Intelligence 

C-vine Parameters based model of ‘star-shaped’ multivariate copulas 
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1 Introduction 
 

 

1.1 Research Context 
 

In the field of mechanical engineering, the three conventional modes of heat transfer are 

conduction, convection and thermal radiation for a variety of instruments, equipment, machinery 

and systems encountered in practice and which are usually analysed using the principles of 

conservation of mass, momentum and energy along with relevant mathematical models of 

constituent material properties. The underlying heat transfer rate equations are usually derived 

using an energy balance equation of the form 𝐸̇in + 𝐸̇𝑔 − 𝐸̇out = 𝐸̇𝑠𝑡 where 𝐸̇in/[J s
−1] is the 

rate of energy entering a physically appropriate control volume 𝒱/[m3], 𝐸̇𝑔 is the rate of energy 

generated within 𝒱, 𝐸̇out is the rate of energy leaving 𝒱, and 𝐸̇st is the rate of energy stored 

within 𝒱 as discussed by Incropera & DeWitt [1]. 

 

Theories for heat transfer through conduction in solid materials are usually formulated in terms of 

Fourier’s law of the form 𝐪 = −𝑘∇𝑇 where 𝐪/[W m−2] is the heat flux, 𝑇/[K] is the solid 

temperature and 𝑘/[W m−1 K−1]  is the thermal conductivity which may in principle be 

calculated using either the kinetic transportation theory or condensed matter theory as discussed 

by Ashcroft & Mermin [2]. On the other hand, radiative heat transfer effects underpinned at a 

fundamental physics level by the Maxwell electromagnetic equations are usually modelled using 

Planck’s law where the spectral emissive power 𝑒𝜆𝑏(𝜆0, 𝑇)/[W m
−3sr−1]  is of the form 

𝑒𝜆𝑏(𝜆0, 𝑇) = 2𝜋𝐶1/[𝜆0
5(𝑒𝐶2/𝜆0𝑇 − 1)] for radiative heat transfer in vacuum where 𝐶1 = ℎ𝑐0

2 and 

𝐶2 = ℎ𝑐0/𝑘𝐵  are the first and second radiation constants where 𝑐0 is the speed of light, ℎ is 

Planck’s constant, and 𝑘𝐵 is the Boltzmann constant as discussed by Siegel & Howell [3] with 

appropriate modifications in terms of the generalized radiation transport equation as discussed by 

Castor [4] for radiative heat transfer through optically dense fluid mediums such as air, water and 

oil. Usually, radiative heat transfer calculations for many engineering problems are performed with 

the simplified blackbody radiation model where the thermal radiative emissive power integrated 

over all wavelengths is simply 𝐸 = 𝜎𝑇4 where 𝐸/[W m−2] is the radiative flux and 𝜎 is the 

Stefan-Boltzmann constant, and as a result thermal radiation effects are completely specified by 

existing electromagnetic theories. Consequently of the three heat transfer modes, it is usually 

convective heat transfer that receives the most attention in mechanical engineering studies since it 

is this mode of heat transfer that is the least well understood in terms of existing physical theories. 

 

By convention convective heat transfer is defined as the heat transfer that takes place from a solid 

surface to a moving fluid such as the inside surface of a pipe to the working fluid flowing through 

the pipe. As a result the convective heat transfer coefficient ℎ𝑐/[W m
−2 K−1] defined in terms 

of the equation 𝑞𝑠 = ℎ𝑐Δ𝑇  which is usually referred to a Newton’s law of cooling where 

𝑞𝑠/[W m
−2]  is the convective heat flux across the solid surface, 𝑇𝑠  is the solid surface 

temperature, 𝑇𝑒 is the working fluid free stream temperature and Δ𝑇 = 𝑇𝑠 − 𝑇𝑒 is a temperature 

gradient, is then usually a complicated function of the surface geometry/temperature, the fluid 

temperature/velocity and the fluid thermophysical properties as discussed by Mills [5]. By 

considering the velocity boundary layer and thermal boundary at the interface between the working 

fluid and the solid surface Incropera & DeWitt [1] derived a formula for ℎ𝑐  in the case of 
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Newton’s law of cooling where 𝑥 is a localized spatial coordinate tangential to the solid surface 

in the direction of the fluid flow and 𝑦 is a localized spatial normal to the solid surface of the form 

 

ℎ𝑐 =
def
−𝑘𝑓 × [

∂𝑇
∂𝑦
|
𝑦=0

]

𝑇𝑠 − 𝑇𝑒
 

(1.1) 

 

Referring to the above formula, it may be observed that the convective heat transfer coefficient is 

dependent on both the fluid thermal conductivity as well as the normal temperature gradient at the 

interface of the fluid and surface. Although fluid properties for many engineering working fluids 

such as water and various type of machinery oils and lubricants are available in tables and charts 

in general temperature gradients have to be either experimentally measured with thermocouples or 

resistance-temperature-devices (RTD’s) or alternately estimated through numerical simulations 

performed with Computational Fluid Dynamics (CFD) software codes. Since the laws of mass, 

momentum and energy conservation which are implemented with CFD codes through for example 

the solution of the Navier-Stokes equations under a continuum modelling assumption and which 

solve for the fluid’s velocity 𝐕 = [𝑢, 𝑣, 𝑤]T, pressure 𝑝 and temperature 𝑇 are in turn dependant 

on the fluid’s auxiliary thermodynamic properties of density 𝜌(𝑝, 𝑇), enthalpy ℎ(𝑝, 𝑇), viscosity 

𝜇(𝑝, 𝑇) and thermal conductivity 𝑘(𝑝, 𝑇) it is seen that convective heat transfer estimates and 

calculations are critically reliant on accurate knowledge and predictions of the particular working 

fluid’s thermal conductivity and viscosity respectively. Considering the general form of the 

convective heat transfer coefficient ℎ𝑐  it is observed that if statistical models for the working 

fluid’s thermal conductivity and viscosity are known then the corresponding uncertainty of ℎ𝑐 
may in principle be readily computed through stochastic based Monte Carlo simulations of the 

corresponding mathematical models of the relevant fluid/solid behaviour for any physical system 

such as for example heat exchangers which may utilize a nanofluid as a working fluid. Knowledge 

of the statistical properties and behaviour of the convective heat transfer coefficient ℎ𝑐 may then 

be utilized in reliability engineering and technical feasibility studies of mechanical systems that 

incorporate machinery, equipment or instruments that are reliant on nanofluids. 

 

In general, most engineering working fluids such as water and oil tend to exhibit poor thermal 

conductivities, while most engineering solid materials in various components and sub-systems 

using metals such as aluminium and copper have by contrast excellent thermal conductivities. 

Motivated in part by this observation Stephen Choi [6] through a set of a combination of 

microfluidic/nanofluidic experiments conducted at the Argonne National Laboratory, USA 

developed and introduced the modern concept of nanofluids by combining solid materials such as 

aluminium-oxide and copper-oxide nanoparticles with diameters 𝑑𝑝 such that 𝑑𝑝/[nm] ≤ 100 

suspended in a base liquid such as water or glycerol so that the new mixture exhibited markedly 

superior thermophysical properties. 

 

Since the introduction of the concept of nanofluids there has been a worldwide research 

undertaking to further study, understand, model and apply nanofluids to a diverse range of 

engineering applications. Apart from the application of nanofluids as more efficient convective 

heat transfer working fluids in traditional heat exchangers which has potential implications of 

massive water savings for power stations and manufacturing plants in South Africa which is a 

water scarce country, nanofluids also have potential further applications in electronic cooling 
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systems, vehicle engine lubricant systems, nuclear reactor cooling systems, and biomedical drug 

delivery systems, all of which are potentially attractive technology applications of nanofluids to 

enhance the competitiveness of the South African engineering sector in line with the country’s  

industrial policy action plan commonly known and abbreviated as IPAP2017 [7]. 

 

From a review of the technical literature of nanofluids a research gap of an absence of the 

incorporation of aleatory uncertainties i.e. natural statistical based variations of experimental 

measurement data in nanofluid model constructions has been identified and which presents a 

potential novel research avenue of investigation for mathematically modelling and predicting a 

nanofluid’s effective thermal conductivity and effective viscosity directly in terms of multivariate 

statistical data that incorporates the intrinsic experimental uncertainty data. 

 

 

1.2 Research Aims 
 

In this dissertation, mathematical modelling research is performed in order to investigate the 

optimal approach for modelling and incorporating intrinsic aleatoric thermophysical data 

uncertainties so that the resultant nanofluid thermophysical properties predicted by derived 

analytical mathematical expressions for the effective thermal conductivity and effective viscosity 

exhibits behaviour, properties and characteristics in terms of multivariate probability density 

functions which are mathematically modelled with copulas that are consistent with the known 

uncertainties. 

 

 

1.3 Research Objectives 
  

    • Develop a database of nanofluid thermophysical properties that contains uncertainties of both 

the effective thermal conductivity and effective viscosity for a water/alumina nanofluid as well as 

the uncertainties of the intrinsic meta-parameters of the nanoparticle size, concentration and 

temperature 

 

    • Perform full Monte Carlo based stochastic simulations to generate probability density 

function multivariate statistical data for constructing models for the effective thermal conductivity 

and effective viscosity 

 

    • Investigate the mathematical modelling with multivariate copulas for constructing and 

building mathematical expressions for the effective thermal conductivity and effective viscosity 

from the Monte Carlo multivariate data  

 

 

1.4 Research Scope 
 

Research studies in the field of mechanical engineering have historically been categorized as either 

experimental research or as theoretical research, however, a new third category of computational 

research has emerged in the last decade that is neither distinctly experimental nor distinctly 
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theoretical. This third research category of Computational Science & Engineering (CSE) as it is 

nowadays known which is distinct from the more traditional mathematical field of numerical 

analysis as it incorporates a mixture of other domain disciplines such as theoretical physics and 

scientific computing is more accurately categorized as an interdisciplinary and in some cases a 

multidisciplinary research paradigm of which the research category of Modelling and Simulation 

(M&S) has now been firmly established as a more accurate descriptor for this field of research 

work. 

 

More formal rigorous abstract definitions of modelling techniques with roots in the disciplines of 

computer science incorporating concepts such as Data Flow Modelling (DFM) and from systems 

engineering incorporating concepts such as Entity Relationship Modelling (ERM) are possible 

however in this research investigation a set of informal definitions is considered adequate. In the 

field of M&S research the descriptor of modelling is conventionally taken to encompass the use 

of models as conceptual abstractions of systems which in this investigation may then be informally 

categorized as simply the conceptualization and construction of appropriate mathematical 

equations for nanofluid thermophysical properties of varying levels of complexity. Although the 

term simulation is sometimes ambiguous as it may encompass both numerical analysis, scientific 

computing and computational engineering as distinct but overlapping research scopes in this 

dissertation the descriptor of simulations is limited as being the practical implementation of 

developed mathematical models i.e. the analytical/numerical solution of the mathematical 

equations developed from the modelling process for predicting the nanofluid thermophysical 

properties as opposed to more general computational fluid dynamics based simulations with open 

source or commercial computer codes for particular mechanical engineering machinery, 

equipment or instruments that utilize nanofluids as the working fluid. 

 

For the particular research investigation in this dissertation, the research scope of the study is 

limited to exploratory investigations of physical and mathematical equations which is logically 

inclusive of statistics as a branch of mathematics to model the thermophysical properties of a 

water/alumina nanofluid. In the course of the investigation, the focus is concentrated on the 

application of copulas for the mathematical and statistical modelling of water/alumina nanofluid 

using existing reported experimental data sourced from the open scientific literature for the 

nanoparticle sizes/concentrations and the base fluid temperature as natural meta-parameters. 

Although the related concepts of modelling and simulation are nominally independent in many 

practical M&S studies they are inter-related so as part of the study a computational application of 

the mathematical model for the utilization and implementation of the developed mathematical 

models for predicting the effective thermal conductivity and effective viscosity of the nanofluid as 

a convenient means to validate and verify (V&V) our constructed mathematical model is included. 

 

 

1.5 Research Organization 
 

To perform the research study, the research investigation is structured as follows: 

  

    • Chapter 1 – In this chapter, the context and relevance of nanofluid thermophysical properties 

is presented with an explanation of the identified current research gap of the absence of the 

incorporation of aleatory uncertainties of experimental measurement data in model constructions 
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with an associated absence of model parameter uncertainties necessary for a more rigorous 

mathematical uncertainty analysis of the property predictions, and how this identified research gap 

is addressed  

 

    • Chapter 2 – In this chapter, an investigation is performed of nanofluid thermophysical 

property experimental and theoretical data reported in the open scientific literature in order to 

construct a database of nanofluid thermophysical properties verified multivariate statistical data 

that is inclusive of aleatory physical experimental uncertainties 

 

    • Chapter 3 – In this chapter, different fluid physical theories and aspects which must be 

accounted for in nanofluid studies are investigated and analysis techniques of how to utilize higher 

dimensional multivariate copulas to mathematically model nanofluid thermophysical properties 

from verified multivariate statistical data are considered 

 

    • Chapter 4 – In this chapter,  the developed mathematical copula model from the research 

investigation is implemented to predict the effective thermal conductivity and effective viscosity 

of the water/alumina nanofluid and comparisons of the predictions with known property values is 

undertaken in order to validate the copula mathematical model for a range of nanofluid properties 

and characteristics 

 

    • Chapter 5 – In this chapter, the main outcomes of the research objectives are summarized for 

each of the chapters, with explanations of how the specific research sub-objectives and overall 

research objective were met, and some potential future areas of a research study that emanate from 

this dissertation are proposed  
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2 Literature Review 
 

 

2.1 Classical Fluid Physical Theories 
 

In the field of mechanical engineering constituent matter in single-phase and multi-phase states in 

machinery, equipment and devices of various types is conventionally classified as either occupying 

one of three classical macroscopic physical phase states such as liquids, solids or gases, or 

alternately combinations of the three classical states of matter such as gas and liquid states in for 

example a water steam/liquid mixture. A partial exception to this classification scheme in which a 

constituent volume of matter cannot be decomposed into either one of three classical states or 

equivalently a mixture of the three classical states of matter is that of plasmas which are sometimes 

informally considered as a special fourth type of state of matter. This is usually undertaken 

particularly for plasma physics studies and radiative hydrodynamics problems in which the 

classical states of matter such as liquids and gases for fluids problems are not able to fully capture 

the underlying physical processes as discussed by Mihalas & Weibel-Mihalas [8]. Typical 

applications of plasmas occur and are present in very high temperature applications usually but 

not always above 3000 K where de-ionization of the fluid starts to take place necessitating more 

complex generalized energy modelling terms. Examples of such problems are in for example very 

high Mach number flows, atmospheric re-entry vehicles, laser processes in manufacturing, and 

stellar atmosphere dynamics problems amongst other physical scenarios for which specialist 

modelling techniques are available. As a result in the vast majority of practical macroscopic scale 

mechanical engineering problems encountered which utilize the modelling of matter properties, 

characteristics and behaviour for the design, analysis or operation of machinery, equipment and 

devices the modelling of the applicable constituent matter properties then usually reverts back to 

formulations of pure liquids, solids or gases, or alternatively mixtures of these known classical 

phase states of matter. 

 

At the present time of writing the fundamental physics of modelling matter for characterizations 

and predictions in engineering problems is loosely grouped into ‘solid-like’ matter states such as 

for various pure metals and alloys, and to ‘fluid-like’ matter states such as for gas and liquid 

mixture categories since there does not exist any formal mathematical or physical definitions to 

rigorously delineate the distinction between these two categories. This lack of delineation between 

solid-like and fluid-like matter states is due to the physically observed phenomena whereby the 

same state of matter may, in fact, behave differently for different particular combinations of length 

and time scales such as in certain grades of glasses which behave as a ‘solid’ for small length 

scales but which in turn and contrastingly exhibit ‘fluid’ characteristics over long timescales. This 

particular observation then necessitates the implicit assumption of physical validity limits for any 

particular mathematical model of a fluid such as constraints imposed on the transport properties 

for specified temperature and pressure operating conditions of the machinery, equipment or 

devices, whereby these physical validity limits impact on the accuracy of numerical predictions 

which utilize the underlying respective model. Examples of such implicit physical validity limits 

to mathematical models of fluids include for example accuracy specifications and limit ranges of 

thermal conductivities and viscosities of pure gases such as nitrogen as discussed by Lemmon & 

Jacobsen [9] when these fluid transport properties are determined through combinations of 

experimental measurements with explicit/implicit experimental uncertainties and theoretical 
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predictions with their own explicit/implicit limitations, assumptions and/or approximations. Such 

physical validity limits are an unavoidable part of the fluid mathematical modelling process based 

on intrinsic limitations in the underlying data for varying reasons and are an essential practical 

constraint to take into account in order to avoid or at least mitigate against unrealistic and 

physically implausible predictions of machinery, equipment and devices for real engineering 

applications numerical based studies. 

 

With regards to mainly crystalline types of solids such as metallic compounds and ceramics which 

resist deformation and retain their shape in such a way that their stress is a function of the strain it 

is known that these types of solids are generally well characterized and understood in terms of 

classical solid state physics as a mature area of research as discussed by Ashcroft [2] to the extent 

that their intrinsic mechanical physical properties may be predicted. An example of such a case is 

the prediction of a material’s Young’s modulus of elasticity 𝐸 and Poisson’s ratio 𝜈 for arbitrary 

compositions and mixtures using disparate base components such as for example a tungsten matrix 

embedded with carbide particles which may be accurately predicted using density functional 

theory (DFT) simulation codes from physics based ab initio first principles simulations. The use 

of solid state physics may also if necessary also be used to model and predict the shapes and sizes 

of molecules of various crystalline substances as well as the structure and characteristics of both 

metallic and non-metallic molecules of solids. As a result, solid state physics may in principle be 

used to predict at an ab initio level the properties of nanoparticles which are used in the 

manufacture of nanofluids by combining the nanoparticles with a suitable base fluid such as water 

or oil. 

 

For fluids in the form of both single and multiple component gas species mixtures the physical 

properties are modelled in terms of the kinetic theory of gases which is formally underpinned by 

statistical mechanics as outlined by Reif [10] and which has historically been studied utilizing 

earlier implementations pioneered by Chapman & Cowling [11] and as result gas material property 

studies are also considered to be a relatively mature and complete area of research. The study of 

fluid properties for liquids is by contrast not considered a mature field of research since there is no 

corresponding comprehensive body of theory for liquid properties as there is for solids and gases. 

 

Fluids for the purposes of classification schemes are loosely defined as constituent matter which 

do not retain their shape when exposed to applied forces in such a way that the fluid internal stress 

is a function of the strain rate as discussed by Reddy [12] from a continuum mechanics modelling 

assumption although this assumption is not necessarily always physically valid in for example 

certain non-continuum flows such as rarefied gas dynamics problems under hard vacuum 

pressures. These types of ‘classical’ fluids adhering to the conventional notions of fluid 

classification schemes are usually understood and modelled in terms of approximations using 

phenomenological models such as the Navier-Stokes equations which is a first-order 

approximation of the Boltzmann equation as discussed by García-Colín et al.[13] utilizing the 

continuum fluid hypothesis as discussed by White [14] due to the absence of computationally 

tractable ab initio schemes for high particle number density values 𝑁 of the Boltzmann equation. 

The phenomenological modelling process is realized through an appropriate choice of the fluid 

stress tensor 𝚷𝑖𝑗 for the coupled system of differential equations for the conservation of mass, 

momentum and energy such that 
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∂𝜌

∂𝑡
+ ∇ ⋅ (𝜌𝐕) = 0 (2.1) 

∂

∂𝑡
(𝜌𝐕) + ∇ ⋅ 𝜌𝐕𝐕 = 𝜌𝐟 + ∇ ⋅ 𝚷𝑖𝑗  (2.2) 

∂𝐸𝑡
∂𝑡

+ ∇ ⋅ 𝐸𝑡𝐕 =
∂𝑄

∂𝑡
− ∇ ⋅ 𝐪 + 𝜌𝐟 ⋅ 𝐕 + ∇ ⋅ (𝚷𝑖𝑗 ⋅ 𝐕) (2.3) 

 

as per the discussion by Tannehill et al. [15] where 𝐕 = [𝑢1, 𝑢2, 𝑢3]
T is the fluid velocity, 𝐟 is a 

term to account for the body forces which is usually just set to 𝐟 = 𝜌𝐠 if 𝐠 is the gravitational 

acceleration vector and which we will ignore unless otherwise specified, 𝑄̇ = ∂𝑄/ ∂𝑡 is the rate 

of heat produced per unit volume by external heat sources, 𝑒 is the internal energy per unit mass, 

and 𝐸𝑡  and 𝐪  are the total energy per unit volume and heat transfer through conduction 

respectively under the assumption of Fourier’s law of heat conduction of the form 

 

𝐸𝑡 = 𝜌 (𝑒 +
1

2
∥ 𝐕 ∥2+ potentialenergy) (2.5) 

𝐪 = −𝑘∇𝑇 (2.4) 

 

In the above system the stress tensor 𝚷𝑖𝑗 is completely general and the system of equations for 

the conservation of mass, momentum and energy is mathematically valid for both continuum as 

well as non-continuum flows when coupled with appropriate auxiliary relations for the thermal 

conductivity 𝑘, viscosity 𝜇, enthalpy ℎ and density 𝜌 respectively. For the particular case of a 

Newtonian fluid, the stress tensor phenomenological model is approximated using Stokes 

hypothesis 𝜆 +
2

3
𝜇 = 0 where 𝜆 is the second viscosity coefficient using the Einstein summation 

convention where 𝛿𝑖𝑗 is the Dirac-delta function as 

 

𝚷𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗  (2.6) 

𝜏𝑖𝑗 = 𝜇 [(
∂𝑢𝑖
∂𝑥𝑗

+
∂𝑢𝑗

∂𝑥𝑖
) −

2

3
𝛿𝑖𝑗
∂𝑢𝑘
∂𝑥𝑘

] (2.7) 

 

Although the Boltzmann equation as a fundamental equation of statistical mechanics is 

theoretically valid for any physical state of matter in the observable universe be it gas, liquid, solid 

or plasma and whether these states of matter are continuum or non-continuum fluids, and is thus 

applicable for completely arbitrary particle number densities 𝑁  and whilst it is able to fully 

capture the underlying physics for microscopic and even for macroscopic liquid systems exhibiting 

arbitrary length, time, and constituent molecular species components such as fluid H2O molecules 

and nanoparticle Al2O3  molecules if appropriate collision integral terms are present it is not 

currently physically possible to solve the full Boltzmann equation with present computer 

technologies due to the extreme challenges with directly evaluating the collision integral source 

terms. 

 

Part of the difficulty with theoretically modelling nanofluids is that the presence of the 

nanoparticles destroys the short-range order of the classical base fluid medium since the motion of 

the nanoparticles in the surrounding carrier medium induces unpredictable stochastic i.e. non-

deterministic micro-fluctuations in the density field 𝜌(𝐱, 𝑡)  and velocity field 𝐕(𝐱, 𝑡)  of the 
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carrier medium molecules surrounding the nanoparticles which is presently thought to be one of 

the underlying physical causes to explain the thermo-physical characteristics of nano-fluids. 

Whilst it is theoretically possible to model at an ab initio level the inter-action and induced micro-

fluctuation effects between the molecules of the carrier fluid and the molecules of the nanoparticles 

either with the full Boltzmann equation, a full molecular dynamics simulation, or a stratified 

sampling scheme of a full molecular dynamics simulation using the direct simulation Monte Carlo 

(DSMC) method these respective approaches are not considered computationally feasible for full 

macroscopic systems. As a result at a conceptual mathematical modelling level there is a similar 

analogy with the modelling of turbulence effects of classical fluids in the sense that whilst there 

are known theoretical models that are available that may in principle fully capture the underlying 

physical processes such a direct numerical simulation (DNS) of the Navier-Stokes equations with 

various numerical discretization and solution techniques that these ab initio theoretical approaches 

are in most cases simply computationally infeasible with existing local and distributed computer 

systems, and that the more complex macroscopic physical properties and processes have to be 

modelled with various simplifications and approximations in order to realize results and 

predictions for applied engineering problems. 

 

Consequently the theoretical approach of utilizing the Boltzmann equation is therefore only 

applicable and computationally feasible with existing local and distributed computing system for 

systems exhibiting smaller number density values 𝑁 or equivalently smaller closed systems such 

as for example mainly gas mixtures with nanoparticle suspensions using the kinetic theory of gases 

as discussed in the review paper by Ya Rudyak [16]. Based on this review paper it has been 

reported that the viscosity of gas nanosuspensions significantly differs from classical fluids i.e. gas 

mixtures without nanoparticles and in addition that predictions are not possible using the classical 

Einstein theory of gas mixtures with Brownian motion which is a simplification of the kinetic 

theory where the viscosity 𝜂 of a fluid with dispersed particles takes the form 𝜂 = 𝜂0(1 + 2.5𝜙) 
where 𝜙 is the volume fraction of the dispersed particles. In the original Einstein model, the 

dependence of the viscosity is only a function of the volume fraction 𝜙 and does not depend on 

either the temperature 𝑡  or the shape of the doped nanoparticles amongst other physical 

parameters and quantities which may influence the final bulk fluid density. On the other hand on 

a practical level additional complexities arise when attempting to model liquids using classical 

kinetic theories since the liquid molecules are significantly more closely packed to each other when 

compared to molecules in gas mixtures with and without the presence of nanoparticles and as a 

result the mechanism of momentum transfer becomes significantly more complicated and less 

amenable to statistical mechanics simplifications as is the case with the kinetic theory of gases. 

For liquids when the molecules collide the momentum is typically re-distributed on a local scale 

as opposed to a global scale for gases, and as a result the viscosity of a liquid which is a measure 

of the fluid momentum transfer mechanism is significantly affected by the molecular structure of 

the fluid i.e. the inter-action between the base fluid molecule such as a H2O molecule and its inter-

action with surrounding and nearby nanoparticles such as Al2O3 molecules. This phenomena and 

complexity of molecular structure effects in the absence of a comprehensive physical theory for 

liquids amenable to accurate predictions has in the past been incorporated through the modelling 

of various non-Newtonian viscosity fluid models in an attempt to incorporate the influence of 

varying mass fractions, volume fractions, concentrations and temperature effects as input 

parameters which influence the transport properties of nano-fluids which when produced with 

nanoparticle raw materials are known to have significant variations of nanoparticle shapes and 
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sizes. Based on various experimental and theoretical studies one particular current approach in 

many reported nanofluid studies for the modelling of viscosity is to adopt a quadratic dependence 

on the volume fraction 𝜙 for particular nanoparticle sizes 𝑑 such that the nanofluid viscosity 

takes the form 𝜂 = 𝜂0[1 + 𝑘1(𝑑)𝜙 + 𝑘2(𝑑)𝜙
2]  where 𝑘1(𝑑)  and 𝑘2(𝑑)  are unknown 

functions which must be determined to optimally model a nanofluid in terms of the carrier fluid 

and nanoparticle doping material. 

 

Due to the complexity of the above system of equations, one particular approach is usually known 

as the single-phase modelling approach simply utilizes the stress tensor for a Newtonian fluid 

where refinements for non-classical fluids are implemented for an ‘effective thermal conductivity’ 

𝑘𝑒𝑓𝑓 and an ‘effective viscosity’ 𝜇𝑒𝑓𝑓 since it is generally more convenient to adapt and refine the 

auxiliary relations for 𝑘 and 𝜇 which may be modified without the need to develop a new solver, 

instead of simultaneously refining 𝚷𝑖𝑗, 𝑘 and 𝜇 with the possible need to develop a new solver. 

Alternative single-phase phenomenological models to the Navier-Stokes equations which is a first 

order 𝒪(𝐾𝑛) Knudsen number approximation of the Boltzmann equation are also technically 

possible and include the second order 𝒪(𝐾𝑛2) Burnett and third order super-Burnett 𝒪(𝐾𝑛3) 
hydrodynamic equations which are numerically unstable, or the linearized G13 and R13 13-

moment equations which are numerically stable but which are substantially more mathematically 

complex as discussed by Young [17]. Occasionally in some studies a multi-phase modelling 

approach which simultaneously considers both the liquid base fluid as well as the solid 

nanoparticles is adopted over a single-phase modelling approach, however whilst a multi-phase 

modelling may in some instances offer superior predictive capabilities this functionality comes at 

the expense of substantial increased model complexity. One particular example of such complexity 

is in terms of the appropriate fluid boundary conditions of a fluid/solid mixture which impinges 

on a solid surface and how to adequately incorporate conservation of momentum at the interface 

of the mixed-phase fluid/solid mixture, which by contrast is not a major issue with single-phase 

fluids under the assumption of a mathematical continuum since first-order Maxwell velocity-slip 

and Smoluchowski temperature-jump boundary conditions may be readily incorporated into 

conventional commercial CFD codes. 

 

As a result whilst a research strategy to directly utilize the Boltzmann equation is theoretically 

valid from a fundamental physics point of view and it is known that it will completely capture the 

underlying physics of nanofluid systems this is presently computationally infeasible even on 

massively parallel supercomputing systems that are currently available within South Africa for 

simulations at typical operating pressure and temperature values for engineering equipment such 

a heat exchangers, and the associated pumping and piping systems. The remaining numerical 

simulation strategy and option is to model nanofluid systems either with modifications of 

simplifications to the Boltzmann equation (such as a 0th order Euler equations, 1st order Navier-

Stokes equations, or 2nd order Burnett hydrodynamic equations) such as optimized thermo-

physical functional forms for the thermal conductivity and viscosity to match verified experimental 

data results. Alternatives to optimized modifications of the auxiliary relations for the Navier-

Stokes equations are mathematically equivalent asymptotic approximations of the Boltzmann 

equation such as the mesoscopic lattice Boltzmann method (LBM) which is computationally 

feasible and has found relative success in numerically capturing certain nanofluid physical 

behaviour, however the length scale of typical LBM simulations is usually in the range from 

100 nm to about 1000 nm i.e. from a length of a very large nanoparticle up to the lower length 
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scale of a few fractions of a micron that is typically resolved with conventional CFD codes near 

the continuum hypothesis limit. As a result mesoscopic simulations as a branch of condensed 

matter physics loosely defined as an intermediate field of study between microscopic and 

macroscopic length scales whilst offering the ability to slightly extend the validity limits of 

conventional macroscopic CFD type simulations also suffers from the same limitations since it 

cannot accurately extend predictions down to length scales of 1 nm to 10 nm which is where 

much of the unique physics of nanofluids is currently thought to emanate from such as the effects 

of the nanolayer that surrounds the nanoparticles and in the random interactions effects between 

the nanoparticles and the base fluid molecules. The challenge of this limitation is that in general 

there are a range of nanoparticle sizes that are physically present in any nanofluid and that the 

different sizes of nanoparticles will interact both with each other as well as the surrounding base 

fluid molecules in a manner which cannot be easily studied if the underlying spatial resolution that 

is possible with the mesoscopic model is larger than the length scale at which the nanofluid 

physical phenomena is manifested. As a result whilst LBM simulations may yield qualitatively 

reasonable results from numerical simulations for various nanofluid systems the accuracy of such 

solutions is constrained by the validity limits of the particular mesoscopic modelling approach 

such as for example how the Boltzmann collision integral terms are approximated, how the 

interaction effects between the nanoparticle and base fluid molecules are approximated, and how 

the boundary conditions such as the interactions between the nanofluid and solid surfaces are 

modelled either for single-phase or multi-phase schemes for nanofluids as discussed by Yan et al. 

[18] or in applied studies such as the estimation of convective heat transfer coefficients in 

nanofluid systems as discussed by Sheikholeslami et al. [19]. Alternatives to mesoscopic 

simulation approaches are stratified sampling particle based schemes to the Boltzmann equation 

such as the direct simulation Monte Carlo (DSMC) method which is not constrained by any 

particular length scale but which does unfortunately suffer from the presence of ‘statistical noise’ 

for high number densities typically encountered in liquids but which may in the future be mitigated 

through more modern DSMC codes such as that developed by Scanlon et al.[20] which improves 

on the earlier historical DSMC codes by Bird [21] and which may potentially be amenable to 

numerical simulations implemented on massively parallel supercomputing systems. Although both 

LBM, as well as DSMC implementations of nanofluid simulations, have been reported in the 

literature, these results are at present of writing considered preliminary numerical results to verify 

and validate (V&V) both experimental measurements and traditional finite volume CFD type of 

simulations. Part of the caution that is necessary with predictions with LBM and DSMC 

simulations is that as per the discussion by Karniadakis et al.[22] who investigated numerical 

methods for atomistic simulations it was determined that the continuum assumption for liquids 

breaks down for length scales of 10 molecules or smaller regardless of the type of fluid molecules 

i.e. a continuum modelling hypothesis is not considered physically realistic for clusters of 

molecules which is the physical case for any nanofluid. Due to this physical reality whilst 

continuum fluid models may be refined through for example modifications of velocity slip models 

these refinements may be considered approximations since at the present of writing only molecular 

dynamics simulations are known to be able to yield physically realistic results for liquids at an ab 

initio physics first-principles level. A potential future research strategy for nanofluid 

computational modelling is to perform ab initio molecular dynamics studies and use these 

validated & verified results which do not utilize any simplifications to “calibrate” an 

intermolecular potential function for the nanoparticle and base fluid molecules i.e. to construct an 

approximation of the actual intermolecular potential function from the actual molecular dynamics 
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based potential function for small clusters and agglomerations of 10 to 1000 nanoparticle and 

base fluid molecules i.e. for length scales from a fraction of 1 nm to about 10 nm, and to then 

utilize this approximate potential as an input into further DSMC simulations for length scales made 

of more than 1000 nanoparticle/liquid molecules i.e. for length scales from around 10 nm to 

about 100 nm since techniques have now been developed and presently exist to perform DSMC 

simulations with generalized interaction potential functions as discussed by Sharipov & Strapasson 

[23], so that the DSMC simulations may then in turn be used to “calibrate” continuum model 

based results such as CFD simulations with modified velocity slip models at length scales larger 

than 100 nm. As a result this sequential “calibration” scheme may be used to verify & validate 

various nanofluid models from the microscopic to mesoscopic to macroscopic length scales with 

the associated stress-strain characteristics of the nanofluid within the various modelling 

assumptions and numerical accuracies achievable from the respective mathematical and 

computational nanofluid modelling schemes, however this potential future research strategy for 

nanofluids is crucially and critically dependent on the future availability of high performance 

computing (HPC) resources to initiate the initial ab initio molecular dynamics computational 

simulations for the nanofluid. 

 

Whilst the the stress-strain state characteristics of gases may be conveniently modelled in terms of 

the compressible Navier-Stokes equations utilizing either experimental or theoretical 

thermodynamic properties data as outlined by Canuto et al. [24], the modelling of liquids by 

contrast in the absence of a comprehensive physical theory that is easily implementable for 

common liquids in engineering problems as previously discussed is inevitably undertaken 

particularly for single-phase models through experimental measurements. These experimental 

measurements for classical or Newtonian fluids include that for the particular fluid’s mass density 

𝜌/[kg m−3] = 𝜌(𝑝, 𝑇) , viscosity 𝜇/[Pa ⋅ s] = 𝜇(𝑝, 𝑇) , specific enthalpy ℎ/[J kg−1] , and 

thermal conductivity 𝑘/[W m−1 K−1] which are considered as auxiliary relations to close the 

conservation equations of mass, momentum, and energy respectively in terms of the primary 

variables of the pressure 𝑝/[Pa]  and temperature 𝑇/[K]  based on particular modelling 

assumptions of the fluid’s stress-strain relationship. If these four auxiliary relations are known then 

the conservation equations of mass, momentum and energy are formally mathematically closed 

and they may then be numerically solved in order to determine the fluid’s velocity field 𝐕(𝐱, 𝑡) =
[𝑢, 𝑣, 𝑤]T , pressure distribution and heat transfer behaviour such as convective heat transfer 

coefficients amongst other characteristics for spatial positions as a function of time 𝑡  for a 

specified three dimensional domain Ω so that this information may be used for designing, testing, 

commissioning and verifying various machinery, equipment and devices in engineering 

applications. 

 

Although this general simulation approach for fluids using either custom developed research 

codes, open source software packages such as OpenFOAM or commercial software packages such 

as Ansys Fluent is in principle applicable to any classical fluid amenable to a continuum modelling 

hypothesis such as various grades of machine oils, lubricants, water and air for mechanical 

engineering applications, various modelling difficulties are generally encountered in nanofluids 

which are classified as non-classical fluids. In this dissertation a working definition to define nano-

fluids as classical fluids such as water or oil, usually referred to as the carrying medium, which 

when doped with various metallic/non-metallic nanoparticles typically with particle sizes 𝑑 

usually less than 𝑑~50 nm to avoid sedimentation and suspension issues of the nanoparticles 
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then exhibit vastly superior overall thermal transport properties when compared to traditional 

classical engineering fluids is considered as per standard nanofluid research studies as reported by 

Wang & Mujumdar [25]. As a result even though nano-fluids are ostensibly utilized in 

conventional macroscopic fluid systems due to the vastly different physical interaction effects 

which occur at intrinsically nano-scale length scales systems utilizing nanofluids such as high 

efficiency heat exchangers are comprehensively more difficult to mathematically model and 

numerically simulate from well known physical principles and theories when compared to classical 

fluids for both macroscopic and microscopic engineering applications as discussed by Bruus [6]. 

 

In the event that the conventional Navier-Stokes mass, momentum and energy conservation 

equations for classical continuum fluids as implemented in many CFD codes are retained then the 

phenomenological single-phase modelling of nanofluids may be to a large extent be adequately 

encompassed through appropriate choices of models for the auxiliary relations. As a result, the  

focus in this dissertation is on studying and modelling numerical models of nano-fluids systems 

using single-phase models for the effective thermal conductivity 𝑘𝑒𝑓𝑓  and effective viscosity 

𝜇𝑒𝑓𝑓 respectively which incorporate knowledge of the base fluid thermo-physical and transport 

properties along with the constituent nanoparticle physical and chemical properties and 

specifications for various mixtures such that the resulting numerical models optimize in some 

sense CFD based thermo-flow simulation results for various applications and configurations with 

corresponding experimental results. 

 

 

2.2 Nanofluid Experimental Measurement Considerations 
 

The study of nanofluids as an area of the physics of fluids field of research is now more than 25 

years old as originally discussed by Choi [6] although theoretical and experimental studies of the 

suspensions of solid particles in fluids have been studied for almost a 100 years going back to the 

time of James Clerk Maxwell. In most cases these studies have been motivated by the fact that the 

convective heat transfer characteristics of liquids are often restricted by the particular flow 

geometries and boundary conditions, and as a result are difficult to improve without changing the 

characteristics of the working fluid. When solid particles are present in a surrounding fluid medium 

by virtue of the fact that most solids have superior thermal conductivities the resulting mixture of 

a base fluid with solid particles has been experimentally observed to have substantially superior 

heat transfer characteristics. Due to the fact that larger solid particles which have higher densities 

will generally settle out from the surrounding fluid medium for practical reasons smaller size 

particles usually of the order of nano-meters are necessary as originally observed by Choi [6] who 

coined the modern expression and meaning of the term nanofluid as is nowadays commonly 

understood as a base carrier fluid which contains doped nanoparticles. Usually these nanoparticles 

have nominal equivalent diameter sizes of 𝑑 ≤ 50 nm for metallic/non-metallic solid materials 

and due to their much larger relative surface area when compared to nominal suspended solids in 

fluid mixtures tend to exhibit superior heat transfer characteristics and suspension stabilities in the 

base fluid. 

 

Historically the production of nanofluids has been a non-trivial matter as nanoparticles cannot 

simply be mixed with a base fluid without being prone to settling down, agglomeration or failing 

to exhibit stable and durable suspension characteristics and have either to be produced by the ‘one-
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step’ method or the ‘two-step’ method. In the one-step method which is used to produce 

nanoparticles directly inside a fluid and which is also called the Vacuum Evaporation onto a 

Running Oil Substrate (VEROS) method the general idea is that a vapour of the constituent solid 

material such is condensed into nanoparticles when the vapour comes into contact with a flowing 

low vapour pressure liquid. The VEROS technique and a related technique called the vacuum-

SANSS (submerged arc nanoparticle synthesis system) are able to produce Cu and Ni based 

nano-fluids. The two-step method on the other hand is used to produce the actual nanofluids for 

other nano-fluids such as water/alumina (H2O/Al2O3) or water copper-oxide (CuO) mixtures since 

they are relatively common and inexpensive where a first step is to produce the nanoparticles using 

any convenient technique and then as a second step the nanoparticles are mixed into the base fluid 

usually through the use of ultra-sonic equipment which tends to avoid agglomeration issues. 

Additional fluid pH control and active surface agents are then used usually employed as additional 

measures to enhance the stability of the mixtures and mitigate against sedimentation of the 

nanoparticles. Different techniques have in the past been used to measure nano-fluids thermal 

conductivities and include amongst other approaches the traditional transient hot-wire method, the 

steady state parallel technique method, and the temperature oscillation technique. Amongst these 

techniques the main issue which arises is that some nano-fluids are electrically conductive and 

although coating the hot wire in for example the commonly used transient hot-wire method with 

an epoxy adhesive to provide electrical insulation is possible this approach as the disadvantage 

that there may be a concentration of ions from the conducting fluid around the hot wire which 

would affect the physical accuracies of the experiment measurements. For this reason the 

oscillation method which is a purely thermal based experimental technique is preferred for 

nanofluid thermal conductivity experimental measurements. An alternative technique for this 

earlier time period known as the 3𝜔 method has been reported in the literature by Oh et al.[27] 

as an alternative to the more common transient hot wire technique which potentially offers the 

means to mitigate against agglomeration and sedimentation issues with the more traditional 

techniques. The 3𝜔 measurement technique has mainly in the past been used to measure the 

properties of thin films and solid substrates and was adapted and used by Oh et al.to characterise 

a Al2O3/water mixture with a volume fraction from 1% to 4% which compared favourably with 

earlier reported works. According to Oh et al.the main proposed advantages of the 3𝜔 method for 

thermal conductivity experimental testing are that (i) it may be used to determine whether 

homogeneous mixtures have been achieved since it can test small volumes of nanofluids, (ii) it 

may be used to test spatial variations of mixtures again because it can test small volumes, and (iii) 

it may in principle be extended to investigate thermal conductivity changes with variations in 

temperature and pressure. Later experiments by Turgut et al.[28] who calibrated the typical 

commercially available 3𝜔 measurement apparatus against known thermal conductivities of pure 

water, methanol, ethanol and ethylene glycol (EG) established that 3𝜔  thermal conductivity 

measurements have achievable accuracies of ±2% in most practical experiment measurement 

situations using standard laboratory equipment in thermophysical studies. 

 

Earlier experiments with Al2O3 particles using more traditional measurement techniques found 

that the thermal conductivity was enhanced by a difference in the pH of the suspension and the 

isoelectric point i.e. the pH where a molecule carries no nett electrical charge, was highly 

dependant on the specific surface area (SSA) of the mixture, but was not affected by the crystalline 

phase of the nanoparticles. Effects of the variation of temperature 𝑇 and volume fraction 𝜙 for 

36 nm area weighted diameters of water Al2O3 mixtures were studied by Li & Peterson [29] 
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who determined a correlation of the form 

 
𝑘𝑒𝑓𝑓 − 𝑘𝑓𝑙𝑢𝑖𝑑

𝑘𝑓𝑙𝑢𝑖𝑑
= 0.764481464𝜙 + 0.018688867𝑡 − 0.462147175 (2.8) 

 

for volume fractions of 2%, 4%, 6% and 10% for temperatures from 27. 5∘C to 34. 7∘C where the 

benefit of this earlier publication is that it provided specific experimental accuracies for the results. 

For this experimental data-set the authors determined that their apparatus could experimentally 

measure thermal accuracies to within an experimental accuracy of ±2.5%. These results were 

then further analysed by Li & Peterson using a two-factor linear regression analysis which yielded 

the relation 

 
𝑘𝑒𝑓𝑓 − 𝑘𝑏

𝑘𝑏
= 0.764𝜙 + 0.0187(𝑇 − 273.15) − 0.462 (2.9) 

 

This two-factor linear regression was used to model the relationship between the volume fraction 

𝜙 of the nanoparticle and the bulk temperature 𝑡/[∘C]. Additional comparisons by Li & Peterson 

with thermal conductivity data were subsequently performed from which it was demonstrated that 

there can be marked differences in nanofluid thermal conductivity results for the same volume 

fractions 𝜙 by different investigators and they concluded that the classical Maxwell model is 

inaccurate for large volume fractions. 

 

Limited natural convective heat transfer ℎ studies were performed in the earlier years and where 

data was available results were more qualitative in nature such that the convective heat transfer 

coefficient tended to usually but always increase with an increase in nanoparticles due to 

discrepancies from various investigators. Many of the earlier studies adopted a single-phase 

formulation to numerically study heat transfer characteristics of nano-fluids in order to determine 

Nusselt numbers in terms of the Reynolds and Prandtl numbers for a combination of laminar and 

turbulent flows mainly because a single-phase model is still amenable to a continuum assumption 

and may therefore still be used by conventional finite volume based CFD software such as Ansys, 

and since it was not clear at the time that multi-phase models, i.e. modelling the combination of 

both the base fluid medium and surrounding solid nanoparticles offered significant benefits over 

single-phase models. Reasons for some of these discrepancies between the earlier numerical 

studies and the experimental studies may be partially attributed to that fact that not all earlier 

numerical studies explicitly included process parameters such as the particle size, particle shape 

and particle distribution since all of these in combination and not just a single nanofluid parameters 

have a physical influence on the flow and heat transfer characteristics. 

 

Although there was no general consensus on an appropriate theoretical explanation for the massive 

increase in heat transfer performance of nanofluids as factors such a Brownian motion, liquid-solid 

interface layers, ballistic phonon transport effects and surface charge states were considered and 

debated in the literature semi-empirical relations were nevertheless possible due to their simplicity 

and practical utility. One of the earliest models was that of Maxwell of the form 

 

𝑘𝑒𝑓𝑓 =
𝑘𝑝 + 2𝑘𝑏 + 2(𝑘𝑝 − 𝑘𝑏)𝜙

𝑘𝑝 + 2𝑘𝑏 − (𝑘𝑝 − 𝑘𝑏)𝜙
𝑘𝑏 (2.10) 
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where 𝑘𝑝 is the thermal conductivity of the particle, 𝑘𝑏 is the thermal conductivity of the base 

fluid, and 𝜙 is the particle volume fraction unless otherwise stated (where usually in nanofluid 

studies volumetric fractions are assumed unless otherwise stated). As previously discussed the 

Maxwell model is now considered to be inaccurate except for relatively small volume fractions 

but it still nevertheless provides a convenient bench-mark to compare other predictions. For 

homogeneous spherical inclusions the Bruggeman model of the form 

 

𝜙(
𝑘𝑝 − 𝑘𝑒𝑓𝑓

𝑘𝑝 + 2𝑘𝑒𝑓𝑓
) + (1 − 𝜙) (

𝑘𝑏 − 𝑘𝑒𝑓𝑓

𝑘𝑏 + 2𝑘𝑒𝑓𝑓
) = 0 (2.11) 

 

is commonly employed whilst the Hamilton & Crosser model of the form 

 

𝑘𝑒𝑓𝑓 =
𝑘𝑝 + (𝑛 − 1)𝑘𝑏 − (𝑛 − 1)(𝑘𝑏 − 𝑘𝑝)𝜙

𝑘𝑝 + (𝑛 − 1)𝑘𝑏 + (𝑘𝑏 − 𝑘𝑝)𝜙
,
𝑘𝑝

𝑘𝑏
> 100 (2.12) 

𝑛 =
3

𝜓
 (2.13) 

𝜓

=
surface area of a sphere with volume equal to that of particle

surface area of particle
 

(2.14) 

 

 

is used for liquid-solid mixtures with non-spherical particles where 𝜓 is the particle sphericity 

and 𝑛 is an empirical shape factor as indicated above. Comparisons of predictions of the Hamilton 

& Crosser model with that of the Maxwell model reveal that the Maxwell model is simply a special 

case of the Hamilton & Crosser model when there are perfectly spherical nanoparticles. An 

extension to the classical Maxwell model to incorporate the effects of the nano-layer was proposed 

by Yu & Choi as further discussed by Ravisankar & Tara Chand [30] of the form 

 

𝑘𝑒𝑓𝑓 =
𝑘𝑝𝑒 + 2𝑘𝑏 + 2(𝑘𝑝𝑒 − 𝑘𝑏)(1 + 𝛽)

3𝜙

𝑘𝑝𝑒 + 2𝑘𝑏 − (𝑘𝑝𝑒 − 𝑘𝑏)(1 + 𝛽)3𝜙
𝑘𝑏 (2.15) 

𝑘𝑝𝑒 =
[2(1 − 𝛾) + (1 + 𝛽)3(1 + 2𝛾)]𝛾

−(1 − 𝛾) + (1 + 𝛽)3(1 + 2𝛾)
𝑘𝑝 (2.16) 

𝛾 =
𝑘𝑙𝑎𝑦𝑒𝑟

𝑘𝑝
=

nano−layer thermal conductivity

nano−particle thermal conductivity
  (2.17) 

𝛽 =
ℎ

𝑟
=
nano − layerthickness

nano − particleradius
 (2.18) 

 

The above modified Maxwell model with a nano-layer term was found to be able to predict the 

presence of nano-layers with a thickness less than 10 nm and it also introduced to investigators 

of the possibility that the addition of nanoparticles smaller than 10 nm  could, in fact, be 

potentially more advantageous for nanofluid thermal conductivity than simply increasing the solid 

nanoparticle volume fraction 𝜙. As a result, these earlier models emphasised the complexity of 

the underlying physical interactions and processes at the nano-scale level and the need for various 

researchers to study a combination of process parameters when they constructed various nanofluid 
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models. It could arguably be claimed that the observance of the various complex physical 

processes at play laid the later foundation for future researchers to consider more advanced 

computational intelligence techniques such as neural networks and artificial learning systems in 

order to make sense of and model the at times inconsistent and contradictory mixture of 

experimental and theoretical results. 

 

Unless otherwise specified the density 𝜌 and specific heat 𝑐𝑝 are usually assumed to be 

 

𝜌𝑒𝑓𝑓 = (1 − 𝜙𝑝)𝜌𝑏 +𝜙𝑏𝜌𝑏 (2.19) 

𝑐𝑝,𝑒𝑓𝑓 =
(1 − 𝜙𝑝)(𝜌𝑐𝑝)𝑏 + 𝜙𝑝(𝜌𝑐𝑝)𝑝

(1 − 𝜙𝑝)𝜌𝑏 + 𝜙𝑝𝜌𝑝
 (2.20) 

 

as discussed and derived by Wang & Mujumdar [31] where the subscript 𝑏 denotes the base or 

carrier fluid such as water whilst the subscript 𝑝 denotes the nanoparticle such as alumina, copper 

oxide or titanium oxide particles. The above formula for the density of nanofluids which is 

sometimes referred to as the Pak & Cho formula was investigated by Vajjha et al.[32] who 

performed experiments on at 60: 40  ethylene glycol/water mixture using aluminium oxide 

(Al2O3), antimony-tin oxide (Sb2O5: SnO2) and zinc oxide nanoparticles and verified that the 

conventional mixture formula for the effective density 𝜌𝑒𝑓𝑓 gives good agreement between the 

experimental results and recommendations from the ASHRAE 2005 handbook when using 

standard ASTM test methods for density measurements of fluids. These experimental studies 

therefore verified the validity of the density mixing formula for Al2O3  nanoparticles with an 

average diameter of 44 nm in a 60: 40 EG/W mixture for density mixtures by mass of 1%, 2%, 

4%, 6%, 8% and 10% respectively over a temperature of 0 ≤ 𝑡/[∘C] ≤ 50  as graphically 

summarized in Figure 2.1.  

 
Figure 2-1 Illustration of validation of mixing density formula of Pak & Cho based on experimental data reported by Vajjha et 

al.[32] 
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When this data set was analysed by Vajjha et al.they concluded that for Al2O3 nanoparticles in 

the EG/W base fluid showed agreement to the Pak & Cho formula with an absolute average 

deviation of 0.39% with a maximum deviation of 1.2%. The one issue in this experimental study 

was that the Pak & Cho formula performed poorly for Sb2O5: SnO2 nanoparticles in the EG/W 

base fluid and tended give to results only accurate to about 8%, however, the overall conclusion 

of Vajjha et al.was that the Pak & Cho formula is in fact suitable for estimating the density of 

alumina/water nano-fluids. 

 

Similar experiments by Teng & Hung [33] for the density and specific heat of alumina/water 

nanofluids were also performed in 2012 but only reported a few years later in the 2014 literature 

where they came to a similar conclusion as Vajjha et al. that the mixed density formula generally 

gives reasonable results within the expected accuracy levels of about 1.5%. These experiments 

used a differential scanning calorimeter for the specific heat measurements and a dynamic light 

scattering analyser to investigate the particle size distribution. In this study, Teng & Hung 

developed two alternative sets of equations for the nanofluid density and specific heat as 

 

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑏𝑓 +𝜙𝜌𝑝 : Option 1 (2.21) 

𝜌𝑛𝑓 =
(1 − 𝜙)𝜌𝑏𝑓𝜌𝑏𝑓 + 𝜙𝜌𝑝𝜌𝑝

(1 − 𝜙)𝜌𝑏𝑓 + 𝜙𝜌𝑝
 : Option 2 (2.22) 

𝜌𝑛𝑓 = (1 − 𝜔)𝜌𝑏𝑓 + 𝜔𝜌𝑝 : Option 2 (equivalent form) (2.23) 

 

and 

 

𝑐𝑝,𝑛𝑓 = (1 − 𝜙)𝑐𝑝,𝑏𝑓 + 𝜙𝑐𝑝,𝑝 : Option 1 (2.24) 

𝑐𝑝,𝑛𝑓 =
(1 − 𝜙)(𝜌𝑏𝑓𝑐𝑝,𝑏𝑓)

(1 − 𝜙)(𝜌𝑏𝑓) + 𝜙(𝜌𝑝)
 

: Option 2 (2.25) 

𝑐𝑝,𝑛𝑓 = (1 − 𝜔)𝑐𝑝,𝑏𝑓 + 𝜔𝑐𝑝,𝑝 : Option 2 (equivalent form) (2.26) 

 

where 𝜔 is the weight function. The weight function is used to convert a weight fraction to a 

volume fraction by using the equation 

 

𝜙 =
(
𝑊𝑝

𝜌𝑝
)

(
𝑊𝑛𝑓

𝜌𝑛𝑓
)

  (2.27) 

𝜙 = 𝜔 (
𝜌𝑛𝑓

𝜌𝑝
)  (2.28) 

 

where 𝑊𝑏𝑓 is the weight i.e. mass of the base fluid, 𝑊𝑝 is the mass of the nanoparticle and 𝑊𝑛𝑓 

is the mass of the nanofluid mixture. This set of experiments for the densities by Teng & Hung 

were performed over a temperature range of 10 ≤ 𝑡/[∘C] ≤ 40 and when they analysed the data 

they concluded that when predicting densities that Option 1 yielded results with deviations of 

densities in the range from −1.50% to 0.06% and that Option 2 yielded results with deviations 

of densities in the range from 0.25% to 2.53% where in general their investigation showed a 

greater deviation with an increased concentration in the nano-fluid, where they speculated that 

interface layer between the nanoparticles and the surrounding water may tend to play an increasing 
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role in explaining why there are higher deviations in predictions between the theoretical formulae 

and the experimental results at higher nanoparticle concentrations. 

 

With regards to the specific heat experimental results which were performed over a temperature 

range of 25 ≤ 𝑡/[∘C] ≤ 65 they concluded that when using Option 1 that this formula tends to 

over-estimate the specific heat that were experimentally measured, and that the difference between 

the experimental results and the predictions with the Option 1 formula tended to decrease with a 

decrease in the nanoparticle concentration, however they were not able to discern how the 

temperature affects changes in the specific heat the Al2O3/mixture with any confidence. 

 

A similar pattern was observed with the use of the Option 2 formula for the specific heat 

predictions and when both the Option 1 and Option 2 formula were compared to the experimental 

results they found that the deviations between the theoretical prediction and experimental 

measurements ranged from −0.07%  to 5.88%  with the Option 1 formula and ranged from 

−0.35% to 4.94% with the Option 2 specific heat formula. As a result, they concluded that the 

Option 2 formula for specific heat predictions tends to offer superior results for predicting the 

specific heat for when the nanofluid concentration is low. It is therefore concluded that the 

predictions of effective density and effective specific heat using the conventional mixing 

modelling approach which indirectly draws from mixing theory concepts from ideal gas mixtures 

using classical statistical mechanics ideas are generally reasonably accurate in most practical cases 

when taking into account their associated accuracy prediction levels. The one main experimental 

observation from the Teng & Hung study to note is that of the observed variation in nanoparticle 

sizes that are present in any practical nanofluid mixture. Regardless of nanoparticle size, the 

specific heat for the alumina/water nanofluid mixtures was observed to increase with temperature 

for both 𝛼 − Al2O3  and 𝛾 − Al2O3  nanoparticles however this effect was much more 

pronounced for smaller size nanoparticles. Teng & Hung speculated five main physical reasons 

for this phenomena involving inter alia effects of larger specific surface area (SSA), larger 

porosities for the same amount of nanoparticle matter in the base fluid, an increase in the number 

of interface layers between the smaller nanoparticles and the surrounding base fluid for the same 

amount of nanoparticle matter, increased associated energies for fine-grained i.e. smaller than 

course-grained i.e. larger nanoparticles, and finally the phenomena whereby the heat capacity tends 

to increase with increments of the nanoparticles excess volume i.e. there is an increase in heat 

capacity based on the changes in nanoparticle grain sizes. 

 

For the particular experimental study, Teng & Hung reported an increase of 16.37% when smaller 

20 nm 𝛾 − Al2O3 particles were present for the temperature range of 25 ≤ 𝑡/[∘C] ≤ 65 they 

studied and this affect is generally consistent with similar reported observations in studies as 

discussed in an earlier paper by Teng et al.[34] who performed a regression analysis of the 

experimental data with 20 nm, 50 nm and 100 nm Al2O3 nanoparticles in water to model 

the enhanced thermal conductivity 𝑘𝑛𝑓/𝑘𝑏𝑓  as a function of the temperature 𝑇/[K] , weight 

fraction 𝜔/[%] and particle size 𝑑𝑝/[nm] such that 

 
𝑘𝑛𝑓

𝑘𝑏𝑓
= 𝐶0 + 𝐶1(100𝜔) + 𝐶2(𝑇 − 273.15) + 𝐶3𝑑𝑝 + 𝐶4(100𝜔)

2 

 + 𝐶5(𝑇 − 273.15)
2 + 𝐶6𝑑𝑝

2 + 𝐶7(100𝜔)
3 + 𝐶8(𝑇 − 273.15)

3 

(2.29) 
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where 𝐶0 = 0.991, 𝐶1 = 0.253, 𝐶2 = −0.001, 𝐶3 = −0.002, 𝐶4 = −0.189, 𝐶5 = 6.190 ×
10−5, 𝐶6 = 1.317 × 10−5, 𝐶7 = 0.049 and 𝐶8 = −7.66 × 10

−7 respectively according to their 

regression analysis with a regression fit of 𝑅2 = 0.90. 

 

A more recent result for the nanofluid density has recently been reported by Sharifpur et al.[35] 

that incorporates the nanolayer volume surrounding the nanoparticle such that the actual nanofluid 

density is 𝜌𝑛𝑓
(𝑛𝑒𝑤)

= (𝑚𝑝 +𝑚𝑓)/(𝑉𝑝 + 𝑉𝑓 + 𝑉𝑣) where 𝑚𝑝 is the mass of the nanoparticle, 𝑚𝑓 is 

the mass of the base fluid, 𝑉𝑝  is the conventional volume of the nanoparticle, 𝑉𝑓  is the 

conventional volume of the base fluid, and 𝑉𝑣 is an estimate of the volume of the nanolayer. The 

modelling approach used in the new density formula is based on approximating 𝑉𝑣  using an 

equivalent nanolayer thickness term such that the total nanoparticle volume is (𝑉𝑝 + 𝑉𝑣) = 𝑛 ×
4

3
𝜋(𝑟𝑝 + 𝑡𝑣)

3 where 𝑛 is the total number of nanoparticles. Under these assumptions, the new 

formulae for the density and volume fraction then take the forms 

 

𝜑(𝑜𝑙𝑑) =
𝑉𝑝

𝑉𝑝+𝑉𝑓
  (2.30) 

𝜑(𝑛𝑒𝑤) =

𝑚𝑝

𝜌𝑝

(
𝑚𝑓

𝜌𝑓
+(

𝑚𝑝

𝜌𝑝

(𝑟𝑝+𝑡𝑣)
3

𝑟𝑝
3 ))

  (2.31) 

𝜑(𝑛𝑒𝑤) =
1

1

𝜑(𝑜𝑙𝑑)
−1+

(𝑟𝑝+𝑡𝑣)
3

𝑟𝑝
3

  
(2.32) 

 

and 

 

𝜌𝑛𝑓
(𝑛𝑒𝑤)

=
𝜌𝑛𝑓
(𝑜𝑙𝑑)

(1−𝜑(𝑜𝑙𝑑))+𝜑(𝑜𝑙𝑑)
(𝑟𝑝+𝑡𝑣)

3

𝑟𝑝
3

  (2.33) 

 

The above new forms for the estimate of the nanofluid density and volume fraction are expected 

to become more widely utilized as additional experimental data values and associated uncertainties 

for the nanolayer thickness 𝑡𝑣 becomes available, so that higher accuracy correlations between 

the nanolayer thickness 𝑡𝑣 and nanoparticle diameter 𝑑𝑝 can be constructed. 

 

The uncertainty effects of nanofluid thermophysical properties of thermal conductivity and 

viscosity were originally identified by Sharifpur & Meyer [36] who studied how different 

mathematical models for 𝑘𝑒𝑓𝑓  and 𝜇𝑒𝑓𝑓  influenced estimates on the Nusselt number for 

convective heat transfer systems. In this study Sharifpur & Meyer concluded that various 

inconsistencies in effective thermal conductivity model predictions were present that negatively 

impacted on the resultant uncertainties in convective heat transfer results and that the earlier 

nanofluid viscosity models were inadequate as not all viscosity models took into account physical 

parameters such as inter alia volume fractions, base fluid temperature, packing fractions, 

nanolayer thickness, nanoparticle shape & aspect ratios, nanoparticle diameters, spacing and 

capping layer effects. 

 

Motivated by the earlier observations by Sharifpur & Meyer [36] later work by Mehrabi et al. [37] 
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investigated the influence of the Reynolds number 𝑅𝑒, Prandtl number 𝑃𝑟, nanoparticle volume 

fraction 𝜙 and nanoparticle diameter 𝑑𝑝 as parameters on the nanofluid Nusselt number 𝑁𝑢𝑛𝑓 

and nanofluid pressure drop Δ𝑃𝑛𝑓 using a multi-objective approach where the functional relations 

𝑁𝑢𝑛𝑓 = 𝑓1(𝑅𝑒, 𝑃𝑟, 𝜙, 𝑑𝑝) and Δ𝑃𝑛𝑓 = 𝑓2(𝑅𝑒, 𝜙, 𝑑𝑝) were determined using a genetic algorithm 

(GA) based polynomial neural network (PNN) where the GA-PNN was used to solve for the Pareto 

optimality condition for the nanofluid Nusselt number and pressure drop. The Pareto frontier P(𝐘) 
may for our purposes be mathematically specified by considering a mapping 𝐟: ℝ𝑛 → ℝ𝑚  for 

𝑛,𝑚 ∈ ℤ  such that 𝐘 = {𝐲 ∈ ℝ𝑚: 𝐲 = 𝐟(𝐱), 𝐱 ∈ 𝐗 ⊂ ℝ𝑛} , so that P(𝐘) = {𝐲′: {𝐲′′ ∈ 𝐘: 𝐲′′ >
𝐲′ ∧ 𝐲′′ ≠ 𝐲′} = ∅} . Although the design space for 𝑁𝑢𝑛𝑓  is ℝ4  and that for Δ𝑃𝑛𝑓  is ℝ3 

respectively based on the cardinalities of the parameters, say 𝐚 = [𝑅𝑒, 𝑃𝑟, 𝜙, 𝑑𝑝]
T for 𝑁𝑢𝑛𝑓 and 

𝐛 = [𝑅𝑒, 𝜙, 𝑑𝑝]
T for Δ𝑃𝑛𝑓, of each of the associated optimizations the general idea of the Pareto 

optimality is the same. For the present context, this is simply the selection of parameters 𝐚 such 

that no further Pareto improvements are possible i.e. the value of 𝐚 is selected such that 𝑁𝑢𝑛𝑓 is 

a maximum and Δ𝑃𝑛𝑓 is a minimum since in a convective heat transfer system it is desired to 

maximize the Nusselt number 𝑁𝑢𝑛𝑓 =
ℎ𝑛𝑓𝐿𝑐

𝑘𝑛𝑓
 where ℎ𝑛𝑓 is the equivalent convective heat transfer 

coefficient for the particular nanofluid system, 𝐿𝑐 is a characteristic length of the system and 𝑘𝑛𝑓 

is the effective thermal conductivity of the nanofluid, and simultaneously minimize the pressure 

drop Δ𝑃𝑛𝑓 for the mechanical system. 

 

In this study, the multi-objective optimization was to maximise the Nusselt number and minimize 

the pressure drop where a combination of experimental data points from the literature and semi-

empirical relations for the nanofluid Nusselt number were used to specify the values used in the 

optimization exercise, where the mean absolute error 𝑀𝐴𝐸 =
1

𝑛
∑𝑛𝑖=1 |𝑋𝑝 − 𝑋𝑎|, mean relative 

error 𝑀𝑅𝐸(%) =
100

𝑛
∑𝑛𝑖=1 (

|𝑋𝑝−𝑋𝑎|

𝑋𝑎
), and root mean square error 𝑅𝑀𝑆𝐸 = √

1

𝑛
∑𝑛𝑖=1 (𝑋𝑝 − 𝑋𝑎)

2 

were used as statistical criteria to determine the optimality of the results where 𝑋𝑝  were the 

predicted values and 𝑋𝑎 were the actual values. Later investigations by Mehrabi et al.[38] then 

focused on building models for the nanofluid viscosity using an artificial intelligence (AI) 

approach where it was concluded that the particle size 𝑑𝑝 , volume concentration 𝜙  and 

temperature 𝑡 were in fact the main variables that effected the results from the model construction 

and predictions that resulted from the model using experimental data for a water/Al2O3  from 

Nguyen et al.[39], Tavman et al.[40], Lee et al.[41], Annop et al.[42], Pastoriza-Gallego et al.[43] 

and Kwek et al.[44] respectively. Further experimental studies by Adio et al.[45] were then 

performed to understand the interaction between the viscosity, electrical conductivity and pH of 

nanofluids in the Einstein concentration regime which is by convention specified as nanoparticle 

volume concentrations below 2% where it was determined that the classical mathematical models 

under-predicted the viscosity and that the electrical conductivity and pH values for the nanofluid 

were significantly affected by both the temperature as well as the volume fraction. More recent 

experimental research was reported by Sharifpur et al.[46] for a glycerol/Al2O3 mixture where the 

refined the nanofluid viscosity models by using a dimensional analysis approach. In this study 

Sharifpur et al.developed an empirical correlation for the viscosity using a Group Method of Data 

handling Neural Network (GMD-NN) where the dimensionless parameters were 𝜋1 =
𝜇𝑛𝑓

𝜇𝑏𝑓
, 𝜋2 =



22 

 

𝑇

𝑇0
, 𝜋3 = 𝜙, 𝜋4 =

𝑑

ℎ
 and 𝜋5 =

𝜌𝑛𝑓

𝜌𝑏𝑓
 respectively where ℎ = 1 nm is an assumed value for the 

nanoparticle capping layer thickness. When the analysis was performed it was determined that the 

viscosity tended to increase as the volume fraction increased but decreased as the temperature 

increased, and that the smallest nanoparticle mixtures exhibit the highest shear resistance. 

 

In most cases the above discussed modelling approach for single phase models is adequate for the 

majority of nano-fluids which use mixtures of a single base fluid and single type of nanoparticle 

however it is necessary to make appropriate natural modifications in the special case of so-called 

‘hybrid’ nano-fluids which incorporate mixtures of different types of nanoparticles for example a 

nanofluid composed of water as the base fluid and a Al2O3/CuO mixture of nanoparticles in an 

attempt to combine different characteristics of conventional water/alumina and water/copper oxide 

nano-fluids as discussed by Ranga Babu et al. [145] which is a relatively new development in the 

research area of nano-fluids. When the above modelling assumptions are used the nanofluid 

enthalpy may then using standard CFD modelling approaches as discussed in White [194] be 

approximated under the single-phase continuum modelling assumption using the Maxwell 

thermodynamic relations such that 

 

d𝐻 = 𝑐𝑝d𝑇 + 𝑉(1 − 𝛼𝑇)d𝑝  (2.34) 

𝛼 =
1

𝑉
(
∂𝑉

∂𝑇
)
𝑝
 (2.35) 

 

where 𝑉 is the fluid volume, ℎ = 𝐻/𝑚 is the specific enthalpy, 𝐻 is the total enthalpy and 𝛼 is 

the coefficient of cubic thermal expansion of the fluid. In many literature sources, the thermal 

expansion coefficient is usually also sometimes written as 𝛽𝑒𝑓𝑓 for a nano-fluid. The practical 

consequence of this relation is that it allows one to simply determine the enthalpy if 𝑐𝑝(𝑝, 𝑇) and 

𝑉(𝑝, 𝑇) are known in terms of the pressure 𝑝 and temperature 𝑇. Results between experimental 

measured specific heat 𝑐𝑝 values and predictions with the Option 1 and Option 2 formulae as 

reported by Teng & Hung [33]. Referring to these results it may be concluded that the standard 

mixing formulae for specific heats of nano-fluids give reasonably consistent results within their 

reported accuracy levels for moderate nanofluid temperature ranges and low concentrations, and 

as a result the energy equation for single-phase models of nano-fluids using the Navier-Stokes 

equations are adequately modelled in terms of the appropriate auxiliary thermodynamic relations. 

In the general case where the variation in specific heat capacity with temperature may be 

significant then the energy equation for a nanofluid may be approximated using a thermal 

dispersion model of the form 

 
∂𝑇

∂𝑡
+ ∇ ⋅ (𝐕𝑇) = ∇ ⋅ (

𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓
∇𝑇)  (2.36) 

 

as discussed by Kumar et al.[48] where the above equation for a single-phase nanofluid model is 

technically valid only under the two assumptions that (i) a no-slip velocity condition holds between 

the nanoparticles and the surrounding base fluid, and (ii) that there is a local thermodynamic 

equilibrium at the interfaces between the nanoparticles and the base fluid. For steady state 

conditions, the single-phase CFD equations following Moraveji & Ardehali [49] take the form 
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∇ ⋅ (𝜌𝑛𝑓𝐕𝑚) = 0 : Continuity (2.37) 

∇ ⋅ (𝜌𝑛𝑓𝐕𝑚𝐕𝑚) = −∇𝑃 + ∇ ⋅ (𝜇𝑛𝑓∇𝐕𝑚) : Momentum (2.38) 

∇ ⋅ (𝜌𝑛𝑓𝐶𝑛𝑓𝐕𝑚𝑇) = ∇ ⋅ (𝑘𝑛𝑓∇𝑇) : Energy  (2.39) 

 

where 𝐶𝑛𝑓 is the equivalent specific heat capacity of the nano-fluid. A similar single-phase CFD 

approach was later applied by Davarnejad et al.[50] using the Yu & Choi correlation as previously 

discussed for the effective thermal conductivity with a ratio of nanolayer thickness to the 

nanoparticle radius of 𝛽 = (ℎ/𝑟) = 0.1 for a Al2O3/water nanofluid dispersed with 20 nm and 

50 nm  nanoparticles for volume concentrations of 0.2%, 1.0%, 1.5%, 2.0% and 2.5% 

respectively and which yielded good results under the assumption that the thermo-physical 

properties were temperature independent. 

 

Common mixing models for 𝛽𝑒𝑓𝑓 following a similar line of reasoning as for the effective density 

and effective specific heat capacity functions usually take the form 

 

𝛽𝑒𝑓𝑓 =
(1−𝜙𝑝)(𝜌𝛽)𝑓+𝜙𝑝(𝜌𝛽)𝑝

𝜌𝑒𝑓𝑓
  : Option 1 (2.40) 

𝛽𝑒𝑓𝑓 = (1 − 𝜙𝑝)𝛽𝑓 + 𝜙𝑝𝛽𝑝  : Option 2 (2.41) 

 

However investigations by Khanafer & Vafai [51] reveal that both of these models exhibit 

inaccuracies for a range of volume fractions. Based on this shortcoming Khanafer & Vafai re-

analysed earlier data and developed an improved estimate for the nanofluid volumetric expansion 

coefficient as 

 

𝛽𝑒𝑓𝑓 = (−0.479𝜙𝑝 + 9.3158 × 10
−3𝑇 −

4.7211

𝑇2
) × 10−3, 

 0 ≤ 𝜙𝑝 ≤ 0.04 & 10 ≤ 𝑇/[∘C] ≤ 40  
(2.42) 

 

When using the thermodynamic relation ℎ = 𝑒 +
𝑝

𝜌
 these equations can then be used to form the 

equivalent conservation of energy equation 

 

𝜌
Dℎ

D𝑡
=

D𝑝

D𝑡
+ ∇ ⋅ (𝑘∇𝑇) + Φ  (2.43) 

 

Φ = 𝜇[2 (
∂𝑢

∂𝑥
)
2

+ 2(
∂𝑣

∂𝑦
)
2

+ 2(
∂𝑤

∂𝑧
)
2

+ (
∂𝑣

∂𝑥
+
∂𝑢

∂𝑦
)
2

 

 + (
∂𝑤

∂𝑦
+
∂𝑣

∂𝑧
)
2

+ (
∂𝑢

∂𝑧
+
∂𝑤

∂𝑥
)
2

] + 𝜆 (
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
+
∂𝑤

∂𝑧
)
2

 

(2.44) 

 

In the above system of equations 
D

D𝑡
≡

∂

∂𝑡
+ 𝐕 ⋅ ∇ is the particle derivative operator, 𝜆  is the 

second viscosity coefficient usually just calculated under the assumption of Stoke’s 1845 

hypothesis 𝜆 +
2

3
𝜇 = 0 , and Φ  is the viscous dissipation function. As a result, when 

characterizing nanofluids, we only need to focus on developing mathematical functional forms for 

the effective thermal conductivity 𝑘𝑒𝑓𝑓 and effective viscosity 𝜇𝑒𝑓𝑓. 
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While there have been many earlier quantitative studies on nanofluid thermal conductivities the 

state of knowledge for nanofluid viscosities has by contrast been relatively sparse although the 

general trend of an increase in relative viscosity with increasing solid volume fractions has been a 

general observable qualitative trend. The effects of temperature and particle volume concentration 

have however been experimentally studied using a commercial ViscoLab450 viscometer model 

from Cambridge Applied Systems (USA) which is based on a ‘piston-type’ viscometer 

measurement technique for alumina-water mixtures over a restricted range of temperatures and 

moderate volume concentrations by Nguyen et al. [52]. 

 

The basic measurement principle of the piston-type viscometer referring to Figure 2.2 is that a 

Couette flow inside a cylindrical chamber is established by electrically powering two magnetic 

coils inside a stainless steel body. First, the piston is placed within the cylinder, and Coil A is 

powered which induces an electromagnetic force that is exerted on the piston in one direction 

based on the direction of the electric current within the coil from the voltage source 𝑉1 and then 

using the same principle with another Coil B powered by a different voltage source 𝑉2 an opposite 

force is similarly generated. 

 

 

 

 
Figure 2-2 Illustration of experimental viscosity measuring equipment operating principle for a piston-type viscometer 

  

   

As a result, when the coils are electrically powered an induced electro-magnetic force is created 

when then moves the piston back and forth over a small distance of about 5 mm inside the 

cylindrical chamber. The measurement time of the piston movement is then correlated in terms of 
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the fluid viscosity, the geometrical properties of the piston/cylinder arrangement and the 

thermometers of the viscometer system. Final experimental viscosity measurements for 

alumina/water mixtures have an accuracy of ±1%  with a repeatability of ±0.8% . In this 

dissertation unless otherwise specified we will always assume that the engineering term 

“accuracy” corresponds to the metrological (measurement theory) term of “expanded uncertainty” 

with a coverage factor of 𝑘 = 2 for a confidence level of 95.45% since very few of the data 

sources in the open literature explicitly state measurement results in accordance with the GUM 

[53]. When Nguyen et al.analysed their experimental viscosity data for 36 nm and 47 nm 

average diameter nanoparticles purchased from Nanophase Technologies (USA) they concluded 

that none of the conventional classical viscosity formulae such as those by Einstein, Brinkman and 

Batchelor were actually able to accurately predict the nanofluid viscosity values for the range of 

operating conditions they investigated. The reasoning behind this shortcoming were speculated as 

being that the classical solid in a fluid formulae such as the Einstein formula is actually based on 

a single nanoparticle in a surrounding liquid which is not the case in an actual nanofluid due to the 

presence of numerous nanoparticles which cause a more complex interaction affect in the 

nanofluid medium. For this reason, the authors proposed correlations for low volume fractions for 

a low 1% and a medium 4% mixtures of the relative viscosities 𝜇𝑟 = 𝜇/𝜇0 as 

 

𝜇𝑟 = 1.125 − 0.0007𝑡 : 𝜙 = 1% (2.45) 

𝜇𝑟 = 2.1275 − 0.0215𝑡 + 0.0002𝑡
2 : 𝜙 = 4% (2.46) 

 

where 𝑡/[∘C] is the fluid temperature and the low and medium correlations exhibit average errors 

of 0.06% and 1.28% respectively with corresponding standard deviations of 3.75% and 11.39% 

respectively. Due to the complexity of the data at higher volume fractions closer to 10% they were 

unable to take into account the combined influence of temperature, nanoparticle size and volume 

particle concentrations. 

 

Earlier viscosity results by Chandrasekar et al. [54] and Hosseini & Ghader [55] were subsequently 

utilized in later studies and for the period prior to 2007 to 2012 a representative set of effective 

thermal conductivity and effective viscosity results for alumina/water nanofluid mixtures by 

Khanafer & Vafai [51] is first defined in terms of the base fluid density of the form 

 

𝜇𝑓(𝑇) = (2.414 × 10
−5) × (10

247.8

(𝑇−140)) 𝑠  
(2.47) 

The above base fluid density expression may then be used so that the effective viscosity is then 

calculated as 

 

𝜇𝑒𝑓𝑓 = −0.4491 +
28.837

𝑇
+ 0.574𝜙𝑝 − 0.1634𝜙𝑝

2 + 23.053
𝜙𝑝
2

𝑇2
+ 0.0132𝜙𝑝

3 

 − 2354.735
𝜙𝑝

𝑇3
+ 23.498

𝜙𝑝
2

𝑑𝑝
2 − 3.0185

𝜙𝑝
3

𝑑𝑝
2 , 

 for 1 ≤ 𝜙𝑝/[%] ≤ 9,20 ≤ 𝑇/[∘C] ≤ 70,13 ≤ 𝑑𝑝/[nm] ≤ 131 

(2.48) 

 

𝑘𝑒𝑓𝑓

𝑘𝑓
= 0.9843 + 0.398𝜙𝑝

0.7383 (
1

𝑑𝑝/[nm]
)

0.2246

(
𝜇𝑒𝑓𝑓(𝑇)

𝜇𝑓(𝑇)
)

0.0235

 (2.49) 
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 − 3.9517
𝜙𝑝

𝑇
+ 34.034

𝜙𝑝
2

𝑇3
+ 32.509

𝜙𝑝

𝑇2
, 

 for 0 ≤ 𝜙𝑝/[%] ≤ 10, 11 ≤ 𝑑/[nm] ≤ 150, 20 ≤ 𝑇/[∘C] ≤ 70  

Investigations in the subsequent period from around 2013 and later started to make further use of 

multi-phase models where an early and well-known study was that of Corcione et al. [56]. In this 

study, Corcione et al. made the modelling assumption of local thermodynamic equilibrium as per 

the single-phase nanofluid model but also allowed for the possibility of slip velocities where this 

phenomenon was considered to be caused by a combination of the Brownian motion of the 

nanoparticles and thermophoresis i.e. Ludwig-Soret thermo-diffusion where for example H2O 

and Al2O3 molecules are allowed to exhibit two different particle molecular responses to the same 

localized temperature gradient. When a nanoparticle mass fraction term 𝑚 was considered a mass 

diffusion equation of the form 

 
∂(𝜌𝑛𝑚)

∂𝑡
+ ∇ ⋅ (𝜌𝑛𝐕𝑚) = −∇ ⋅ 𝐉𝑝  (2.50) 

𝐉𝑝 = −𝜌𝑛 (𝐷𝐵∇𝑚 +𝐷𝑇
∇𝑇

𝑇
)  (2.51) 

 

was then considered to be present in a nanofluid system. This equation was then a fourth governing 

equation that was coupled to the existing mass, momentum and energy conservation equations to 

model the flow characteristics of a nanofluid system. The mass diffusion equation inputs are 𝐷𝐵 

which is a Brownian diffusion coefficient, 𝐷𝑇 which is an analogous thermophoretic diffusion 

coefficient, and these two diffusion coefficients are used to model the flux changes where 

𝐉𝑝/[kg m
−2 s−1] is the nanoparticle diffusion mass flux where 𝜌𝑛 is the nanofluid density as 

previously discussed. Corcione et al.used this equation system of four coupled differential 

equations to study convective heat transfer effects in various nanofluid systems with a mixed-

phase modelling approach. For this study newer correlations for the nanofluid thermal conductivity 

𝑘𝑛 to base fluid thermal conductivity were used in terms of nanoparticle Reynolds number 𝑅𝑒𝑝, 

Prandtl number of the base fluid 𝑃𝑟𝑓 and surprisingly the freezing point 𝑇𝑓𝑟 of the base liquid of 

the form 

 

𝑘𝑛

𝑘𝑓
= 1 + 4.4𝑅𝑒𝑝

0.4𝑃𝑟𝑓
0.66 (

𝑇

𝑇𝑓𝑟
)
10

(
𝑘𝑠

𝑘𝑓
)
0.03

𝜑0.66  (2.52) 

 

According to this study the nanoparticle Reynolds is calculated as 

 

𝑅𝑒𝑝 =
2𝜌𝑓𝑘𝑏𝑇

𝜋𝜇𝑓
2𝑑𝑝

  (2.53) 

 

where 𝜌𝑓 is the base fluid density, 𝑘𝑏 = 1.638066 × 10−23 J  K−1 is the Boltzmann constant, 

𝜇𝑓 is the base fluid viscosity, 𝑑𝑝 is the nanoparticle diameter, and 𝑇 is the bulk temperature. This 

formulation is based on the assumption that 𝑅𝑒𝑝 = (𝜌𝑓𝜇𝑝𝑑𝑝)/𝜇𝑓 where 𝑢𝑝 is the nanoparticle 

Brownian velocity which is calculated as 𝑢𝑝 = 𝑑𝑝/𝑡𝐷 where 𝑡𝐷 is a corresponding time period 

associated with the Brownian motion such that 𝑡𝐷 = (𝑑𝑝
2)/(6𝐷𝐵) where the Brownian diffusion 

coefficient is calculated using the Einstein-Stoke’s equation such that 𝐷𝐵 = (𝑘𝑏𝑇)/(3𝜋𝜇𝑓𝑑𝑝). A 

corresponding thermophoretic diffusion coefficient of the dispersed molecules takes the form 
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𝐷𝑇 = 0.26
𝑘𝑓

𝑘𝑓+𝑘𝑠

𝜇𝑓

𝜌𝑓
𝑚 where as previously stated 𝑚 is the nanoparticle mass fraction. The ratio 

of nanofluid viscosity to base fluid viscosity in this study took the form 
𝜇𝑛

𝜇𝑓
=

1

1−34.87(
𝑑𝑝

𝑑𝑓
)

−0.3

𝜑1.03

  
(2.54) 

 

where 𝑑𝑓 is an equivalent diameter of the base fluid molecule. The calculation to estimate 𝑑𝑓 

took the form 

 

𝑑𝑓 = 0.1 [
6𝑀

𝑁𝜋𝜌𝑓0
]

1

3
  (2.55) 

 

where 𝑀 is the base fluid molar mass, 𝜌𝑓0 is the base fluid mass density, 𝑉𝑚 is the base fluid 

molecular volume all evaluated at a reference temperature of 𝑇0 = 293 K , 𝑁 = 6.022 ×
1023 mol−1 is the Avogadro number, and the quantities are related to other according to the 

formula 𝑀 = 𝜌𝑓0𝑉𝑚𝑁. At the same time studies such as that of Albadr et al.[57] furthered the 

state of knowledge of convective heat transfer coefficients for horizontal shell and tube heat 

exchangers for lower volume fractions in the range 0.01% to 0.3% for alumina/water mixtures 

using the standard mixing formulae for densities and specific heats, the Yu & Choi formula for 

thermal conductivity and the classical Einstein formula 𝜇𝑛𝑓 = (1 + 2.5𝜙)𝜇𝑤  for the viscosity 

which provided an earlier perspective that the viscosity of nano-fluids was not a well understand 

research area at the time. A more detailed comparison between the single-phase and multi-phase 

modelling approaches was performed by Moraveji et al.[49] who concluded that whilst mixed-

phase models tend to give superior performance when compared to single-phase models that one 

of the issues with multi-phase models is their relatively high computational costs and their high 

central processor units (CPU) demands i.e. high CPU clock speeds which are necessary when 

solving the matrix equations using conventional finite volume solvers for industrial problems. This 

issue of high computational cost for two-phase models was still considered a serious impediment 

by Safaei et al.[58] of two-phase models when compared to single-phase models where two-phase 

models reported in the literature used both finite volume schemes with commercial codes as well 

as custom written finite difference schemes implemented in Fortran for higher computational 

performance. In the case of two-phase models the two predominant approaches are those of a 

Lagrangian-Eulerian and a Eulerian-Eulerian formulations. In the Lagrangian-Eulerian modelling 

approach the base fluid is considered as a normal continuum fluid however the Navier-Stokes 

equations have to be considered in a time averaged form whilst the dispersed phase which 

represents the nanoparticles moving through the continuum of the base fluid are considered by 

tracking their trajectories within the Lagrangian frame of reference by determining their motions 

and behaviours relative to the frame of reference. In this approach the conservation of mass, 

momentum and energy take the steady state form 

 

∇ ⋅ (𝜌𝐮) = 0  (2.56) 

∇ ⋅ (𝜌𝐮𝐮) = −∇𝑃 + ∇ ⋅ (𝜇∇𝐮) + 𝑆𝑚  (2.57) 

∇ ⋅ (𝜌𝑐𝑝𝐮𝑇) = ∇ ⋅ (𝑘∇𝑇) + 𝑆𝑒  (2.58) 

 

where the symbols have their usual meaning where 𝐮 = [𝑢, 𝑣, 𝑤]T is now the velocity vector and 
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𝑆𝑚 and 𝑆𝑒 are equivalent source terms for the momentum and energy equations in a conventional 

finite volume discretization scheme as discussed by Versteeg & Malalasekera [50]. The source 

terms 𝑆𝑚 and 𝑆𝑒 are considered necessary as they are used to model the exchange of momentum 

and energy between the liquid and solid phases in the nano-fluid. According to this scheme within 

the Lagrangian reference frame the nanoparticle motion and energy are then modelled according 

to the equations 

 

𝑚𝑝
d𝐮𝑝

d𝑡
= 𝐅𝑔 + 𝐅𝐷 + 𝐅𝐿 + 𝐅𝐵𝑟 + 𝐅𝑏  (2.59) 

𝑚𝑝𝑐𝑝
d𝑇𝑝

d𝑡
= 𝑁𝑢𝑝𝜋𝑑𝑝𝑘𝑓(𝑇𝑓 − 𝑇𝑝)  (2.60) 

 

where 

 

𝑁𝑢𝑝 = 2 + 0.6𝑅𝑒𝑝
0.5𝑃𝑟0.333  (2.61) 

 

is an equivalent Nusselt number for the particle using, for example, a Ranz correlation between 

the particle Reynolds number and the Prandtl number, and the force terms account for gravity, 

drag, Saffman’s lift i.e. inertia shear lift, Brownian and buoyancy force components respectively. 

 

With regards to Eulerian-Eulerian models at present of writing there are three main schemes known 

as the mixture, Eulerian and Volume-of-Fluid (VOF) approaches. The basic idea for the VOF 

model is that a mass conservation equation for each phase of the form ∇ ⋅ (𝜑𝑧𝜌𝑧𝐮𝑧) = 0, 𝑧 =
1, … , 𝑛 is present where 𝑛 is the number of phases, say 𝑛 = 2 for a single base fluid and a single 

nanoparticle but in principle, 𝑛 could be larger in for example the case of the hybrid nano-fluids 

previously discussed, and respective properties are computed through a weighted sum 𝑁 =
∑𝑛𝑧=1 𝜑𝑧𝑁𝑧 where 𝑁𝑧 is a particular property when the system of continuity equations are jointly 

solved with a single set of spatial momentum equations and a single energy equation. With regards 

to the mixture model the main features are that (i) all the phases are assumed to share a single 

pressure, (ii) the interactions between the different dispersed phases are assumed to be negligible, 

(iii) the nanoparticles are usually but not always assumed to be spherical shaped with a uniform 

size, and that (iv) the concentration of the secondary phase i.e. the nanoparticle distribution within 

the base fluid is solved by a scalar equation which incorporates the corrections caused the velocity 

slip between the solid and liquid phases, where one particular observation is that the viscosity of 

the mixture is usually but not always calculated as 𝜇𝑚 = ∑𝑛𝑧=1 𝜑𝑧𝜇𝑧 in various mixing model 

formulations. Finally, in the Eulerian model, there is again the assumption that the pressure is 

assumed to be equal for all of the phases present and based on this assumption the mass, 

momentum energy equations are solved separately for the primary base fluid and secondary 

nanoparticle solid phases. 

 

Different types of two-phase modelling schemes with various refinements and approximations are 

possible and have been reported in the literature however the main observation is that whilst two-

phase models for nano-fluids do offer the potential of superior performance that this is almost 

inevitably at the cost of increased computational costs for many problems. Nevertheless even with 

the limitations imposed on single-phase models which when contrasted with two-phase models 

may exhibit under-estimation of Nusselt numbers Safaei et al. concluded that single-phase 

nanofluid models can still offer good results under certain modifications. They recommended that 
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the main shortcoming in single-phase models could be mitigated by specifically considering 

variable temperature thermophysical properties and through the inclusion of the chaotic movement 

of the nanoparticles within the base fluid. At the present time of writing the Eulerian-Lagrangian 

approach appears to be the most promising multi-phase mathematical modelling approach for 

nano-fluids in terms of modelling the nanofluid thermo-physical properties and behaviour 

according to Sidik et al. [60]. 

 

Recognizing the importance of the relative absence of nanofluid viscosity correlations in many 

studies Ghanbarpour et al. [61] conducted experimental studies for thermal conductivities as 

summarized in Figure 2.3 as well as for viscosities as summarized in Figure 2.4 where the mass 

weight fraction of 𝜔 = 0% corresponds to the state of deionized water with no nanoparticles. 

 

Referring to their results for mass fractions in the range 3% to 50% and temperatures in the 

range 293 K to 323 K where the conversion between mass fraction 𝑤 and volume fraction 𝜙 

is 

 
1−𝑤

𝑤
⋅
𝜌𝑝

𝜌𝑓
=

1−𝜙

𝜙
    (2.62) 

 

they concluded that the Prasher modified Maxwell model for the nanofluid thermal conductivity 

of the form 

 

𝑘𝑛𝑓 = (1 + 𝐴 ⋅ 𝑅𝑒
𝑚𝑃𝑟0.333𝜙) [

[𝑘𝑝(1 + 2𝛼) + 𝑘𝑚] + 2𝜙[𝑘𝑝(1 − 𝛼) − 𝑘𝑚]

[𝑘𝑝(1 + 2𝛼) + 2𝑘𝑚] − 𝜙[𝑘𝑝(1 − 𝛼) − 𝑘𝑚]
] 𝑘𝑓 (2.63) 

 

where 𝐴  and 𝑚  are experimental fitting parameters to determine based on the data gives 

relatively good results. 
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Figure 2-3 Temperature-dependent thermal conductivity results for alumina/water mixtures with a nanoparticle diameter of 

d=235nm and an expanded uncertainty of U(k_nf)=±2% from experimental data from Ghanbarpour et al.[61] 

 
Figure 2-4 Temperature dependent viscosity results for alumina/water mixtures with a nanoparticle diameter of d=235nm from 

experimental data with an expanded uncertainty of U(μ_nf)=±4% from Ghanbarpour et al.[61] 
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In the Prasher model the terms 𝛼 and 𝑘𝑚 are calculated as 

 

𝛼 =
2𝑅𝑓𝑘𝑚

𝑑𝑝
  (2.64) 

𝑘𝑚 = 𝑘𝑓 [1 +
1

4
𝑅𝑒 ⋅ 𝑃𝑟]  (2.65) 

 

where the fluid radius 𝑅𝑓 can be calculated from the fluid diameter 𝑑𝑓 as previously discussed 

for particular characteristic Reynolds and Prandtl numbers for the particular problem. Due to the 

fact that whilst the Prasher model for thermal conductivity gives good results but is relatively 

complicated Ghanbarpour et al.developed a non-linear approximation as 

 
𝑘𝑛𝑓

𝑘𝑓
= 1 + 𝐴1𝜙 + 𝐴2𝜙

2  (2.66) 

 

where 𝐴1 and 𝐴2 are fitting parameters to be determined from the underlying experimental data. 

For the particular problem studied by Ghanbarpour et al.they calculated values for mass fractions 

from 3% to 50% and temperatures from 293 K to 333 K of 𝐴 = 30000, 𝑚 = 2.5, 𝐴1 = 3.5 

and 𝐴2 = 2.5 respectively. With regards to nanofluid viscosity correlations, they considered the 

Einstein, Batchelor, Krieger & Dougherty and Corcione models of the form 

 
𝜇𝑛𝑓

𝜇𝑓
= 1 + 2.5𝜙  : Einstein (2.67) 

𝜇𝑛𝑓

𝜇𝑓
= 1 + 2.5𝜙 + 6.5𝜙2  : Batchelor (2.68) 

𝜇𝑛𝑓

𝜇𝑓
= (1 −

𝜙

𝜙max
)
−[𝜇]𝜙max

  : Krieger & Dougherty (2.69) 

𝜇𝑛𝑓

𝜇𝑓
= (1 − 34.87 (

𝑑𝑝

𝑑𝑓
)
−0.3

𝜙1.03)

−1

   : Corcione (2.70) 

 

where [𝜇] is the intrinsic viscosity which is just [𝜇] = 2.5 for spherical nanoparticles. Referring 

to these results which as shown in Figure 2.5, Figure 2.6 and Figure 2.7 respectively it is seen that 

the Krieger & Dougherty viscosity formula gives relatively good results for a wide range of mass 

fractions at low temperatures, whilst at high temperatures the optimal viscosity model appears to 

be a combination of the Krieger & Dougherty and Corcione models. 

 

When Ghanbarpour et al.further analysed their results they concluded that the Krieger & 

Dougherty viscosity model gives an accuracy of 10% on average for a combination of weight 

fraction ranges, but they were unable to determine an optimal viscosity correlation of the wide 

range of weight fraction measurements of their experimental data.  

 

We comment that the conventional Krieger & Dougherty viscosity model is numerically ill-

conditioned as 𝜙 → 𝜙max since 

 

lim
𝜙→𝜙max

[1 −
𝜙

𝜙max
]
−[𝜇]𝜙max

= ∞  (2.71) 
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Although it is possible to avoid this singularity in an ad-hoc manner by ignoring the value of 

𝜇𝑛𝑓/𝜇𝑓 at the volume fraction where 𝜙 = 𝜙max by only considering the domain (𝜙min, 𝜙max) 

i.e. by ignoring the nanofluid viscosity is the limit of low concentrations, which has been observed 

to be experimentally problematic when fitting thermal conductivity and viscosity models, and by 

disregarding the discontinuity at 𝜙 = 𝜙max this approach will technically introduce an additional 

artificial statistical uncertainty component in the viscosity ratio calculation 𝑢2(𝜇𝑛𝑓/𝜇𝑓) of the 

form 

∂

∂𝜙max
(
𝜇𝑛𝑓

𝜇𝑓
) =

−[𝜇]𝜙

(1−
𝜙

𝜙max
)𝜙max

−[𝜇]ln(1−
𝜙

𝜙max
)

(1−
𝜙

𝜙max
)
[𝜇]𝜙max

  (2.72) 

𝑢2(𝜙max) = [
∂

∂𝜙max
(
𝜇𝑛𝑓

𝜇𝑓
)]
2

𝑢2(𝜙max)  (2.73) 

 

where in general 

 

𝑢2(𝜙) ≈ (
∂𝜙

∂𝑤
)
2

𝑢2(𝑤) + (
∂𝜙

∂𝜌𝑝
)
2

𝑢2(𝜌𝑝) + (
∂𝜙

∂𝜌𝑓
)
2

𝑢2(𝜌𝑓)  (2.74) 

using the conventional experimental measurement uncertainty of the Guide to the Uncertainty of 

Measurement usually abbreviated as the GUM [53] for the correct statistical uncertainty analysis 

of measurement uncertainties by treating the various components in the viscosity model as random 

variables. 

 
Figure 2-5 Analysis of Ghanbarpour et al.[61] data to validate the Krieger & Dougherty viscosity models by comparing the 

nanofluid viscosities at different temperatures 
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Figure 2-6 Analysis of Ghanbarpour et al.[61] data to validate the Krieger & Dougherty viscosity models by comparing the 

nanofluid mass fractions and volume fractions at different temperatures 

 

 
Figure 2-7 Analysis of Ghanbarpour et al.[61] data to validate the Krieger & Dougherty viscosity models by comparing the ratio 

of the nanofluid viscosity to the base fluid viscosity at different temperatures 

The GUM first introduced to the international scientific community in the mid 1990’s with later 

published editions and revisions in the early 2000’s by uncertainty quantification researchers based 

at various national laboratories is an improvement on the earlier approach of Kline & McClintock 



34 

 

from the 1950’s since the GUM incorporates statistical correlations and higher order statistical 

moments using a more modern approach in terms of Bayesian statistics and frequentist statistics 

and offers to ability to estimate probability density function distributions of experiment 

measurements at a more advanced and rigorous mathematical level. In the above calculation we 

comment that there would technically have an additional calculation to estimate the statistical 

uncertainty of the volume fraction 𝜙max by first calculating the corresponding uncertainty of the 

mass fraction 𝑤 so that this incorporates the further uncertainties in the mass measurements that 

were used to produce the nanofluid. The above calculations would formally use an Ishikawa 

diagram, informally referred to as a “fish-bone diagram” by researchers in the field of uncertainty 

quantification (UQ), to track all the relevant terms when performing a rigorous experimental 

measurement uncertainty analysis and as result we comment that even with relatively simple 

algebraic models for the effective thermal conductivity and viscosity that the corresponding 

uncertainty analysis can quickly become very complicated. 

 

Earlier viscosity models usually relied on data by Nguyen et al. [39] and one viscosity model 

equation fit was that by Abu-Nada [62] of the form where 𝑇/[∘C] and 𝜑/[%] 
 

𝜇Al2O3 = −0.155 −
19.582

𝑇
+ 0.794𝜑 +

2094.47

𝑇2
− 0.192𝜑2 

 − 8.11
𝜑

𝑇
−
27463.863

𝑇3
+ 0.0127𝜑3 + 1.6044

𝜑2

𝑇
+ 2.1754

𝜑

𝑇2
  

(2.75)  

 

where the viscosity is in units of centi-poise. 

A more systematic study of nanofluid viscosities was undertaken by Nwosu et al.[63] which 

established that whilst there are a wealth of various empirical studies and models for either 

nanofluid viscosities or relative viscosities that there is in fact very little formal rigorous theoretical 

justifications for the various models. Nwosu et al.in their investigation from then general literature 

determined that the main parameters in many nanofluid viscosity models are (i) volume fraction, 

(ii) temperature, (iii) packing fraction, (iv) nano-layer thickness, (v) particle shape and aspect ratio, 

(vi) aggregate radius, (vii) inter-particle spacing, and (viii) capping layer respectively. It is 

important to note that whilst these eight parameters are present to various extents in different 

viscosity model formulations that full experimental information on these various parameters are 

not necessarily available in all cases since for example Nwosu et al.utilized earlier reported data 

by Nguyen [39] to compare two possible viscosity models for a CuO based nano-fluid. This 

observation that not all nanofluid thermo-physical experimental studies consistently report on the 

same or even all of the relevant parameter information is a prevalent feature in both thermal 

conductivity as well as viscosity studies and in the particular case of nanofluid viscosity studies 

Nwosu et al.also remark that additional potentially relevant and useful experimental data such as 

(a) electromagnetic, (b) electro-viscous, (c) various dispersive energy-related phenomena, and (d) 

polarities amongst other parameters are also not available. We comment that this omission may be 

due to a combination of practical reasons such as the lack of specific or specialist laboratory 

instrumentation, disagreement between experimental and theoretical researchers of the need or 

relevance of particular information, or simple judgement calls. 

 

Regardless of the particular reasons involved, the result is that nanofluid thermo-physical studies 

whether for thermal conductivities or viscosities has to incorporate an intrinsic lack of full and 

consistent experimental data and information. This type of problem but in the very different 
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context of nuclear fusion energy was studied by Baltz et al.[64] where there are over 𝑁 > 1000 

possible model parameters, no guarantee of convexity of the model ℝ𝑁 space, and the modelling 

challenge of a complex system with a high dimensionality is present. To address this problem 

where the intrinsic difficulty is that there is no single objective metric that fully captures both the 

underlying system quality and constraints Baltz et al.developed what they call the ‘Optometrist 

Algorithm’. The basic idea of this algorithm is reliant of what is referred to as meta-parameters 

(MP’s) where the MP’s approximate the full dimensional ℝ𝑁  design space with a lower 

dimensional ℝ𝑛  design space where 𝑛 < 𝑁 which captures the main intrinsic features of the 

model. To implement the algorithm which is a stochastic based algorithm the search for chosen 

representative MP’s is first initialized, then a new state is chosen by moving in a random direction 

within the MP-space by simply adjusting the initial MP parameters by a relative amount where the 

original MP parameters are chosen in such a way that their values and dimensions are 

heterogeneous i.e. the ℝ𝑛  reduced space is mathematically consistent. After the initial 

perturbation the original higher dimensional ℝ𝑁 system parameters are recovered by undoing the 

the functional mapping that was used to generate the MP’s. Measurements of the experimental 

outcome are then shown to a human operator who applies human judgement as to whether the 

perturbed state is ‘about the same’ or ‘better’ and the process repeated. In the algorithm 

implementation a judgement of ‘about the same’ is considered adequate to make the perturbed 

state as a new state so this search strategy avoids getting stuck in a higher dimensional local 

maxima, and as result algorithm is analogous to the Metropolis-Hastings acceptance algorithm for 

Monte Carlo optimization which allows for the acceptance of a search step that degrades the 

optimization function with some finite probability. 

In the study by Nwosu et al. they report that Hosseini et al.obtained useful results for the relative 

viscosity of nano-fluids in terms of (i) the base fluid viscosity, (ii) the hydrodynamic volume 

fraction, (iii) the nanoparticle diameter, (iv) the thickness of the capping layer, and (v) the 

temperature. In the absence of a complete and consistent theoretical model due to the lack of 

sufficient higher performance computing (HPC) power for either a full Boltzmann or full 

molecular dynamics (MD) simulation as discussed earlier we may reasonably assume that the 

above parameters are a reasonable approximation of the meta-parameters lower dimensional ℝ𝑛 

design space for the viscosity model. The functional form of the Hosseini viscosity model as 

reported by Nwosu et al.takes the form 

 
𝜂𝑛𝑓

𝜂𝑏𝑓
= exp [𝑚 + 𝛼 (

𝑇

𝑇0
) + 𝛽(𝜙ℎ) + 𝛾 (

𝑑

1+𝑟
)]  (2.76) 

 

where 𝜙ℎ  is the hydrodynamic volume fraction, 𝑑  is the nanoparticle diameter, 𝑟  is the 

thickness of the capping layer, 𝑇0 is a reference temperature, 𝑇 the actual temperature of the 

mixture, and 𝛼, 𝛽, 𝛾  and 𝑚  are empirical constants which must be determined from the 

experimental data. Of the various other viscosity models reported by Nwosu et al.the Kulkarni et 

al.model of the form 

 

ln𝜇𝑒𝑓𝑓 = exp(−(2.8751 + 53.54𝜙 − 107.12𝜙2) 

 +(1078.3 + 15.857𝜙 + 20.587)
1

𝑇
)  

(2.77) 

 

is found to give relatively good results for predicting the temperature and volume fraction 

dependent viscosity for a wider temperature range. Although Nwosu et al.investigated various 
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choices of viscosity models using a genetic algorithm (GA) approach the fundamental challenge 

is regarding the identification of relevant functional forms for the viscosity which is necessary for 

both classical gradient-based as well as GA based optimizations. A similar type of issue also occurs 

if an artificial neural network (ANN) approach as discussed by Zhao et al.[65] is utilized since the 

neural network must be “trained” to optimize some choice of system response. In the work of Zhao 

et al. who used a radial basis function (RBF) based neural network for a mapping T: 𝑋𝑛 → 𝑌𝑞 

between two Euclidean spaces 𝑋𝑛 ⊂ ℝ𝑛  and 𝑌𝑞 ⊂ ℝ𝑞  the system response was defined as a 

simple linear combination such that 𝑦𝑘 = ∑𝑚𝑖=1 𝜔𝑖𝑘𝑅𝑖(𝑋)  for 𝑘 = 1,2, … , 𝑞 . For this ANN 

viscosity study a four-input model of the nanoparticle volume concentration 𝜙 , nanoparticle 

diameter 𝑑, nanoparticle density 𝜌𝑛𝑓, and base fluid viscosity 𝜇𝑏𝑓respectively, and a five-input 

model in terms of the same parameters plus the temperature were used. The response function 

𝑅𝑖(𝑋)  in this approach is not necessarily a linear function of the system input 𝑋 =
[𝜙, 𝑑, 𝜌𝑛𝑓 , 𝜇𝑏𝑓]

T for the four-input model or 𝑋 = [𝜙, 𝑑, 𝜌𝑛𝑓 , 𝜇𝑏𝑓, 𝑇]
T for the five-input model and 

that the specific response function must be explicitly specified for a conventional forward training 

of the neural network. As a result, an ANN approach which also features in some thermal 

conductivity studies such as that by Ariana [66] which determines the optimal neural network node 

weights 𝜔𝑖𝑘 has a qualitatively similar challenge as a GA approach since the functional forms 

must still be specified in order to perform the optimization. A slightly different approach to a GA 

and ANN optimization is the use of a Least Squares Support Vector Machine (LSSVM) approach 

as discussed by Meybodi [67] drawing from the field of artificial intelligence (AI) and using 

statistical learning concepts. The basic idea behind a LSSVM approach is that it is a special case 

of the more general Support Vector Machine (SVM) optimization problem that converts the 

original quadratic programming problem into an equivalent linear programming problem. In the 

special case where the dependent and independent variables of the LSSVM are linearly separable 

a linear regression problem results whilst in the general case a non-linear regression problem 

results of the form 

 

𝑦 = ∑𝑁𝑘=1 𝛽𝑘(𝑥𝑘)
T𝑥 + 𝑏  : Linear Regression (2.78) 

𝑦 = ∑𝑁𝑘=1 𝛽𝑘𝐾(𝑥𝑘, 𝑥) + 𝑏  : Non-Linear Regression (2.79) 

 

where 𝐾(𝑥𝑘, 𝑥) is the kernal-function. In order to perform the non-linear regression analysis the 

kernal function has to be explicitly specified before the optimization and similar to an ANN 

approach a radial basis function (RBF) approach is commonly applied since there are a lower 

number of ‘tuning’ i.e. fitting parameters where the RBF kernal function is of the form 

 

𝐾(𝑥𝑘, 𝑥) = exp (
−∥𝑥𝑘−𝑥∥

2

𝜎2
) , 𝑘 = 1,2, … ,𝑁  (2.80) 

 

where 𝜎2  is a squared bandwidth that must be first optimized beforehand with an external 

optimization technique before the LSSVM training can be undertaken. As a result it may be 

observed that the above-mentioned techniques whether they are designated as genetic algorithms 

(GA’s), artificial neural networks (ANN’s) or Least Squares Support Vector Machines (LSSVM’s) 

are all in practical terms simply different optimization strategies and techniques for determining 

optimal model parameters for a particular choice of measurement model for either a nanofluid 

thermal conductivity or viscosity functional form. 
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The effect of the nanofluid pH values were considered in an earlier study by Timofeeva et al.[68] 

where it was originally concluded that the pH values in the nanofluid seems to depend on the 

structures and properties of the nanoparticles and not particularly on the solid/liquid interaction 

effects between the alumina nanoparticles and the water molecules. As a result based on this earlier 

observation by Timofeeva et al.a segment of many earlier researchers concluded that the pH of a 

nanofluid is really an effect from other factors and not a cause and hence various nanofluid models 

tended to disregard the pH value as a process parameter when constructing models for the effective 

thermal conductivity and effective viscosity. Later studies such as those by Meyer et al.[69] also 

undertook reviews of process parameters in both thermal conductivity as well as viscosity models 

and the issue as to whether the pH value was a cause & effect or a simple correlation of thermo-

physical properties was still open to potentially differing interpretations based on the combination 

of available experimental data and the absence of a comprehensive fundamental physics-based ab 

initio study and theoretical model. Part of the motivation for the study of the influence of the 

various potential process parameters that may affect the effective viscosity 𝜇𝑒𝑓𝑓 of a nanofluid as 

discussed by Meyer et al.is that a fluid’s viscosity effects flow properties such as the Reynolds 

number, convective heat transfer coefficients and pressure drops for various flow configurations 

in pipes and channels. As a result if the viscosity is too high then this will have a detrimental effect 

of the pumping power required for various industrial systems that use the nanofluid as a working 

fluid as discussed in more detail by Mills [5]. The effect of the viscosity in for example a heat 

exchanger would typically be present by influencing pressure drops in such systems through the 

effect on the Reynolds number Re and consequently the fraction factor 𝑓. A practical example of 

how this may be studied is in terms of heat exchanger pressure drop equation as discussed by Mills 

of the form 
Δ𝑃

𝑃1
=

𝐺2

2𝜌1𝑃1
[(1 − 𝜎2 + 𝐾𝑐) +

𝑓

4

𝜌1

𝜌𝑚

𝐴

𝐴𝑐
+ 2(

𝜌1

𝜌2
− 1) −

𝜌1

𝜌2
(1 − 𝜎2 − 𝐾𝑒)]  (2.81) 

 

In the review article of Meyer et al. only two theoretical models for nanofluid viscosities were 

found in the reported literature as reported by Masoumi et al.[70] and Masoud Hosseini [71] 

respectively. 

 

The earlier paper by Masoumi et al.[70] considered the effect of the Brownian motion of the 

nanoparticles within the base fluid and utilized a so-called ‘apparent viscosity’ 𝜇𝑎𝑝𝑝 so that the 

effective viscosity 𝜇𝑒𝑓𝑓 was calculated as 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓 + 𝜇𝑎𝑝𝑝 where 𝜇𝑏𝑓 is the viscosity of the 

base fluid. In this approach a Brownian velocity 𝑉𝐵 =
1

𝑑𝑝
√
18𝐾𝑏𝑇

𝜋𝜌𝑝𝑑𝑝
 was first calculated where 𝐾𝑏 

is the Boltzmann constant, 𝑑𝑝  and 𝜌𝑝  are the diameter and density respectively of the 

nanoparticle. Then a corresponding Reynolds was calculated using 𝑉𝐵  such that Re𝐵 =
1

𝑣𝑏𝑓
√
18𝐾𝑏𝑇

𝜋𝜌𝑝𝑑𝑝
 and the authors made the assumption that there was a homogeneous distribution of 

nanoparticles within the base fluid such that in a cubical volume of the nanofluid mixture that the 

distance 𝛿 between the centres of the nanoparticles was 𝛿 = (
𝜋

6𝜙
)
1/3

𝑑𝑝 where 𝜙 is the volume 

fraction. Once these assumptions were made the analysis then proceeded on the further assumption 

that the base fluid with the prevailing Brownian velocity flowed over the stationary nanoparticle 

which was assumed for simplicity as a spherical nanoparticle. The flow for the situation was then 

assumed as a creep flow i.e. a flow with a very small Reynolds number such that 𝑅𝑒 ≪ 1 and an 
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expression for the viscosity derived by making the assumption that the nanoparticle kinetic energy 

was equal to the work done by the friction forces i.e. the surface total shear stresses acting on the 

assumed spherical nanoparticle surface. The final result by Masoumi et al. was 

 
𝜇𝑎𝑝𝑝

𝜇𝑏𝑓
=

𝜌𝑝𝑉𝐵𝑑𝑝
2

72𝐶𝛿𝜇𝑏𝑓
    (2.82) 

𝐶 =
1

𝜇𝑏𝑓
[(𝑐1𝑑𝑝 + 𝑐2)𝜙 + (𝑐3𝑑𝑝 + 𝑐4)]  (2.83) 

 

In the above expression 𝐶 is a correction factor and the constants were determined from earlier 

experimental results for Al2O3  nanoparticles of 13 nm  and 28 nm  sizes such that 𝑐1 =
−0.000001133 , 𝑐2 = −0.000002771 , 𝑐3 = 0.00000009  and 𝑐4 = −0.000000393 

respectively. 

 

On the other hand, the later paper by Masoud Hosseini [71] proceeded on the assumption of 

dimensionless groups defined as 𝜋1 =
𝜂𝑛𝑓

𝜂𝑏𝑓
, 𝜋2 = 𝜙ℎ , 𝜋3 =

𝑑

1+𝑟
 and 𝜋4 =

𝑇

𝑇0
 where 𝜂𝑏𝑓  is the 

nanofluid viscosity, 𝜂𝑛𝑏 is the base fluid viscosity, 𝜙ℎ is the hydrodynamic volume fraction of 

the solid nanoparticles, 𝑑 is the nanoparticle diameter, 𝑟 is the thickness of the capping layer, 𝑇0 

is a reference temperature which was taken as 𝑇0 = 20 
∘C for convenience, and 𝑇  was the 

nanofluid mixture temperature. After this there was an assumption that 
𝜂𝑛𝑓

𝜂𝑏𝑓
= 𝑓1 (𝜙ℎ,

𝑑

1+𝑟
,
𝑇

𝑇0
) 

where the function 𝑓1 was then as an additional step assumed to take the form 

 
𝜂𝑛𝑓

𝜂𝑏𝑓
= exp [𝑚 + 𝛼 (

𝑇

𝑇0
) + 𝛽(𝜙ℎ) + 𝛾 (

𝑑

1+𝑟
)]     (2.84) 

 

where 𝑚 was considered as a factor which was assumed to be representative of the nanofluid 

system and which encompassed information of the type of solid nanoparticles, the base fluid and 

their interactions, whilst 𝛼, 𝛽, 𝛾 were then simply considered as empirical constants which had to 

be determined from available experimental data. As a result both of the attempts by Masoumi et 

al.[70] and Masoud Hosseini [71] respectively to theoretically model the nanofluid viscosity are 

both based on a set of ad-hoc assumptions and simplifications and as a result cannot be strictly 

considered as meeting the requirements for a full and rigorous fundamental physics based ab initio 

mathematical representation of a real nanofluid physical system which at the present time can only 

be fully analysed from either an ab initio molecular dynamics or full Boltzmann simulation, and 

which are both considered to be numerically infeasible on existing high performance computing 

(HPC) and associated super-computing systems within South Africa. 

 

Due to the absence of a comprehensive and reasonably complete theoretical framework to 

adequately model nanofluid properties Meyer et al.determined that the only remaining feasible 

option was to investigate empirical studies based on reported experimental data. One of the key 

observations by Meyer et al.in their review of the various empirical models reported in then 

literature was that there was a type of interaction effect between on the one hand how the 

nanoparticle size distribution affects the viscosity and on the other hand how agglomeration of the 

nanoparticles counter-acts this. From the available data, it was speculated that agglomeration 

effects alone was not sufficient to describe how the nanofluid viscosity would evolve for the 
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mixture and that the particle size distribution was sufficient for a nanofluid system composed of a 

mono-dispersed system of nanoparticles such that the relative viscosity 𝜂𝑟 of the mixture could 

be approximated as 

 

𝜂𝑟 = (
𝜇1𝜙1

𝜇𝑜
) × ⋯× (

𝜇𝑧𝜙𝑧

𝜇𝑜
) = ∏𝑧

𝑖=1 𝜂𝑟(𝜙𝑖)  (2.85) 

 

where 𝜙𝑖 , 𝑖 = 1,2, … , 𝑧 is the particle fraction for a particular class of nanoparticles in the overall 

nanofluid mixture. Of the various ‘classical’ or historical models for fluid/solid mixtures Meyer et 

al.observed that many of these earlier models were developed before the formal invention of nano-

fluids which may be loosely considered as the period from around 1993 where Stephen Choi first 

proposed the modern concept of nano-fluids. As a result, additional factors over and above the 

classical parameters such as the nano-layer around the nanoparticles, the electrical double layer 

(EDL), zeta potentials, capping layers, inter-particle spacing and even nanoparticle magnetic 

properties in addition to the pH must also be considered. Amongst the most critical parameters 

affecting a nanofluid viscosity Meyer et al. reported temperature, volume fraction, shear rate 

𝛾̇/[s−1] for the particular type of prevailing nanofluid flow, nanoparticle size, nanoparticle shape, 

and finally the pH and electrical conductivity of the suspension as potential contributing factors. 

From their review of the available literature, it was concluded that although the pH may have an 

insignificant affect for a specified volume concentration that the pH nevertheless has a major effect 

on the zeta potential which may be calculated from 𝑄 = 4𝜋𝜀𝑟𝜀0𝑎𝜁 where 𝑄 is the nanoparticle 

surface charge in coulombs, 𝜀𝑟 is the relative permittivity of the surrounding fluid, 𝜀0 is the free 

space vacuum permittivity and 𝑎 is an estimate of the approximate radius of the nanoparticle 

particle, and that the pH modification of the nanofluid may reduce the nanofluid viscosity without 

detrimentally affecting the nanofluid stability. Nevertheless Meyer et al.caution that at the present 

time that there needs to be more research to determine the interaction between the zeta potential, 

the pH and the electrical conductivity and how these three inter-related parameters affect the 

nanofluid viscosity. Experimental results for the acidity/alkalinity levels of a nanofluid for 

different volume fractions 𝜙 and nanoparticle diameters 𝑑𝑝 by Timofeeva et al.[68] are shown 

in Figure 2.8 from which it is seen that there appears to be a weak correlation of decreased pH 

values as the volume fraction decreases which is to be expected as water with no nanoparticles 

should have a neutral pH, however this behaviour exhibits a slight change for larger size 

nanoparticles.  
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Figure 2-8 Illustration of nanofluid equilibrium pH concentration values for a water/alumina nanofluid based on experimental 

measurements by Timofeeva et al.[68] 

 

 

Results for the zeta-potential 𝜁 and shear rate 𝛾̇ based on experimental measurements by Zawrah 

et al.[72] are analysed from which it is observed that there is a definite trend of decreased 𝜁-

potentials as the pH is increased and that the viscosity tends to increase with increasing volume 

fractions across a range of shear rates. 

 

Earlier studies such as that by Konakanchi et al. [73] developed correlations for the pH of different 

types of nano-fluids including Al2O3/water mixtures based on experimental data of the form 

 

 

(
(𝑝𝐻)𝑛𝑓

(𝑝𝐻)𝑏𝑓
) = [𝑎1 (

𝑇

𝑇0
)
2

+ 𝑎2 (
𝑇

𝑇0
) + 𝑎3] ⋅ [𝑏1𝜙

2 + 𝑏2𝜙 + 𝑏3] ⋅ [𝑐1 (
𝑑

𝑑0
)
2

+ 𝑐2]  

 
(2.86) 

(𝑝𝐻)𝑏𝑓 = 0.00015074𝑇2 − 0.11270782𝑇 + 26.73630875, 273 ≤ 𝑇/[K] ≤ 363  (2.87) 

 

 

where for a Al2O3 /water nanofluid the regression coefficients are 𝑎1 = −0.1714584 , 𝑎2 =
0.376192 , 𝑎3 = −0.13514079 , 𝑏1 = −7.088066 , 𝑏2 = 1.463864 , 𝑏3 = 0.5181933 , 𝑐1 =
33.8946855 and 𝑐2 = 12.0607088 respectively for temperatures 273 ≤ 𝑇/[K] ≤ 363, volume 

fractions 1 ≤ 𝜙/[%] ≤ 5  and nanoparticle diameters 10 ≤ 𝑑/[nm] ≤ 70  with a maximum 

corresponding diameter of 𝑑0 = 100 nm.  
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Due to the fact that the above correlation can give reasonably accurate results for the pH as a 

function of the temperature 𝑇, volume fraction 𝜙 and nanoparticle diameter 𝑑 i.e. there exists 

some function such that 𝑝𝐻 = 𝑓(𝑇, 𝜙, 𝑑)  it follows that the parameters 𝑇, 𝜙, 𝑑  are more 

fundamental than the pH i.e. the level of the nanofluid acidity/alkalinity is a physical consequence 

of the nanoparticle doping material and the bulk base fluid’s properties. This observation is under-

pinned by the fact that in various experimental pH studies of nano-fluids that the pH is usually 

modified either by the use of dispersants such as sodium dodecyle benzene sulfonate (SDBS) 

and/or the introduction of acid solutions such as hydrogen chloride (HCl) and sodium hydroxide 

(NaOH) in varying concentrations in order to produce differing pH levels. In practical terms this 

means that 𝑇, 𝜙, 𝑑  may suffice as meta-parameters when modelling the respective thermo-

physical properties. 

  

More recent experimental data on this specific aspect of Al2O3/water mixtures for an approximate 

nanoparticle diameter of 𝑑 = 50 nm has subsequently been reported by Zawrah et al.[72] as 

summarized in Figure 2.9 and Figure 2.10 from which we comment that there is definitely a 

relation between the pH and the zeta potential 𝜁 on the one hand, and between the viscosity 𝜇 

and the shear rate 𝛾̇ on the other hand, however, the interaction between all three variables is 

nevertheless still an ongoing matter which requires further experimental data and investigation 

before it is possible to infer any physically meaningful correlations. 

 

Due to this practical limitation on both an absence of an adequate and complete theoretical 

framework, and in addition due to the limited experimental data for the newer additional potential 

parameters it is advantageous from a mathematical modelling perspective to opt to construct 

nanofluid thermo-physical models for the thermal conductivity and viscosity in terms of the 

traditional reported parameters but with newer mathematical and statistical techniques. This 

approach is consistent with newer reported results in the literature such as that of Gupta [74] which 

models the thermal conductivity and viscosity in terms of parameters, and that by Murshed et 

al.[75] for viscosities from corresponding data from the literature as summarized in Figure 2.11. 

 

 
Figure 2-9 Illustration of nanofluid ζ potential and pH effects on viscosity based on experimental measurements by Zawrah et 

al.[72] 
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Figure 2-10 Illustration of nanofluid viscosity and shear rate effects on viscosity based on experimental measurements by Zawrah 

et al.[72] 
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Figure 2-11 Illustration of nanofluid relative viscosity for a selection of temperatures and volume fractions based on experimental 

data by Murshed et al.[75] 

    

 

2.3 Nanofluid Statistical Uncertainty Analysis Techniques 
 

Earlier work conducted at the University of Pretoria by Mehrabi et al.[76] utilized thermal 

conductivity data reported by Masuda1 et al.[77], Lee et al.[78], Das et al.[38], Putra et al.[79], 

Chon et al.[81], Li & Peterson [29], Li & Peterson [82], Kim et al.[83], Timofeeva et al.[68], 

Zhang et al.[84], Ju et al.[85], Murshed et al.[86], and Patel et al.[87] respectively. In this 

dissertation all of these data sources are utilized along with additional and newer reported data as 

documented in the literature review of this chapter as summarized in Table 2.5.  

  

Considering information sources for nanofluid viscosity data utilization is made of earlier work by 

Meyer et al.[88] along with additional and newer data as documented in the literature review of 

this chapter as summarized in Table 2.6 noting that few studies report experimental data for both 

thermal conductivity and viscosity.  

 

When extracting the statistical experimental data from above literature sources where tabulated 

values of experimental measurement points and their corresponding statistical uncertainties are not 

explicitly available we utilize the Java based graphical software package WebPlotDigitizer 

developed by Rohatgi [89] in order to obtain the nominal values of [𝑘𝑒𝑓𝑓 , 𝑡, 𝑑, 𝜙]
T, however this 

data must also include the statistical experimental uncertainties for each meta-parameter. The 

associated uncertainties for the meta-parameters are specified through the technical specifications 

provided by the Guide to the Expression of Measurement i.e. the GUM [53] where the expected 

                                                 
1 The original paper is written in the Japanese language however the experimental data has been reported in the English language 
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value 𝑞 for a quantity with 𝑛 independent observations 𝑞𝑘, 𝑘 = 1,2, … , 𝑛 is 

 

𝑞 =
1

𝑛
∑𝑛𝑘=1 𝑞𝑘    (2.88) 

 

Since the individual observations 𝑞𝑘, be it for the base fluid temperature 𝑡, nanofluid volume 

fraction 𝜙 or nanoparticle diameter 𝑑𝑝, will have differing values due to random variations from 

both the physical mechanisms of experimental measurement as well as the intrinsic statistical 

uncertainties, the experimental variance of the individual observations is 

 

𝑠2(𝑞𝑘) =
1

𝑛−1
∑𝑛𝑗=1 (𝑞𝑗 − 𝑞)

2
  (2.89) 

 

which is also known as the Experimental Standard Deviation of the Mean or ESDM. Following 

standard experimental measurement statistical practise the corresponding estimate of the variance 

is then 

 

𝑠2(𝑞) =
𝑠2(𝑞𝑘)

𝑛
     (2.90) 

 

The above formula are applicable in the event that there are indeed repeat measurements however 

in practice this will not always be the case and according to the GUM the corresponding variance 

may be estimated from a pool of information consisting of inter alia 

  

• Previous measurement data from earlier experiments  

• Prior laboratory experience or general knowledge of the behaviour and properties of the particular 

materials/instruments specific to the measurand  

• Manufacturer specifications of either the instrument/equipment or specified reference materials  

• Data from calibration certificates/reports  

• Uncertainties assigned from reference data taken from handbooks  

 

The above set of considerations are conventionally specified as so-called ‘Type B’ uncertainties 

to distinguish then from ‘Type A’ which are uncertainties obtained from statistical analyses. In 

order to perform a full uncertainty analysis of a measurement system it is necessary to ‘convert’ 

the Type B uncertainties into equivalent Type A uncertainties so that standard statistical analyses 

may be performed using for example Monte Carlo simulations which require estimates of standard 

uncertainties. 

 

In the special case where no information of the standard uncertainty is available for a measurand 

𝑋 and only an estimate of the expected value 𝑥 of 𝑋 is available with an upper bound 𝑎+ and 

lower bound 𝑎− then the expected value and associated variance for 𝑋 may be estimated as 

 

𝜇 =
𝑎−+𝑎+

2
    (2.91) 

𝑢2(𝑥) =
(𝑎+−𝑎−)

2

12
  (2.92) 

 

under the assumption of a rectangular probability distribution which has been validated by Cox & 

Harris [90]. If a measurement 𝑥 has a symmetric half-range such that 𝑥min = 𝜇 − 𝑅 and 𝑥max =
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𝜇 + 𝑅 then the equivalent standard uncertainty corresponding to a Gaussian probability density 

function distribution is just 

 

𝑢(𝑥) =
2𝑅

√12
  (2.93) 

 

These results when the actual experimental repeat data points are available are applicable when 

𝑛 ≥ 4  physical measurements are available however based on slightly subtle differences of 

approach using frequentist statistics and Bayesian statistics the above GUM based approximation 

becomes inaccurate if 𝑛 < 4. A recent research paper by Cox & Shirono [91] addresses this issue 

through an analysis that incorporates the resolution between frequentist statistics i.e. statistics 

underpinned by Type A based observations and Type B based Bayesian statistics i.e. statistics 

underpinned by a prior probabilities of the physical system through the introduction of a correction 

factor 𝜙. 

 

The final summarized results for calculating the correct standard uncertainty 𝑢(𝑥) for a quantity 

𝑋 is then 

 

𝑥 =
1

𝑛
∑𝑛𝑖=1 𝑥𝑖  (2.94) 

𝑆 = ∑𝑛𝑖=1 (𝑥𝑖 − 𝑥)
2  (2.95) 

𝑠 = √
𝑆

𝑛−1
  (2.96) 

 

so that 

 

𝑢(𝑥) = 𝜙 ×
𝑠

√𝑛
  (2.97) 

 

The correction factor is calculated as 

 

𝜙 ≡ 𝜙𝑛(𝛼, 𝛽)  (2.98) 

𝜙 = [
𝑛−1

2

𝐼(
𝑛−3

2
,
1

𝛼
)−𝐼(

𝑛−3

2
,
1

𝛽
)

𝐼(
𝑛−1

2
,
1

𝛼
)−𝐼(

𝑛−1

2
,
1

𝛽
)
]

1/2

  (2.99) 

 

The parameters in the above equation are 

 

𝛼 =
2𝜎max

2

𝑆
  (2.100) 

𝛽 =
2𝜎min

2

𝑆
  (2.101) 

 

and the integral which is the upper incomplete gamma function is defined as 

 

𝐼(𝜈, 𝑧) = ∫
∞

𝑧
𝑡(𝜈−1)𝑒−𝑡  d𝑡  (2.102) 

 

Noting that the upper incomplete gamma function Γ(𝑠, 𝑥) and the lower incomplete gamma 
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function 𝛾(𝑠, 𝑥) are defined as 

 

Γ(𝑠, 𝑥) = ∫
∞

𝑥
𝑡(𝑠−1)𝑒−𝑡  d𝑡  (2.103) 

𝛾(𝑠, 𝑥) = ∫
𝑥

0
𝑡(𝑠−1)𝑒−𝑡  d𝑡  (2.104) 

 

it follows that the integral 𝐼(𝜈, 𝑧) may then be calculated using a scaled upper incomplete gamma 

function. As per the observation by Cox & Shirono a simplification to the above formulae is to set 

𝜎min = 0 so that 

 

𝜙 ≈ [
𝑛−1

2
×
𝐼(
𝑛−3

2
,𝛼)

𝐼(
𝑛−1

2
,𝛼)
]

1/2

  (2.105) 

 

When implementing the above formulae in a practical experimental system with 𝑛 < 4 physical 

measurements of say the effective thermal conductivity 𝑘𝑒𝑓𝑓 the analysis utilizes 𝜎min which is 

an estimate of the minimum square root of the variance based on good experimental judgement 

and 𝜎max is an estimate of the maximum square root of the variance. In the event that the actual 

experimental data points are not available from the summarized results in the open literature we 

will then utilize the simpler rectangular probability distribution assumption to calculate the 

equivalent standard uncertainty corresponding to a Gaussian probability distribution for the 

subsequent Monte Carlo analysis which is consistent with existing experimental statistics best 

practice guidelines as per the recommendations of the GUM. This can be simplified for a 

measurement 𝑥 with an estimate for the maximum value 𝑥max and the minimum value 𝑥min as 

𝜇 =
𝑥min+𝑥max

2
, 𝑎 =

𝑥max−𝑥min

2
 and 𝑢(𝑥) =

𝑎

√3
. 

 

Frequently the term ‘accuracy’ is used in the literature for example ... the accuracy of the water 

thermal conductivity was ±1% with repeatability of 0.2%, however this unfortunately tends to 

introduce an element of subjectivity as to what the statistical standard uncertainty is. Technically 

an accuracy is a qualitative term indicating how close an estimate of a measurement is to the true 

value which is unknown by definition.  

 

In scientific metrology, practise at many national laboratories the conventional practise is to 

specify the standard uncertainty of the measurement and the associated probability density 

function of the measurement as this gives a complete quantitative summary of the experimental 

measurement without any level of ambiguity such that as per the GUM [53] the combined standard 

uncertainty 𝑢𝑐(𝑦) of a measurand 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) where 𝑥𝑖 are variables is of the form 

 

𝑢𝑐
2(𝑦) =∑

𝑁

𝑖=1

𝑐𝑖
2𝑢2(𝑥𝑖) + 2∑

𝑁−1

𝑖=1

∑

𝑁

𝑗=𝑖+1

𝑐𝑖𝑐𝑗𝑢(𝑥𝑖)𝑥(𝑥𝑗)𝑟(𝑥𝑖, 𝑥𝑗) 

 + ∑𝑁𝑖=1 ∑
𝑁
𝑗=1 {[

1

2
(

∂2𝑓

∂𝑥𝑖 ∂𝑥𝑗
)
2

+
∂𝑓

∂𝑥𝑖

∂3𝑓

∂𝑥𝑖 ∂𝑥𝑗
2]𝑢

2(𝑥𝑖)𝑢
2(𝑥𝑗)}  

(2.106) 

 

where 
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𝑟(𝑥𝑖, 𝑥𝑗) =
𝑢(𝑥𝑖,𝑥𝑗)

𝑢(𝑥𝑖)𝑢(𝑥𝑗)
  (2.107) 

 

is a scaled covariance term and 

 

𝑐𝑖 =
∂𝑓

∂𝑥𝑖
  (2.108) 

 

are sensitivity coefficients of the underlying measurand model 𝑦 = 𝑓(𝑥1, … , 𝑥𝑁). As per the 

discussion by Ramnath [92] the expanded uncertainty is calculated in terms of the standard 

uncertainty as 

 

𝑈 = 𝑘𝑝𝑢𝑐  (2.109) 

 

where the coverage factor 𝑘𝑝  for a specified probability level 𝑝 , say 𝑝 = 0.95  for a 95% 

confidence level, is calculated from the integral equation 

 

∫
𝑡𝑝

−𝑡𝑝
𝑓(𝑢; 𝜈𝑒𝑓𝑓)  d𝑢 = 𝑝   (2.110) 

 

and the underlying probability density function under the assumption of the Central Limit Theorem 

(CLT) from the field of experimental statistics is assumed to follow a Student’s 𝑡-distribution 

 

𝑓(𝑡; 𝜈) =
Γ(
𝜈+1

2
)

√𝜋𝜈Γ(
𝜈

2
)
(1 +

𝑡2

𝜈
)
−(

𝜈+1

2
)

  (2.111) 

 

with a specified degrees-of-freedom 𝜈 where Γ(𝑡) is the Gamma function. The CLT assumption 

is known to be accurate in most practical experimental systems as the actual probability density 

function formally determined in terms of the Markov convolution integral tends to converge to a 

univariate/multivariate Gaussian probability density function which can be in for example a 

univariate case generalized using a Student’s 𝑡 -distribution if the corresponding degrees of 

freedom 𝜈 is known usually with the aid of the well known Welch-Satterthwaite formula 

 

𝜈𝑒𝑓𝑓 =
𝑢𝑐
4(𝑦)

∑𝑁𝑖=1
𝑢)𝑖4(𝑦)

𝜈𝑖

  (2.112) 

 

where 𝜈𝑖  are the associated degrees of freedom for 𝑥𝑖  typically estimated as 𝜈 = 𝑛 − 1  for 

single quantities with 𝑛 measurements or 𝜈 = 𝑛 −𝑚 for least-squares fits with 𝑛 measurements 

and 𝑚 parameters, or as 𝜈 ≈
1

2
(
Δ𝑢

𝑢
)
−2

 using the relative uncertainty 
Δ𝑢

𝑢
 in other cases where 

detailed statistical information is unknown. Generalizations to the effective degrees of freedom are 

possible as discussed by Willink [93] in the case of correlations between the variables 𝑥𝑖 and 𝑥𝑗 

for 𝑖 ≠ 𝑗 to refine the calculation of the coverage factor 𝑘𝑝 and to mathematically specify the 

shape of the measurand probability density function however this level of mathematical statistical 

detail necessary for a full rigorous measurement uncertainty analysis is usually either not 

performed or alternately not reported in many of the open literature sources that are in the public 
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domain. 

 

Based on these limitations in order to estimate the standard uncertainty we will usually assume 

based on prior experimental laboratory experience unless otherwise specified that the quoted 

accuracy is simply an estimate of the expanded uncertainty, and that where both estimates of an 

accuracy and a repeatability are specified that these are respective components of the actual 

measurement uncertainty. In practical terms this means that if an accuracy 𝐴 is specified either 

from a calculation or an estimate e.g. 𝐴 = 0.01  corresponding to a ±1%  accuracy we will 

assume a confidence level of 95.45% corresponding to a coverage factor of 𝑘𝑝 ≈ 2 so that the 

standard uncertainty is 

 

𝑢(𝑥) =
𝐴×𝑥

2
  (2.113) 

 

In cases where both an accuracy estimate, say 𝐴, and an estimate of the repeatability, say 𝑅, are 

both specified we will then in accordance with standard uncertainty analysis techniques simply 

use the root-sum-squared technique to work out the corresponding standard uncertainty as 

 

𝑢𝑐
2 = (

𝐴×𝑥

2
)
2

+ 𝑅2  (2.114) 

 

since the above terms implicitly already utilize a sensitivity coefficient in their quantification i.e. 

we assume that 𝑢2(𝑥) = ∑ 𝑐𝑖
2 (

∂𝑓

∂𝑥𝑖
)
2

 already includes the sensitivity coefficient weighted 

contributions of the various experimental uncertainties and since the repeatability contribution by 

conventional is usually simple added in a quadrature. In many practical cases where the functional 

equation for a measurand is unknown, such as in nanofluid studies due to the absence of a 

comprehensive physical theory and where only discrete data known, that under these 

circumstances from an experimental data analysis perspective it is occasionally possible for many 

experimentalist from prior experience to add in quadrature worst case estimates of the sensitivity 

weighted uncertainty contributions when developing an “uncertainty budget”. The uncertainty 

calculated through summations of contributing terms in quadrature i.e. a root-sum-square type of 

calculation must be implemented in physical SI units for consistency i.e. if estimates of uncertainty 

contributions are in percentages then they must first be converted to equivalent quantities such as 

W  m−1  K−1  for thermal conductivities and then added in quadrature as it is not 

mathematically justified to add percentages since this would result in statistical inconsistencies for 

the physical properties. 

 

To illustrate how the worst-case estimates are occasionally used in a root-sum-squares calculation 

of an uncertainty budget in some laboratories consider the experimental measurement of the 

density of a quantity of water of volume 𝑉 = 99.8 mL with a mass of 𝑚 = 103 g. Using the 

actual physical definition of density we have 

 

𝜌 =
𝑚

𝑉
 =

103×10−3 kg

99.8×10−6 m3
 = 1032.1 kg m−3    

 

Formal application of the GUM then yields the exact mathematical result, assuming an absence of 

correlation between the measured mass and volume, the formula 
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𝑢2(𝜌) = (
∂𝜌

∂𝑚
)
2

𝑢2(𝑚) + (
∂𝜌

∂𝑉
)
2

𝑢2(𝑉) = (
1

𝑉
)
2

𝑢2(𝑚) + (
−𝑚

𝑉2
)
2

𝑢2(𝑉)  

 
 

 

Supposing for illustrative purposes only that the laboratory has a mass balance with an accuracy 

of an equivalent standard uncertainty of 𝑢(𝑚) = ±0.5 × 10−3 kg  and that the volume 

measurement has an accuracy with an equivalent standard uncertainty of 𝑢(𝑉) = ±0.2 ×
10−6 m3 it then follows that the formal uncertainty of the density is 

 

𝑢2(𝜌) = (
1

99.8 × 10−6
)
2

(0.5 × 10−3)2 + (
−(103 × 10−3)

(99.8 × 10−6)2
)

2

(0.2 × 10−6)2 

 = (1.002 × 104
=𝑚 sens.

)2(0.5 × 10−3
=𝑚 unc.

)2 + (−1.0341 × 107
=𝑉 sens.

)2(0.2 × 10−6
=𝑉 unc.

)2 

 = (5.01)2
=TOTAL 𝑚 unc.

+ (−2.0683)2
=TOTAL 𝑉 unc.

 

 = 29.378  

 

 

so that 

 

𝑢(𝜌) = √29.378 = 5.4201 kg m−3  

 

In certain situations, it may be too complicated to work out the exact sensitivity coefficient or there 

may be insufficient information and the experimentalist may therefore based on prior experience 

make a judgement call that for example “...the uncertainty contribution on the density due to the 

effect of volume uncertainty is less than [𝑢(𝜌)]|𝑢(𝑉) = 3 𝑘𝑔  𝑚
−3” and use this as a worst case 

estimate to calculate an upper bound for the uncertainty by adding in a root-sum-square sense so 

that 

 

𝑢2(𝜌) ≤
1

𝑉2
𝑢2(𝑚) + ([𝑢(𝜌)]|𝑢(𝑉))

2   

 

This type of approximation where estimates of the product 
∂𝑓

∂𝑥𝑖
× 𝑢(𝑥𝑖)  of the sensitivity 

coefficient 
∂𝑓

∂𝑥𝑖
 and the uncertainty 𝑢(𝑥𝑖) is estimated based on an experimental judgement as 

Type B uncertainties rather than mathematically calculated using formal statistical theories as 

Type A uncertainties is permissible according to the GUM if underpinned by experimental good 

judgement based on physical reasoning. Under these circumstances the equivalent Type A 

uncertainty is then estimated using rectangular probability density function distributions in 

accordance with the maximal statistical entropy principle in order to infer conservative estimates 

of the equivalent Gaussian or Student 𝑡-distribution standard uncertainties in accordance with the 

GUM uncertainty analysis technique for physical measurement uncertainties. 

 

For cases where the effects of both the accuracy as well as the repeatability are already included 

into a percentage estimate, say 𝑞 = 0.013 for a final accuracy of 1.3% of an effective thermal 

conductivity 𝑘𝑒𝑓𝑓, we will first calculate the corresponding range as 

 

Δ = 𝑞 × 𝑘𝑒𝑓𝑓    (2.115) 
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Then using the above information we will simply assume a rectangular probability distribution as 

a conservative estimate so that the equivalent standard uncertainty is 

 

𝑢(𝑘𝑒𝑓𝑓) =
Δ

√3
      (2.116) 

 

under the assumption of maximum statistical entropy as discussed by Cox & Siebert [34]. In the 

context of statistical uncertainty analysis calculations for experimental measurements the maximal 

statistical entropy principle reduces to the simplification that in the absence of detailed knowledge 

of the underlying probability density function (PDF) for a measurement that the knowledge of the 

PDF is that of a rectangular PDF which maximizes the statistical entropy for the measurement 

system as per international best measurement uncertainty practice of the GUM for Type B 

uncertainty estimates where detailed mathematical statistical information is either not reported or 

available. As a result in order to infer the intrinsic aleatoric thermophysical data uncertainties 

requires a careful reading and examination of the combination of the reported information in the 

open literature. 

 

 

2.4 Nanofluid Mathematical Modelling Techniques 
 

In various fields of engineering many experiments are done using an improvement on the trial and 

error approach when there is no specific underlying mathematical model using what is nowadays 

referred to as the one-factor-at-a-time (OFAT) approach as discussed by Lye [95] in order to 

determine the behaviour and characteristics of a particular physical system. The OFAT approach 

which is sometimes considered as a more systematic standard and accepted scientific 

experimentation approach be it in terms of physical laboratory testing, mathematical theoretical 

predictions, or computational based numerical or symbolic based experimentation, investigates a 

particular engineering system by varying one factor at a time over an appropriate process parameter 

range such as for example a temperature range whilst holding the other process parameters such 

as for example an operating pressure at constant values in order to systematically gather 

experimental physical, theoretical or computational data for the particular system. 

 

As an example of how the OFAT experimental approach would work in practice consider for 

example an experiment that varies the pressure 𝑝 and temperature 𝑇 of a gas in order to construct 

a model for the gas density 𝜌. The true fluid equation of state for a gas is constructed using the 

partition function from the fundamental definitions of statistical mechanics where it may be shown 

as discussed by Reif [10] that the average hydrostatic pressure 𝑝̅ for a real gas takes the form 
𝑝̅

𝑘𝑇
= 𝑛 + 𝐵2(𝑇)𝑛

2 + 𝐵3(𝑇)𝑛
3 +⋯ where 𝑛 = 𝑁/𝑉 is the number of molecules per unit volume 

and 𝐵2, 𝐵3, … are the virial coefficients. For this experiment an approximate model for gas density 

is the ideal gas equation 𝑝 = 𝜌𝑅𝑔𝑇 where 𝑅𝑔 = ℛ/𝑀 is the gas species constant defined as the 

ratio of the universal gas constant to that of the molecular mass 𝑀 of the particular gas species. 

When the OFAT experimental approach is applied it will result in two sets of experimental data 

points as shown in Figure 2.12 and Figure 2.13 where in one set of experimental measurements 

one parameter such as the temperature is held constant while another such as the pressure is varied, 

whilst in the other set of experimental measurements the pressure is held constant whilst the 

temperature is varied.  
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Figure 2-12 Illustration of one-factor-at-a-time (OFAT) experimental methodology to model gas density ρ=f(p,T) where experiment 

1 is with a constant temperature T=298.15 K whilst the pressure is allowed to naturally vary 

   

 

 
Figure 2-13 Illustration of one-factor-at-a-time (OFAT) experimental methodology to model gas density ρ=f(p,T) where experiment 

2 is with a constant pressure at p=75.994 kPa whilst the temperature is allowed to naturally vary 
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As a result in the OFAT approach there will in general be 𝑁 sets of experimental data for each of 

the process parameters if the measurand i.e. the quantity 𝑦  to be measured in standard 

measurement science terminology is modelled in terms of the 𝑁 parameters as a function 𝑦 =
𝑓(𝑥1, … , 𝑥𝑁) where 𝑥𝑖 , 𝑖 = 1,… ,𝑁 represent the various process parameters for the particular 

system. The challenge in this approach is to then use each of the underlying data sets to construct 

an approximation of the system’s mathematical model using standard statistical analysis 

techniques. According to Lye the major disadvantage of the OFAT strategy is that it fails to 

consider the interaction effects between the various process parameters.  

 

A consequence of this shortcoming is that different combinations of process parameters 

particularly when there are more than two process parameters such that 𝑁 ≥ 2 could in fact 

produce the same results but that these interaction effects would not be able to be discerned and 

incorporated when constructing the approximation to the mathematical model. These 

shortcomings in OFAT experiments were initially overcome using two-factor 2𝑘 based statistical 

factorial experiments by users such as the US army [96] working in the field that is now commonly 

referred to as the design of experiments (DOE) as discussed by Telford [97]. Although in general 

there can be 𝑘 factors and 𝑝 levels as discussed by Spliid [175] in factorial designs in most 

practical applications statistical analysis is usually only considered for 2𝑘  and 3𝑘  factorial 

designs as discussed by Montgomery [99]. One particular approach when implementing 𝑘𝑝 

factorial designs is known as the Randomized Complete Block Design (RCBD) approach where if 

there are 𝑘  process parameters say 𝑥1, … , 𝑥𝑘  and each particular process parameter 𝑥𝑖 , 𝑖 =
1, … , 𝑘 has 𝐿1, … , 𝐿𝑘 levels then if 𝑛 is the number of repeat experiments for each factor/level if 

may be shown using combinatorial arguments that the total number 𝑁 of experiments to complete 

the RCBD is 𝑁 = (𝐿1 × 𝐿2 ×⋯× 𝐿𝑘) × 𝑛. In the previous gas density illustrative example let 

𝑥1 = 𝑝 be the pressure and let 𝑥2 = 𝑇 be the temperature and suppose 𝑥1 has 𝐿1 = 3 associated 

temperature measurements whilst 𝑥2  has 𝐿2 = 4  has associated pressure measurements. For 

convenience let the pressures be 𝑝𝐴, 𝑝𝐵, 𝑝𝐶 and the temperatures be 𝑇𝛼 , 𝑇𝛽 , 𝑇𝛾, 𝑇𝛿 then the full set 

of factorial experiments may be summarized in Figure 2.14 which illustrates the RCBD for this 

design of experiment with a factorial design with 𝑘 = 3 factors for pressures 𝑥𝑘  and 𝑝 = 4 

levels for temperatures with 𝑛 = 1 repeat experiments.  

 

 
Figure 2-14 Illustration of a 𝑘𝑝 factorial design experiment for a gas density example showing associated randomized complete 

block design configuration 



53 

 

Referring to this figure it may be observed that when implementing factorial designs that the 

information associated with each factor and level must both be known in order to perform the 

analysis. This requirement is not however generally able to be satisfied in nanofluid thermo-

physical experiments since if for example the nanofluid thermal conductivity 𝑘𝑒𝑓𝑓 is modelled in 

terms of the process parameters of nanoparticle diameter 𝑑, volume fraction 𝜙 and base fluid 

temperature 𝑇  such that 𝑘𝑒𝑓𝑓 = 𝑓(𝑑, 𝜙, 𝑇)  then in many experimental studies not all of the 

parameters are independently reported.  

 

A practical example is that some experimental studies only consider the effect of particle diameter 

𝑑 and volume concentration 𝜙 but disregard or do not accurately report data for the influence of 

the base fluid temperature 𝑇. This is limitation of reported data is present in varying extents in 

many experimental studies as not all experimentalist report on or agree on the same process 

parameters that are considered necessary of relevant in nanofluid thermal conductivity and 

viscosity model correlations. As a result due to the absence or lack of consistency in known process 

parameter information it is generally inadvisable to utilize a factorial based design of experiments 

approach unless a particular experiment has specifically included full complete reported 

measurement data for all the factors and levels. 

 

Fortunately, an alternative to the factorial approach in the design of experiments where there is 

incomplete or inconsistent information is available in the form of the Response Surface 

Methodology (RSM) as discussed by Bezerra et al.[100]. As per the discussion by Bezerra et al. 

one of the disadvantages of factorial designs particularly for 3𝑘 designs is that a very large number 

of experimental measurements is necessary if 𝑘 is large. As an example if 𝑘 = 4 corresponding 

to for example process parameters of 𝑥1 = 𝑑  nanoparticle diameter, 𝑥2 = 𝜙 volume fraction, 

𝑥3 = 𝑇  temperature and 𝑥4 = pH  which is the level of hydrogen ion concentration in the 

nanofluid then the number of independent experimental data points is 𝑁 = 34 = 81. This issue of 

the necessity of a relatively large number of experimental data points is not an issue in many RSM 

studies as the corresponding hyper-dimensional surface in ℝ𝑘 is usually of quadratic order i.e. it 

incorporates linear combinations of second order powers of the process parameters 𝑥1, … , 𝑥𝑘 for 

the measurand model 𝑦 = 𝑓(𝑥1, … , 𝑥𝑘). 
 

In the case of three process parameters 𝑥1, 𝑥2, 𝑥3 the quadratic RSM surface takes then form 

 

𝑦̂𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 

      + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3 

      + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽33𝑥3
2   

(2.117) 

 

as discussed by the NIST [101] whilst the corresponding cubic RSM model takes the form 

 

𝑦̂𝑐𝑢𝑏𝑖𝑐 = 𝑦̂𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 

   + 𝛽123𝑥1𝑥2𝑥3 + 𝛽112𝑥1
2𝑥2 + 𝛽113𝑥1

2𝑥3 

   + 𝛽122𝑥1𝑥2
2 + 𝛽133𝑥1𝑥3

2 + 𝛽223𝑥2
2𝑥3 

   + 𝛽233𝑥2𝑥3
2 + 𝛽111𝑥1

3 + 𝛽222𝑥2
3 + 𝛽333𝑥3

2     

(2.118) 

 

where 𝛽0 is a nominal value, 𝛽𝑖, 𝑖 ∈ [1,2,3] are linear coefficients, 𝛽𝑖𝑗, 𝑖, 𝑗 ∈ [1,2,3] are mixed 
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interaction effects, and 𝛽𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘 ∈ [1,2,3] are the corresponding quadratic coefficients. 

 

An advanced review of RSM is discussed further by Khuri & Mukhopadhyay [75] who extend and 

relate the original RSM to 2𝑘 factorial designs and elaborate on an alternative to a 2𝑘 factorial 

design known as the Plackett-Burman design which uses 𝑛 = (𝑘 + 1) experiments and offers 

considerable cost savings for large values of 𝑘 when compared to classical 2𝑘 and 3𝑘 factorial 

designs. In this work Khuri & Mukhopadhyay also introduce methods to incorporate random 

effects in the RSM using generalized linear models (GLM’s). Software implementations for RSM 

fits of data are discussed in Lenth [103] however it should be noted that that the conventional 

statistical RSM models are usually limited to second order models due to the high dimensional 

spaces that are considered. As an example a quadratic response surface in for example a 15 

dimensional space is fitted for a model 𝑦 = 𝑓(𝐱) where 𝐱 = [𝑥1, … , 𝑥15]
T ∈ ℝ15, and as a result 

the conventional statistical regression linear and quadratic models are not suitable for our purposes 

as we have a relatively low number of process parameters, say for example the nanoparticle 

diameter, volume fraction, temperature, pH, and shape amongst other factors, and desire a higher 

order correlation for a low number of parameters. 

 

Due to these issues the use of artificial neural network (ANN) and artificial intelligence techniques 

as discussed by Safikhani et al.[104] has become increasingly popular in the modelling of 

nanofluid properties. One particularly popular ANN approach is known as the Grouped Method of 

Data Handling (GMDH) where for 𝑀 data points consisting of 𝑛 inputs and a single output, 

which corresponds to our particular nanofluid modelling problem, involves the optimal 

determination of parameters for a Ivakhnenko polynomial of the form 

 

𝑦 = 𝑎0 + ∑
𝑛
𝑖=1 𝑎𝑖𝑥𝑖 + ∑

𝑛
𝑖=1 ∑

𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + ∑

𝑛
𝑖=1 ∑

𝑛
𝑗=1 ∑

𝑛
𝑘=1 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 +⋯  (2.119) 

in an analogous manner as earlier discussed where the general idea is to determine the optimal 

values of the parameters for an appropriate cost function. For GMDH type neural networks a 

common choice of Ivakhnenko polynomial is a low second order polynomial such that the GMDH-

ANN reduces to solving 

 

𝑦̂ = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖
2 + 𝑎5𝑥𝑗

2  (2.120) 

𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ← min∑𝑀𝑖=1 [𝑦̂ − 𝑦𝑖]
2  (2.121) 

 

where the input parameters would in our particular problem correspond to 𝑥1 = 𝑇𝑛𝑓, 𝑥2 = 𝑑𝑝 and 

𝑥3 = 𝜙 respectively, whilst the single output would correspond to either 𝑦 = 𝑘𝑛𝑓 or alternately 

𝑦 = 𝜇𝑛𝑓 . A more general extension of the GMDH-ANN scheme is known as a Multi-Layer-

Perceptron (MLP) neural network as outlined by Ariana et al.[66] where the neuron output 𝑛𝑗  is 

 

𝑛𝑗 = 𝑓(∑𝑁𝑟=1 𝑤𝑗𝑟𝑥𝑟 + 𝑏𝑗)  (2.122) 

 

where now there may be multiple possible model outputs 𝑛1, 𝑛2, … such as for example 𝑛1 =
𝑘𝑛𝑓 , 𝑛2 = 𝜇𝑛𝑓 , 𝑛3 = ℎ𝑛𝑓 , … and 𝑓 is referred to as an activation or transfer function, 𝑥𝑟 is the 

input value of the neuron, 𝑤𝑗𝑟 are relevant weighting factors, 𝑏𝑗 are respective bias coefficients, 

and where in general different types of activation/transfer functions and hidden neuron layers are 

possible. Following the earlier research work by Ariana et al.[66] a Levenberg-Marquardt 
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optimization technique is recommended for the training algorithm, and it has been further 

confirmed that a single hidden layer in the MLP network is generally sufficient to approximate 

any multivariable function as precisely as desired. For a single hidden layer different possible 

numbers of neurons are possible and this is generally determined through the minimization of 

appropriate statistical measures. Two common statistical indicators are the Absolute Average 

Relative Deviation (AARD%) and the Mean Square Error (MSE) defined as 

 

𝐴𝐴𝑅𝐷% =
100

𝑁
∑𝑁𝑖=1 (|

𝑘𝑖
𝑒𝑥𝑝

−𝑘𝑖
𝑐𝑎𝑙

𝑘
𝑖
𝑒𝑥𝑝 |)  (2.123) 

𝑀𝑆𝐸 =
1

𝑁
∑𝑁𝑖=1 (𝑘𝑖

𝑒𝑥𝑝 − 𝑘𝑖
𝑐𝑎𝑙)

2
  (2.124) 

 

with analogous expressions for the nanofluid effective viscosity 𝜇𝑛𝑓 and which may be used to 

estimate the neural network with the highest accuracy corresponding to the smallest MSE or 

AARD% values. A regression coefficient (𝑅2) value for the associated data may also be estimated 

and different possible approaches to estimating the correlation coefficient 𝑅2  are technically 

possible. One particular choice reported by Ariana et al.[66] is 

 

𝑅2 =
∑𝑁𝑖=1 (𝑘𝑖

𝑒𝑥𝑝
−Δ𝑘)

2
−∑𝑁𝑖=1 (𝑘𝑖

𝑒𝑥𝑝
−Δ𝑘𝑖

𝑐𝑎𝑙)
2

∑𝑁𝑖=1 (𝑘𝑖
𝑒𝑥𝑝

−Δ𝑘)
2    (2.125) 

 

where 𝑁 is the number of experimental data points, 𝑘𝑖
𝑒𝑥𝑝

 is the actual experimental data point 

value, 𝑘𝑖
𝑐𝑎𝑙 the corresponding model predicted value, and Δ𝑘 the average value of the particular 

experimental data points. Additional refinements to a MLP-ANN scheme are possible using a 

Radial Basis Function (RBF) approach as discussed by Zhao et al.[65] in an analogous manner to 

the MLP-ANN approach, where statistical indicators include Root Mean Squared Error (RMSE), 

Mean Absolute Percentage Error (MAPE), Sum of Squared Error (SSE) and again a linear 

correlation 𝑅2 value defined as 

 

𝑅𝑀𝑆𝐸 = (
1

𝑡
∑𝑡𝑗=1 |𝑃𝑗 − 𝑄𝑗|)

1/2

  (2.126) 

𝑀𝐴𝑃𝐸 =
100%

𝑡
∑𝑡𝑗=1 |

𝑃𝑗−𝑄𝑗

𝑃𝑗
|  (2.127) 

𝑆𝑆𝐸 = ∑𝑡𝑗=1 (𝑃𝑗 − 𝑄𝑗)
2
  (2.128) 

𝑅2 = 1 −
∑𝑡𝑗=1 (𝑃𝑗−𝑄𝑗)

2

∑𝑡𝑗=1 (𝑃𝑗)
2   (2.129) 

 

where now 𝑃𝑖 is the actual data value, 𝑄𝑖 the corresponding model predicted value and 𝑡 the total 

number of data-points where we note that the equation for the correlation coefficient 𝑅2 now takes 

a slightly different algebraic form. 

 

One issue that affects neural network modelling is that of over-fitting as discussed by Ahmadloo 

& Azizi [105] where the limitation is that the model can only produce good predictions for the 

specified data points and is unable to make adequate predictions for other input data values. The 

conventional approach to avoid neural network over-fitting is the early stopping technique where 
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the underlying data points in a set 𝑆𝑑𝑎𝑡𝑎  are divided into three random sub-sets of 𝑆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , 

𝑆𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 and 𝑆𝑡𝑒𝑠𝑡𝑖𝑛𝑔 respectively. First 𝑆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is used to obtain the respective weighting 

and bias values for the neural network, and then 𝑆𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 is used to ensure accuracy and generality 

of the model predictions. Training of the neural network is stopped when the error of the validation 

set increases, and then 𝑆𝑡𝑒𝑠𝑡 is used to make an assessment of the final performance and quality 

of the fitted neural network model. Although the use of neural network models offers relatively 

good quality of predictions for nanofluid thermal conductivities the utility of this approach is still 

challenging for the prediction of nanofluid viscosities as recently reported by Hemmati-Sarapardeh 

et al.[106] who utilizing particle swarm optimization (PSO) and genetic algorithm (GA) 

approaches report that average absolute relative errors are typically ±10%  at low volume 

fractions however may be as large as ±40% for volume fractions larger than 5%. As a result, 

careful attention should considered in the choice of activation or transfer function which is 

inclusive of linear 𝑓(𝑥) = 𝑥 , sigmoid 𝑓(𝑥) = 1/[1 + 𝑒−𝑥] , sinusid 𝑓(𝑥) = sin(𝑥) , tansig 

𝑓(𝑥) = [2/(1 + 𝑒−2𝑥)] − 1 , arctan 𝑓(𝑥) = arctan(𝑥)  and binary step 𝑓(𝑥) = 𝑥 for 𝑥 <
0, −𝑥 for 𝑥 > 0 activation functions for both hidden as well as output layers as illustrated in 

Figure 2.15.  

 

The neuron values are generally normalized to unity i.e. the neuron value 𝑥 is scaled such that 

0 ≤ 𝑥 ≤ 1  for convenience to avoid numerical ill-conditioning issues when constructing the 

particular neural network. From the literature review conducted the conventional practise by many 

researchers is to utilize a single hidden layer and opt for sigmoid transfer functions for the 

input/hidden layer and linear functions for the hidden/output layer when constructing the neural 

network by utilizing approximately 80% of the data for training, 10% for validation and 10% 

for testing, although occasionally two hidden layers have been reported in some studies. 

 
Figure 2-15 Illustration of typical neural network transfer/activation function behaviours 
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2.5 Nanofluid CFD Simulation Techniques 
 

Once the statistical modelling process has been completed to model the effective thermal 

conductivity and effective viscosity in terms of the available representative meta-parameters by 

building and constructing the database as previously explained it is then necessary to utilize the 

thermodynamic data properties in for example computational fluid dynamics (CFD) simulations 

where the two main aspects of this application are defining appropriate governing equations for 

the mass, momentum and energy conservation equations of a nanofluid and in defining the 

auxiliary thermodynamic relations of the nanofluid in terms of the joint PDF. 

 

Let 𝐚 = (𝑎1, 𝑎2, 𝑎3)  be a vector in ℝ3  and 𝐓  be a tensor representation in ℝ3  then using 

standard vector/tensor analysis the gradient of a vector is defined as ∇𝐚 =
∂𝐚

∂𝑥𝑗
⊗𝐞𝑗 =

∂𝑎𝑖

∂𝑥𝑗
𝐞𝑖⊗𝐞𝑗. 

By applying these definitions it may then be shown that the outer product is 𝐮⊗ 𝐯 = 𝐮𝐯T, the 

gradient of a vector is ∇𝐚 and the divergence of a tensor is ∇ ⋅ 𝐓 =
∂𝑇𝑖𝑗

∂𝑥𝑗
𝐞𝑖 where 𝑒𝑖, 𝑖 ∈ [1,2,3] 

are basis vectors. The following simplified working definitions then follow such that 

 

𝐮⊗ 𝐯 = [

𝑢1𝑣1 𝑢1𝑣2 𝑢1𝑣3
𝑢2𝑣1 𝑢2𝑣2 𝑢2𝑣3
𝑢3𝑣1 𝑢3𝑣2 𝑢3𝑣3

] (2.130) 

 

 

∇𝐚 =

[
 
 
 
 
∂𝑎1

∂𝑥1

∂𝑎1

∂𝑥2

∂𝑎1

∂𝑥3
∂𝑎2

∂𝑥1

∂𝑎2

∂𝑥2

∂𝑎2

∂𝑥3
∂𝑎3

∂𝑥1

∂𝑎3

∂𝑥2

∂𝑎3

∂𝑥3]
 
 
 
 

      (2.131) 

 

∇ ⋅ 𝐓 =

[
 
 
 
 
∂

∂𝑥1
(𝑇11) +

∂

∂𝑥2
(𝑇12) +

∂

∂𝑥3
(𝑇13)

∂

∂𝑥1
(𝑇21) +

∂

∂𝑥2
(𝑇22) +

∂

∂𝑥3
(𝑇23)

∂

∂𝑥1
(𝑇31) +

∂

∂𝑥2
(𝑇32) +

∂

∂𝑥3
(𝑇33)]

 
 
 
 

  (2.132) 

 

Substituting these formulae into the single-phase model for nano-fluids by Moraveji [49] then 

yields the following system of four simultaneous partial differential equations for two dimensional 

problems such that in steady state they take the form 

 
∂

∂𝑥
[𝜌𝑢] +

∂

∂𝑦
[𝜌𝑣] = 0   (2.133) 

𝜌𝑢
∂𝑢

∂𝑥
+ 𝜌𝑣

∂𝑢

∂𝑦
= −

∂𝑝

∂𝑥
+

∂

∂𝑥
[
4

3
𝜇
∂𝑢

∂𝑥
−
2

3
𝜇
∂𝑣

∂𝑦
] +

∂

∂𝑦
[𝜇

∂𝑢

∂𝑦
+ 𝜇

∂𝑣

∂𝑥
]  (2.134) 

𝜌𝑢
∂𝑣

∂𝑥
+ 𝜌𝑣

∂𝑣

∂𝑦
= −

∂𝑝

∂𝑦
+

∂

∂𝑥
[𝜇

∂𝑣

∂𝑥
+ 𝜇

∂𝑢

∂𝑦
] +

∂

∂𝑦
[
4

3
𝜇
∂𝑣

∂𝑦
−
2

3
𝜇
∂𝑢

∂𝑥
]  (2.135) 

∂

∂𝑥
[𝜌𝑐𝑢𝑇] +

∂

∂𝑦
[𝜌𝑐𝑣𝑇] =

∂

∂𝑥
(𝑘

∂𝑇

∂𝑥
) +

∂

∂𝑦
(𝑘

∂𝑇

∂𝑦
)  (2.136) 
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In the above system of PDE’s which are simply the well known Navier-Stokes equations for fluid 

mechanics problems and which may be conveniently solved with any convenient CFD solver such 

as Ansys Fluent if 𝑘𝑒𝑓𝑓 and 𝜇𝑒𝑓𝑓 are specified an equation of state is necessary to calculate the 

nanofluid density 𝜌𝑛𝑓  and nanofluid enthalpy ℎ𝑛𝑓  for mathematical completeness. Whilst the 

Pak & Cho formula may be conveninetly used to estimate the nanofluid enthalpy with the aid of a 

corresponding nanofluid specific heat capacity 𝑐𝑝,𝑒𝑓𝑓 as previously discussed a mixed model for 

the nanofluid density developed by Teng & Hung [33] of the form 𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑏𝑓 + 𝜙𝜌𝑝 

usually yields good results with accuracies from −1.50% to +0.06% for temperatures from 

10∘C to 40∘C for alumina/water mixtures. As a result in order to complete the equation of state 

for the nanofluid density we must provide equations for the water density and alumina 

nanoparticles density. For water the standard practise in many research laboratories is to use the 

Committee for Weights and Measures (CIPM) formula for Vienna Standard Mean Ocean Water 

(VSMOW) which is considered as a representative average chemical/isotopic composition for 

water throughout the world in which pure water is needed for very high accuracy chemical and 

physical experiments. 

 

A more comprehensive but far more complex formula by the International Association for the 

Properties of Water and Steam (IAPWS) based on a Helmholtz free energy function 𝐹 = 𝐹(𝑇, 𝑉) 
which is a thermodynamic function in terms of the absolute temperature 𝑇  and volume 𝑉  is 

available. Different approaches to deduce the density 𝜌 from 𝐹(𝑇, 𝑉) such as taking the partial 

derivative with respect to volume at a constant temperature such that (
∂𝐹

∂𝑉
)
𝑇
= −𝑝, or alternately 

by constructing the Gibbs free energy in terms of the Helmholtz energy so that 𝐺 = 𝐹 + 𝑝𝑉 and 

taking the partial derivative of the Gibbs free energy in terms of the pressure at a constant 

temperature so that (
∂𝐺

∂𝑝
)
𝑇
= 𝑉 are theoretically possible in order to relate the density as a function 

of pressure 𝑝  and temperature 𝑇 . Whilst these approaches have their own respective merits 

mainly in the field of chemical physics in our particular case a simple algebraic application of the 

CIPM formula for water density as summarized by MetGen [107] is sufficient. 

 

The CIPM water density formula for the density 𝜌/[kg m−3] in terms of the pressure 𝑝/[Pa] 
and temperature 𝑡/[∘C] takes the form 

 

𝜌(𝑡) = 𝑎5 [1 −
(𝑡+𝑎1)

2(𝑡+𝑎2)

𝑎3(𝑡+𝑎4)
] ;  𝑝 = 101325 Pa  (2.137) 

 

where the values of the constants are 

 

𝑎1 = −3.983035 ∘C  (2.138) 

𝑎2 = 301.797 
∘C  (2.139) 

𝑎3 = 522528. 9
∘C2  (2.140) 

𝑎4 = 69.34881 
∘C  (2.141) 

𝑎5 = 999.974950 kg m
−3  (2.142) 

 

The corresponding expanded uncertainty of the above formula for a coverage factor of 𝑘 = 2 

which is roughly equivalent to a confidence interval of 95.45% is 
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𝑈𝜌 = 𝑏1 + 𝑏2𝑡 + 𝑏3𝑡
2 + 𝑏4𝑡

3 + 𝑏5𝑡
4  (2.143) 

 

where the values of the constants are 

 

𝑏1 = 8.394 × 10−4 kg m−3  (2.144) 

𝑏2 = −1.28 × 10
−6 kg m−3  (2.145) 

𝑏3 = 1.10 × 10
−7 kg m−3  (2.146) 

𝑏4 = −6.09 × 10
−9 kg m−3  (2.147) 

𝑏5 = 1.16 × 10
−10 kg m−3  (2.148) 

 

Pressure effects on the water density are accounted for through the use of a simple multiplicative 

factor 𝐾𝑝  such that the corrected density at a pressure different from a standard atmospheric 

pressure is 

 

𝜌𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝜌(𝑡) × 𝐾𝑝  (2.149) 

 

where the multiplicative correction factor is calculated as 

 

𝐾𝑝 = 1 + (𝑐1 + 𝑐2𝑡 + 𝑐3𝑡
2)(𝑝 − 101325) (2.150) 

 

The values of the constants in the above formula are 

𝑐1 = 5.074 × 10−10 Pa−1  (2.151) 

𝑐2 = −3.26 × 10−12 Pa−1
∘
C−1  (2.152) 

𝑐3 = 4.16 × 10−15 Pa−1
∘
C−2  (2.153) 

 

Values for the thermal conductivity 𝜆/[W m−1 K−1] of water are calculated with the formulae 

reported by Ramires et al.[140] based on experimental data from transient hot wire measurements 

with an accuracy of ±0.5% of the form 

 

𝜆∗ = −1.48445 + 4.12292𝑇∗ − 1.63866(𝑇∗)2, 
 for 274 ≤ 𝑇/[K] ≤ 370  

(2.154) 

𝑇∗ =
𝑇

298.15
  (2.155) 

𝜆∗ =
𝜆(𝑇)

𝜆(298.15)
  (2.156) 

𝜆(298.15 K, 0.1 MPa) = (0.6065 ± 0.0036) W m−1 K−1  (2.157) 

 

According to Teng & Hung [33] the expected density of the nanoparticles which in their 

experiments was procured from suppliers is approximately 

 

𝜌𝑝 ≈ 3880 kg m
−3     (2.158) 

 

which we will assume is a representative density value for Al2O3  nanoparticles since many 

laboratories in their experimental investigations tend to purchase their nanoparticles from the same 

suppliers for consistency of results. 
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Expressions for the viscosity of water are also necessary and traditionally the viscosity of water 

has been calculated in terms of the Vogel equation as discussed by Seeton [109] of the form 

 

𝜂𝑡 = (𝜂∞)
[
𝑡−𝑡1
𝑡−𝑡∞

]
  : Classical Vogel (2.159) 

ln(𝜇) = 𝐴 +
𝐵

𝑇−𝑇0
  : Vogel-Fulcher-Tammann (modified Vogel) (2.160) 

 

In the classical Vogel equation 𝜂𝑡 ≡ 𝜂(𝑡) is the viscosity at a temperature 𝑡/[∘C] in degrees 

Celsius, 𝜂∞ = lim𝑡→∞𝜂(𝑡)  is the limit of the viscosity as 𝑡 → ∞ , 𝑡1  is the corresponding 

temperature for when 𝜂 = 1, and 𝑡∞  is the corresponding temperature at which 𝜂 → ∞ from 

which it is seen that the original Vogel equation is both non-linear as well as mathematically 

complex. Later more comprehensive collaborations to investigate the viscosity of water by Huber 

et al.[110] improved on the earlier reported formulae by the International Association for the 

Properties of Water and Steam (IAPWS) thermodynamic properties of water and steam by 

constructing a new set of water viscosity 𝜇 formulae such that 

 

 

𝜇 = 𝜇
0
(𝑇) × 𝜇

1
(𝑇, 𝜌) × 𝜇

2
(𝑇, 𝜌)  (2.161) 

𝜇 =
𝜇

𝜇∗
      (2.162) 

 

 

where 𝑇 =
𝑇

𝑇∗
, 𝜌 =

𝜌

𝜌∗
 and 𝑝 =

𝑝

𝑝∗
 are non-dimensionalized variables for specified reference 

constants 𝑇∗ = 647.096 K , 𝜌∗ = 322.0 kg m−3 , 𝑝∗ = 22.064 MPa  and 𝜇∗ = 1 ×
10−6 Pa s respectively.  

 

Of various formulations that were investigated by Huber et al. the final optimal set of equations 

takes the form 

 

𝜇
0
(𝑇) =

100√𝑇

∑3𝑖=0
𝐻𝑖

(𝑇)𝑖

  (2.163) 

𝜇
1
(𝑇, 𝜌) = exp [𝜌∑5𝑖=0 (

1

𝑇
− 1)

𝑖
∑6𝑗=0 𝐻𝑖𝑗(𝜌 − 1)

𝑗]  (2.164) 

𝜇
2
= exp(𝑥𝜇𝑌)  (2.165) 

 

where 𝐻𝑖  is specified in Table 2.2 and 𝐻𝑖𝑗  is specified in Table 2.3 respectively, and more 

complex formulae for the calculation of 𝜇
2

 in terms of 𝜇𝑥  and 𝑌  are available in terms of 

parameters summarized in Table 2.1 for water and where 𝑌 is calculated by the formula 

 

𝑌(𝜉) =
1

5
𝑞𝐶𝜉(𝑞𝐷𝜉)

5 (1 − 𝑞𝐶𝜉 + (𝑞𝐶𝜉)
2 −

765

504
(𝑞𝐷𝜉)

2) 

 if 0 ≤ 𝜉 ≤ 0.3817016416 nm 

(2.166) 

 

or alternately by the formula 
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𝑌(𝜉) =
1

12
sin(3𝜓𝐷) −

1

4𝑞𝐶𝜉
sin(2𝜓𝐷) +

1

(𝑞𝐶𝜉)2
[1 −

5

4
(𝑞𝐶𝜉)

2]sin(𝜓𝐷) 

 − 
1

(𝑞𝐶𝜉)3
{[1 −

3

2
(𝑞𝐶𝜉)

2]𝜓𝐷−∥ (𝑞𝐶𝜉)
2 − 1 ∥3/2 𝐿(𝑤)} 

 if 𝜉 > 0.3817016416 nm  

(2.167) 

 

where 

 

𝜓𝐷 = arccos(1 + 𝑞𝐷
2𝜉2)−1/2    (2.168) 

 

𝐿(𝑤) = {
ln (

1 + 𝑤

1 − 𝑤
) for 𝑞𝐶𝜉 > 1

2arctan ∥ 𝑤 ∥ for 𝑞𝐶𝜉 < 1
  (2.169) 

 

and the variable 𝑤 is defined by the equation 

 

𝑤 = |
𝑞𝐶𝜉−1

𝑞𝐶+1
|
1/2

tan (
𝜓𝐷

2
)  (2.170) 

 

As a result the function 𝑌(𝜉) contains the wave numbers 𝑞𝐶 and 𝑞𝐷 which are constants that 

must be calculated for the particular choice of fluid which is specified in as indicated in Table 2.1 

for water. 

 

 

  
Constant  Value  

𝑥𝜇  0.068  

𝑞𝐶
−1  1.9 nm  

𝑞𝐷
−1  1.1 nm  

𝜈  0.630  

𝛾  1.239  

𝜉0  0.13 nm  

Γ0  0.06  

𝑇𝑅  1.5  

Table 2. 1 Coefficients for calculation of Y 

 
   𝑖  𝐻𝑖   

0  1.67752  

1  2.20462  

2  0.6366564  

3  −0.241605  

Table 2. 2 Coefficients 𝐻𝑖 for use in formula for 𝜇0(𝑇) 
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𝑖  𝑗  𝐻𝑖𝑗   

0  0  5.20094 × 10−1  

1  0  8.50895 × 10−2  

2  0  −1.08374  

3  0  −2.89555 × 10−1  

0  1  2.22531 × 10−1  

1  1  9.99115 × 10−1  

2  1  1.88797  

3  1  1.26613  

5  1  1.20573 × 10−1  

0  2  −2.81378 × 10−1  

1  2  −9.06851 × 10−1  

2  2  −7.72479 × 10−1  

3  2  −4.89837 × 10−1  

4  2  −2.57040 × 10−1  

0  3  1.61913 × 10−1  

1  3  2.57399 × 10−1  

0  4  −3.25372 × 10−2  

3  4  6.98452 × 10−2  

4  5  8.72102 × 10−3  

3  6  −4.35673 × 10−3  

5  6  −5.93264 × 10−4  

other 𝑖  other 𝑗  set to zero  

Table 2. 3 Coefficients 𝐻𝑖𝑗 for use in formula for 𝜇1(𝑇) 

 

 

The above formulae for the viscosity of water are currently the most advanced correlations used 

in very high accuracy scientific research work in thermodynamics national laboratories and the 

motivation for the need of these formulae is due to changes which occurred with the adoption of 

the International Temperature Scale of 1990 (ITS-90) which resulted in some minor discrepancies 

with the more conventional formulae that was issued by the International Association for the 

Properties of Water and Steam (IAPWS). With more recent fundamental physics research to 

redefine the International System of Units (Le Systéme Internationa d’Unités, SI) in terms of the 

fundamental constants of nature such as the Planck constant ℏ in 2018/2019 the existing ITS-90 

temperature scale will no longer be fundamentally defined in terms of the triple point of water and 

as a result the properties of water such as some formulae for the density and viscosity at accuracy 

levels of parts-per-million (ppm) and parts-per-billion (ppb) will potentially change slightly due 

to the choice of the definition of the temperature scale and the most recent values that will be 

issued by the CODATA Task Group on Fundamental Physical Constants under the guidance of 

the Consultative Committee of Units (CCU) operating under the international legal jurisdiction of 

the BIPM (Bureau International des Poids et Mesures). Based on potential adjustments to the 

Boltzmann constant 𝑘𝐵  as per the discussion by Ramnath [111] these adjustments in the new 

international temperature scale will mainly occur below 20 K and above 1300 K and as a result 

modifications to the fundamental physical properties of water is not expected to drastically change 

particularly for engineering measurements which would not be affected at accuracy levels not close 

to ppm uncertainty levels. 

 

As a result, in the case of industrial applications, the viscosity may be simply approximated as 
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𝜇 ≈ 𝜇
0
(𝑇) × 𝜇

1
(𝑇, 𝜌)    (2.171) 

 

Further simplifications for a restricted temperature at a standard pressure of 0.1 MPa then yield 

a simple polynomial expression for the dimensionless of the form 

 

𝜇 = ∑4𝑖=1 𝑎𝑖(𝑇̃)
(𝑏𝑖)
, 253.15 ≤ 𝑇/[K] ≤ 383.15  (2.172) 

𝑇̃ =
𝑇

300 K
  (2.173) 

 

where the values of the constants 𝑎𝑖 and 𝑏𝑖 are listed in Table 2.4. 

 

   
𝑖  𝑎𝑖  𝑏𝑖  

1  280.68  −1.9  

2  511.45  −7.7  

3  61.131  −19.6  

4  0.45903  −40.0  
Table 2. 4 Coefficients 𝑎𝑖 and 𝑏𝑖 for use in simplified water viscosity formula 

    

In the above system of equations which are used for calculating the density, thermal conductivity 

and viscosity of water which is used as the base fluid in a water/alumina nanofluid mixture and 

which are algebraically complex we comment that these systems of equations can nevertheless be 

simply packaged as sub-routines in for example Matlab or GNU Octave as documented in the 

Appendix. Consequently this system of equations for the base fluid may then subsequently be 

utilized as inputs in the copula mathematical models to then in turn calculate the effective thermal 

conductivity 𝑘𝑒𝑓𝑓  and effective viscosity 𝜇𝑒𝑓𝑓  for specifying the auxiliary thermodynamic 

relations if a single-phase nanofluid modelling approach is used. 

 

The previously specified system of four coupled PDE’s for steady state problems fully captures 

the conservation equations for mass, 𝑥 momentum, 𝑦 momentum and energy respectively using 

the single-phase nanofluid modelling scheme which we have opted to utilize in this dissertation 

for conceptual simplicity, although we comment that some researchers utilize multi-phase 

mathematical modelling schemes in certain application studies.  

When single-phase nanofluid equations are supplied with auxiliary relations for the nanofluid 

effective thermal conductivity 𝑘𝑒𝑓𝑓, effective viscosity 𝜇𝑒𝑓𝑓, effective density 𝜌𝑛𝑓 and effective 

specific heat capacity 𝑐𝑒𝑓𝑓 the fluid system is considered mathematically closed and may then in 

principle be solved with any convenient numerical technique such as finite difference, finite 

volume or finite element codes. The physical equations in this section provide the mechanism to 

work out the absolute values of the nanofluid effective thermal conductivity 𝑘𝑒𝑓𝑓 and effective 

viscosity 𝜇𝑒𝑓𝑓 from the enhancement ratios 𝑘𝑛𝑓/𝑘𝑏𝑓 and 𝜇𝑛𝑓/𝑚𝑢𝑏𝑓 that are frequently reported 

in the open literature since we desire the actual physical absolute values in order to construct a 

database of nanofluid thermophysical properties in order to construct our respective mathematical 

models. 
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2.6 Construction of a Nanofluid Thermophysical Database 
 

A comprehensive review of the experimental data for nanofluid effective thermal conductivity and 

effective viscosity for water/alumina mixtures based on this literature review has been performed 

that can be utilized to extract the relevant information in order to generate a database for the 

effective thermal conductivity of the form 

 

𝐊𝑒𝑓𝑓 = [
𝑘𝑒𝑓𝑓

[W  m−1  K−1]

𝑢(𝑘𝑒𝑓𝑓)

[W  m−1  K−1]

𝑇

[K]

𝑢(𝑇)

[K]

𝑑𝑝

[m]

𝑢(𝑑𝑝)

[m]
𝜙 𝑢(𝜙)]  (2.174) 

 

with similar information for the viscosity 𝐕𝑒𝑓𝑓 where the volume fraction 𝜙 is dimensionless in 

order to avoid unnecessary inconsistencies in the physical units used since for example when 

specifying the uncertainty of 𝜙  when specified as a percentage as another ‘percentage of a 

percentage’.  

 

Nominal values for the effective thermal conductivity are used as expected values for 𝑘𝑒𝑓𝑓 and 

the corresponding uncertainties are calculated using the supplied information where available 

whilst in the absence of supplied uncertainties the standard uncertainty is assumed, and when no 

information is supplied for a particular experimental dataset in the literature we assume as 

𝑢(𝑘𝑒𝑓𝑓) = ±1%(𝑘 = 1) in unless otherwise specified in order to calculate the corresponding 

physical uncertainty 𝑢(𝑘𝑒𝑓𝑓)/[W  m
−1  K−1] in natural units. This assumption of a standard 

uncertainty for the effective viscosity as 𝑢(𝜇𝑒𝑓𝑓)(𝑘 = 1) = ±1% is also assumed in the absence 

of any existing reported experimental uncertainties for the measured effective viscosities using 

representative experimental uncertainties obtained from the literature review of this chapter. 

 

Temperature information for 𝑇 and 𝑢(𝑇) are also extracted from the available information if 

available whilst the uncertainty in temperature is assumed as 𝑢(𝑇) = ±0.5 K unless otherwise 

specified. We comment that whilst this temperature uncertainty may appear large it is in fact a 

reasonable physical experimental uncertainty estimate since although a point temperature 

measurement with a thermocouple of PRT/Pt100 temperature sensor in a fluid bath that contains 

the nanofluid may be measured to say 0.1 K that the actual effective uncertainty should in fact 

take into account the homogeneity and temperature stability of the fluid bath which would for the 

majority of practical cases using commercially supplied equipment generally not exceed accuracy 

levels with a standard uncertainty of ±0.5 K since the homogeneities would usually be around 

0.2 K to 0.3 K whilst the temporal stability of the bath would vary based on the quality of the 

temperature PID controllers such that the effective accuracy i.e. expanded uncertainty of the fluid 

temperature would usually be a fraction of a degree. 

 

Estimates for the nanoparticle size 𝑑𝑝  and its corresponding uncertainty 𝑢(𝑑𝑝) are obtained 

either from information reported by the authors in the literature sources or alternately from 

dynamic light scattering DLS information supplied within the literature sources consulted where 

the expected value of the DLS graphs are used to approximate the nanoparticle information as 

𝑑𝑝 ≈ 𝜇  and 𝑢(𝑑𝑝) ≈ 𝜎  respectively as previously discussed. When no information on the 

uncertainty of the nanoparticle diameter is reported in for example datasets in the literature where 

the authors used the manufacturer supplied information we assume that the standard uncertainty is 
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𝑢(𝑑𝑝)(𝑘 = 1) = ±5 nm from observations of typical dynamic light scattering measurements 

obtained from the literature review of this chapter. 

 

In order to estimate the corresponding uncertainty 𝑢(𝜙) for the volume fraction 𝜙 in the absence 

of further information we approximate this quantity as 

 

𝜙 = 𝜔
𝜌𝑛𝑓

𝜌𝑝
       (2.175) 

𝑢2(𝜙) = (
𝜌𝑛𝑓

𝜌𝑝
)

2

𝑢2(𝜔) + (
𝜔

𝜌𝑝
)

2

𝑢2(𝜌𝑛𝑓) + (
−𝜔𝜌𝑛𝑓

𝜌𝑝2
)

2

𝑢2(𝜌𝑝) (2.176) 

 

where 

 

𝜔 =
𝑊𝑝

𝑊𝑛𝑓
    (2.177) 

𝑢2(𝜔) = (
1

𝑊𝑛𝑓
)
2

𝑢2(𝑊𝑝) + (
−𝑊𝑝

𝑊𝑛𝑓
2 )

2

𝑢2(𝑊𝑛𝑓)   (2.178) 

 

The above formulae are used by first specifying a volume fraction, say 𝜙 = 0.05 corresponding 

to a volume fraction of 5%, and then working out the nanofluid density as 

 

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑝  (2.179) 

 

by assuming that the nanoparticle density for alumina oxide is roughly 𝜌𝑝 = 3880 kg  m
−3 

with a corresponding standard uncertainty of 𝑢(𝜌𝑝)(𝑘 = 1) = ±50 kg  m
−3 unless otherwise 

specified. Once the nanofluid density is estimated it is then used to calculate the corresponding 

mass fraction 𝜔 as 

 

𝜔 =
𝜌𝑝

𝜌𝑛𝑓
𝜙       (2.180) 

 

Then once 𝜔 is known we set a nominal value of the nanofluid weight as 𝑊𝑛𝑓 = 1 kg so that 

the corresponding nanoparticle mass may be calculated as 

 

𝑊𝑝 = 𝜔𝑊𝑛𝑓  (2.181) 

 

In order to proceed with the uncertainty estimates we then assume a typical expanded uncertainty 

of mass measurements for a commercial industrial laboratory as 𝑈(𝑚)(𝑘 = 2) = ±(0.0002% +
3 𝜇g) for masses from 0 g to 6 g, 𝑈(𝑚)(𝑘 = 2) = ±(0.0002% + 0.1 mg) for masses from 

6 g to 300 g, and 𝑈(𝑚)(𝑘 = 2) = ±(0.0002% + 1 mg) for masses from 300 g to 1 kg 

respectively so that 

 

𝑢(𝑚)/[kg] =
1

2
{

0.0002 × 10−2𝑚 + 3 × 10−9, 0 ≤ 𝑚/[kg] ≤ 6 × 10−3

0.0002 × 10−2𝑚 + 0.1 × 10−6, 6 × 10−3 ≤ 𝑚/[kg] ≤ 0.3

0.0002 × 10−2𝑚 + 1 × 10−6, 0.3 ≤ 𝑚/[kg] ≤ 1

 

(2.182) 
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As a result the uncertainty 𝑢(𝑊𝑝) may be calculated so that the corresponding uncertainty for 𝜔 

can also be calculated, and subsequently be used to calculate the the uncertainty in the volume 

fraction 𝜙. For this approximate uncertainty analysis we also need an estimate for the uncertainty 

of the nanofluid density 𝑢(𝜌𝑛𝑓) however since this is defined in terms of the volume fraction 𝜙 

we approximate the nanofluid density uncertainty with that of the water density uncertainty since 

these uncertainties are considered to be reasonably close to each other for the typical volume 

fractions below 10% that are encountered in water/alumina nanofluids. 

 

We comment that technically there is also an uncertainty contributing factor to the water density 

and nanofluid density expressions due to the effect of the uncertainty in temperature of the 

respective fluids however we disregard this uncertainty contribution for simplicity due to the 

relatively narrow operating temperature ranges for existing nanofluids which is usually in-between 

ambient temperature and about 75 ∘C from the majority of information sources consulted in the 

literature review. Under these circumstances the standard uncertainty for a volume fraction of 5% 

with 𝜙 = 0.05 works out to 𝑢(𝜙) = ±0.0022843 i.e. 100 ×
𝑢(𝜙)

𝜙
≈ 4.56%. As a result typical 

optimistic nominal standard statistical uncertainties at a 𝑘 = 1  i.e. 1𝜎  standard deviation 

confidence level is in most practical cases 𝑢(𝑘𝑒𝑓𝑓) = ±1%, 𝑢(𝑇) = ±0.5 K, 𝑢(𝑑𝑝) = ±5 nm 

and 𝑢(𝜙) = ±4.56%  for most practical nanofluid experimental data reported in the open 

literature. 

 

In order to construct a thermophysical database that may be used for meaningful physical 

predictions the underlying data should be statistically consistent to the extent that is physically 

possible. Whilst advanced mathematical statistical techniques from the field of metrology are 

available at key comparison level using concepts such as the degrees of equivalence and the 

Largest Consistent Subset (LCS) approach as discussed by Cox [112] in order to utilize data that 

is statistically meaningful these advanced techniques are reliant on the assumption that there is an 

accurate estimate of the associated statistical uncertainty for an underlying data-point regardless 

of whether the uncertainty is small or large. Restated it is considered more important to have an 

higher confidence in the stated claimed accuracy of a data-point than for the data-point to have an 

artificially small accuracy since if the uncertainty of the data-point is small/large it may then be 

appropriately utilized or disregarded using variations of statistical outlier techniques in a 

statistically rigorous manner. In the event that the assumption of estimates of the statistical 

uncertainties with high levels of confidence are available, which is distinct from an assumption of 

small accuracies since it is technically possible to high confidence in accuracies that are small or 

large, then the application of statistical outlier techniques becomes more challenging in the absence 

of verified and validated uncertainties i.e. error bars on the underlying data-points. This challenge 

has both physical as well as statistical causes in the field of nanofluid studies since there are 

physical difficulties such as adequately accounting for a single representative nanoparticle 

diameter in an agglomeration of nanoparticles each with varying sizes as well as statistical 

difficulties such as the estimation of covariance terms when calculating uncertainties of meta-

parameters. Physical challenges such as in situ measurements of agglomerations of nanoparticles 

within the base fluid as opposed to SEM, TEM and DLS measurements of dry nanoparticles 

supplied by manufacturers prior to mixing in a wet base fluid are not considered experimentally 

feasible at the present time of writing, whilst statistical challenges such as estimating covariances 

between nanoparticle diameters and the base fluid temperature where random fluctuations at the 
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nanoscale level are known to exist are also similarly considered infeasible in the absence of a 

comprehensive physical nanofluid theory. The absence of an established physical nanofluid theory 

also manifests ambiguities even when quantitative nanoparticle diameter information with 

associated diameter uncertainties is available since different investigators may either use a number 

weighted average for 𝑑𝑝 i.e. the averaged value 〈𝑑𝑝〉 is calculated as a simple arithmetic average 

from observed SEM or TEM images or occasionally 〈𝑑𝑝〉 is calculated as an area averaged value 

i.e. the observed nanoparticle diameters with larger surface areas are considered more relevant to 

nanofluid heat transfer studies since larger nanoparticle surface areas are able to transfer larger 

amounts of heat within the nanofluid. One example of this ambiguity was in earlier results reported 

by Lee et al.[78] where the number averaged estimate for 𝑑𝑝 was 〈𝑑𝑝〉𝑁 = (24.4 ± 1.0) nm 

whilst the area averaged estimate for 𝑑𝑝 was 〈𝑑𝑝〉𝐴 = (38.4 ± 2) nm. Different investigators 

would calculate the averaged nanoparticle diameter with different experimental equipment and 

potentially also different mathematical techniques where there is the additional possibility that 

even if similar experimental data was obtained that different computer software routines using 

either spreadsheets like MS Excel or scripting codes like Matlab to perform the calculations could 

then still introduce additional discrepancies. Unfortunately in the absence of the raw experimental 

data which is frequently unavailable in the reported open literature where usually only the final 

results and correlations are documented the only practical recourse to address these potential 

subjectivities and ambiguities is through larger aleatory based experimental uncertainties. 

 

An example of one of the challenges posed for estimating statistical covariance terms is in for 

example the calculation of the volume fraction 𝜙  which we demonstrated earlier requires 

knowledge and quantification of the nanofluid density and its associated uncertainty value. Our 

approach involved a physical approximation based on the assumption of the conventional 

correlation expression 𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑝  that relates 𝜌𝑛𝑓  and 𝜙  and whilst this 

expression may be used in an implicit form of the GUM to simultaneously solve for 𝜙 and 𝜌𝑛𝑓 

this mathematical form requires numerical data of both the volume fraction 𝜙, nanofluid density 

𝜌𝑛𝑓, temperature 𝑇 and nanoparticle density 𝜌𝑝 and we comment that ideally both the nanofluid 

thermophysical properties 𝑘𝑒𝑓𝑓  and 𝜇𝑒𝑓𝑓  as well as the remaining auxiliary thermodynamic 

quantities of the nanofluid density 𝜌𝑛𝑓 and enthalpy ℎ𝑛𝑓 should all be determined, however in 

practice due to experimental constraints and limitations recourse is frequently made to the 

utilization of existing correlations and as a result accurate estimates of for example the volume 

fraction uncertainty are implicitly reliant on various assumptions and approximations which then 

results in a lower level of confidence in uncertainty estimates. The inclusion of additional 

experimental data-points whilst mitigating these limitations will not necessarily completely 

eliminate these issues if the underlying data is in principle still reliant on the same set of 

assumptions and approximations. Due to these theoretical limitations the remaining mathematical 

modelling option is to consider all the known experimental data-points to be equally valid albeit 

with a larger estimate of the associated uncertainties to account for the lower level of statistical 

confidence such that the higher statistical uncertainty estimates translates into a higher level of 

confidence in accordance with the maximum statistical entropy concept as discussed earlier. 

 

Taking into account the fact that most of the existing correlations for nanofluid thermophysical 

data as reported in the literature have reported accuracy levels that range from 5% to 10% and 

that at least at the present time of writing that physical in situ experimental measurements of the 
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nanoparticle agglomerations within the base fluid itself are not possible we therefore opt based on 

the existing combination of inconsistent and/or contradictory experimental data to conservatively 

specify the statistical uncertainties of the meta-parameters and thermophysical data accounting for 

the absence of detailed and rigorous mathematical/statistical uncertainty analysis in the available 

literature resources that were consulted as 

 

𝑢(𝑘𝑒𝑓𝑓)(𝑘 = 1) = ±2.5%

𝑢(𝜇𝑒𝑓𝑓)(𝑘 = 1) = ±2.5%
} thermophysical properties (2.183) 

 

Due to the lack of consistency as reported in the open literature by various investigators who did 

not adequately report probability density function distributions and associated confidence levels it 

was assumed for simplicity that the corresponding representative uncertainties in the absence of 

specific error bar information were    

 

𝑢(𝑇)(𝑘 = 1) = ±1 K
𝑢(𝑑𝑝)(𝑘 = 1) = ±7.5 nm

𝑢(𝜙)(𝑘 = 1) = ±5%

} thermophysical meta − parameters (2.184) 

 

 

2.7 Conclusions 
 

In this chapter information sources obtained from the open literature were used to construct the 

thermal conductivity database as summarized in Table 2.5 whilst that used to construct the 

viscosity database is summarized in Table 2.6 and of which both databases incorporate estimates 

of the respective aleatory physical experimental uncertainties from a critical analysis of the 

documented information sources that were consulted. The effective thermal conductivity 

𝑘𝑒𝑓𝑓(𝑇, 𝑑𝑝, 𝜙) and effective viscosity 𝜇𝑒𝑓𝑓(𝑇, 𝑑𝑝, 𝜙) are formally four dimensional functions 

mathematically constructed in a ℝ𝑛  space with 𝑛 = 4 and cannot be directly visualized in a 

normal three dimensional space. 

 

Due to the size of this experimental information the final numerical nanofluid data contained in 

the database for the effective thermal conductivity 𝑘𝑒𝑓𝑓 and effective viscosity 𝜇𝑒𝑓𝑓 are reported 

in graphical form as iso-surfaces and histograms for convenience. The database that was 

constructed in this chapter only considers unique experimental data-sets i.e. in many of the sources 

referred to from the open literature such as various review articles there is a duplication of data so 

we only considered independent data-sets where available in order to avoid introducing 

systemic/biased errors.  

 

By analysing the iso-surfaces for representative low, medium and high range values as calculated 

with the interquartile statistical ranges of reported experimental data for 𝑘𝑛𝑓  and 𝜇𝑛𝑓  it was 

determined that multiple regions for the meta-parameter inputs can exhibit the same value of 𝑘𝑛𝑓 

or 𝜇𝑛𝑓 so that convexity is not guaranteed on a global domain. As a result it is concluded that no 

unique nanofluid mathematical model is completely possible in a global domain due to the lack of 

convexity of the model inputs. From a qualitative analysis of the graphical data it is concluded that 

unique nanofluid mathematical models may be constructed if the analysis is restricted to smaller 
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domains of meta-parameter values to avoid non-monotonic predictions. The final thermal 

conductivity database accounting for and eliminating duplicate data results yielded 𝑁𝑘 = 566 

multidimensional experimental data-points, whilst the final viscosity database with a similar 

criteria results yielded 𝑁𝜇 = 558  multidimensional experimental data-points and which are 

utilized in the next chapter for constructing the copula based mathematical models. 

 

A review of existing mathematical techniques involving multiple layer perceptron neural network 

(MLP-NN) schemes was also investigated in order to specify an appropriate existing nanofluid 

mathematical model and this is considered later in the dissertation to benchmark against when 

comparing the developed copula model predictions. 
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  Key   Year  Author  Comments  

K1  1993  Masuda et al.[104]  Transient hot wire 𝑡/[∘C] ∈ [32,47,67]  

K2  1999  Lee et al.[83]  𝑑/[nm] = 38.4, 𝑡/[∘C] = 21, 𝜙/[%] ∈ [1,2,3,4]  

K3  1999  Wang et al.[191]  Steady-state parallel plate, 𝛾-Al2O3, 𝑑𝑝 = 28 nm,𝑡 =

24 ∘C, various 𝜙  

K4  2003  Putra et al.[139]  𝑑𝑝 = 131.2 nm, 𝑡/[∘C] ∈ [21,51], 𝜙/[%] ∈ [1,4]  

K5  2004  Das et al.[38]  Thermal oscillation method, 𝑡, 𝑘𝑛𝑓 , 𝜙, diameter 𝑑 =

38.4 nm  

K6  2005  Chon et al.[32]  𝑡,
𝑘𝑛𝑓

𝑘𝑓
, 𝜙, 𝑑  

K7  2006  Li & Peterson [88]  Data #1: 𝑡,
𝑘𝑛𝑓−𝑘𝑓

𝑘𝑓
, 𝜙, diameter 𝑑 = 36 nm (low temp)  

K8      Data #2: 𝑡,
𝑘𝑛𝑓−𝑘𝑓

𝑘𝑓
, 𝜙, diameter 𝑑 = 36 nm (high temp)  

K9  2006  Kim et al.[76]  transient hot wire, 𝑑𝑝 = 38 nm,  

     𝜙/[%] ∈ [0.3,0.5,0.8,1.5,2.0,3.0], 𝑡 = 25 ∘C  

K10  2007  Wang & Mujumdar [192]  𝜙,
𝑘𝑒𝑓𝑓

𝑘𝑏
, 𝑑, 𝑡, selected pH values  

K11  2007  Timofeeva et al.[184]  𝜙, 𝑘𝑛𝑓 , 𝑑 ambient 23∘C  

K12  2007  Zhang et al.[204]  𝑡, 𝑘𝑛𝑓 , 𝜙 average diameter 𝑑 = 20 nm  

K13  2007  Li & Peterson [26]  Data #1: 𝑡, 𝑘𝑛𝑓 , 𝜙, 𝑑, diameter 𝑑 = 36 nm  

K14      Data #2: 𝑡, 𝑘𝑛𝑓 , 𝜙, 𝑑, diameter 𝑑 = 47 nm  

K15  2008  Li & Kleinstreuer [89]  Data #1: 𝜙/[%],
𝑘𝑒𝑓𝑓

𝑘𝑏
, 𝑡;  

K16      Data #2: 𝑡,
𝑘𝑒𝑓𝑓

𝑘𝑓
, 𝜙/[%]  

K17  2008  Murshed et al.[121]  Data #1: 𝑡,
𝑘𝑛𝑓

𝑘𝑓
, 𝑑, 𝜙, diameter 𝑑 = 80 nm  

K18      Data #2: 𝑡,
𝑘𝑛𝑓

𝑘𝑓
, 𝑑, 𝜙, diameter 𝑑 = 150 nm  

K19  2008  Ju et al.[72]  𝑑𝑝/[nm] ∈ [20,30,45], 𝜙/[%] ≤ 10  

K20  2009  Beck et al.[15]  𝑡, 𝑘𝑛𝑓 , 𝑑, 𝜙, contains standard deviations of 𝑘𝑛𝑓. 

Observed a very large variation in nanoparticle 𝑑𝑝 sizes 

quoted by manufacturers and own measurements at 

Georgia Institute of Technology (USA). Concluded that 

type of crystalline phase i.e. 𝛼/𝛾/𝛿-Al2O3 actually has 

very little practical effect on 𝑘𝑛𝑓 and that 𝑑𝑝 is more 

significant. Measured std. dev. for 𝛼-Al2O3 with TEM as 

38 ≤ 𝜎/[nm] ≤ 95, 𝜎/[nm] from 2 to 5 for 𝛾-phase, 

and 𝜎/[nm] for 𝛿-phase about 110. Hence in practical 

terms quite challenging to quantify agglomerations. 

K21  2009  Mintsa et al.[117]  Data #1: 𝑡, 𝑘𝑛𝑓 , 𝑑, 𝜙, 𝑑 = 47 nm,𝜙 = 4%  

K22      Data #2: 𝑡, 𝑘𝑛𝑓 , 𝑑, 𝜙, 𝑑 = 36 nm,𝜙 = 3.1,6,9%  

     Concluded that nanofluid correlations are considered 

good if within ±5% of predictions. Hence we can 

assume 𝑢(𝑘𝑒𝑓𝑓) = ±2.5%. 

K23  2010  Teng et al.[182]  Data #1: 𝜔,
𝑘𝑛𝑓

𝑘𝑓
, 𝑑, 𝑡 meas. 10 ∘C  

K24      Data #2: 𝜔,
𝑘𝑛𝑓

𝑘𝑓
, 𝑑, 𝑡 meas. 30 ∘C  

K25      Data #3: 𝜔,
𝑘𝑛𝑓

𝑘𝑓
, 𝑑, 𝑡 meas. 50 ∘C  

K26  2010  Beck et al.[16]  𝑡, 𝑘𝑛𝑓 , 𝜙, 𝑑, diameter 𝑑 = 12 nm contains std. dev  

K27  2010  Chandrasekar et al.[29]  Data #1: 𝜙,
𝑘𝑒𝑓𝑓

𝑘𝑓
 room temperature  
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K28  2010  Patel et al.[136]  𝑑𝑝/[nm] ∈ [11,45,150], 𝑡/[
∘C] ∈ [20,30,40,50]  

     and 𝜙/[%] ∈ [0.5,1.0,2.0,3.0]  

K29  2011  Longo & Zilio [93]  Data #1: 𝑡,
𝑘𝑛𝑓

𝑘𝑓
, 𝑑, 𝜙 stirred fluid  

K30      Data #2: 𝑡,
𝑘𝑛𝑓

𝑘𝑓
, 𝑑, 𝜙 sonicated fluid  

K31  2012  Yiamsawasd et al.[201]  𝑡, 𝑘𝑛𝑓 , 𝑑, 𝜙, diameter 𝑑 = 120 nm  

K32  2012  Buschmann [25]  𝑡, 𝑘𝑛𝑓 , 𝜙, diameter between 30 nm to 80 nm  

K33  2014  Ghanbarpour et al.[52]  Data #1: 𝑡, 𝑤, 𝜙, 𝑘  

     particle diameter from DLS measurements  

K34  2014  Aybar et al.[12]  Various reported values for thermal conductivity of 

nanoparticle as 𝑘𝐴𝑙2𝑂3/[W  m
−1  K−1] ∈ [36,40,46]. 

Unique experimental data by Ho et al.[64]. 

K35  2015  Ariana [9]  Established that 𝑡, 𝜙, 𝑑𝑝 sufficient to model 𝑘𝑒𝑓𝑓 . No 

unique additional independent reported experimental 

data-sets. 
Table 2. 5 Summary of open literature sources for thermal conductivity database 

  

    
Key  Year  Author  Comments 

V1  1993  Masuda et al.[104]  Transient hot wire 𝑡/[∘C] ∈ [32,47,67]  

V2  1999  Wang et al.[190]  Overview of experimental apparatus for 𝑘𝑒𝑓𝑓   

V3  2007  Nguyen et al.[126]  Discusses hysteresis effects & equipment  

V4  2007  Pak & Cho [132]  Observed that ℎ𝑐 for 𝜙 = 3% was  12% smaller than 

pure water 

V5  2007  Timofeeva et al.[184]  Determined that elongated/dendritic nanostructures are 

more efficient in enhancing thermal conductivity than 

spherical structure at the same 𝜙 concentration 

V6  2007  He et al.[62]  ℎ𝑐 insensitive to 𝑑𝑝 for certain conditions; TiO2 data 

only.  

V7  2008  Lee et al.[84]  Definite nonlinear 𝜇𝑒𝑓𝑓 observed for 0.01 ≤ 𝜙/[%] ≤

0.3 but linear trend for 𝑘𝑒𝑓𝑓  observed for same 𝜙. 

Accuracy is assumed as 𝑈(𝑑𝑝) = ±5 nm so 𝜎(𝑑𝑝)/

[nm] ∈ [2.5,10] in most likely circumstances so assume 

𝑢(𝑑𝑝) ≈ ±7.5 nm. In authors estimate viscosity 

accuracy as ±1.8% so assume 𝑢(𝜇𝑒𝑓𝑓) ≈ ±2.5%. 

V8  2008  Murshed et al.[121]  Data #3: 𝑡,
𝜇𝑛𝑓

𝜇𝑓
, 𝑑, 𝜙, diameter 𝑑 = 80 nm  

V9  2008  Nguyen et al.[127]  Data #1: 𝜙/[%],
𝜇𝑛𝑓

𝜇𝑓
, 𝑑 room temperature. Critical 

damage  

V10      temperature 𝑡𝑐𝑟 = 70 
∘C; Data #2: 𝑡, 𝜇, 𝑑, 𝜙 for 47 nm  

V11      Data #3: 𝑡, 𝜇, 𝑑, 𝜙 for 36 nm. Shown that  

     𝜇𝑟 = (𝜇𝑛𝑓/𝜇𝑤) ≈ const. for 𝜙 < 4% with 𝑇, 𝜙 non-

linear for 7 < 𝜙/% < 9.  

V12  2008  Tavman et al.[180]  Hamilton-Crosser model for 𝑘𝑒𝑓𝑓  yields consistent 

results, Einstein model for 𝜇𝑒𝑓𝑓 is inconsistent 

V13  2009  Duangthongsuk & 

Wongwises [42]  
𝜙/[%] ∈ [0.2,0.6,1.0,1.5,2.0] and 15 ≤ 𝑡/[∘C] ≤ 35 

for TiO2, (𝑘𝑛𝑓/𝑘𝑤) = 𝑎 + 𝑏𝜙 & (𝜇𝑛𝑓/𝜇𝑤) = 𝑎 +

𝑏𝜙 + 𝑐𝜙2. 

V14  2009  Pastoriza-Gallego et 

al.[134]  
 Experimented up to 25 MPa determined that 𝑑𝑝 has 

subtle effect on density and significant effect on 𝜇𝑒𝑓𝑓. 
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This is suggestive that there appears to be correlations 

between a nanofluid’s thermodynamic auxiliary 

relations of 𝑘𝑛𝑓, 𝜇𝑛𝑓, 𝜌𝑛𝑓 and ℎ𝑛𝑓. Potentially an area 

of rewarding future research results using molecular 

dynamics. 

V15  2009  Turvat [185]  Validated 3𝜔 method with transient hot wire 

experiments  

V16  2009  Anoop et al.[8]  Newtonian behaviour exhibited for 0.5 ≤ 𝜙/[%] ≤ 6.0, 

manufacturer 𝑑𝑝 = 50 nm but agglomeration DLS is 

𝒜𝐼 = 94.7 nm by number and 𝒜𝑁 = 138.8 nm by 

intensity: no clear relationship between 𝑑𝑝 & 𝒜 

V17  2010  Chandrasekar et al.[29]  Data #2: 𝜙,
𝜇𝑒𝑓𝑓

𝜇𝑓
 room temperature  

V18  2010  Duangthongsuk & 

Wongwises [43]  
ℎ𝑐 almost 26% greater for 𝜙/[%] ≤ 1 but lower by 

14% for higher concentrations 𝜙/[%] ≤ 2 

V19  2010  Kwek et al.[82]  𝑑𝑝 has limited effect on 𝜇𝑒𝑓𝑓 which is more affected by 

𝑇  

V20  2010  Lee et al.[85]  𝜙,
𝜇𝑛𝑓

𝜇𝑓
, constant heat flux experiment, thermal 

convection/Δ𝑝 drop 

V21  2011  Khanafer & Vafai [74]  Data #1: 𝜙,
𝜇𝑛𝑓

𝜇𝑓
, 𝑑 ambient temperatures  

V22      Data #2: 𝜙, 𝜇𝑛𝑓 , 𝑑, 𝑡 variable temperatures  

V23  2011  Longo & Zilio [93]  Data #3: 𝑡,
𝜇𝑛𝑓

𝜇𝑓
, 𝑑, 𝜙 stirred fluid  

V24      Data #4: 𝑡,
𝜇𝑛𝑓

𝜇𝑓
, 𝑑, 𝜙 sonicated fluid  

V25  2011  Pastoriza-Gallego et 

al.[135]  
𝑑𝑝 has minimal effect on 𝜌 but more significant on 

𝜇𝑒𝑓𝑓  

V26  2012  Mahbubul et al.[97]  Observed contradictory effects on 𝜇𝑒𝑓𝑓 and 𝑇, and 

definite effects on 𝜇𝑒𝑓𝑓 based on 𝑑𝑝 

V27  2012  Fedele et al.[46]  Newtonian behaviour for 𝜇𝑒𝑓𝑓 for small 𝜙 but 

nonlinear behaviour at higher 𝜙 

V28  2014  Ghanbarpour et al.[52]  Data #2: 𝜙, 𝑡, 𝜇, 𝑤 , particle diameters from DLS 

measurements 

V29      Data #3: 𝑤, 𝜇 temperature 293 K  

V30      Data #4: 𝑤, 𝜇 temperature 313 K  

V31  2015  Meyer [113]  Confirmed nonlinear behaviour of 𝜇𝑒𝑓𝑓 with increased 

𝜙 and identified application of nanofluids in nuclear 

reactor cooling and solar ponds 

V32  2015  Adio et al.[4]  Confirmed problematic under predictions of classical 

models, and identified potential to use certain nanofluids 

above 55 ∘C without unnecessary increases in 

pumping power based on 𝜇𝑒𝑓𝑓 

V33  2015  Meybodi [112]  Outlier detection discussion  

V34  2017  Murshed & Estellé [122]   𝑇, 𝜙,
𝜇𝑛𝑓

𝜇𝑓
  

Table 2. 6 Summary of open literature sources for viscosity database 
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Figure 2-16 Visualization of nanofluid effective conductivity isosurface low-range with 𝑘𝑛𝑓 = 𝑘𝑛𝑓 −

1

2
𝐼𝑄𝑅(𝑘𝑛𝑓) 

  

 
Figure 2-17 Visualization of nanofluid effective conductivity isosurface mid-range with 𝑘𝑛𝑓 = 𝑘𝑛𝑓 
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Figure 2-18 Visualization of nanofluid effective conductivity isosurface high-range with 𝑘𝑛𝑓 = 𝑘𝑛𝑓 +

1

2
𝐼𝑄𝑅(𝑘𝑛𝑓) 

  

 
Figure 2-19 Statistical summary of T in 𝑘𝑛𝑓(𝑇, 𝜙, 𝑑𝑝) database 
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Figure 2-20 Statistical summary of ϕ measurements in 𝑘𝑛𝑓(𝑇,𝜙, 𝑑𝑝) database 

 
Figure 2-21 Statistical summary of d_p measurements in 𝑘𝑛𝑓(𝑇, 𝜙, 𝑑𝑝) database 
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Figure 2-22 Statistical summary of k_nf measurements in 𝑘𝑛𝑓(𝑇, 𝜙, 𝑑𝑝) database 

  

 
Figure 2-23 Visualization of nanofluid effective viscosity isosurface low-range with 𝜇𝑛𝑓 = 𝜇𝑛𝑓 −

1

2
𝐼𝑄𝑅(𝜇𝑛𝑓) 
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Figure 2-24 Visualization of nanofluid effective viscosity isosurface mid-range with 𝜇𝑛𝑓 = 𝜇𝑛𝑓 

  

 
Figure 2-25 Visualization of nanofluid effective viscosity isosurface high-range with 𝜇𝑛𝑓 = 𝜇𝑛𝑓 +

1

2
𝐼𝑄𝑅(𝜇𝑛𝑓) 
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Figure 2-26 Statistical summary of T measurements in 𝜇𝑛𝑓(𝑇, 𝜙, 𝑑𝑝) database 

  

   

 
Figure 2-27 Statistical summary of ϕ measurements in 𝜇𝑛𝑓(𝑇, 𝜙, 𝑑𝑝) database 
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Figure 2-28 Statistical summary of d_p measurements in 𝜇𝑛𝑓(𝑇, 𝜙, 𝑑𝑝) database 

 
Figure 2-29 Statistical summary of μ_nf measurements in 𝜇𝑛𝑓(𝑇, 𝜙, 𝑑𝑝) database 
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3 Mathematical Modelling Techniques 
 

 

3.1 Analysis of Nanofluid Physical and Algebraic Characteristics 
 

In this dissertation, the mathematical modelling approach for the statistical analysis taking into 

account the existing mathematical techniques discussed in the previous chapter is based on the 

approach for non-linear univariate models 𝑦 = 𝑓(𝑥1, … , 𝑥𝑀) as discussed by Press et al.[132]. In 

the case of a multi-dimensional input 𝐱 = [𝑥1, … , 𝑥𝑀]
T ∈ ℝ𝑁  where 𝑁 ∈ ℕ  is an integer 

corresponding to the number of components of 𝐱 the measurand is assumed to to built up in terms 

of a linear combination of possibly non-linear basis functions 𝑋𝑘(𝐱) such that 

 

𝑦 = ∑𝑀𝑘=1 𝑎𝑘𝑋𝑘(𝐱)  (3.1) 

 

where 𝑀 is the number of parameters. Under these conditions a 𝜒2 merit function may be formed 

such that 

 

𝜒2 = ∑𝑁𝑖=1 [
𝑦𝑖−∑

𝑀
𝑘=1𝑎𝑘𝑋𝑘(𝐱𝑖)

𝜎𝑖
]
2

  (3.2) 

 

where 𝑁 is the number of experimental data points. The optimal values of the parameters 𝑎𝑘, 𝑘 =
1, … ,𝑀 occurs when 𝜒2 is a minimum and this can be formally determined when 

 
∂𝜒2

∂𝑎𝑘
= 0;  𝑘 = 1,… ,𝑀  (3.3) 

 

The above system of equations is formally a non-linear equation of the form 𝐅(𝐱) = 𝟎 and 

conventional techniques such the multi-variable Newton’s method, quasi-Newton’s method, 

steepest descent, and homotopy/continuation methods as discussed by Burden & Faires [133] are 

available however due to the complexities involved in solving systems of non-linear equations it 

is generally easier to minimize the 𝜒2 merit function using classical optimization techniques. In 

most practical cases an unconstrained optimization is usually sufficient to minimize the 𝜒2 merit 

function since the terms 𝑎𝑘, 𝑘 = 1,… ,𝑀  are simply parameters to obtain an optimal best fit 

however in general one may also impose additional constraint specifications using for example 

penalty functions and Lagrange multipliers in order to ensure physical meaningful results. One 

approach to determining the optimal parameters using an unconstrained optimization as discussed 

by Bertsekas [134] involves a simple line search such that the steps to determine the optimal 

parameters then take the form: 

 

1. Set 𝑓(𝐱) = 𝜒2(𝐚) where 𝐱 = 𝐚  

2. Guess an initial value 𝐱0 and choose a maximum number of iterations 𝑁max 
3. For 𝑖 = 1,2, … , 𝑁max perform the following steps   

(a) set 𝐮𝑖 =
−∇𝑓(𝐱𝑖−1)

∥∇𝑓(𝐱𝑖−1)∥
  

(b) set 𝐱𝑖 = 𝐱𝑖−1 + 𝜆𝑖𝐮𝑖 where 𝜆𝑖 is the value that minimizes 𝐹(𝜆𝑖) = 𝑓(𝐱𝑖−1 + 𝜆𝑖𝐮𝑖)  
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The above unconstrained optimization can be directly and conveniently implemented using the 

scientific Python scipy package if the algebraic model for the data is known, however in the area 

of nanofluids the specific type of algebraic model is considered unknown. As a result in practical 

terms various different possible algebraic models must be individually investigated and each of 

the associated model parameters determined as per the above explanation. Due to the wide variety 

of different possible models, each of which may differ from other possible models both in terms 

of the specific algebraic form as well as in terms of the number of parameters to be fitted, this 

parameter fitting optimization approach to construct algebraic models is considered both 

excessively onerous as well as computationally demanding. 

 

Once the above algorithm has been implemented for a particular choice of algebraic model the 

optimization then yields the values 𝑎1, … , 𝑎𝑀 for that particular model and we can then use a 

Monte Carlo boot strapping approach to generate synthetic data from sampling from the original 

data in order to construct estimates of the parameter uncertainties. This approach to characterize 

the uncertainties of the parameters 𝑎1, … , 𝑎𝑀  themselves for a particular model by using boot 

strapped synthetic data can be implemented using extended lambda distributions (ELD’s) as 

developed earlier by Harris & Cox [135] and recently implemented by Ramnath [92]. The ELD’s 

of the fitted parameters are constructed in terms of four scalar ELD parameters 𝑎, 𝑏, 𝑐, 𝑑 such that 

the univariate quantile function 𝑄(𝜌) takes the form 

 

𝑄(𝜌) = {
𝑑 + 𝑐 [

𝑎𝜌𝑏−(1−𝜌)𝑏+1−𝑎

𝑏
]  if 𝑏 ≠ 0

𝑑 + 𝑐{𝑎ln(𝜌) − ln(1 − 𝜌)} if 𝑏 = 0
    (3.4) 

 

The relationship between the quantile function 𝑄(𝜌) in terms of a parameter 𝜌~𝑅[0,1] which is 

a random number to generate the associated random variable 𝜂  for the PDF 𝑔(𝜂)  for the 

respective 𝜒2 parameters 𝑎𝑘, 𝑘 = 1,… ,𝑀 is 

 
1

𝑄′(𝜌)
= 𝑔(𝜂)    (3.5) 

𝜂 = 𝑄(𝜌)  (3.6) 

𝜌 = 𝐺(𝜂)  (3.7) 

𝑔(𝜂) =
1

𝑐{𝑎𝜌(𝑏−1)+(1−𝜌)(𝑏−1)}
  (3.8) 

 

where the limits of the respective parameter random variables are 

 

𝑑 −
𝑎𝑐

𝑏
≤ 𝜂 ≤ 𝑑 +

𝑐

𝑏
: 𝑏 > 0  (3.9) 

−∞ < 𝜂 < ∞: 𝑏 ≤ 0 & 𝑎 ≠ 0  (3.10) 

0 ≤ 𝜂 < ∞: 𝑏 ≤ 0 & 𝑎 = 0  (3.11) 

 

The corresponding mean 𝜇  and variance 𝜎2  of the fitted parameters in terms of the ELD 

parameters 𝑎, 𝑏, 𝑐, 𝑑 are then calculated according to Willink [136] as 

 

𝜇 = 𝑑 +
𝑐(1−𝑎)

𝑏+1
  (3.12) 
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𝜎2 = {
(
𝑐

𝑏
)
2

[
𝑎2+1

2𝑏+1
−
2𝑎Γ(𝑏+1)2

Γ(2𝑏+2)
− (

𝑎−1

𝑏+1
)
2

]  if 𝑏 ≠ 0

𝑐2 [𝑎2 +
𝜋2𝑎

3
− 2𝑎 + 1]  if 𝑏 = 0

  (3.13) 

 

where Γ is the Gamma function. For the optimally fitted parameter values the corresponding 

covariance matrix may be estimated as 

 

𝐂 = 𝜶−1  (3.14) 

𝛼𝑘ℓ =
1

2

∂𝜒2

∂𝑎𝑘 ∂𝑎ℓ
    (3.15) 

 

where the evaluation of the matrix 𝜶 components 𝛼𝑘ℓ are calculated at the optimal parameter 

value 𝐚𝑜𝑝𝑡𝑖𝑚𝑎𝑙 from the previously mentioned optimization. 

 

If the process parameter 𝐱 and the fitted parameter 𝐚 are now combined into a new variable 𝐳 =
[𝐱, 𝐚] for convenience where 𝑦 = 𝑓(𝑧1, … , 𝑧𝑛) then the final uncertainty of the optimally fitted 𝑦 

for the thermal conductivity or the viscosity, for a particular choice of algebraic model, is then 

with the aid of the application of the GUM of the form 

 

𝑢2(𝑦) =∑

𝑛

𝑖=1

𝑐𝑖
2𝑢2(𝑧𝑖) + 2∑

𝑛−1

𝑖=1

∑

𝑛

𝑗=𝑖+1

𝑐𝑖𝑐𝑗𝑢(𝑧𝑖)𝑢(𝑧𝑗)𝑟(𝑧𝑖, 𝑧𝑗) 

 + ∑𝑛𝑖=1 ∑
𝑛
𝑗=1 {[

1

2
(

∂2𝑓

∂𝑧𝑖 ∂𝑧𝑗
)
2

+
∂𝑓

∂𝑧𝑖

∂3𝑓

∂𝑧𝑖 ∂𝑧𝑗
2] 𝑢

2(𝑧𝑖)𝑢
2(𝑧𝑗)}   

(3.16) 

𝑐𝑖 =
∂𝑓

∂𝑧𝑖
  (3.17) 

𝑟(𝑧𝑖, 𝑧𝑗) =
𝑢(𝑧𝑖,𝑧𝑗)

𝑢(𝑧𝑖)𝑢(𝑧𝑗)
  (3.18) 

 

The above estimate may then be used for the uncertainty from a particular mathematical algebraic 

model to estimate the 𝐸𝑛  normalized errors between the experimental data points with their 

associated uncertainties and a particular model’s predictions to check for accuracies and 

consistencies. Based on the literature review conducted as discussed in the previous chapter  

effective thermal conductivity data is utilized from the open scientific literature as summarized in 

Table 2.5 and effective viscosity data is utilized from the open scientific litertaure as summarized 

in Table 2.6 for the mathematical model construction process in this chapter. 

 

The set of thermal conductivity and viscosity data is first used to build up a database of thermo-

physical data in terms of a selection of meta-parameters (MP’s) following the existing 

methodology by Gupta [74]. Referring to the work by Gupta for consistency with existing 

nanofluid modelling approaches the relevant physical MP’s for thermal conductivity would model 

or be representative in some mathematical or statistical sense of iter alia of particle shape, particle 

material and base fluid, temperature, particle size, additives, acidity i.e. pH value, and clustering 

physical effects. On the other hand MP’s for viscosity would model or be representative again in 

some mathematical or statistical sense of inter alia of morphology, shear rate, temperature and 

volume concentration physical effects respectively. From the earlier discussion in the previous 
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chapter of the available literature it was concluded that not all relevant physical effects are 

necessarily statistically independent quantities since for example the pH value of the nanofluid can 

reasonably be approximated with correlations of other physical effects. In addition there is the 

practical experimental constraint that not all physically relevant or pertinent information of 

physical effects is readily available either from reported data or in a format that is mathematically 

or statistically meaningful as inputs for a mathematical modelling of the thermo-physical 

properties. The absence of certain experimental information such as for example the nanofluid 

pressure 𝑝/[Pa] or shear rate 𝛾̇/[s−1] is understandable as in certain contexts it is obvious that 

the experimental measurements were for example performed at atmospheric pressures such that 

𝑝 = 𝑝𝑎𝑡𝑚, or that a certain quantity such as the shear rate 𝛾̇ is not necessarily physical meaningful 

in for example stationary fluids where the conventional definitions such as 𝛾̇ =
𝑣

ℎ
 for parallel plate 

Couette flows with a nominal flow velocity 𝑣 and wall spacing ℎ, 𝛾̇𝑖𝑗: =
∂𝑣𝑖

∂𝑥𝑗
+
∂𝑣𝑗

∂𝑥𝑖
 for general 

flow conditions, 𝛾̇ =
4𝑄

𝜋𝑟3
 for Newtonian pipe flows with a volumetric flow rate 𝑄/[m3  s−1] 

and pipe radius 𝑟/[m], or possibly in terms of wall stresses such that 𝜏𝑤 = 𝛾̇𝜇 where 𝜏𝑤 is the 

wall shear stress and 𝜇 is the viscosity respectively apply for a particular experimental set-up, are 

not necessarily relevant or applicable. For such situations the absence of certain physical 

information such as the fluid working pressure may be assumed with little detrimental effect since 

for example many laboratories would have an ambient pressure reasonably close to a standard 

atmospheric pressure, however the absence of other possibly pertinent physical effects may not be 

possible to mitigate against without potentially altering the underlying validity of the experimental 

data. One particular example would be in how to combine experimental data for stationary fluids 

where 𝛾̇ = 0 and flowing fluids where 𝛾̇ ≠ 0. In this particular case the obvious answer is to 

simply treat 𝛾̇  as an additional parameter however this is not an ideal approach since the 

underlying process parameters should be consistent for the physical fluid experiment. In certain 

nanofluid experimental studies it has been speculated that under certain nanoparticle 

concentrations that the nanofluid may exhibit non-Newtonian flow characteristics and this 

observation was reported by Meyer et al.[69] in their review paper where they considered 

rheological effects and remarked that in the case of zinc oxide ZnO and zirconium dioxide ZrO2 

nanoparticles suspended in a poly-alpha olefin (PAO6) base fluid that for low shear rates in the 

range 0 ≤ 𝛾/[s−1] ≤ 700 that the nanofluid exhibited Newtonian flow characteristics whilst at 

high shear rates in the range 106 ≤ 𝛾̇/[s−1] ≤ 107 that the nanofluid started to exhibit a non-

Newtonian flow rheology behaviour. Meyer et al.report that in this case correlations for the relative 

viscosity of the form 𝜂𝑟/[10
−2P] = 52.80 − 9.76 × 10−7𝛾̇ + 0.172𝜑 − 0.912𝑇 + 1.02 ×

10−8𝛾̇𝑇 + 4.24 × 10−3𝑇2  for the low shear rate and 𝜂𝑟/[10
−2P] = 53.78 − 9.25 × 10−7𝛾̇ +

0.202𝜑 − 0.937𝑇 + 9.65 × 10−9𝛾̇𝑇 + 4.39 × 10−3𝑇2 for the high shear rate flow were obtained 

from the available experimental data. This modelling approach is equivalent to a functional 

expression for the relative viscosity of the form 𝜂𝑟
(𝑣𝐼) = 𝑎 + 𝑏𝛾̇ + 𝑐𝜑𝑑𝑇 + 𝑒𝛾̇𝑇 + 𝑓𝑇2 for flows 

with low shear rates, and of the form 𝜂𝑟
(𝑣𝐼𝐼) = 𝐴 + 𝐵𝛾̇ + 𝐶𝜑 + 𝐷𝑇 + 𝐸𝛾̇𝑇 + 𝐹𝑇2 for flows with 

high shear rates where relevant constants are used for the two different flow conditions. This 

approach is mathematically consistent with the Response Surface Methodology (RSM) since the 

underlying functional form is composed of linear combinations of products of relevant 

dimensional groups i.e. 

 

𝑦𝑖 = ∑𝑁𝑗=1 [𝛼𝑗(∏
𝑀
𝑘=1 (𝜋𝑘)

(𝛽𝑗))]  (3.19) 
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where 𝑦𝑖 is a quantity that is being modelled, say for example 𝑦1 = 𝑘𝑒𝑓𝑓 for 𝑖 = 1 and 𝑦2 =

𝜇𝑒𝑓𝑓 for 𝑖 = 2, and 𝜋𝑘  are relevant dimensional groups that are appropriately defined for the 

particular experimental data. In this particular modelling approach there could be in fact additional 

functional groups 𝜋𝑘 such as the shear rate for example however in the absence of available data 

for all the dimensional groups the functional relation is simply a low order approximation which 

disregards higher order powers of other functional groups. As a result this modelling approach is 

consistent with conventional engineering dimensional analysis techniques such as the well known 

Buckingham-Pi theory however the key difference in the area of nanofluid studies is that the 

functional groups are unknown since there does not at the present time exists a consistent and 

wholly encompassing theoretical framework to consistently and completely model nanofluid 

thermo-physical properties. In the particular case of the absence of rheological property data this 

modelling approach is consistent with the assumption that coefficients such as 𝑎 and 𝑒 that are 

multiplicative factors of the shear rate 𝛾̇ are negligible so that 𝜂𝑟
(𝑣𝐼) ≈ 𝑎 + 𝑐𝜑𝑑𝑇 + 𝑓𝑇2 under 

the assumption that 𝑎 ≈ 0 and 𝑒 ≈ 0 in the absence of known and verified information of the 

shear rate 𝛾̇ with a corresponding assumption for similar terms of other dimensional groups. 

 

As a result in the absence of certain physical experimental information and data such as for 

example pH values and shear rates our modelling approach is to avoid unsubstantiated assumptions 

and to simply utilize the available reported experimental data and information. Whilst this 

approach has physical validity for the available experimental data a remaining and potentially 

challenging issue presents itself in terms of how to incorporate physically relevant qualitative 

information that may not be easily amenable to appropriate quantitative simplifications and 

summaries. Examples of such potential modelling issues presents itself in terms of clustering 

effects for the effective thermal conductivity 𝑘𝑒𝑓𝑓  and morphology effects for the effective 

viscosity 𝜇𝑒𝑓𝑓  respectively. In order to understand why this may be a potentially difficult 

modelling challenge consider how the nanoparticle diameter size 𝑑 may be initially approximated 

from the experimental data such as for example reported dynamic light scattering information as 

shown in Figure 3.1 where the expected values are 𝑧1
𝑎𝑣𝑔

/[nm] = 90.9, 𝑧2
𝑎𝑣𝑔
/[nm] = 98.7 and 

𝑧3
𝑎𝑣𝑔
/[nm] = 121.9 for the weight percentages of 𝑤1 = 0.5%, 𝑤2 = 1.0% and 𝑤3 = 1.5%.  

 

 
Figure 3-1 Illustration of typical experimental nanoparticle size data distributions based on data reported by Teng & Hung [33] 

which exhibits Gaussian or extended lambda distribution probability density function characteristics 
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In general based on physical intuition it is reasonable to expect that the underlying probability 

density function (PDF) for the nanoparticle diameter size would approximately follow a Gaussian 

PDF with an expected value 𝜇 and a standard deviation 𝜎 as qualitatively shown in the figure. 

One particular generalization of the classical Gaussian distribution that is more powerful is known 

as the extended lambda distribution (ELD) as previously discussed which models an underlying 

statistical distribution in terms of parameters 𝑎, 𝑏, 𝑐, 𝑑 which are formally defined in terms of 

statistical moments as shown in Figure 3.2. 

 

  

 
Figure 3-2 Illustration of corresponding quantile function for DLS frequency data 

 

In order to use an extended lambda distribution we would first extract the underlying numerical 

data for the reported graphical data from Figure 3.1 and normalize it so that ∫
∞

−∞
𝑔(𝜂)  d𝜂 = 1. 

Then since there are a finite number of discrete points and not an arbitrarily large number of points 

as in a full Monte Carlo simulation we would apply a standard curve fit regression using the 

standard least squares approach. The approach by Ramnath [92] for extracting the ELD parameters 

may be summarized as first setting 

 

𝑝1 = 0.025, 𝑝2 = 0.25, 𝑝3 = 0.75, 𝑝4 = 0.975  (3.20) 

 

and then calculate the terms 𝜉′ and 𝜉′′ defined as 

 

𝜉′ =
𝜃𝑝4−𝜃𝑝1

𝜃𝑝3−𝜃𝑝2
, 𝜉′′ =

𝜃𝑝4−𝜃𝑝2

𝜃𝑝3−𝜃𝑝1
       (3.21) 
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where the quantiles are calculated as 𝜃𝑝𝑖 = 𝑄(𝑝𝑖) respectively using the relations 𝜂 = 𝑄(𝜌) and 

𝐺(𝜂) = 𝜌 where 𝐺(𝜂) = ∫
𝜂

−∞
𝑔(𝜉)  d𝜉 is corresponding distribution for the PDF 𝑔(𝜂) for the 

random variable 𝜂 . Once 𝜉′  and 𝜉′  are calculated then the parameters 𝑎, 𝑏, 𝑐, 𝑑  may be 

sequentially calculated as 

 
𝑝1
𝑏−(1−𝑝1)

𝑏

𝑝2
𝑏−(1−𝑝2)𝑏

= 𝜉′, 𝑏 < 1.4  (3.22) 

𝑎 =
𝜉′′{(1−𝑝1)

𝑏−(1−𝑝3)
𝑏}+(1−𝑝4)

𝑏−(1−𝑝2)
𝑏

𝜉′′(𝑝1
𝑏−𝑝3

𝑏)+𝑝4
𝑏−𝑝2

𝑏   (3.23) 

𝑐 =
𝑏(𝜃𝑝2−𝜃𝑝1)

{𝑎𝑝2
𝑏−(1−𝑝2)𝑏}−{𝑎𝑝1

𝑏−(1−𝑝1)𝑏}
    (3.24) 

𝑑 = 𝜃𝑝1 −
𝑐

𝑏
[𝑎𝑝1

𝑏 − (1 − 𝑝1)
𝑏 + 1 − 𝑎]  (3.25) 

 

An example of a reconstructed probability density function (PDF) that is generated from just the 

quantile parameters using the above formulae is shown in Figure 3.3 below whilst the orginal data 

compared to the extended lambda distribution (ELD) fit is shown in Figure 3.4.  

 

 

 

 

 
Figure 3-3 Illustration of corresponding PDF approximation constructed from quantile function of DLS frequency data 
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Figure 3-4 Illustration of comparison of original DLS frequency data and corresponding predictions from quantile function 

modelling approach for univariate probability density function scheme 

  

When the above statistical scheme is applied to the extracted dynamic light scattering numerical 

data of the nanoparticle diameters 𝑑𝑝/[nm] from the reported graphical results in Figure 3.1 it 

results in the reconstructed data as shown in Figure 3.4 respectively from which it may be 

concluded that an extended lambda distribution can reasonably be used to approximate and 

reconstruct a variety of univariate PDF’s. 

 

The approach of using quantile function concepts such as extended lambda distributions to model 

univariate probability density functions which are of similar shape and characteristics to Gaussian 

distributions but which possibly exhibit slight asymmetries and/or skewness effects is now 

considered in many experimental statistics studies such as for example wind energy studies as 

reported by Anastasiades & McSharry [137]. The application of quantile functions consequently 

offers a relatively quick and simple approach to model the statistical behaviour of univariate 

parameters 𝑎1, … , 𝑎𝑀  in algebraic models 𝑦 = 𝑓(𝐱; 𝐚)  where 𝑦  is a quantity that is being 

modelled in terms of a univariate or multivariate input 𝐱, 𝐚 is a vector of parameters, and where 

the specific algebraic form of the model is known. Whilst the model parameter fitting process is 

relatively simple as outlined above we comment that the main challenge is in determining the 

specific type of algebraic model to investigate of which there may be numerous possibilities. In 

most practical cases the nanofluid thermal conductivity model 𝑘𝑛𝑓
M  will only depend on a 

parameter 𝐚  and the viscosity model 𝜇𝑛𝑓
M  will only depend on a parameter 𝐛  however we 

consider the possibility that there may be interaction effects between the thermal conductivity and 

viscosity in which case both models will then formally depend on both 𝐚 and 𝐛. Considering the 

review of thermal conductivity and viscosity models by Yang et al.[138] that incorporate the 
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influence of both temperature and volume fraction as summarized in Table 3.1 we opt to first 

consider the model of the nanofluid thermal conductivity and viscosity utilizing potential 

functional characteristics as shown in Table 3.2 where 𝑘𝑝  is the thermal conductivity of the 

nanoparticle and analytical models 𝑘𝑏𝑓
A (𝐱)  and 𝜇𝑏𝑓

A (𝐱) are used to determine the base fluid 

thermophysical properties in order to illustrate how to mathematically model probability density 

function distributions of the uncertainties of the parameters in nanofluid models which will use the 

previous extended lambda distributions. 

 

 

   
Author  Model  

Kole & Dey [139]  log(𝜇𝑛𝑓) = 𝐴𝑒
−𝐵𝑇 , 𝐴 = −225.245𝜙2 + 18.404𝜙 + 1.749, 𝐵 = 575.835𝜙3 − 32.101𝜙2 +

0.148𝜙 + 0.01 for Al2O3-care engine coolant for 0.1 ≤ 𝜙/[%] ≤ 3.5 

Namburu et 

al.[140]  
log(𝜇𝑛𝑓) = 𝐴𝑒

−𝐵𝑇 , 𝐴 = 1.8375𝜙2 − 29.634𝜙 + 165.56, 𝐵 = (4 × 10−9)𝜙2 − 0.001𝜙 +

0.0186 for CuO-EG/W for 2 ≤ 𝜙/[%] ≤ 10 

Sharma et 

al.[141]  

𝜇𝑛𝑓

𝜇𝑏𝑓
= 1.4 (1 +

𝜙

100
)
11.3

(1 +
𝑇𝑛𝑓

70
)
−0.038

+ (1 +
𝑑𝑝

170
)
−0.061

 for Si-water mixture 

Nambura et 

al.[142]  
log(𝜇𝑛𝑓) = 𝐴𝑒

−𝐵𝑇 , 𝐴 = 0.1193𝜙3 − 1.9289𝜙2 − 2.245𝜙 + 167.17, 𝐵 = (−7 × 10−6)𝜙2 −

0.0004𝜙 + 0.0192 for SiO2-EG/W for 2 ≤ 𝜙/[%] ≤ 10 

Xuan et al.[143]  
𝑘𝑛𝑓 = 𝑘𝑓

𝑘𝑝+2𝑘𝑓+2𝜙(𝑘𝑝−𝑘𝑓)

𝑘𝑝+2𝑘𝑓−𝜙(𝑘𝑝−𝑘𝑓)
+

1

2
𝜌𝑝𝐶𝑝𝜙√

𝑘𝐵𝑇

3𝜋𝜇𝑓𝑅𝑐𝑙
 where 𝑅𝑐𝑙 is an apparent radius of the cluster  

Koo & 

Kleinstreuer [144]  
𝑘𝑒𝑓𝑓 = 𝑘𝑓

𝑘𝑝+2𝑘𝑓+2𝜙(𝑘𝑝−𝑘𝑓)

𝑘𝑝+2𝑘𝑓−𝜙(𝑘𝑝−𝑘𝑓)
+ (5 × 104)𝜃𝜌𝑓𝐶𝑝𝑓𝜙𝑓(𝑇, 𝜙)√

𝑘𝐵𝑇

𝜌𝑓𝑑𝑝
 for CuO with 𝑓(𝑡, 𝜙) =

(−6.04𝜙 + 0.4705)𝑇 + 1722.3𝜙 − 134.63 where 𝜃 is the fraction of the liquid volume that 

travels with the nanoparticle 
Table 3. 1 Selection of nanofluid thermophysical models that incorporate volume fraction and temperature effects 

  

    
Model  Expression  

   

𝑘𝑛𝑓
M = 𝑘𝑏𝑓

A [
𝑘𝑝+2𝑘𝑏𝑓

A +2𝜙(𝑘𝑝−𝑘𝑏𝑓
A )

𝑘𝑝+2𝑘𝑏𝑓
A −𝜙(𝑘𝑝−𝑘𝑏𝑓

A )
] + 𝑎1𝜙{(𝑎2𝜙 + 𝑎3)𝑇 + 𝑎4𝜙 + 𝑎5}√

𝑇

𝑑𝑝
  

𝜇𝑛𝑓
M = exp [(𝑑𝑝)

𝑏1(𝑏2𝜙
2 + 𝑏3𝜙 + 𝑏4)exp{(𝑏5𝜙

2 + 𝑏6𝜙 + 𝑏7)𝑇}]  

   

𝑘𝑛𝑓
M = {𝑎1 + 𝑎2(𝜙𝑝)

𝑎3
(𝑑𝑝)

𝑎4
(
𝜇𝑛𝑓
M

𝜇𝑏𝑓
)
𝑎5

+ 𝑎6
𝜙𝑝

𝑇
+ 𝑎7

(𝜙𝑝)
2

𝑇3
+ 𝑎8

𝜙𝑝

𝑇2
}𝑘𝑏𝑓

A   

𝜇𝑛𝑓
M = (1 + 𝑏1(𝑑𝑝)

𝑏2
𝜙𝑏3)

−1

𝜇𝑏𝑓
A   

Table 3. 2 Selection of different possible proposed nanofluid models of effective thermal conductivity and viscosity 

 

 

In order to formulate the approach to determine the parameters assume that the experimental data 

consist of 𝑁𝑘 points for the thermal conductivity and 𝑁𝜇 points for the viscosity such that 

 

D𝑘 = {𝑘𝑛𝑓
(𝑖)
, 𝐱𝑖
𝑘}, 𝑖 ∈ [1, … ,𝑁𝑘]  (3.26) 

D𝜇 = {𝜇𝑛𝑓
(𝑗)
, 𝐱𝑗
𝜇
}, 𝑗 ∈ [1, … ,𝑁𝜇]  (3.27) 
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where 𝐱𝑘  or 𝐱𝜇  for either the known thermal conductivity or viscosity data is as previously 

specified. Although 𝐱 contains more information than is necessary to calculate the properties of 

the base fluid which are completely specified in terms of the temperature 𝑇 and pressure 𝑝 if 

there is a large variation in operating pressure, and whilst 𝜙 and 𝑑𝑝 do not effect the properties 

of the base fluid we retain for simplicity the dependence on a vector of inputs for the analytical 

expressions 𝑘𝑏𝑓
A (𝐱) and 𝜇𝑛𝑓

A (𝐱). In general 𝑁𝑘 may not necessarily be equal to 𝑁𝜇 depending on 

the particular available information either from a particular set of experiments or from data sources 

reported in the literature. 

 

In the above generalized system for 𝑘𝑛𝑓
M (𝐱; 𝐚, 𝐛) and 𝜇𝑛𝑓

M (𝐱; 𝐚, 𝐛) the parameters 𝐚 and 𝐛 are 

constant and 𝐱 is a variable input to account for different nanoparticle diameters 𝑑𝑝 , volume 

concentrations 𝜙 and operating temperatures 𝑇 at which the nanofluid will be used in practice. 

These assumptions are consistent with more recent results for example predictions for the 

nanofluid density 𝜌𝑛𝑓 as recently reported by Sharifpur et al.[35] which tend to restrict the choice 

of meta-parameters for nanofluid models to 𝑇, 𝑑𝑝 and 𝜙 due to the limited range of operating 

pressures for many existing applications of in nanofluids. Whilst this assumption may not 

necessarily be appropriate for all physical applications such in some heat exchangers where the 

nanofluid is used as a coolant and is subjected to high operating pressures which may impact in 

some unknown sense on the nanofluid thermophysical properties that cannot be adequately 

adressed through the interaction of 𝑘𝑛𝑓 and 𝜇𝑛𝑓 it is relatively simple to address at an abstract 

mathematical modelling level since we may in principle choose any appropriate choice of inputs 

𝐱 = [𝑥1, … , 𝑥𝑞]
T for an appropiate choice of 𝑞 ∈ ℕ. An example of this approach is setting 𝑞 =

5 and letting 𝐱 = [𝑇, 𝑑𝑝, 𝜙, 𝑝, 𝛾̇]
T to model pressure effects with 𝑝 and shear strain effects with 

𝛾̇  for particular nanofluid systems and configurations if there is an adequate knowledge of 

available experimental data for all of the model inputs 𝑥1, … , 𝑥𝑞. 

 

If a single-phase modelling approach for nanofluids is utilized to mitigate against the high 

computational costs of multi-phase models as discussed earlier by Moraveji & Ardehali [49] and 

more recently by Safaei et al.[58] then formally the interaction effects between the nanofluid 

thermal conductivity 𝑘𝑛𝑓 , viscosity 𝜇𝑛𝑓 , density 𝜌𝑛𝑓  and enthalpy ℎ𝑛𝑓  or equivalently the 

nanofluid specific heat 𝑐𝑛𝑓 should in principle be studied, although in practice only 𝑘𝑛𝑓 and 𝜇𝑛𝑓 

are usually considered to be correlated, whilst 𝜌𝑛𝑓  and ℎ𝑛𝑓  are in various reported nanofluid 

models generally considered to be uncorrelated due to an absence of a available information. The 

corresponding mathematical problem under this particular set of assumptions and approximations 

as outlined is to then determine the optimal values of 𝐚 and 𝐛 that minizes the resultant errors in 

nanofluid thermophysical predictions with the use of the constructed equations for some domain 

Ω of input values 𝐱 ∈ Ω ⊂ ℝ𝑞 , 𝑞 = 3. For simplicity the domain Ω may be considered as the 

hypercube constructed as a cartesian product such that Ω = [min(𝑥1),max(𝑥1)] ×
[min(𝑥2),max(𝑥2)] × [min(𝑥3),max(𝑥3)]. 
 

Conventional least squares regression analysis techniques as discussed by Press et al.[132] are 

usually applicable for the linear least squares form where the output 𝑦 is constructed as a linear 

combination of possible non-linear functions such that 𝑦 = ∑𝑁𝑘=1 𝑎𝑘𝑋𝑘(𝐱𝑘)  however the 

particular problem in this research investigation is mathematically a fully non-linear multivariate 
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regression analysis problem. As a result traditional linear least squares univariate regression 

techniques for models of the form 𝑧 = 𝑓(𝑥; 𝐚) where 𝑥  is a univariate input, 𝐚  is a vector 

parameter and 𝑧 is a univariate output as investigated by Saunders [145] are not applicable since 

our problem is of the form 𝐳 = 𝐟(𝐱; 𝐜) if we consider instead a vector of model inputs 𝐱, a vector 

of model parameters 𝐜 and a vector of model outputs 𝐳 where in our particular case we could 

simply set 𝑧1 = 𝑘𝑛𝑓 and 𝑧2 = 𝜇𝑛𝑓. Fortunately this more generalized mathematical problem for 

experimental measurement studies has a statistical solution in terms of the GUM Supplement 2 i.e. 

GS2 [146] if the non-linear multivariate functions can be expressed as a vector equation 𝐡(𝐲, 𝐱) =
𝟎  where 𝐱  is a vector input, 𝐲  is a vector output and 𝟎  is the zero-vector of dimension 

card(𝐲) × 1. In the event that this model can be constructed then the GS2 multivariate Monte 

Carlo methodology reduces to solving the system 

 

𝐡(𝜼𝑟 , 𝝃𝑟) = 𝟎, 𝑟 = 1,2, … ,𝑀     (3.28) 

 

where 𝑀 is the number of Monte Carlo simulation events, 𝝃𝑟 is a sampled random variable from 

the multivariate probability density function (PDF) distribution for 𝐱, and 𝜼𝑟  is the resultant 

solution which corresponds to an equivalent sampled value from the PDF of 𝐲. Under these 

circumstances the expected value 𝝁  of 𝐲  and the covariance matrix 𝐕  of 𝐲  may then be 

approximated as 

 

𝝁 =
1

𝑀
[𝐲1 +⋯+ 𝐲𝑀]  (3.29) 

𝐕 =
1

𝑀−1
[(𝐲1 − 𝝁) ⋅ (𝐲1 − 𝝁)

T +⋯+ (𝐲𝑀 − 𝝁) ⋅ (𝐲𝑀 − 𝝁)
T]  (3.30) 

 

In order to exploit the above results a mathematically equivalent function 𝐡(𝐲, 𝐱) = 𝟎  is 

constructed in terms of an equivalent 𝜒2 system built up in terms of known experimental data 

where the solution is the resulting parameters from the 𝜒2  optimization as opposed to the 

nanofluid thermophysical properties. Following this approach first construct two 𝜒2 functions, 

𝜒𝑘
2 corresponding to the thermal conductivity data and 𝜒𝜇

2 corresponding to the viscosity data, 

such that 

 

𝜒𝑘
2 =
def
∑𝑁𝑘𝑖=1 𝑤𝑖

2[𝑘𝑛𝑓
D (𝐱𝑖

𝑘) − 𝑘𝑛𝑓
M (𝐱𝑖

𝑘; 𝐚, 𝐛)]
2
  (3.31) 

𝜒𝜇
2 =
def
∑
𝑁𝜇
𝑗=1

𝑤𝑗
2[𝜇𝑛𝑓

D (𝐱𝑗
𝜇
) − 𝜇𝑛𝑓

M (𝐱𝑗
𝜇
; 𝐚, 𝐛)]

2
  (3.32) 

 

where 𝑤𝑖  is an estimate of the uncertainties of the observed thermal conductivity values 

𝑘𝑛𝑓
D (𝐱𝑖), 𝑖 ∈ [1, … ,𝑁𝑘]  and 𝑤𝑗  is similarly an estimate for the uncertainties of the observed 

viscosity values 𝜇𝑛𝑓
D (𝐱𝑗), 𝑗 = 1,… ,𝑁𝜇. It may be now be observed that 𝜒𝑘

2 and 𝜒𝜇
2 are now both 

technically functions of 𝐚 and 𝐛 for the specified data-sets D𝑘  and D𝜇  since in general the 

nanofluid thermal conductivity and viscosity models are considered to be coupled. This problem 

is technically a multi-objective optimization since the 𝜒𝑘
2 optimization determines the values of 

the parameters 𝐚 and 𝐛 for the optimal fit of the nanofluid thermal conductivity whilst the 𝜒𝜇
2 

optimization determines the corresponding values of 𝐚 and 𝐛 for the optimal fit of the nanofluid 

viscosity, however for our particular problem since the nanofluid thermal conductivity and 

viscosity are both intrinsic physical properties they each carry equal weighting. Due to the fact that 
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in nanofluid mathematical studies both the thermal conductivity and viscosity are in general 

considered to be equally important thermophysical properties that must be modelled, unless 

otherwise specified for specific types of equipment/instruments that utilize the nanofluid as a 

working fluid, a simultaneous non-linear system of both of these merit functions in terms of an 

equivalent system equations may be constructed of the form  

 

 

ℎ1(𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛) =
∂𝜒𝑘

2

∂𝑎1
⋮

ℎ𝑚(𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛) =
∂𝜒𝑘

2

∂𝑎𝑚

ℎ(𝑚+1)(𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛) =
∂𝜒𝑘

2

∂𝑏1
⋮

ℎ(𝑚+𝑛)(𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛) =
∂𝜒𝑘

2

∂𝑏𝑛

ℎ(𝑚+𝑛+1)(𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛) =
∂𝜒𝜇

2

∂𝑎1
⋮

ℎ(2𝑚+𝑛)(𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛) =
∂𝜒𝜇

2

∂𝑎𝑚

ℎ(2𝑚+𝑛+1)(𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛) =
∂𝜒𝜇

2

∂𝑏1
⋮

ℎ(2𝑚+2𝑛)(𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛) =
∂𝜒𝜇

2

∂𝑏𝑛 }
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 coupled − system (3.33) 

 

 

The above system of equations form a coupled simultaneous system of non-linear equations in 

general, however the particular coupling effects will formally depend on the particular functional 

mathematical expressions that are used for 𝑘𝑛𝑓
M (𝐱; 𝐚, 𝐛) and 𝜇𝑛𝑓

M (𝐱; 𝐚, 𝐛).  

 

In the special case that the mathematical expression for the nanofluid thermal conductivity 𝑘𝑛𝑓 

does not depend on the nanofluid viscosity 𝜇𝑛𝑓 and logically vice versa then the above system of 

equations may be uncoupled which then simplifies the subsequent calculations. As an example if 

the thermal conductivity only depends on the parameter 𝐚 then then ∂𝜒𝑘
2/ ∂𝑏𝑖 = 0 automatically 

whilst of the viscosity only depends on the parameter 𝐛 then ∂𝜒𝜇
2/ ∂𝑎𝑖 = 0 automatically so that 

the coupled system may be simplified as 
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∂𝜒𝑘
2

∂𝑎1
= 0

⋮
∂𝜒𝑘

2

∂𝑎𝑚
= 0

∂𝜒𝜇
2

∂𝑏1
= 0

⋮
∂𝜒𝜇

2

∂𝑏𝑚
= 0

}
 
 
 
 
 

 
 
 
 
 

 uncoupled − system (3.34) 

 

Making the observation that in any real nanofluid system there would almost inevitably be some 

sort of interaction effects however weak between the transport properties of the nanofluid’s 

thermal conductivity, viscosity, density and enthalpy. For fluid systems where it necessary to 

consider the interaction effects between the nanofluid thermal conductivity and viscosity and an 

equal importance cannot be assigned then more advanced multi-objective optimization techniques 

can be used to determine the Pareto optimal solution for the parameters 𝐚 and 𝐛 in the event that 

there is a coupling between the nanofluid thermal conductivity and viscosity models in for example 

systems where the convective heat transfer coefficient must be accurately determined from the 

nanofluid thermal conductivity but viscosity effects that influence power requirements for the 

pumping of the nanofluid must also be accounted for. 

 

When this system of equations are solved the results for 𝑎1, … , 𝑎𝑚 and 𝑏1, … , 𝑏𝑛 for each of the 

Monte Carlo simulation events may then be conveniently stored in matrices such that 

 

𝐀 =

[
 
 
 
 
𝐴1,1 ⋯ 𝐴1,𝑚
⋮ ⋮ ⋮
𝐴𝑟,1 ⋯ 𝐴𝑟,𝑚
⋮ ⋮ ⋮
𝐴𝑀,1 ⋯ 𝐴𝑀,𝑚]

 
 
 
 

  (3.35) 

 

and 

 

𝐁 =

[
 
 
 
 
𝐵1,1 ⋯ 𝐵1,𝑚
⋮ ⋮ ⋮
𝐵𝑟,1 ⋯ 𝐵𝑟,𝑚
⋮ ⋮ ⋮
𝐵𝑀,1 ⋯ 𝐵𝑀,𝑚]

 
 
 
 

  (3.36) 

 

In the above system of matrices each column will therefore store the corresponding Monte Carlo 

univariate data for a particular model parameter which can then be post-processed in order to 

determine its characteristic statistical properties, whilst the correlation effects between the model 

parameters may be recovered from the covariance matrix as previously discussed. 

 

The above ELD technique may then be applied to the univariate data for 𝑎1, … , 𝑎𝑚 and 𝑏1, … , 𝑏𝑛 
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to work the corresponding expected values 𝜇𝑎1 , … , 𝜇𝑎𝑚  and 𝜇𝑏1 , … , 𝜇𝑏𝑛  and similarly the 

corresponding standard deviations may also be worked out as 𝜎𝑎1 , … , 𝜎𝑎𝑚  and 𝜎𝑏1 , … , 𝜎𝑏𝑛 

respectively. Once the statistical information for the model parameters of 𝑘𝑛𝑓 and 𝜇𝑛𝑓 have been 

determined then the corresponding uncertainties in the predicted nanofluid properties may be 

calculated with the aid of the Guide to Uncertainty in Measurement i.e. the GUM [53] such that 

the uncertainty for the nanofluid effective thermal conductivity is  

 

𝑢2(𝑘𝑛𝑓) =∑

𝑞

𝑖=1

(
∂𝑘𝑛𝑓

∂𝑥𝑖
)

2

𝑢2(𝑥𝑖) +∑

𝑚

𝑗=1

(
∂𝑘𝑛𝑓

∂𝑎𝑗
)

2

𝑢2(𝑎𝑗) 

 + ∑𝑛𝑗=1 (
∂𝑘𝑛𝑓

∂𝑏𝑗
)
2

𝑢2(𝑏𝑗) + (higher order & correlation effects)

  

(3.37) 

 

and similarly the uncertainty for the nanofluid effective viscosity is calculated as 

 

𝑢2(𝜇𝑛𝑓) =∑

𝑞

𝑖=1

(
∂𝜇𝑛𝑓

∂𝑥𝑖
)

2

𝑢2(𝑥𝑖) +∑

𝑛

𝑗=1

(
∂𝜇𝑛𝑓

∂𝑏𝑗
)

2

𝑢2(𝑏𝑗) 

 + ∑𝑚𝑗=1 (
∂𝜇𝑛𝑓

∂𝑎𝑗
)
2

𝑢2(𝑎𝑖) + (higher order & correlation effects) 

(3.38) 

 

where 𝑞 is the number of nanofluid meta-parameters, and 𝑚 and 𝑛 are respectively the number 

of parameters for the nanofluid effective thermal conductity and viscosity models. The above 

system of equations will simplify in the special case of uncoupled systems since the partial 

derivatives will evaluate to zero if there is no interaction effects. As a result this modelling scheme 

has therefore developed a potential mathematical analysis approach with the aid of the Monte 

Carlo based GUM Supplement 1 technique to in the case of algebraic models compute the 

parameters 𝑎1, … , 𝑎𝑀 and their associated uncertainties 𝑢(𝑎1),… , 𝑢(𝑎𝑀) for arbitrary nanofluid 

effective thermal conductivity algebraic models, the parameters 𝑏1, … , 𝑏𝑁  and their associated 

uncertainties 𝑢(𝑏1),… , 𝑢(𝑏𝑁) for arbitrary nanofluid effective viscosity models, and similarly for 

coupled arbitrary nanofluid effective thermal conductivity and effective viscosity models where 

there are interaction effects. The developed mathematical approach in this research investigation 

therefore solves the original research challenge of how to incorporate the modelling and 

incorporation of intrinsic aleatoric thermophysical data uncertainties so that the derived 

thermophysical predictions, in terms of the algebraic model and the associated parameters, now 

exhibits behaviour, properties and characteristics which is statistically consistent. Unfortunately 

this powerful mathematical functionality is reliant on the need for the specification of an 

appropriate algebraic model. As previously discussed at the present time of writing there does not 

yet exist a relatively complete theory of nanofluids which would inform the specification of an 

appropriate algebraic model. In the absence a particular choice of algebraic model defined in terms 

of a suitable selection of meta-parameters and algebraic equation parameters the remaining option 

is to perform an Exploratory Data Analysis (EDA) of possible algebraic models. Nevertheless if 

an appropriate algebraic model is selected either from an informed physical reasoning perspective 

or in terms of a statistical hypothesis testing approach our developed mathematical approach may 

still offer a potentially useful approach for the modelling of nanofluid thermophysical properties. 
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Due to the fact that many researchers have reported findings in the open literature on the relative 

performance and functionality of various algebraic nanofluid thermophysical property models 

these validated results may be used in lieu of a statistical hypothesis testing approach to obtain an 

approximation of the general form of the algebraic model by qualitatively comparing and 

contrasting algebraic models in order to infer possible trial functions that may then be investigated 

more fully with our developed mathematical approach. 

 

For nanofluid systems where the nanofluid properties are defined in terms of enhancements to the 

base fluid properties knowledge of the base fluid density 𝜌𝑏𝑓 , thermal conductivity 𝑘𝑏𝑓  and 

viscosity 𝜇𝑏𝑓 are also necessary to complete the mathematical modelling process. Under these 

circumstances the CIPM water density formula as discussed by Harvey et al.[147] is used to 

calculate the base fluid density 𝜌/[kg m−3] in terms of the water temperature 𝑡/[∘C], the thermal 

conductivity for water 𝑘𝑏𝑓/[W m
−1 K−1] is in specified in terms of a formula by Ramires et 

al.[108], and an analytical expression for the viscosity of water 𝜇𝑏𝑓/[Pa s] is approximated using 

an expression by Huber et al.[110]. As a result the actual nanofluid properties such as effective 

thermal conductivities and effective viscosities may be calculated or at least approximated from 

the reported data in the open literature using these formulae as a first step to convert from nanofluid 

enhancements relative to a base fluid such as water and back to the original actual nanofluid 

thermophysical properties in pursuing our developed mathematical approach even if not all of the 

data and results from the open literature is in a convenient and easy to use form. 

 

In order to implement and demonstrate the developed mathematical approach of this research 

investigation utilization and analysis of the experimental data reported by Ghanbarpour et al.[61] 

for a water/alumina nanofluid mixture which documents the dynamic light scattering (DLS) 

measurements of the nanoparticle diameters, the nanofluid thermal conductivity 𝑘𝑛𝑓/

[W m−1 K−1] for combinations of temperatures 𝑇/[K] and mass fractions 𝑤/[%], and the 

nanofluid viscosity 𝜇𝑛𝑓/[Pa  s]  also for combinations of temperatures 𝑇/[K]  and mass 

fractions 𝑤/[%] is considered for illustrative purposes as summarized in Table 3.3. For this 

particular data-set there are constant uncertainties for the measured thermal conductivity and 

viscosity values of the nanofluid and as a result the weighting factors 𝑤𝑖 and 𝑤𝑗 are constant and 

may then be factored out since they will not effect the merit function optimization. 

 

The first step is to use the DLS data obtained from transmission electron microscopy 

measurements and obtain estimates for the expected value of the nanoparticle diameter 𝑑𝑝 and its 

associated uncertainty 𝑢(𝑑𝑝). This is achieved by fitting the DLS data with an extended lambda 

distribution such that the ELD parameters are calculated as 𝑎 = 0.35843, 𝑏 = 0.22358, 𝑐 =
63.78722 and 𝑑 = 186.40116. 

 

The known ELD parameters can then be used to calculate the expected value and variance which 

for the particular data produce results as 𝜇 = 219.84710 and 𝜎 = 56.64047 respectively from 

the analytical formulae so that  

 

𝑑𝑝 = 219.847 nm  (3.39) 

𝑢(𝑑𝑝) = 56.640 nm    (3.40) 
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T/[K] k/[W/m.K] phi  T/[K] mu/Pa.s] phi  

2.93147E+02  5.92310E-01  0.00000E+00 2.93009E+02  1.00000E-03  0.00000E+00 

3.03036E+02  6.10802E-01  0.00000E+00 3.03041E+02  7.94118E-04  0.00000E+00 

3.12926E+02  6.33075E-01  0.00000E+00 3.12969E+02  6.47059E-04  0.00000E+00 

3.22912E+02  6.50303E-01  0.00000E+00 3.22997E+02  5.58824E-04  0.00000E+00 

2.93052E+02  6.09961E-01  5.84426E-03 2.93105E+02  1.18382E-03  5.84362E-03 

3.03040E+02  6.34751E-01  5.72208E-03 3.02833E+02  9.77941E-04  5.72465E-03 

3.12927E+02  6.43159E-01  5.59806E-03 3.12964E+02  8.30882E-04  5.59760E-03 

3.22913E+02  6.57866E-01  5.46971E-03 3.22993E+02  6.98529E-04  5.46867E-03 

2.93054E+02  6.20045E-01  1.19870E-02 2.93104E+02  1.22059E-03  1.19858E-02 

3.03042E+02  6.43574E-01  1.17379E-02 3.03035E+02  1.00000E-03  1.17381E-02 

3.13128E+02  6.74663E-01  1.14798E-02 3.13066E+02  8.08824E-04  1.14815E-02 

3.23020E+02  7.13323E-01  1.12204E-02 3.22992E+02  7.27941E-04  1.12212E-02 

2.93057E+02  6.41473E-01  1.84516E-02 2.93002E+02  1.24265E-03  1.84537E-02 

3.03045E+02  6.63742E-01  1.80706E-02 3.03034E+02  1.02206E-03  1.80711E-02 

3.12934E+02  6.84755E-01  1.76837E-02 3.13066E+02  7.94118E-04  1.76784E-02 

3.23118E+02  7.13319E-01  1.72750E-02 3.22890E+02  7.64706E-04  1.72842E-02 

2.93065E+02  6.86851E-01  3.24533E-02 2.93099E+02  1.38971E-03  3.24510E-02 

3.03053E+02  7.12902E-01  3.17925E-02 3.02929E+02  1.13971E-03  3.18008E-02 

3.13038E+02  7.22566E-01  3.11144E-02 3.12859E+02  9.41176E-04  3.11267E-02 

3.23023E+02  7.29710E-01  3.04186E-02 3.22888E+02  8.30882E-04  3.04281E-02 

2.93069E+02  7.14582E-01  4.53617E-02 2.93097E+02  1.48529E-03  4.53592E-02 

3.03057E+02  7.40633E-01  4.44502E-02 3.03028E+02  1.22794E-03  4.44529E-02 

3.13044E+02  7.59121E-01  4.35140E-02 3.12959E+02  1.00735E-03  4.35221E-02 

3.22937E+02  8.00302E-01  4.25621E-02 3.22988E+02  8.75000E-04  4.25571E-02 

2.93185E+02  8.20459E-01  7.53057E-02 2.92885E+02  1.81618E-03  7.53491E-02 

3.02975E+02  8.38955E-01  7.38676E-02 3.02919E+02  1.50000E-03  7.38760E-02 

3.12962E+02  8.57443E-01  7.23593E-02 3.12952E+02  1.24265E-03  7.23609E-02 

3.22948E+02  8.73410E-01  7.08090E-02 3.22982E+02  1.06618E-03  7.08037E-02 

2.93200E+02  9.16257E-01  1.12435E-01 2.92966E+02  2.50735E-03  1.12484E-01 

3.03091E+02  9.46093E-01  1.10351E-01 3.02903E+02  2.06618E-03  1.10391E-01 

3.13176E+02  9.65838E-01  1.08162E-01 3.13040E+02  1.69853E-03  1.08192E-01 

3.22969E+02  9.99460E-01  1.05974E-01 3.23173E+02  1.47794E-03  1.05927E-01 

2.93232E+02  1.11415E+00  1.59667E-01 2.92829E+02  3.72059E-03  1.59779E-01 

3.03024E+02  1.13643E+00  1.56890E-01 3.02874E+02  3.05147E-03  1.56933E-01 

3.13009E+02  1.14358E+00  1.53968E-01 3.12916E+02  2.48529E-03  1.53996E-01 

3.22899E+02  1.16963E+00  1.50983E-01 3.22849E+02  2.17647E-03  1.50998E-01 
Table 3. 3 Experimental nanofluid thermal conductivity and viscosity data by Ghanbarpour et al.[61] 

  

Different possible choices of quantifying the nanoparticle size are technically possible since this 

quantification is usually undertaken either with scanning electron microscope (SEM) or 

transmission electron microscope (TEM) images which may be used to estimate the effective 

nanoparticle diameter 𝑑𝑝  with different weighting schemes, whilst dynamic light scattering 
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(DLS) measurements quantify the hydrodynamic size 𝑅ℎ𝑦𝑑 of the Al2O3 nanoparticles instead 

defined as 

 

𝑅ℎ𝑦𝑑 =
def 1

𝑁2
⟨∑𝑖≠𝑗

1

𝑟𝑖𝑗
⟩  (3.41) 

 

where 𝑁 is the number of nanoparticles, 𝑟𝑖𝑗 is the distance between particle 𝑖 and particle 𝑗, and 

〈⋅〉  is the corresponding ensemble average that is appropriately defined. Different ensemble 

average schemes are possible and include the microcanonical ensemble (isolated system with 𝐸, 

𝑉, 𝑁 constant), canonical ensemble (closed system, 𝑉 and 𝑁 constant, but energy exchange is 

possible so 𝐸 is not constant) and grand canonical ensemble (open system with 𝑉 constant, but 

energy exchange and particle exchange possible so 𝐸 and 𝑁 are not constant) average schemes. 

In general the above hydrodynamic length, either a hydrodynamic radius 𝑅ℎ𝑦𝑑  or equivalent 

diameter 𝐷, obtained from dynamic light scattering measurements is considered an equivalent 

type of mean effective diameter based on how monochromatic light such as that from a laser is 

scattered by the population of nanoparticles, however we comment that this equivalent DLS based 

diameter is not necessarily correlated to the nanoparticle diameter 𝑑𝑝 due to the particular choice 

of ensemble 〈⋅〉 average used in the calculation from the physical experimental light scattering 

measurements and how the nanoparticles are clustered or agglomerated together. Different 

techniques are available to analyse the light scattering information in order to construct the auto-

correlation function that is then used to work out the ensemble average and include first-order and 

second-order correlation schemes that can be used to model how the transmitted light through the 

collection of nanoparticle decays over time, however the experimental technique is generally 

considered more reliable when (i) the underlying particles do not interact with each other through 

collisions, and when (ii) there are no electrostatic forces between the ions of the particles. Both of 

these preferred conditions are not fully satisfied in the case of nanofluids since the nanoparticles 

in agglomerations by definition interact with each other and condition (i) can only be more fully 

satisfied in the special case of dilute mixtures i.e. for situations in the Einstein concentration limit, 

and that there is the experimentally observable and verified phenomenon of the nanolayer in many 

nanoparticles which produces a charge distribution around the outer surface of a nanoparticle and 

which consequently induces electrostatic forces between individual nanoparticles in the 

agglomeration which makes up the ensemble that is physically measured through the light 

scattering data. As a result through a combination of physical and statistical issues the use of 

dynamic light scattering data and results in certain situations may be less consistent than simpler 

number or area averaged SEM/TEM based estimates of the nanoparticle diameter 𝑑𝑝 , or 

alternative experimental techniques such as X-ray diffraction based measurements. 

 

In general the SEM/TEM based estimates use either arithmetic or equivalent area averages to 

estimate 𝑑𝑝  which for this data set is roughly 𝑑𝑝 ≈ 75 nm whilst the DLS estimate is 𝐷 ≈

220 nm. This observation illustrates that the variation of sizes between individual nanoparticles 

i.e. ‘collections of molecules’ such that 𝑑𝑝/[nm] = 𝒪(101)  and that of agglomerations i.e. 

collections of “clumped together nanoparticles’ such that 𝒜/[nm] = 𝒪(102) may approach an 

order of magnitude. Relatively few data sources in the open literature consistently report on 

measurements of both SEM/TEM nanoparticle diameters and DLS based diameters and in certain 

sources such as that by Ho et al.[122] the SEM/TEM nanoparticle is 33 nm  whilst light 
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scattering measurements of the hydrodynamic diameter range from 129 nm at a volume fraction 

of 𝜙 = 0.1% to 167 nm at a volume fraction of 𝜙 = 4% suggesting that the hydrodynamic 

diameter itself is a function of the temperature and volume concentration. As per the earlier 

discussion in the previous chapter in this dissertation we will generally utilize estimates of the 

nanoparticle diameter 𝑑𝑝  where available as a convenient meta-parameter since anecdotal 

experimental evidence from the literature review is suggestive that the nanoparticle diameter 𝑑𝑝 

is a more statistically relevant choice of meta-parameter than that of the agglomeration size 𝒜. At 

the present of writing there does not exist a definitive explanation as to why this is the case in the 

absence of a relatively complete theory of nanofluids however we postulate in this dissertation that 

this could potentially be the case through a combination of two underlying physical reasons namely 

that (i) the nanoparticle diameter 𝑑𝑝 is a more physically relevant scale in nanofluids due to the 

fact there exists complex and potentially random flow characteristics that manifests at length scales 

from 0.1 nm to 1 nm i.e. for flows at length scales approximately the same size as individual 

nanoparticles, and that (ii) shear stresses within the fluid “break up” the original ‘dry’ 

agglomerations that are used to manufacture the nanofluid so that the new effective or ‘wet’ 

agglomeration may physically differ in size from the original ‘dry’ agglomeration. Many 

investigators have speculated that one of the potential underlying causes as to why nanofluids may 

be so effective in terms of heat transfer characteristics is due to their high specific-surface-area 

(SSA) which means that an indication of nanoparticle diameters may offer a better indication of 

the heat transfer properties of a nanofluid than that of an agglomeration size based on clusters of 

nanoparticles. As previously discussed at the present time of writing there does not exists a 

convenient and easy to use experimental technique to perform in situ physical measurements of 

nanoparticles that have already been doped in a base fluid since it is considered physically 

impossible to resolve the motion and geometry of individual collections of molecules within a 

fluid due both to the random Brownian motion of the molecules as well the challenging 

experimental constraints posed by the relevant length scales. Whilst SEM and TEM techniques 

can resolve two dimensional images at a sub-nanometre length scale and that atomic force 

microscope (AFM) measurement can to a certain extent measure three dimensional geometries 

that the accuracy of AFM measurements at the present time of writing is rough ±0.3 nm at the 

3𝜎 standard level and is expected to reduce to about 0.2 nm in the next eight years by 2024 as 

discussed by Hussain et al.[148] however this is strictly for dry samples and no techniques exist 

that can directly as opposed to indirectly measure wet samples.  

 

The combination of these two potential physical manifestations therefore leads us to suspect that 

it is potentially more useful to simply use an estimate of the nanoparticle diameter 𝑑𝑝  as a 

conservative choice of meta-parameter, since a choice of 𝑑𝑝  would potentially enable a CFD 

analyst to better refine predictions of the flow characteristics at the interface of nanoparticles and 

the surrounding fluid medium, whether with single-phase or multi-phase nanofluid models, and to 

more accurately simulate the potential break-up of agglomerations of nanoparticles as a potential 

future area of research investigation. Regardless of the extent to which these postulates may 

physically be exhibited and which in principle could only be adequately investigated at an ab initio 

level using molecular dynamics simulations the choice of nanoparticle diameters is the 

conventional modelling choice in the majority of investigations that have been reported in the open 

literature and we thus opt to utilize the prevailing existing convention for consistency and 

simplicity. 
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Figure 3-5 Visualization of water/alumina nanofluid thermal conductivity behaviour as a function of temperature and nanoparticle 

volume concentration 

 

 
Figure 3-6 Visualization of water/alumina nanofluid viscosity behaviour as a function of temperature and nanoparticle volume 

concentration 

 

Since the same nanofluid is used in the experimental results of Ghanbarpour et al.[61] the above 

nanoparticle diameter values are considered constant and as a result 𝑘𝑛𝑓  and 𝜇𝑛𝑓  may be 

visualized as functions of the remaining inputs of the temperature 𝑇 and volume fraction 𝜙 when 

the volume fractions are recovered from the weight fractions.   

 

Due to the fact that nanofluids are prepared with mass fractions it is necessary to convert between 

the mass fraction 𝑤 and volume fraction 𝜙 which are related by the following equations 
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1−𝑤

𝑤

𝜌𝑝

𝜌𝑓
=

1−𝜙

𝜙
    (3.42) 

𝜙 =
1

1+(
1−𝑤

𝑤
)
𝜌𝑝

𝜌𝑓

  (3.43) 

 

In order to perform the conversion between mass fractions 𝑤 and volume fractions 𝜙 assume a 

density and thermal conductivity for the nanoparticles as 

 

𝜌𝑝 = 3880 kg m
−3       (3.44) 

𝑘𝑝 = 18 W m
−1 K−1  (3.45) 

 

The results for the volume fractions when processed using these formulae are illustrated in Figure 

3.5 and Figure 3.6 respectively. For illustrative purposes only assume standard uncertainties at a 

1𝜎 confidence level for the temperature 𝑇 as ±0.5 K, for the volume fraction 𝜙 as ±2.5% and 

for the nanofluid thermal conductivity as ±2.5% so that the uncertainties in the Monte Carlo 

simulation are 

 
𝑢(𝑑𝑝) = 56.640 nm

𝑢(𝑇) = 0.5 K
𝑢(𝜙) = 0.003775
𝑢(𝑘𝑛𝑓) = 0.029241 }

 

 

  (3.46) 

 

In order to illustrate the methodology consider the uncoupled nanofluid thermal conductivity 

model of the form 

 

𝑘𝑛𝑓
M = 𝑘𝑏𝑓

𝑘𝑝+2𝑘𝑏𝑓+2𝜙(𝑘𝑝−𝑘𝑏𝑓)

𝑘𝑝+2𝑘𝑏𝑓−𝜙(𝑘𝑝−𝑘𝑏𝑓)
+ (𝑎1𝜙

2𝑇 + 𝑎2𝜙𝑇 + 𝑎3𝜙
2 + 𝑎4)√

𝑇

𝑑𝑝
  (3.47) 

 

The above equation 𝑘𝑛𝑓
M  is a new proposed nanofluid effective thermal conductivity algebraic 

model that we postulate may offer a potentially useful mathematical model for a water/alumina 

nanofluid based on an analysis of different possible algebraic models that were considered in the 

course of the literature review from the previous chapter. Rearranging this equation then yields 

 

√
𝑇

𝑑𝑝
𝜙2𝑇𝑎1 +√

𝑇

𝑑𝑝
𝜙𝑇𝑎2 +√

𝑇

𝑑𝑝
𝜙2𝑎3 +√

𝑇

𝑑𝑝
𝑎4 = 𝑘𝑛𝑓 − 𝑘𝑏𝑓

𝑘𝑝+2𝑘𝑏𝑓+2𝜙(𝑘𝑝−𝑘𝑏𝑓)

𝑘𝑝+2𝑘𝑏𝑓−𝜙(𝑘𝑝−𝑘𝑏𝑓)
  (3.48) 

 

As a result the nominal fitted values of the constants for the thermal conductivity model 𝑘𝑛𝑓
M (𝐱𝑘, 𝐚) 

using a least squares solution from the experimental data previously summarized in Table 3.3 

produces the initial results as shown in Figure 3.7 where the nominal starting values are 

 

𝑎1 = 2.041489 × 10−6

𝑎2 = 8.373330 × 10−8

𝑎3 = −5.816567 × 10−4

𝑎4 = −9.099597 × 10−7}
 
 

 
 

nominal starting values      (3.49) 
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Figure 3-7 Illustration of nominal least squares fitted model results 

  

   

These values may then be utilized as approximate starting solutions solutions for the 𝜒𝑘
2 

minimization by solving ∂𝜒𝑘
2/ ∂𝑎𝑖 = 0, 𝑖 = 1,… ,𝑚 in the implementation of the corresponding 

Monte Carlo simulation using for example 𝑀 = 500  simulation events for convenience in 

mathematical algebraic modelling approach. In order to perform the simulation analytical 

expressions for the partial derivative terms of the nanofluid models are necessary which can be 

readily computed with the aid of commercial computer algebra systems (CAS’s) such as 

Mathematica or in mixed symbolic/numerical open source programs using toolboxes like OctSymPy 

which combines the symbolic capability of the Python CAS library sympy with the numerical 

functionality of Gnu Octave as discussed by McDonald [106]. The general form for an uncoupled 

thermal conductivity model using our notation takes the form 

 

∂𝜒𝑘
2

∂𝑎𝑖
= −2∑

𝑁𝑘
𝑗=1 {[𝑘𝑛𝑓

D (𝐱𝑗
𝑘) − 𝑘𝑛𝑓

M (𝐱𝑗
𝑘, 𝐚)] ⋅

∂𝑘𝑛𝑓
M (𝐱𝑗

𝑘,𝐚)

∂𝑎𝑖
}  (3.50) 

 

Monte Carlo simulations for the above optimization may be performed assuming Gaussian 

distributions for the PDF’s of the uncertainties in temperature, nanoparticle diameter and volume 

concentration where sampled values 𝜉 are in general generated as 

 

𝜉 = 𝜇 + 𝜎𝑟  (3.51) 

 

where 𝜇 is the expected value which we assume is the measured value in the experimental data-

set D𝑘, 𝜎 is the standard uncertainty of the measured values as previously specified, and 𝑟 is a 
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random number sampled from the appropriate PDF distribution such as either a rectangular 

distribution 𝑅[0,1] or alternately from a Gaussian PDF distribution. The results from the Monte 

Carlo simulation are summarized in Table 3.4 as indicated below.  

 

   
𝑘𝑛𝑓
M  

parameter 

𝑎𝑖  

 ELD 𝑎𝑖   ELD 𝑏𝑖   ELD 𝑐𝑖   ELD 𝑑𝑖   ELD 𝜇𝑖   ELD 𝜎𝑖  

  2.52280E-01   2.54902E-01   2.02777E-06   1.08463E-06   2.29286E-06   1.60029E-06  

  8.19417E-01   5.79271E-02   2.19306E-08   6.79756E-08   7.17190E-08   3.28875E-08  

  8.17021E-02   4.17837E-01   -7.93275E-04   -1.28865E-04   -6.42650E-04   4.43652E-04  

  1.12220E+00   2.89914E-02   -1.31776E-07   -8.36055E-07   -8.20406E-07   2.41523E-07  
Table 3. 4 Summary of nanofluid thermal conductivity Monte Carlo simulation results using extended lambda distribution 

parameters 

so that 

 

𝑎1 = (2.29286 × 10−6) ± (1.60029 × 10−6)

𝑎2 = (7.17190 × 10−8) ± (3.28875 × 10−8)

𝑎3 = (−6.42650 × 10−4) ± (4.43652 × 10−4)

𝑎4 = (−8.20406 × 10−7) ± (2.41523 × 10−7)}
 
 

 
 

  (3.52) 

   

When these results are post-processed the corresponding model uncertainties can then be 

calculated as 

 

𝑢2(𝑘𝑛𝑓
M ) = (

∂𝑘𝑛𝑓
M

∂𝑇
)
2

𝑢2(𝑇) + (
∂𝑘𝑛𝑓

M

∂𝜙
)
2

𝑢2(𝜙) + (
∂𝑘𝑛𝑓

M

∂𝑑𝑝
)
2

𝑢2(𝑑𝑝) + ∑
4
𝑗=1 (

∂𝑘𝑛𝑓
M

∂𝑎𝑗
)
2

𝑢2(𝑎𝑖)  (3.53) 

 

as summarized in Table 3.5.  

 

Referring to this table it is observed that the normalized errors defined as 

 

𝐸𝑛 =
𝑦model−𝑦actual

√𝑈2(𝑦actual)+𝑈2(𝑦model))

  (3.54) 

 

from standard measurement theory practice are all less than unity i.e. ∥ 𝐸𝑛 ∥≤ 1  for all the 

reported experimental measurement data points and as a result it is concluded that the method 

developed has been statistically validated and verified. 

 

By inspecting the percentage errors it is also observed that all of the calculated results from the 

proposed model and associated uncertainty analysis deviate by less than 5% as shown in Figure 

3.8 which is consistent with the original results by Ghanbarpour et al.[61] however our approach 

allows for the explicit mathematical calculation of the nanofluid thermal conductivity uncertainties 

directly in terms of the physical uncertainties 𝑢(𝑇), 𝑢(𝜙) and 𝑢(𝑑𝑝), and specifically quantifies 

the parameter uncertainties 𝑢(𝑎𝑗), 𝑗 = 1,2,3,4 for our particular choice of thermal conductivity 

model.  
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T phi knfData U(knfData) knfModel U(knfModel) En Error 

293.15 0.00000 0.59231 0.05848 0.61560 0.02700 0.36155 3.932 

303.04 0.00000 0.61080 0.05848 0.62583 0.02757 0.23239 2.460 

312.93 0.00000 0.63308 0.05848 0.63336 0.02810 0.00437 0.045 

322.91 0.00000 0.65030 0.05848 0.63823 0.02861 -0.18545 -1.857 

293.05 0.00584 0.60996 0.05848 0.63024 0.02723 0.31441 3.325 

303.04 0.00572 0.63475 0.05848 0.64068 0.02785 0.09153 0.934 

312.93 0.00560 0.64316 0.05848 0.64824 0.02844 0.07821 0.791 

322.91 0.00547 0.65787 0.05848 0.65309 0.02899 -0.07313 -0.726 

293.05 0.01199 0.62004 0.05848 0.64595 0.02889 0.39716 4.178 

303.04 0.01174 0.64357 0.05848 0.65655 0.02956 0.19794 2.015 

313.13 0.01148 0.67466 0.05848 0.66433 0.03021 -0.15705 -1.532 

323.02 0.01122 0.71332 0.05848 0.66911 0.03080 -0.66892 -6.198 

293.06 0.01845 0.64147 0.05848 0.66270 0.03380 0.31429 3.309 

303.04 0.01807 0.66374 0.05848 0.67353 0.03446 0.14415 1.474 

312.93 0.01768 0.68476 0.05848 0.68134 0.03507 -0.05010 -0.499 

323.12 0.01727 0.71332 0.05848 0.68636 0.03565 -0.39355 -3.779 

293.06 0.03245 0.68685 0.05848 0.69977 0.06093 0.15295 1.881 

303.05 0.03179 0.71290 0.05848 0.71132 0.06131 -0.01863 -0.221 

313.04 0.03111 0.72257 0.05848 0.71975 0.06159 -0.03317 -0.390 

323.02 0.03042 0.72971 0.05848 0.72506 0.06174 -0.05471 -0.638 

293.07 0.04536 0.71458 0.05848 0.73490 0.10574 0.16819 2.844 

303.06 0.04445 0.74063 0.05848 0.74741 0.10578 0.05607 0.915 

313.04 0.04351 0.75912 0.05848 0.75661 0.10560 -0.02079 -0.331 

322.94 0.04256 0.80030 0.05848 0.76247 0.10520 -0.31428 -4.727 

293.18 0.07531 0.82046 0.05848 0.82034 0.27427 -0.00043 -0.015 

302.98 0.07387 0.83896 0.05848 0.83577 0.27359 -0.01137 -0.379 

312.96 0.07236 0.85744 0.05848 0.84778 0.27226 -0.03470 -1.127 

322.95 0.07081 0.87341 0.05848 0.85602 0.27027 -0.06290 -1.991 

293.20 0.11243 0.91626 0.05848 0.93363 0.60247 0.02870 1.896 

303.09 0.11035 0.94609 0.05848 0.95518 0.60119 0.01504 0.960 

313.18 0.10816 0.96584 0.05848 0.97266 0.59843 0.01134 0.706 

322.97 0.10597 0.99946 0.05848 0.98527 0.59431 -0.02376 -1.420 

293.23 0.15967 1.11415 0.05848 1.09086 1.20857 -0.01925 -2.091 

303.02 0.15689 1.13643 0.05848 1.12294 1.20788 -0.01115 -1.187 

313.01 0.15397 1.14358 0.05848 1.15028 1.20432 0.00556 0.586 

322.90 0.15098 1.16963 0.05848 1.17193 1.19788 0.00192 0.197 
Table 3. 5 Summary of nanofluid thermal conductivity uncertainty analysis validation results using normalized errors and 

percentage errors 
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Figure 3-8 Illustration of lower and upper 5% bound limits for nanofluid thermal conductivity results 

 

 

A key advantage of our developed methodology is that it allows for the analytical incorporation of 

the influence of all three meta-parameters 𝑇, 𝜙 and 𝑑𝑝 on the nanofluid thermal conductivity 

which was previously mainly restricted to viscosity models. This completes the implementation of 

our developed mathematical modelling approach that addresses the original research objective of 

how to incorporate aleatory statistical uncertainties so that resultant model predictions are 

statistically consistent and accurate. 

 

As a result it has therefore been demonstrated how experimental measurement uncertainties may 

be mathematically incorporated as parameter uncertainties into explicitly defined mathematical 

models using multivariate Monte Carlo based numerical simulations as an extension to nonlinear 

multivariate regression analysis and parameter estimation techniques. This methodology which 

has been outlined is completely general and can incorporate both coupled nanofluid thermal 

conductivity and viscosity models where there are interaction effects as well as in uncoupled 

models where interaction effects are not present. When the technique is numerically implemented 

estimates for nanofluid model parameter expected values, variances and correlations are all 

quantified in terms of probability density function statistical distributions which then allows for 

the explicit analytical calculation of the resultant nanofluid uncertainties that is inclusive of both 

the uncertainties in physical equipment/instrumentation that utilize a nanofluid as a working fluid 

as well as the intrinsic aleatory uncertainties of the nanofluid model itself in accordance with the 

Guide to Uncertainty in Measurement (GUM) based specifications for rigorous high accuracy 

experimental measurement research work, however this approach is mathematically and 

numerically challenging. The mathematical challenge is in identifying what algebraic model to 
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utilize and the numerical challenge is in terms of determining the starting estimates of the 

parameter values for the merit function optimization. An additional challenge that is also 

sometimes not fully appreciated by many researchers is that convergence is only formally 

mathematically possible in the case of convex functions in higher dimensional spaces as discussed 

in more detail by Johansson [150]. 

 

The first mathematical modelling approach in this research investigation therefore considered 

arbitrary algebraic models where univariate probability density functions were used to model and 

characterize the statistical information of the parameters so that the combination of the chosen 

algebraic model and parameters adequately and accurately incorporated the relevant underlying 

experimental measurement information used to build the nanofluid mathematical model. The next 

logical research question for mathematical completeness that must now be addressed is how to 

model two dimensional bivariate data and we comment that in general this may be achieved 

through the use of bivariate PDF’s using for example copulas which may be in principle be 

extended to arbitary dimensions as outlined by Ramnath [151], however although multivariate 

PDF’s may be adequately modelled if the underlying statistical data is available this is only 

possible if the underlying data is quantitative in nature. The modelling challenge in nanofluids 

studies is that the clustering of the nanoparticles and the associated morphology is intrinsically 

qualitative in nature and not easily amenable to a simple and straightforward quantitative 

summary. 

 

To understand why this observation presents a modelling challenge we considered scanning 

electron microscope (SEM) and transmission electron microscope (TEM) images from earlier 

reported experimental work by Ghodsinezhad [152] in order to make an assessment as to how the 

morphology of nanofluids could be potentially be modelled. It is clear from an assessment of the 

typical SEM and TEM images that the nanoparticle clustering/morphology is inevitability always 

represented as two dimensional images although the nanoparticle matter within the base fluid is 

physically a three dimensional object. Whilst in principle these results may be summarized by 

considering the nanoparticle matter 𝒩  as being composed of an aggregate of 𝑁𝑝  individual 

nanoparticles each with their own univariate diameter statistical distribution 𝑔𝑖(𝜉) in terms of an 

ELD parameter 𝐩𝑖 = [𝑎1, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖]
T  coupled with a spatial location say 𝐫𝑖  that the 

clustering/morphology modelling aspect of the form 

 

𝒩 = ⋃
𝑁𝑝
𝑖=1

𝐳𝑖 , 𝐳𝑖 = [𝐫𝑖, 𝐩𝑖]  (3.55) 

 

would prove more mathematically challenging since in general the individual nanoparticles would 

also have to have a corresponding orientation 𝝃𝑖  relative to other nanoparticles within the 

aggregate mixture. At the present time of writing most nanofluid models utilize the nanoparticle 

size 𝑑𝑝 as the main parameter instead of DLS measurements of the agglomeration size since the 

relationship between an individual nanoparticle size where 𝒪(𝑑𝑝)~10 nm  and that of a 

collection of nanoparticles which make up the agglomeration within the base fluid such that the 

agglomeration size is 𝒪(𝒜)~100 nm is unclear. Due to the irregular shape of nanoparticles the 

size is usually by convention defined in terms of the area of the solid/liquid interface where the 

specific surface area (SSA) of the nanoparticle is measured by the Brunauer-Emmett-Teller (BET) 

approach in order to determine the average particle size 𝑑𝑝  whilst the average hydrodynamic 
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diameter for the particle nanoparticle type and base fluid is estimated using the dynamic light 

scattering (DLS) approach as discussed by Liu et al.[153] where the BET and DLS measurements 

then quantify the particle size and agglomeration sizes respectively and who have recently 

attempted to construct a new nanofluid thermal conductivity model with both particle and 

agglomeration sizes, and where we note that variation between the individual particle size 𝑑𝑝 and 

that of the agglomeration size 𝒜 may differ by a factor of almost four i.e. 𝑑𝑝~
1

4
𝒜 for certain 

nanofluid mixtures however no definite correlations are available due to the wide variety of 

nanofluid manufacturing techniques and in situ operating conditions. Since much of the existing 

literature only specifies the nanoparticle size 𝑑𝑝, volume fraction 𝜙 and base fluid temperature 

𝑇, under the assumption of local thermodynamic equilibrium (LTE) within the nanofluid and 

usually omits the DLS based agglomeration size 𝒜 we will for simplicity assume that 𝑘𝑒𝑓𝑓 and 

𝜇𝑒𝑓𝑓 may be adequately modelled using just 𝑑𝑝, 𝜙 and 𝑇 as meta-parameters since anecdotal 

experimental evidence from the literature review suggests that this may reasonably be the case for 

water/alumina nanofluids. 

 

This type of mathematical model has recently been studied in more mathematical detail by 

Mahdavi [154] who investigated the nanoparticle interaction effects using both Eulerian/Eulerian 

and Eulerian/Lagrangian approaches using a set of mathematical modelling assumptions for the 

slip velocities between the solid/fluid phases and the interactions between the solid and liquid 

phases based on a continuum hypothesis underpinned by an approximate mean free path 𝜆 of the 

water molecules of 𝜆 = 0.3 nm and an approximate nanoparticle diameter of 𝑑𝑝 = 100 nm so 

that a continuum hypothesis is mathematically valid since the Knudsen number is 𝐾𝑛 =
(𝜆/𝑑𝑝) ≪ 1. The conventional Knudsen number ranges for varying flow regimes are usually 

specified as 

 

0 ≤ 𝐾𝑛 ≤ 0.01 : Continuum flow regime (3.56) 

0.01 ≤ 𝐾𝑛 ≤ 0.1 : Slip flow regime (3.57) 

0.1 ≤ 𝐾𝑛 ≤ 10 : Transitional flow regime (3.58) 

10 ≤ 𝐾𝑛 < ∞ : Molecular flow regime (3.59) 

 

where the above-mentioned delimited flow regimes the conventional Navier–Stokes equations 

whether solved with commercial, opensource or custom written CFD research codes are strictly 

only mathematically valid for a Knudsen number range of 0 ≤ 𝐾𝑛 ≤ 0.01 and deteriorate in 

physical performance as the Knudsen number approaches the transitional flow regime. 

 

In general as discussed earlier there does not existing a full rigorous physical theory for liquids 

and as a result mean free paths are usually calculated using the kinetic theory of gases although 

this is not strictly justified for the high number densities 𝑛 of the form 

 

𝑛 =
𝑝

𝑘𝐵𝑇
  (3.60) 

 

where 𝑝  is the average pressure, 𝑘𝐵 = 1.3806488 × 10−23 J  K−1  the Boltzmann constant 

and 𝑇 the absolute temperature. Using a simplified analysis of the molecular cross-sections as 

discussed by Reif [10] as shown in Figure 3.9 it may be shown that the scattering cross-section 𝜎0  
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Figure 3-9 Conceptual illustration of the collision between two hard spheres for modelling the interaction of a water molecule of 

radius 𝑎1 and a nanoparticle of radius 𝑎2 with an impact parameter of b 

 

for two dissimilar molecules is of the form  

   

𝜎0 = 𝜋(𝑎1 + 𝑎2)
2  (3.61) 

 

so that the mean free path ℓ is approximately 

 

ℓ ≈
1

√2𝑛𝜎0
  (3.62) 

 

Using an approximate estimate of 𝑑𝑤 = 0.275 nm for the diameter of a water molecule, noting 

that a hard sphere model is only an approximation of the probability distribution of the spatial 

positions of the constituent atoms, and the above simplified mean free path estimates from 

statistical mechanics an approximate model validity range in terms of the nanoparticle diameters 

for a continuum based hypothesis may be established as shown in Figure 3.10. 

 

Referring to the above model validity results it may be observed that a continuum hypothesis is 

mathematically valid only for a particular size of nanoparticle and that in general the model validity 

will also depend on the base fluid operating temperature and pressure. In the particular case of a 

water/alumina nanofluid the continuum modelling assumption is only valid for nanoparticles with 

a diameter 𝑑𝑝 such that 𝑑𝑝/[nm] ≥ 15 and the modelling assumption will fail if 𝑑𝑝/[nm] < 15 

at standard atmospheric temperatures and pressures, however there are two provisos for this 

validity limit.  
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Figure 3-10 Illustration of continuum modelling hypothesis validity limits with variation in nanoparticle diameter for a 

water/nanoparticle nanofluid mixture at T=300 K and p=101.325 kPa 

  

   

The first observation is that the Knudsen number calculation is a rough approximation using the 

kinetic theory of gases which is based on further approximations of the base fluid and nanoparticle 

physical properties, and the second observation that the modelling approach is implicitly based on 

the assumption that there is a representative molecular diameter or equivalent length scale for the 

nanoparticle contrary to the underlying wave nature of molecular systems which at a fundamental 

level are based on probabilistic molecular orbital dynamic effects. 

 

Considering the first observation in a recent study by Uddin et al.[155] calculated a Knudsen 

number range of 0.0042 ≤ 𝐾𝑛 ≤ 0.42 for a typical range of nanofluids using water as the base 

fluid with the aid of the kinetic theory of gases as a rough approximation under the assumption 

that the water molecule mean free path was 𝜆 = 0.42 nm and that the collision cross-section area 

was equivalent to a water molecule radius of 0.15 nm and concluded that a continuum modelling 

assumption was reasonable. Although in the calculations performed by Uddin et al.the lower 

Knudsen number limit of 𝐾𝑛(𝑑𝑝)|𝑙𝑜𝑤 = 0.0042 is below the threshold of the generally accepted 

upper Knudsen number limit 𝐾𝑛max = 0.01 of continuum flows it is seen that higher Knudsen 

number limit of 𝐾𝑛(𝑑𝑝)ℎ𝑖𝑔ℎ = 0.42 is substantially larger than the upper limit of 𝐾𝑛max = 0.01 

and well into the transitional flow regime as shown in Figure 3.11. 
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Figure 3-11 Illustration of overlapping physics flow regimes that occur when modelling a nanofluid using a continuum hypothesis 

due to the wide range of typical nanofluid Knudsen number ranges 

  

   

As a result utilizing the conventional assumptions reported in the literature as discussed by Uddin 

et al.it is seen that the Knudsen number overlaps the continuum flow regime, slip flow regime and 

extends well into the transitional flow regime. The practical consequence of this observation is 

that a continuum modelling hypothesis can only mathematically model nanofluids for a range of 

nanoparticle diameters. Earlier ab initio computational physics simulations by Hadjiconstantinou 

[156] using a direct numerical solution of the Boltzmann equation determined that second-order 

slip boundary conditions could extend the Navier-Stokes equations up to a maximum Knudsen 

number of 𝐾𝑛max ≤ 0.3  however this reduced the accuracy of the predicted fluid velocity 

behaviour to ∥ 𝑢(𝐯) ∥≈ 5% and it was observed that whilst qualitative fluid behaviour could be 

adequately captured that quantitative predictions became increasingly inaccurate as the Knudsen 

number increased beyond the Knudsen number limit of continuum flows, and that certain physical 

fluid phenomena at nanoscale level could no longer be accurately predicted. 

 

In the event that smaller nanoparticle diameters are present in the nanofluid there will then be 

higher localized Knudsen numbers in the water medium surrounding these smaller nanoparticles 

and a continuum based CFD analysis in the fluid regions around these smaller nanoparticles will 

become mathematically invalid and hence potentially physically inaccurate. Although more 

advanced techniques such as modified boundary conditions, typically either with modified first 

order or second order boundary conditions for extended Navier-Stokes numerical simulations to 

incorporate Maxwell/velocity-slip and Smoluchowski/temperature-jump conditions as discussed 

by Ramnath [157] do exist, the use of these alternatives to retain a continuum modelling hypothesis 

is limited to modest increases of Knudsen number. These extensions to the 𝒪(𝐾𝑛) based Navier-

Stokes equations for higher Knudsen numbers are typically not extended by more than 𝐾𝑛max ≈
0.2 either with 𝒪(𝐾𝑛2) Burnett hydrodynamics based equations as discussed by Singh et al.[158] 
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or alternative higher order models such as the Kogan-Galkin-Friedlander equations as discussed 

by Rogozin [159] which are both analyses based on the Boltzmann equation. Whilst the Boltzmann 

equation is able to fully model and resolve the underlying physical fluid behaviour at any length 

scale without any simplifications it is still nevertheless even with mathematical modelling 

approximations such as the Bhatnagar-Gross-Krook (BGK) or ellipsoidal statistical S-model for 

the collision integral term as discussed by Sharipov & Seleznev [160] still nevertheless extremely 

mathematically complex to solve. In practical terms a Boltzmann equation solution for a 

computational physics based ab initio flow is therefore usually implemented with an equivalent 

molecular dynamics based simulation for arbitrary Knudsen number flows where the molecular 

dynamics simulation results are used to “calibrate” the optimal second-order boundary conditions 

for an extended Navier-Stokes system of equations. 

 

Due to the physical fact that any actual nanofluid will have a range of possible nanoparticle 

diameters for example 5 ≤ 𝑑𝑝/[nm] ≤ 50  as experimentally measured using for example 

dynamic light scattering measurements there is always then the possibility of violations of the 

underlying modelling validity assumptions and hence potential errors of numerical simulations 

performed with a continuum modelling hypothesis if smaller particles are present in the base fluid. 

These potential model validity limits can be addressed by either more refined mathematical 

modelling, modifications such as higher order boundary conditions using slip velocities to extend 

the validity for moderately higher Knudsen numbers, or by more direct particle based simulations. 

By considering the full collection of all possible shapes and sizes of both nanoparticles as well as 

water molecules present within the volume of the nanofluid mixture the probabilities of collisions 

and interactions at the molecular level may instead be considered without any underlying 

continuum modelling hypothesis. 

 

This type of idea is similar to the concept of electron density 𝜌(𝐫) = ∑𝑁𝑘=1 𝑛𝑘 ∥ 𝜑𝑘(𝐫) ∥
2 

encountered in the field of quantum chemistry where the electron density is a measure of the 

probability of an electron occupying an infinitesimal element of space around the immediate 

neighbourhood of the spatial point 𝐫 and is suggestive that nano-fluids properties at an ab initio 

level may be studied as a many-bodies problems at a microscopic level i.e. a system where 

quantum mechanics effects are unavoidable and where classical mechanics breaks down and is 

unable to adequately capture the molecular interaction effects between the base fluid molecules 

and the nanoparticles. 

 

At the present time of writing it is unclear if nanofluid properties can be adequately fully recovered 

from a conventional molecular dynamics (MD) simulations which is essentially in practical terms 

a conventional classical mechanics problem using Newton’s second law 𝐅 = 𝑚𝐱̈ to model the 

behaviour of the particle displacement 𝐱 for a specified force field 𝐅 which is usually but not 

necessarily always constructed in terms of an assumed or approximate potential energy term that 

models the interaction effects between molecules using for example the classical Lennard-Jones 

potential, or if quantum mechanical effects at a more fundamental quantum chemical level are an 

unavoidable necessity to fully reconstruct the interaction potential energy term. The challenge with 

a molecular dynamics simulation apart from the heavy computational costs in which simulations 

are typically only possible for a few femto-seconds is that there is no simple and consistent scheme 

in order to deduce the underlying potential energy interaction term for a specified many-particle 

system. Quantum chemistry simulations nowadays typically adopt the well known density 
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functional theory (DFT) approach either with the more conventional historical Hartree-Fock 

approach or alternately the more modern Kohn-Sham approach for DFT simulations, although 

these earlier historical approaches have in some aspects been succeeded by newer approaches such 

as the post Hartree-Fock ab initio and Moller-Plesset perturbation theories. At the most 

fundamental level simulations at the quantum chemical level consists of solving the Schrodinger 

equation with an associated total molecular Hamiltonian however in this research investigation 

this ab initio research strategy is not considered due to the extreme complexity in deducing the 

underlying system potential energy term when building up the corresponding Hamiltonian 𝐻 =

∑𝑁𝑛=1
1

2𝑚𝑛
(𝐩𝑛 ⋅ 𝐩𝑛) + 𝑉(𝐫1, 𝐫2, … , 𝐫𝑛, 𝑡). Quantum chemical simulations using the Hartree-Fock 

approach have historically been used to simulate liquids such as water at the atomic and molecular 

level as originally pioneered by Stillinger [161] where the potential energy term for 𝑁 molecules 

takes different forms where the potential energy disregards interaction effects if the molecules are 

far from each other such as in gaseous form, and where the potential energy term considers 

interaction effects when the 𝑁 water molecules are closely spaced to each such as liquid form. As 

per the discussion by Stillinger one the inherent errors with the Hartree-Fock approximation when 

applied to water is that the predicted dipole moment for the single water molecule is too large and 

earlier theoretical chemical predictions for the dipole moment were 22%  larger than 

contemporary experimental values because of charge distribution errors. Whilst Stillinger 

remarked that these errors could in principle be addressed with a full quantum mechanical 

simulation at the time due to the limited computational resources available the preferred approach 

was to utilize a modified form of the empirical Lennard-Jones 12-6 energy potential with semi-

empirical modifications in order to account for the errors in the dipole moment calculations, and 

which would in turn also account for London dispersion attraction force effects on the potential 

energy function. Later studies that considered the use of quantum chemistry included that of 

Mrázek and Burda [162] who attempted to use quantum chemical simulations to predict the pH of 

a solute using the proprietary commercial computer code Gaussian that is not readily available to 

many researchers and who tentatively speculated that that may be theoretically possible if very 

large clusters of surrounding molecules were considered in the bulk medium. A simplified 

molecular dynamics simulation for Al2O3 , C2H5OH  and C2H4OH2  nanoparticles with H2O 

molecules was performed by Lu & Fan [163] who used a 𝑁𝑉𝑇  canonical ensemble with 𝑁 

particles and a system volume 𝑉 at a temperature 𝑇 a Lennard-Jones potential energy term of the 

form 

 

𝜙(𝑟𝑖𝑗) = {
4𝜀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]  if 𝑟𝑖𝑗 < 𝑟𝑐𝑢𝑡

0 if 𝑟𝑖𝑗 ≥ 𝑟𝑐𝑢𝑡

 (3.63) 

 

where the intermolecular force may be recovered from the potential energy term as 

 

𝐟(𝑟𝑖𝑗) = −∇𝜙(𝑟𝑖𝑗) =
48𝜀𝑖𝑗

𝜎𝑖𝑗
[(
𝜎𝑖𝑗

𝑟𝑖𝑗
)
13

−
1

2
(
𝜎𝑖𝑗

𝑟𝑖𝑗
)
7

]
𝐫𝑖𝑗

𝑟𝑖𝑗
  (3.64) 

 

A similar approach was later also adopted by Li et al.[164] for a simulation of copper oxide 

nanoparticles in order to study the effect of the nano-layer where Li et al.developed their own 

research code using a half time step Verlet algorithm, adapting their symbol notation slightly for 
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consistency, of the form 

 

𝑣 (𝑡 +
𝛿𝑡

2
) = 𝑣 (𝑡 −

𝛿𝑡

2
) +

𝐹𝑖(𝑡)

𝑚𝑖
⋅ (𝛿𝑡)  (3.65) 

𝐹𝑖𝑗(𝑡 + 𝛿𝑡) = −
∂𝜙𝑖𝑗(𝑡+𝛿𝑡)

∂𝑟𝑖𝑗
  (3.66) 

𝑣(𝑡) =
1

2
[𝑣 (𝑡 +

𝛿𝑡

2
)] + 𝑣 (𝑡 −

𝛿𝑡

2
)  (3.67) 

 

The above scheme was also again used by Sankar et al.[165] for a water-platinum nanofluid 

however Sankar et al.took the modelling process a step further by attempting to simulate the 

interaction effects within the nanoparticle material itselt by using a finitely extendable nonlinear 

elastic (FENE) potential 

 

𝑈𝐹𝐸𝑁𝐸 = −𝐴𝑒ln [1 − (
𝑟

𝐵𝜎
)
2

]          (3.68) 

 

where 𝐴 and 𝐵 are experimental constants to account for the interaction between the platinum 

atoms within the nanoparticle itself. A Morse potential of the form 

 

Φ(𝑟) = 𝐷𝑒[exp{−2𝛽(𝑟 − 𝑅𝑒) − 2exp{−𝛽(𝑟 − 𝑅𝑒)}}]  (3.69) 

 

where 𝐷𝑒 is the dissociation energy, 𝑅𝑒 the equilibrium bond length and 𝛽 is a constant whose 

dimension is in units of the reciprocal of length was then used to complete the modelling process. 

Although most of the reported studies within the literature therefore use the conventional Lennard-

Jones potential energy modelling approach there are in fact alternative potential energy 

formulations such as the Flexible-3-Center (T3C) model as discussed by Sachdeva [166]. The 

utility of molecular dynamics also extends to studying the effects of shear rates as discussed by 

Sun et al.[167] who used an equilibrium molecular dynamics (EMD) simulation with the Green-

Kubo formula to investigate shear rate effects for copper nanoparticles in argon where they used 

the Berthlot mixing rule 

 

𝜎𝑠𝑙 =
𝜎𝑠𝑠+𝜎𝑙𝑙

2
  (3.70) 

𝜀𝑠𝑙 = √𝜀𝑠𝑠𝜀𝑙𝑙  (3.71) 

 

in order to estimate the Lennard-Jones potential energy parameters where the subscripts 𝑠 and 𝑙 
denote the solid and liquid components in the nanofluid mixture. More recent work by Lou & 

Yang [168] has now also been utilized to investigate viscosities of nano-fluids such as 

water/alumina mixture using both the more conventional equilibrium molecular dynamics (EMD) 

as well as the more advanced non-equilibrium (NEMD) approaches. In the work of Lou & Yang 

they opted to use the TIP4P/2005 potential function for the water-water molecular interactions and 

they modelled the water-particle interactions using the CLAYFF force field approach which was 

originally developed for clay systems and justified this modelling approach with the reasoning that 

Al2O3 is one of the constituent components for the clay system in the CLAYFF force field model 

and used the LAMMPS software package to simulate the system for 800 ps  for the NVT 

ensemble. A final further potential application of molecular dynamics in nanofluid thermo-

physical properties is potentially in terms of modelling the chaotic movements in the nanoparticles 
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of the base fluid as recently reported by Cui et al.[169] however as previously mentioned this 

requires very powerful HPC capabilities for a full ab initio quantitative simulation which is 

presently unavailable in South Africa and this therefore not a feasible option at the present time of 

writing of this dissertation, although qualitative molecular dynamics studies using semi-empirical 

Lennard-Jones type of potentials are possible. In the event of a full molecular dynamics simulation 

the transport coefficients are recovered through the Green-Kubo relations as discussed by Frenkel 

& Smit [170] such that the shear viscosity 𝜂 and thermal conductivity 𝜆 are calculated as 

 

𝜂 =
1

𝑉𝑘𝐵𝑇
∫
∞

0
〈𝜎𝑥𝑦(0)𝜎𝑥𝑦(𝑡)〉 d𝑡  (3.72) 

𝜆 =
1

𝑉𝑘𝐵𝑇2
∫
∞

0
〈𝑗𝑧
𝑒(0)𝑗𝑧

𝑒(𝑡)〉 d𝑡  (3.73) 

 

where 

 

𝜎𝑥𝑦 = ∑𝑁𝑖=1 (𝑚𝑖𝑣𝑖
𝑥𝑣𝑖

𝑦
+
1

2
∑𝑗≠𝑖 𝑥𝑖𝑗𝑓𝑦(𝑟𝑖𝑗))  (3.74) 

𝑗𝑧
𝑒 =

d

d𝑡
[∑𝑁𝑖=1 𝑧𝑖

1

2
(𝑚𝑖𝑣𝑖

2 +∑𝑗≠𝑖 𝑣(𝑟𝑖𝑗))]  (3.75) 

 

and 

 

𝑓̇ = 𝐫̇
∂𝑓

∂𝐫
+ 𝐩̇

∂𝑓

∂𝐩
  (3.76) 

 

is an arbitrary function defined in terms of the particular system’s position vectors 𝐫𝑖(𝑡) and 

momenta 𝐩𝑖(𝑡) for 𝑖 = 1,2, … ,𝑁 in the case of 𝑁 particles. In the case where 𝑓 is defined in 

terms of the positions 𝐫 and the momenta 𝐩 then the molecular dynamics simulation is said to 

follow the Lioville formulation for time-reversible systems and this approach is sometimes used 

to develop more efficient solution algorithms, however the Lioville formulation is mathematically 

equivalent to the more common Newton’s laws of motion approach 𝑚𝑖𝑥̈𝑖 = 𝐹𝑖 if the force can be 

accurately specified or equivalently derived from an appropriate potential energy function that 

adequately describes the ground energy state as well as the interaction effects between different 

particles. Although the classical Newton equations of motion approach is simpler to model for the 

time evolution for the system for 𝑁 particles in a volume 𝑉 and with a total energy 𝐸 since only 

initial conditions of particle positions 𝑟𝑖(0) and momenta 𝑝𝑖(0) at time 𝑡 = 0 for particles 𝑖 =
1,2, … ,𝑁 this approach is much more complicated if the system is to be studied for a constant 

temperature 𝑇 or a constant pressure 𝑝. Whilst it is easier to hold the temperature or the pressure 

constant in a full Monte Carlo simulation this constraint is in general more complicated to 

implement in a molecular dynamics simulation since it then becomes necessary to construct an 

extended Lagrangian ℒ for the system. The disadvantage with this approach is that the extended 

Lagrangian cannot in general be easily transformed into an equivalent Hamiltonian form ℋ where 

the Hamiltonian is defined as ℋ(𝑞, 𝑝) ≡ 𝑝𝑞̇ − ℒ(𝑞, 𝑞̇, 𝑡) where 𝑞 is a generalized coordinate and 

𝑝 is the momentum. The consequence of this limitation is that in the absence of a well defined 

Hamiltonian which can be used to construct the equivalent system of differential equations to 

model the time evolution of the system, that the connection to the underlying statistical mechanics 

for the 𝑁 particle system cannot be fully established and hence in practical terms the transport 

properties such as the thermal conductivity and viscosity cannot in general be fully mathematically 
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justified unless it can be proven that the Hamiltonian fully captures the underlying statistical 

mechanics of the fluid physics. 

 

The above formulae in a molecular dynamics simulation assume the validity of the ergodic 

hypothesis which is loosely speaking the assumption that the time average for some quantity say 

𝐴 of a many-particle system, say 𝑁  molecules for a volume 𝑉  and energy 𝐸 , can either be 

computed by time averaging of 𝐴 or by the ensemble average which is an average over all the 

corresponding quantum states for that particular many-particle system. In practical terms the 

ergodic hypothesis may be summarized as that the ensemble average for quantity 𝐴 is 〈𝐴〉 which 

may be approximated as a time average such that lim𝜏→∞𝐴𝜏 = 〈𝐴𝜏〉 where 𝐴𝜏 =
1

𝜏
∫
𝜏

0
𝐴(𝑡)  d𝑡 

for some sufficiently long time period 𝜏 of the molecular dynamics simulation so that 

 

〈𝐴〉 =
1

𝜏
∫
𝜏

0
𝐴(𝑡)  d𝜏    (3.77) 

 

The variance 𝜎2(𝐴) of the quantity 𝐴 is then formally calculated as 

 

𝜎2(𝐴) = 〈𝐴𝜏
2〉 − 〈𝐴𝜏〉

2  (3.78) 

𝜎2(𝐴) =
1

𝜏2
∫
𝜏

0
∫
𝜏

0
〈[𝐴(𝑡) − 〈𝐴〉][𝐴(𝑡′ − 〈𝐴〉)]〉  d𝑡 d𝑡′  (3.79) 

 

The term 〈[𝐴(𝑡) − 〈𝐴〉][𝐴(𝑡′ − 〈𝐴〉)]〉 = 𝐶𝐴(𝑡 − 𝑡
′) is usually called the correlation function and 

in the special case where the simulation time 𝜏 is much larger than the characteristic decay time 

𝑡𝐴
𝑐 for the system being studied then the variance and relative variance may then be approximated 

as 

 

𝜎2(𝐴) ≈
1

𝜏
∫
∞

−∞
𝐶𝐴(𝑡) d𝑡  (3.80) 

𝜎2(𝐴) ≈
2𝑡𝐴
𝑐

𝜏
𝐶𝐴(0)  (3.81) 

𝜎2(𝐴)

〈𝐴〉2
≈

2𝑡𝐴
𝑐

𝜏

〈𝐴2〉−〈𝐴〉2

〈𝐴〉2
  (3.82) 

 

A potential benefit of molecular dynamics based studies is in terms of a direct ab initio numerical 

simulation approach for investigating the main physical based mechanisms such as the Brownian 

motion of the nanoparticles within the base fluid, the physical characteristics of the nanolayer 

around the nanoparticles, clustering effects and the mechanism of the heat transfer within the actual 

nanoparticles themselves. One particular example of this was reported by Aybar et al.[121] from 

an earlier literature survey where they reported that the enhancement of thermal conductivity did 

not seem to be affected by hydrodynamic effects caused by Brownian motion within the nanofluid, 

however the practical implementation challenge of very demanding high performance computing 

resources still remains a major obstacle for the further widespread adoption of molecular dynamics 

simulations in nanofluids as least within South Africa at the present time. 

 

As a result due the above combination of modelling issues and complexities we now opt to consider 

a statistical modelling approach in terms of a reduced number of meta-parameters in order to 

perform a quantitative investigation of the effective thermal conductivity and effective viscosity, 

and comment that open source software codes as discussed by Pirhadi [171] and Fortunato & 
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Colina [172] may be utilized in more advanced quantum chemical and molecular dynamics ab 

initio based studies as more powerful HPC systems become more readily accessible within South 

Africa. Utilization of a statistical modelling approach in order to investigate nanofluid properties 

is consistent with earlier observations by Meyer et al.[88] and Nwosu et al.[173] who also 

recommended performing studies in terms of parametric variables in order to construct plausible 

near-generalized models for rheological characteristics such as the nanofluid viscosity. Part of the 

difference with our current approach is that we will not make any prior assumptions of a particular 

algebraic equation formulation of the effective thermal conductivity and viscosity by fitting 

parameters to a particular equation but instead allow the statistical experimental data distribution 

to naturally determine the most appropriate model equation. The difference is therefore that in 

existing studies a particular model is first chosen for a property such as the viscosity, using for 

example a Hosseini et al.model of the form (𝜂𝑛𝑓/𝜂𝑏𝑓) = exp[𝑚 + 𝛼(𝑇/𝑇0)   + 𝛽(𝜙ℎ) +

𝛾(𝑑/(1 + 𝑟))] where 𝛼, 𝛽, 𝛾 and 𝑚 are unknown parameters as discussed by Nwosu et al.[173], 

where statistical techniques are subsequently applied to determine the optimal values of the various 

equation parameters, whilst in our approach we first use statistics techniques to pre-process the 

data which then suggests a plausible mathematical model to fit the data. The benefit of this 

approach is that we do not have to sequentially investigate a voluminous variety of possible 

analytical mathematical expressions for the effective thermal conductivity 𝑘𝑒𝑓𝑓  and effective 

viscosity 𝜇𝑒𝑓𝑓 models for which there are over 30 for 𝑘𝑒𝑓𝑓 and over 30 for 𝜇𝑒𝑓𝑓 as discussed 

by Sharifpur & Meyer [36] and as a result 30 × 30 = 900 = 𝒪(103) possible combinations of 

thermal conductivity – viscosity models to investigate and study, however a potential issue is the 

mathematical complexity that may arise when constructing the resultant mathematical models of 

the effective thermal conductivity and viscosity directly in terms of the underlying data. 

Different techniques that construct models based directly on the underlying data are possible of 

which Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI) based approaches in 

various forms are quite popular in nanofluid studies for both thermal conductivity as well as for 

viscosity model constructions. An earlier study by Mehrabi et al.[174] utilized an Adaptive Neuro-

Fuzzy Inference System (ANFIS) to construct a model of a water/alumina nanofluid where a 

database of experimental data from the literature was used to train the network using particle size, 

volume concentration and temperature where 80% of the data was used to construct the model 

and the remaining 20% was used as test data points to validate the ANFIS network model. Later 

work by Mehrabi et al.[76] utilized a Fuzzy C-Means clustering (FCM) approach to first pre-

process the nanofluid thermophysical data extracted from the literature into two or more clusters 

of data and then developed a genetic algorithm with a polynomial neural network scheme 

formulated as Group Method of Data Handling (GMDH) scheme to model and predict a 

water/alumina nanofluid thermal conductivity again with a 80% data split for model construction 

and 20% data split for subsequent testing of the modelling predictions where the output 𝑧 in 

terms of inputs 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘  using the GMDH scheme took the mathematical form of a Volterra 

function series of the form 

 

𝑧 = 𝑎0 + ∑
𝑀
𝑖=1 𝑎𝑖𝑥𝑖 + ∑

𝑀
𝑖=1 ∑

𝑀
𝑗=1 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + ∑

𝑀
𝑖=1 ∑

𝑀
𝑗=1 ∑

𝑀
𝑘=1 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 +⋯    (3.83) 

 

where 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘  were data points for the nanoparticle size 𝑑 , volume concentration 𝜙  and 

temperature 𝑡 from the nanofluid thermophysical data extracted from the literature, 𝑀 was the 

number of points in the underlying database, and 𝑎𝑖, 𝑎𝑖𝑗 , 𝑎𝑖𝑗𝑘 were unknown model parameters 
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that were to be determined. It may be observed that the above Volterra series is mathematically 

equivalent to a high order Response Surface Methodology (RSM) model and as a result the 

modelling approach of genetic algorithms and neural networks amongst other modelling 

approaches is conceptually equivalent at a mathematical modelling level to traditional model 

parameter regression analysis techniques where in practical terms the main technical difference is 

in terms of how the parameters are determined through a numerical optimization of a suitable cost 

or 𝜒2-merit function defined in various different mathematically appropriate ways for the various 

modelling approaches, and as a result it is seen that the determination of the effective thermal 

conductivity and viscosity is in essence a classical regression analysis problem. As a result the 

problem is technically classified as a ‘supervised learning’ problem as opposed to an 

‘unsupervised learning’ problem using the research terminology and nomenclature of machine 

learning as discussed by Raschka [175]. Due to the supervised learning nature of the problem there 

is an implicit simplification with regards to the input/output mathematical model as there is no 

need for a dimensional reduction through for example a principal component analysis since the 

principal components have been a priori selected as the nanoparticle size 𝑑 = 𝑥1 , volume 

concentration 𝜙 = 𝑥2 and temperature 𝑡 = 𝑥3 for simplicity and we remark that in most practical 

cases it is not mathematically feasible to obtain data of higher dimensions since information of for 

example the nanofluid acidity/alkalinity with pH = 𝑥4  or a physically meaningful 

parametrization of the nanoparticle agglomeration 𝒜 = 𝑥5 effects is either unavailable due to 

experimental constraints, or is simply unknown in the absence of a full physics based nanofluid 

theory. This modelling assumption is conceptually illustrated in graphical form in Figure 3.12 

where a dimensional reduction with 5 inputs is reduced to 3 inputs for a 2 output model so that 

𝐳 ≈ 𝐟(𝐱) with 𝐳 = [𝑘𝑒𝑓𝑓 , 𝜇𝑒𝑓𝑓]
T and 𝐱 = [𝑑, 𝜙, 𝑡]T.  

 

 

 

 
Figure 3-12 Conceptual illustration of dimensional reduction using an a priori principal component analysis modelling assumption 

with 𝑑 = 𝑥1, 𝜙 = 𝑥2, 𝑡 = 𝑥3, 𝑝𝐻 = 𝑥4, 𝒜 = 𝑥5 and outputs 𝑧1 = 𝑘𝑒𝑓𝑓 and 𝑧2 = 𝜇𝑒𝑓𝑓  

 

A practical result is that dimensional reduction techniques essentially use higher dimensional 
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statistical correlation schemes in order to determine the most ‘dominant’ inputs and as a result in 

the absence of a holistic physical theory the mathematical model is usually an approximation that 

does not fully incorporate the interaction between all of the model inputs. 

 

Whilst the use of Artificial Neural Networks (ANN’s) to reconstruct the effective thermal 

conductivity and effective viscosity from supplied thermo-physical data has been reported in the 

literature one of the disadvantages of this approach as previously discussed is that it still requires 

the original dataset 𝑋 even if the weights 𝜔𝑖𝑘 are supplied since the function is approximated as 

𝑦𝑘 = ∑
𝑚
𝑖=1 𝜔𝑖𝑘𝑅𝑖(𝑋). In many ANN studies it is usually assumed that the supplied data set 𝑋 is 

exact however there will always be a corresponding statistical uncertainty 𝑢(𝑋) associated with 

the dataset which has a physical basis due to experimental uncertainties from the particular 

laboratory equipment and instruments that were used to measure either the thermal conductivities 

or viscosities. The uncertainties of the inputs into a model building process are termed aleatoric 

uncertainties whilst the errors which result from inconsistencies in obtaining the ‘best’ model are 

termed epistemic uncertainties. In many experimental measurement fields of study particularly 

within physics and chemistry national laboratories the aleatoric uncertainties are statistically 

modelled in terms of appropriate probability density function distributions and these 

physical/chemical based statistical uncertainties are ‘propagated’ through the model either with 

full Monte Carlo, direct Markov convolution integral or occasionally Markov Chain Monte Carlo 

(MCMC) numerical simulations so that the output model parameters have corresponding 

statistically meaningful and appropriate PDF’s. As a result the epistemic uncertainties are 

immediately quantified for consistency in subsequent numerical simulations that utilize the model 

and associated model parameters as conceptually illustrated in Figure 3.13 and Figure 3.14 using 

the case of the functional form of the water density 𝜌(𝑇)/[kg] as a function of the temperature 

𝑇/[K].  

 

 
Figure 3-13 Illustration of how statistical aleatoric uncertainties for a n=2 dimensional model reside in a related ℝ𝑛+1 higher 

dimensional space where the model probability is explicit 
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Figure 3-14 Illustration of how physical nominal measurements for a n=2 dimensional model reside in a ℝ𝑛 lower dimensional 

space where the model probability is implicit 

 

An adaptation of an earlier interpretation by Tarantola [176] may be considered as an example 

who considered the more general situation where 𝐝 is the model output data, 𝐦 are the model 

parameters, and 𝐠 is a model function. For this example corresponding uncertainties may be 

generated using an assumed density uncertainty of 𝑢(𝜌)(𝑘 = 1) = ±15 kg  m−3 for an easier 

visualization to illustrate the general principle where the parameter uncertainties for a function will 

result in a corresponding uncertainty of a function and which then creates an additional dimension 

for the equivalent probability density function where in our simplified illustration the PDF 𝑓(𝑥) 

for 𝑥 = 𝜌(𝑇) follows a Gaussian distribution such that 𝑓(𝑥) =
1

𝜎√2𝜋
exp [−

1

2
(
𝑥−𝜇

𝜎
)
2

] where 𝑥 

is a random variable for the water density, 𝜇 is the expected value of the water density and 𝜎 =
15 kg  m−3 for illustrative purposes only. In the case of the effective thermal conductivity 

𝑘𝑒𝑓𝑓(𝑇, 𝑑𝑝, 𝜙) and effective conductivity 𝜇𝑒𝑓𝑓(𝑇, 𝑑𝑝, 𝜙) there would then be equivalent higher 

dimensional forms analogous to a simplified three dimensional illustrative example as shown in 

Figure 3.13. 

 

A recent unpublished study by Levasseue et al.[177] has proposed a potential mechanism that may 

be used to determine the uncertainties of the constructed neural network that takes into account 

noise levels in the input data i.e. uncertainties 𝑢(𝑋) and training and architecture errors made by 

the network i.e. errors in the neural network node weightings 𝑢(𝜔𝑖𝑘). The approach of Levasseue 

et al.is claimed to offer superior performance to the conventional MCMC approach, as discussed 

by for example Forbes [178], through the tuning of a single hyper-parameter. The determination 

of the optimal weights 𝜔  is achieved by minimizing the integral 𝑝(𝐲|𝐱, 𝐗, 𝐘) =

∫ 𝑝(𝐲|𝐱,𝜔)𝑝(𝜔|𝐗, 𝐘)  d𝜔  where 𝐗 = {𝐱1, … , 𝐱𝑁} are a set of input images and the output 

parameters are 𝐘 = {𝐲1, … , 𝐲𝑁} where 𝑝(𝜔|𝐗, 𝐘) are the plausible network parameters that must 

be determined in order to minimize the error. Levasseue et al.perform this optimization of the 

neutral network set of weights 𝜔  by minimizing the Kullback-Leibler (KL) divergence by 

selecting the value of 𝜔 to minimize 𝑝(𝐲|𝐱) ≈ ∫ 𝑝(𝐲|𝐱)𝑞(𝜔)  d𝜔 however the disadvantage 
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of their approach is that this high dimensional integral must be calculated with a high dimensional 

Monte Carlo integration as discussed by Press et al.[132] such that the multi-dimensional integral 

𝐼 = ∫
Ω
𝑓(𝐱)  d𝐱  for 𝐱 ∈ ℝ𝑚  is approximated as 𝐼 ≈ 𝑉

1

𝑁
∑𝑁𝑖=1 𝑓(𝐱𝑖)  for suitable sampled 

points 𝐱𝑖 ∈ ℝ
𝑚 where for the neutral network problem 𝑚 would correspond to the total number 

of paths between the set of input and output nodes. In general an artificial neural network will have 

a very large number of nodes and therefore there will be a corresponding large number of weights 

𝜔 when training and constructing the ANN, as a result the determination of the ANN parameter 

uncertainties whilst theoretically possible is potentially unnecessarily complicated by the need for 

stratified sampling schemes in order to perform the high dimensional integration that is necessary. 

A similar type of problem occurs when modelling randomness in neural networks as discussed by 

Scardane & Wang [179] where in the case of feed-forward random weighted networks (RW-FFN) 

the output takes the form 𝑓(𝐱) = ∑𝐵𝑚=1 𝛽𝑚ℎ𝑚(𝐱;𝐰𝑚) which is a linear combination of 𝐵 non-

linear transformations. Typically in the field of neural networks the basis function ℎ𝑚(𝐱) takes 

the additive form ℎ𝑚(𝐱) = 𝑔(𝐚𝑚
T 𝐱 + 𝑏𝑚) where 𝐚𝑚 is an unknown vector, 𝑏𝑚 is an unknown 

scalar, and researchers usually use a sigmoid function of the form ℎ𝑚(𝐱) = [1 + exp{𝐚𝑚
T 𝐱 +

𝑏𝑚}]
−1. Occasionally in some situations a radial basis function (RBF) approach is adopted usually 

with a Gaussian shape such that ℎ𝑚(𝐱) = exp{−𝛼𝑚 ∥ 𝐱 − 𝐜𝑚 ∥2
2}. Regardless of whether the 

neutral network is modelled either in terms of additive functions or radial basis functions the issue 

of how to address randomness in neural networks in the case of RW-FFN’s applies a stochastic 

assignment of a subset of the neural network weights i.e. a selection of some of the neural network 

weights are artificially randomized which is then carried forward to construct a simplified 

optimization problem that must be solved to recover the neural network weights. This optimization 

is often further simplified and cast into a standard linear least-squares problem, however whilst 

there exist many numerical numerical routines to solve least-squares problems the main challenge 

of how to ‘randomize’ a selection of the weights still remains. 

 

A potentially simpler approach to the use of neural networks is to directly model the underlying 

experimental data with the corresponding uncertainties using a radial basis function (RBF) 

approach as discussed by Fasshauer [180] for the global domain of the associated meta-parameters. 

The use of radial basis functions has become increasingly popular for curve and surface fitting in 

higher-dimensional spaces using techniques such as the moving least squares (MLS) approach for 

which refinements such as the piece-wise moving least squares approximation method (PMLS) as 

discussed by Li et al.[181] exists for cases where there may be a large number of known discrete 

points and where the dimension of the space in which the discrete points reside in is high. 

 

In this dissertation as previously discussed the focus is on low dimensional spaces since there is a 

relatively small number of known meta-parameters such as the nanoparticle size 𝑑 , volume 

concentration 𝜙  and temperature 𝑡  and as a result specialist techniques such as the PMLS 

approach are not necessary as the regular techniques such as the normal moving least squares 

approach can suffice for our underlying data-set obtained from the open literature. Special RBF 

approaches such as the Compactly Supported RBF approach (CSRBF) are available to reduce the 

computational cost for system with a large number of data points and high dimensional spaces as 

discussed by Skala [182], whilst special regularization techniques are also available to mitigate 

against ill-conditioned systems as discussed by Sarra & Cogar [183]. As a result whilst the use of 

radial basis function approach in its conventional forms may be considered to be sufficiently 

powerful for our mathematical modelling of the effective thermal conductivity 𝑘𝑒𝑓𝑓 and effective 
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viscosity 𝜇𝑒𝑓𝑓 its use to also simultaneously model the resultant uncertainties in 𝑘𝑒𝑓𝑓 and 𝜇𝑒𝑓𝑓 

whilst not theoretically impossible is nevertheless problematic from a practical implementation 

point of view due to the potentially large number of radial basis function constants. 

 

The research objective in this dissertation is to mathematically model a global function for 𝑘𝑒𝑓𝑓 

and 𝜇𝑒𝑓𝑓  for some restricted domain 𝑇min ≤ 𝑇 ≤ 𝑇max, 𝜙min ≤ 𝜙 ≤ 𝜙max, 𝑑min ≤ 𝑑𝑝 ≤ 𝑑max 

of the meta-parameters 𝑇, 𝜙, 𝑑𝑝  as previously discussed instead of utilizing specific algebraic 

functional forms from the literature for 𝑘𝑒𝑓𝑓  and 𝜇𝑒𝑓𝑓  for restricted domains such as limited 

temperature ranges by optimizing the parameters for the various choices of the commonly used 

equations, where the developed mathematical model can be used to predict both values for the 

effective thermal conductivities and viscosities as well as their associated estimated uncertainties. 

Whilst predictions of thermophysical nanofluids properties has been investigated by many 

researchers in prior reported work for algebraic models as opposed to statistical models the 

incorporation of the associated statistical uncertainty analysis of the effective thermal conductivity 

and viscosity as opposed to a more conventional numerical error analysis has not featured 

predominantly. 

 

 

3.2 Mathematical Analysis of Multivariate Copula Models 
 

Based on the preceding analysis significant limitations have been identified as posed by the 

conventional functional form approach of choosing specific a priori algebraic functions and then 

performing optimizations particularly when the mathematical functional forms are unknown in the 

absence of a comprehensive nanofluid physical theory that is able to fully account for the 

interactions of all the relevant physical parameters. Due to these shortcomings in this dissertation  

the more rigorous mathematical modelling approach of using multivariate copulas to model and 

summarize the validated multivariate experimental data obtained from the literature review based 

on the recently reported success of the application of a copula based bivariate probability density 

function of an engineering fluid system by Ramnath [151] is investigated. A review of copulas by 

Kolev et al.[184] provides the equivalent informal mathematical definition for a 𝑛-dimensional 

copula 𝐶  as the mapping 𝐶: 𝕀𝑛 → 𝕀  where 𝕀 = [0,1]  is the closed unit interval set where 

𝑋1, 𝑋2, … , 𝑋𝑛  are continuous random variables with a distribution function 𝐻(𝑥1, … , 𝑥𝑛) , 

respective marginal distributions 𝐹𝑋1 , … , 𝐹𝑋𝑛  and 𝐶  maps every point (𝑥1, … , 𝑥𝑛) ∈ [−∞,∞]
𝑛 

such that 

 

𝐻(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹𝑋1(𝑥1), … , 𝐹𝑋𝑛(𝑥𝑛))  (3.84) 

 

which is known as Sklar’s theorem in the statistical literature. In order to illustrate the application 

of Sklar’s theorem for the bivariate case let 𝑥 and 𝑦 be variables which have associated univariate 

marginal probability density function distributions 𝑔𝑥(𝜉𝑥) and 𝑔𝑦(𝜉𝑦)  where 𝜉𝑥  and 𝜉𝑦  are 

corresponding random variables of 𝑥  and 𝑦 respectively. The model output ℎ = 𝑓(𝑥, 𝑦) will 

then have a joint probability density function in terms of the underlying random variables 𝜉𝑥 and 

𝜉𝑦 which can be used to predict the expected value of ℎ along with the associated uncertainty for 

a specified confidence level. If the cumulative distributions for 𝑥 is 𝑢 and that for 𝑦 is 𝑣 defined 

as 
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𝑢 = ∫
𝑥

−∞
𝑔𝑥(𝜉𝑥) d𝜉𝑥  (3.85) 

𝑣 = ∫
𝑦

−∞
𝑔𝑦(𝜉𝑦) d𝜉𝑦  (3.86) 

 

then the application of Sklar’s theorem defines the joint PDF as 

 

𝑓(𝑥, 𝑦) = 𝑢𝑣
∂2𝐶

∂𝑢∂𝑣
  (3.87) 

 

This idea can be extended to higher dimensional models and in the case of the dimension 𝑑 = 3 

where there is a third random variable 𝑧 with a univariate marginal PDF 𝑔𝑧(𝜉𝑧) where 𝜉𝑧 is a 

random variable for 𝑧 the cumulative distribution function 𝑤 for 𝑧 is defined as 

 

𝑤 = ∫
𝑧

−∞
𝑔𝑧(𝜉𝑧) d𝜉𝑧  (3.88) 

 

In this case the trivariate PDF that couples the random variables 𝑥, 𝑦, 𝑧 is then specified as 

 

𝑓(𝑥, 𝑦, 𝑧) = 𝑢𝑣𝑤
∂3𝐶

∂𝑢∂𝑣 ∂𝑤
      (3.89) 

 

where 𝐶(𝑢, 𝑣, 𝑤)  is the trivariate copula function and 𝑐(𝑢, 𝑣, 𝑤) =
∂3𝐶

∂𝑢∂𝑣 ∂𝑤
 is known as the 

copula density. A physical example of a trivariate joint PDF would be the previous mathematical 

example that we considered where the nanofluid effective thermal conductivity was some 

mathematical function expressed in terms of the temperature 𝑇  and nanofluid volume 

concentration 𝜙 where we would apply the conceptual mathematical idea of a copula to this 

statistically model this relationship by setting the thermal conductivity as a random variable 𝑘𝑛𝑓 =

𝑥, the temperature as a random variable 𝑦 and the volume concentration as a random variable 𝑧 =
𝑑𝑝 and then construct the trivariate joint PDF 𝑓(𝑘𝑛𝑓 , 𝑇, 𝜙) in order to model the relationship 

between the random variables 𝑥, 𝑦, 𝑧. The marginal distributions 𝑢, 𝑣, 𝑤 calculated in terms of the 

PDF’s 𝑔𝑥(𝜉𝑥) , 𝑔𝑦(𝜉𝑦)  and 𝑔𝑧(𝜉𝑧)  are relatively easy to calculate and can be modelled 

analytically either with extended lambda distributions as previously discussed or if necessary with 

higher-order B-splines as discussed by Harris et al.[185]. As a result in order to construct the 

mathematical model knowledge of the corresponding copula function 𝐶(𝑢, 𝑣, 𝑤) is necessary of 

which different types of copulas such as elliptical, generalized Archimedean, Liebscher, Fischer 

& Kock, Koehler-Symanowski and pair copula decompositions (PCD) approaches are possible as 

discussed by Fischer [186]. Considering the particular case of a pair copula decomposition we 

have following the approach of Fischer that in the case of a three dimensional model that in terms 

of conditional probabilities using the basic properties of statistical PDF’s that 

 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥3) × 𝑓(𝑥2|𝑥3) × 𝑓(𝑥1|𝑥2, 𝑥3) (3.90) 

 

This is equivalent using Sklar’s theorem in terms of the copula density 𝑐(𝑢1, 𝑢2, 𝑢3) where 𝑢𝑖 =
𝐹(𝑥𝑖), 𝑖 = 1,2,3 is the cumulative distribution such that the joint PDF then takes the mathematical 

form 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑐123(𝐹(𝑥1), 𝐹(𝑥2), 𝐹(𝑥3)) × 𝑓(𝑥1) × 𝑓(𝑥2) × 𝑓(𝑥3) (3.91) 
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Setting 

 

𝑢𝑖 = 𝐹(𝑥𝑖), 𝑖 = 1,2,3        (3.92) 

 

and equating the above joint PDF’s then gives 

 

𝑐123(𝑢1, 𝑢2, 𝑢3) =
𝑓(𝑥2|𝑥3)×𝑓(𝑥1|𝑥2,𝑥3)

𝑓(𝑥1)×𝑓(𝑥2)
  (3.93) 

 

Applying Sklar’s theorem again with the definition of conditional density then gives 

 

𝑓(𝑥2|𝑥3) = 𝑐23(𝐹(𝑥2), 𝐹(𝑥3)) × 𝑓(𝑥2) (3.94) 

 

Combining and substituting then gives 

 

𝑐123(𝑢1, 𝑢2, 𝑢3) =
𝑐23(𝑢2,𝑢3)×𝑓(𝑥1|𝑥2,𝑥3)

𝑓(𝑥1)
  (3.95) 

 

Sequentially repeating the above steps again Fischer then derived a general expression for the 

corresponding copula density as 

 

𝑐123(𝑢1, 𝑢2, 𝑢3) = 𝑐12(𝑢1, 𝑢2)𝑐23(𝑢2, 𝑢3)𝑐13|2(ℎ𝜃12(𝑢1, 𝑢2), ℎ𝜃32(𝑢3, 𝑢2))  (3.96) 

 

if 

 

ℎ𝜃(𝑢, 𝑣) =
def ∂𝐶(𝑖,𝑣)

∂𝑣
  (3.97) 

 

The practical implication of this is that any higher dimensional copula can be constructed in terms 

of combinations of bivariate copulas as “building blocks” as illustrated in Figure 3.15. 

 

In order to catalogue the different types of constructions that are mathematically possible a 

decomposition or D-vine distribution and a canonical or C-vine distribution are traditionally 

utilized.  

 

The decomposition vine for a copula takes the form 

 

𝑓(𝑥1, … , 𝑥𝑑) = [∏
(𝑑−1)
𝑗=1

∏(𝑑−𝑗)
𝑖=1 𝑐𝑖,(𝑖+𝑗)|(𝑖+1),…,(𝑖+𝑗−1)] × [∏

𝑑
𝑘=1 𝑓𝑘(𝑥𝑘)]  (3.98) 

 

whilst the conical vine takes the form 

 

𝑓(𝑥1, … , 𝑥𝑑) = [∏
(𝑑−1)
𝑗=1

∏(𝑑−𝑗)
𝑖=1 𝑐𝑗,𝑗+1|1,…,𝑗−1] × [∏

𝑑
𝑘=1 𝑓𝑘(𝑥𝑘)]  (3.99) 
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Figure 3-15 Illustration of how a pair-copula-decomposition can be used to sequentially build up higher dimensional joint 

probability density function distributions using the statistical information of the meta-parameters 

 

 

Applying these results for 𝑑 = 3 the joint PDF then takes the form  

 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥1)𝑓(𝑥2)𝑓(𝑥3) 
        × 𝑐12(𝐹(𝑥1), 𝐹(𝑥2)) 
        × 𝑐23(𝐹(𝑥2), 𝐹(𝑥3)) 
        × 𝑐13|2(𝐹(𝑥1|𝑥2), 𝐹(𝑥3|𝑥2))  

(3.100) 

 

Different strategies for calculating the conditional distributions are possible according to Aas [187] 

which take the forms for C-vines as 

 

𝐹(𝑥𝑗|𝑥1, 𝑥2, … , 𝑥𝑗−1) =
∂𝐶𝑗,𝑗−1|1,…,𝑗−2(𝐹(𝑥𝑗|𝑥1,…,𝑥𝑗−2),𝐹(𝑥𝑗−1|𝑥1,…,𝑥𝑗−2))

∂𝐹(𝑥𝑗−1|𝑥1,…,𝑥𝑗−2)
  (3.101) 

 

and for D-vines as 

 

𝐹(𝑥𝑗|𝑥1, 𝑥2, … , 𝑥𝑗−1) =
∂𝐶𝑗,1|2,…,𝑗−1(𝐹(𝑥𝑗|𝑥2,…,𝑥𝑗−1),𝐹(𝑥1|𝑥2,…,𝑥𝑗−1))

∂𝐹(𝑥1|𝑥2,…,𝑥𝑗−1)
  (3.102) 

 

In general the total number of possible families of copula to consider for C-vines and D-vines 

following the technical results of Aas is 
𝑑(𝑑−1)

2
 so for 𝑑 = 3 corresponding to our particular 

modelling approach this then requires 
3×(3−1)

2
= 3 different choices of bivariate copula families 

to model the copula 𝑐(𝑢1, 𝑢2, 𝑢3) whilst if 𝑑 = 4 then 
4×(4−1)

2
= 6 different copula families are 

required in order to model the copula 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4). Whilst the number of possible bivariate 
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copula family choices are extremely large for high dimensional models special statistical software 

exists as discussed by Brechmann & Schepsmeier [188] for fitting C-vines and D-vines where 

specialist goodness-of-fit tests exist for the determination and fitting of higher dimensional models 

as discussed by Schepsmeier [189] which we will utilize in testing possible copula models for our 

nanofluid thermophysical data from the previous chapter. In addition to C-vines and D-vines 

generated with the R statistical computing software [190] many researchers nowadays investigate 

multivariate empirical beta copulas as developed by Segers et al.[191] which is considered a 

special case of the Berstein copula in contemporary multivariate statistical research as determined 

from the earlier literature review. Although empirical copulas may offer high accuracy predictions 

as a future research topic the application of empirical copulas is disregarded in this dissertation 

due to its relatively heavy computational demands both for the construction of the copula itself 

and also for the calculation of the copula density. Parameter based copula models by contrast 

present a completely self-contained analytical specification of the nanofluid thermophysical 

properties that may be constructed for simplicity and ease of use. The non-parametric form of the 

empirical beta copula is 

 

ℂ𝑛(𝐮) =
def 1

𝑛
∑𝑛𝑖=1 ∏

𝑑
𝑗=1 𝟏{

𝑅𝑖,𝑗
(𝑛)

𝑛
≤ 𝑢𝑗} , 𝐮 = (𝑢1, … , 𝑢𝑑) ∈ [0,1]

𝑑  (3.103) 

 

where the test function is defined as 

 

𝟏{
𝑅𝑖,𝑗
(𝑛)

𝑛
≤ 𝑢𝑗} = {

1 iff condition is true
0 otherwise

  (3.104) 

 

and where in this investigation as previously discussed just the marginal distributions 𝑢, 𝑣, 𝑤 in 

ℝ3  would be considered since there are 𝑑 = 3  meta-parameters and logically extend this 

definition in the case of a four-dimensional statistical model. The non-parametric forms of copulas 

such as the above-mentioned empirical copulas may be used in mathematical modelling situations 

where a traditional two-parameter bivariate copula 𝐶𝜃(𝑢, 𝑣) is inadequate for the underlying 

(𝑢, 𝑣) statistical data-set. Alternatives to empirical beta copulas are empirical Hazen and empirical 

Weibull copulas which may be constructed using the copBasic software package by Asquith [11]. 

Analytical trivariate copulas developed by De Capitani et al.[193] take the form for the distribution 

function as 

 

𝐹(𝑥1, 𝑥2, 𝑥3) = ∏3
𝑖=1

1

(1+𝜆𝑖𝑥𝑖
−𝜃𝑖)

𝜀   (3.105) 

 

which when modified to include second order and third order interaction effects between the 

random variables 𝑥1, 𝑥2, 𝑥3 then take the form 

 

𝐹(𝑥1, 𝑥2, 𝑥3) = [1 + 𝜆1𝑥1
−𝜃1 + 𝜆2𝑥2

−𝜃2 + 𝜆3𝑥3
−𝜃3 + 𝛼12𝜆1𝜆2𝑥1𝑥2

𝜃1𝜃2 

        + 𝛼13𝜆1𝑥1𝑥3
𝜃1𝜃3 + 𝛼23𝜆2𝜆3𝑥2𝑥3

𝜃2𝜃3  

             + 𝛼123𝜆1𝜆2𝜆3𝑥1𝑥2𝑥3
−𝜃1𝜃2𝜃3]−𝜀   

(3.106) 

 

The above distribution function then results in the copula function 
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𝐶(𝑢1, 𝑢2, 𝑢3) = [1 +∑

3

𝑖=1

(𝑢
𝑖

−
1
𝜀 − 1) + 𝛼12 (𝑢1

−
1
𝜀 − 1)(𝑢2

−
1
𝜀 − 1) 

           + 𝛼13 (𝑢1
−
1

𝜀 − 1)(𝑢3
−
1

𝜀 − 1) + 𝛼23 (𝑢2
−
1

𝜀 − 1)(𝑢3
−
1

𝜀 − 1) 

            + 𝛼123 (𝑢1
−
1

𝜀 − 1)(𝑢2
−
1

𝜀 − 1)(𝑢3
−
1

𝜀 − 1)]−𝜀 

(3.107) 

 

where the following inequalities must be satisfied for the copula to be valid such that 

 

𝛼12 ≤ (𝜀 + 1)  (3.108) 

𝛼13 ≤ (𝜀 + 1) (3.109) 

𝛼23 ≤ (𝜀 + 1)     (3.110) 

𝛼123 ≤ (𝜀 + 1)min(𝛼12𝛼13, 𝛼12𝛼23, 𝛼13𝛼23)  (3.111) 

 

The general form for two, three and four dimensional copulas as derived by Aas [187] for 

multivariate copulas is summarized such that 

 

𝑓(𝑥1, 𝑥2) = 𝑓1(𝑥1)𝑓2(𝑥2) × 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) (3.112) 

 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓1(𝑥1)𝑓2(𝑥2)𝑓3(𝑥3) 

        × 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) × 𝑐23(𝐹2(𝑥2), 𝐹3(𝑥3)) 

× 𝑐13|2(𝐹(𝑥1|𝑥2), 𝐹(𝑥3|𝑥2)) 
(3.113) 

 

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓1(𝑥1)𝑓2(𝑥2)𝑓3(𝑥3)𝑓4(𝑥4) 
 × 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) × 𝑐13(𝐹1(𝑥1), 𝐹3(𝑥3)) × 𝑐14(𝐹1(𝑥1), 𝐹4(𝑥4)) 

 × 𝑐23|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)) × 𝑐24|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥4|𝑥1)) 

 × 𝑐34|12(𝐹(𝑥3|𝑥1, 𝑥2), 𝐹(𝑥4|𝑥1, 𝑥2)) 

(3.114) 

 

In order to implement a copula model for the effective thermal conductivity 𝑘𝑒𝑓𝑓 or the effective 

viscosity 𝜇𝑒𝑓𝑓 the copula function “couples” the respective random variables interactions with 

each other and “uncouples” their own independent marginal distributions. This mathematical 

modelling technique is considered both statistically appropriate and physically relevant for this 

research investigation due to the fact that the meta-parameters are formally considered as 

independent model inputs i.e. they are independent random variables so they each have their own 

independent marginal distribution and they then subsequently couple and interact with each other 

in a subsequent mathematical model for a nanofluid’s respective property such as its effective 

thermal conductivity or effective viscosity. As an example if the effective thermal conductivity 

depends just on the base fluid temperature and the nanofluid volume concentration 𝜙 so that 

𝑘𝑒𝑓𝑓(𝑇, 𝜙)  then we set 𝑇 = 𝑥1 , 𝜙 = 𝑥2  and 𝑘𝑒𝑓𝑓 = 𝑥3  and determine the joint PDF 

𝑓(𝑥1, 𝑥2, 𝑥3). Once the joint PDF is constructed then the remaining random variable 𝑥3 = 𝑘𝑛𝑓 for 

a specified value of 𝑥1 = 𝑇𝑏𝑎𝑡ℎ  and 𝑥2 = 𝜙𝑏𝑎𝑡ℎ  for example may then be calculated as a 

statistical expectation such that using the formal statistical definition 〈𝑘𝑛𝑓〉 = 𝔼(𝑥3) it follows 

that  
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𝔼(𝑥3) = ∫ℝ 𝑥3𝑓(𝑇𝑏𝑎𝑡ℎ, 𝜙𝑏𝑎𝑡ℎ , 𝑥3) d𝑥3  (3.115) 

〈𝑘𝑛𝑓〉 = ∫
∞

−∞
𝑥3𝑓(𝑇𝑏𝑎𝑡ℎ, 𝜙𝑏𝑎𝑡ℎ , 𝑥3) d𝑥3  (3.116) 

 

The above definition is equivalent to the one-dimensional definition of the expected value 𝜇 for a 

random variable 𝑥  with a probability density function 𝑓(𝑥)  such that the expected value is 

calculated as 𝜇 = ∫
∞

−∞
𝑥𝑓(𝑥)  d𝑥  with a variance 𝜎2 = ∫

∞

−∞
(𝑥 − 𝜇)2𝑓(𝑥)  d𝑥  since in the 

special case if the other random variables are fixed to a specific value, such as a specified 

temperature 𝑇 or volume concentration 𝜙, the joint PDF 𝑓(𝑇, 𝜙, 𝑑𝑝, 𝑘𝑛𝑓) will then simplify to a 

conditional probability. Following a similar line of reasoning the corresponding variance for the 

nanofluid thermal conductivity 𝜎  may then be equivalently calculated using the formal 

mathematical statistical definition as 

 

𝜎2 = ∫
∞

−∞

(𝑥 − 𝜇)2𝑓(𝑥)  d𝑥 

   = ∫
∞

−∞
𝑥3
2𝑓(𝑇𝑏𝑎𝑡ℎ, 𝜙𝑏𝑎𝑡ℎ, 𝑥3)  d𝑥3 − 𝜇

2   

(3.117) 

 

The above working definitions for the expected value and corresponding variance may then in 

principle be extended for nanofluid models with more than three meta-parameters. As an example 

if the nanofluid thermal conductivity is mathematically modelled in terms of the temperature 𝑥1 =
𝑇, the volume concentration 𝑥2 = 𝜙, the nanoparticle diameter 𝑥3 = 𝑑𝑝, the nanofluid pH value 

𝑥4 = pH  and the shear strain rate 𝑥5 = 𝛾̇  so that the functional form is 𝑘𝑛𝑓 =

fnc. (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)  we would construct the multivariate copula 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)  by 

treating the nanofluid thermal conductivity as a random variable that is “coupled” through some 

sort of complicated mathematical equation with the other random variables so that the expected 

value of the effective thermal conductivity for a particular operating condition of the equipment, 

machine or instrument which is using the nanofluid as a working fluid, say for 𝑇𝑜𝑝 = 𝑥1
∗, 𝜙𝑜𝑝 =

𝑥2
∗, 𝑑𝑜𝑝 = 𝑥3

∗, pH𝑜𝑝 = 𝑥4
∗ and 𝛾̇𝑜𝑝 = 𝑥5

∗ which are specified, may then be calculated as 〈𝑘𝑛𝑓〉 =

∫
∞

−∞
𝑥6𝑓(𝑥1

∗, 𝑥2
∗, 𝑥3

∗, 𝑥4
∗, 𝑥5

∗, 𝑥6)  d𝑥6  where 𝑥6  is a dummy variable to evaluate the improper 

Riemann integral. For a general multidimensional data-set 𝐗 = [𝑥1, 𝑥2, … , 𝑥𝑑]
T , be it for a 

nanofluid effective thermal conductivity 𝑘𝑛𝑓, viscosity 𝜇𝑛𝑓, density 𝜌𝑛𝑓 or enthalpy ℎ𝑛𝑓 where 

𝑥𝑗 , 𝑗 = 1,… , 𝑑  are appropriate meta-parameters the expected value 𝜇  and associated variance 

may be convenient calculated as 𝜇 = ∫
∞

−∞
𝑥𝑑𝑓(𝑥1, … , 𝑥𝑑)  d𝑥𝑑  and 𝜎2 = ∫

∞

−∞
(𝑥𝑑 −

𝜇)2𝑓(𝑥1, … , 𝑥𝑑)  d𝑥𝑑  where as previously discussed 𝑥𝑑  is treated as a dummy variable to 

evaluate the respective integral formulae for the expected value and variance. Due to the fact that 

a copula may be used to construct the joint PDF for a random variable 𝐗 = [𝑥1, … , 𝑥𝑑]
T for any 

dimension 2 ≤ 𝑑 ∈ ℕ this general approach may therefore in principle be extended to nanofluids 

with any appropriate choice of meta-parameters however the key requirement is that the underlying 

data is reliable and that it has an associated statistical uncertainty. This requirement is satisfied in 

our particular case since we have conducted a review of the available data 𝑘𝑛𝑓 , 𝑇, 𝜙, 𝑑𝑝 from the 

open literature and estimated the corresponding uncertainties 𝑢(𝑘𝑛𝑓), 𝑢(𝑇), 𝑢(𝜙), 𝑢(𝑑𝑝) either 

from accuracies documented in the respective literature sources or from good experimental 

judgement for all of the underlying data-points which are used in a Monte Carlo simulation to 

generate sampled values of the meta-parameters when constructing the copula statistical model. 
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As a result whilst a powerful mathematical approach to model and summarize the properties of 

nanofluid thermophysical properties in a manner that incorporates the underlying aleatoric 

statistical experimental measurement uncertainties has been identified this mathematical 

modelling technique is only as powerful as the quality of the underlying data that is incorporated 

into the mathematical model. Unfortunately the contemporary research status within the field of 

nanofluids is that much of the reported data is incomplete and where available there have been 

questions as to the overall reliability and consistency of the available experimental data. 

 

Although the above expectation values are formally defined as iterated infinite integrals due to the 

mathematical requirement that the joint PDF normalizes to unity i.e. ∫
ℝ3
𝑓(𝐱)  d𝑥1d𝑥2  d𝑥3 =

1  in the case of the PDF 𝑓(𝑥1, 𝑥2, 𝑥3)  with a similar normalization for 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)  in 

practical terms the expectations are calculated as definite integrals due to the finite limits of the 

underlying data. As an example when manufacturing a water/alumina nanofluid the operating 

temperature would usually be from around room temperature of 20 ∘C to not higher than about 

70 ∘C due to the fact that this is generally considered a critical temperature above which most 

nanofluid’s performance will start to significantly degrade in terms of heat exchanger performance. 

In many practical cases it is not strictly necessary to analytically evaluate the above integrals since 

if the integrand is defined in terms of the marginal distributions and copula density then the 

integrand may be simply and conveniently numerically evaluated using a Monte Carlo integration 

as discussed by Press et al.[132]. The evaluation of a univariate integral will also feature later in 

this chapter when we demonstrate how to mathematically calculate the expected value and 

associated variance for the nanofluid thermal conductivity in terms of the conditional distributions 

constructed from the various bivariate copula families of the meta-parameters and which may also 

in principle be calculated with a Monte Carlo integration. 

 

The mathematical modelling approach to calculate the effective thermal conductivity or viscosity 

from a joint PDF constructed in terms of a copula has been mathematically specified from the 

preceding analysis however a related and remaining challenge for completeness is how to sample 

from the underlying copula based joint PDF in order to for example perform further Monte Carlo 

simulations when estimating the uncertainty 𝑢(ℎ𝑐) of a convective heat transfer coefficient ℎ𝑐 
that uses the nanofluid as working fluid in for example a heat exchanger. In order to address this 

issue consider for simplicity a nanofluid model with three meta-parameters such that 𝑘𝑛𝑓 =

fnc. (𝑇, 𝜙, 𝑑𝑝)  where it is assumed that the meta-parameters are random variables that are 

statistically independent of each other i.e. the scientist/engineer that produces the nanofluid in the 

laboratory has the freedom to source a particular grade and type of nanoparticle from a 

supplier/manufacturer which then specifies the average nanoparticle diameter 𝑑𝑝 , the 

scientist/engineer has the freedom to mix the base fluid and nanoparticles with appropriate mass 

or volume fractions which then specifies the nanoparticle volume concentration 𝜙, and finally the 

scientist/engineer has the freedom the operate the particular machinery, equipment or 

instrumentation that uses the nanofluid at an appropriate temperature which then specifies the 

temperature 𝑇. Under these circumstances the meta-parameters are fixed as 𝑥1
∗ = 𝑇, 𝑥2

∗ = 𝜙 and 

𝑥3
∗ = 𝑑𝑝 so that the remaining parameter 𝑥4 in the joint PDF 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) which represents 

the random variable for the effective thermal conductivity is now a free variable. For convenience 

let 𝑥4 = 𝜉  so that the joint PDF simplifies to a one dimensional function 𝑓(𝜉)  which after 

appropriate normalization for statistical consistency for a PDF such that ∫
∞

−∞
𝑓(𝜉)  d𝜉 may now 
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represent an equivalent probability density function 𝑔(𝜉) for the nanofluid thermal conductivity 

where 𝑔(𝜉) = [𝑓(𝜉)]/[max(𝑓(𝜉))]. The problem of sampling random variables 𝜉 from a PDF 

𝑔(𝜉) may be solved by generating a random variable 𝜌  from a standard rectangular normal 

distribution 𝑅[0,1] i.e. 𝜌~𝑅[0,1] and then solving the integral equation 

 

𝜉 ← 𝜌 = ∫
𝜉

−∞
𝑓(𝜂) d𝜂  (3.118) 

 

The generation of the statistical sampling scheme as indicated above uses the cumulative 

distribution function 𝐹(𝜉) = ∫
𝜉

−∞
𝑓(𝜂) d𝜂 where 𝜂 is a dummy variable and not the probability 

density function 𝑓(𝜉) due to the fact that the CDF is already naturally normalized. We recall that 

a univariate PDF will in general have a Gaussian or bell-shaped curve, with appropriate skewness 

and/or asymmetry deviations from a pure Gaussian distribution, so that even if 𝑓(𝜉) is further 

scaled such that 0 ≤ 𝑓(𝜉) ≤ 1 and we attempt to solve for 𝜌 = 𝑓(𝜉) that this would potentially 

introduce systematic or biased errors since we would in general have to specify “which side of the 

Gaussian curve” to search for a solution of 𝜌 = 𝑓(𝜉). The use of the cumulative distribution 

function 𝐹(𝜉) completely avoids this issue since it is unimodal so that there is always a unique 

solution to 𝜌 = 𝐹(𝜉)  and is considered the correct mathematical statistical technique to 

consistently and accurately sample from arbitrary statistical distributions. An illustration of the 

sampling scheme is shown in Figure 3.16 for an arbitrary probability density function (PDF) and 

its corresponding cumulative distribution function (CDF).  

 

 

 

 
Figure 3-16 Illustration of proposed statistical sampling scheme for a nanofluid’s thermophysical property from an equivalent 

univariate PDF obtained from a copula based joint PDF of the nanofluid’s respective thermophysical property 
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In this example the domain of the PDF for the thermal conductivity is 𝜉min ≤ 𝜉 ≤ 𝜉max where 𝜉 

is a random variable for the thermal conductivity and for example we assume that 𝜉min =
0.679 W m−1 K−1 and 𝜉max = 0.753 W m

−1 K−1 for example only. If we scale the PDF 

such that 0 ≤ 𝑓(𝜉) ≤ 1 and then attempt to solve the equation 𝜌 = 𝑓(𝜉) for the corresponding 

value of the random variable 𝜉 it is observed that the value of the solution of 𝜉 will technically 

depend whether we searched “on the left” or “on the right” which is not statistically rigorous and 

mathematically inconsistent. On the other hand the CDF formally defined as 𝐹(𝜉) =

∫
𝜉

−∞
𝑓(𝜉)  d𝜉 regardless of the magnitude of 𝜉, which may be a thermal conductivity in units of 

[W  m−1  K−1] or an absolute viscosity in units of [mPa s], is always by definition scaled 

such that 0 ≤ 𝐹(𝜉) ≤ 1 ∀ 𝜉 ∈ [𝜉min, 𝜉max] and will therefore always result in a statistically 

correctly and mathematically consistent value when sampling from an arbitrary probability density 

function. As a result if the various meta-parameters have specified values our mathematical model 

for a particular nanofluid property such as an effective thermal conductivity or an effective 

viscosity which is constructed in terms of copulas then reduces to a mathematical expression for 

the probability density function of the respective nanofluid property. 

 

The nanofluid mathematical modelling approach in this research investigation is a low dimensional 

multivariate problem for conceptual simplicity so that the joint PDF may be readily constructed in 

terms of a copula mathematical model from known meta-parameter multivariate experimental data 

points, although the copula model may in principle be extended to arbitarily high dimensions if 

additional meta-parameters are known. In order to validate & verify the predictions for the 

mathematical model a simple normalized error 𝐸𝑛 approach may be utilized where 

 

𝐸𝑛 =
𝑦𝑎−𝑦𝑝

√𝑈2(𝑦𝑎)+𝑈2(𝑦𝑝)
  

(3.119) 

 

where 𝑦𝑎 is the actual effective thermal conductivity or effective viscosity from the database, 𝑦𝑝 

is the predicted value using our mathematical model, and 𝑈(𝑦𝑎) and 𝑈(𝑦𝑝) are the associated 

expanded uncertainties for 𝑦𝑎 and 𝑦𝑝 respectively. The comparison between actual and predicted 

results can also be inspected for consistency using multivariate quantile-quantile plots as discussed 

by Dhar et al.[194]. 

 

In order to construct the copula model for the effective thermal conductivity 𝑘𝑒𝑓𝑓(𝑇, 𝑑𝑝, 𝜙) the 

clustering of the multi-dimensional data-points using the results in Figure 3.17, Figure 3.18 and 

Figure 3.19 is first visualized in Figure 3.20 from which restrictions to the model’s domain may 

be determined.  

 

Based on the clustering of the data points as shown in Figure 3.20 a restricted domain for 

constructing the model is specified as   

 

0.5 ≤ 𝜙/[%] ≤ 10
293.15 ≤ 𝑇/[K] ≤ 333.15
10 ≤ 𝑑𝑝/[nm] ≤ 75

}     (3.120) 
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Figure 3-17 Illustration of typical T and 𝑑𝑝 limits from thermal conductivity database 

   

 
Figure 3-18 Illustration of typical T and ϕ limits from thermal conductivity database 
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Figure 3-19 Illustration of typical ϕ and 𝑑𝑝 limits from thermal conductivity database 

  

 
Figure 3-20 Illustration of visualization of clustering effects of T, ϕ and 𝑑𝑝 experimental data points 
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The above choice of domain is to ensure that there are an adequate number of points in the ℝ3 

space of the underlying meta-parameters so that the meta-parameters are “clustered” near each 

other in order to avoid a higher dimensional “leverage” effect where inaccuracies occur if there 

are too few points to adequately perform predictions in certain regions of the ℝ3 domain. An 

example of this “leverage” effect is if predictions for 𝑘𝑒𝑓𝑓 are performed at for example a point 

𝐱 = [348 K, 150 nm, 10%]T ∈ ℝ3 since the space in this neighbourhood is relatively “empty”.  

 

This numerical strategy of limiting the domain to regions of the meta-parameter hyper-space 

ℝ(𝑑−1)  which are sufficiently populated with known data-points therefore implicitly avoids 

inaccurate extrapolations to points that are not physically plausible such as for example nanofluid 

data points for 𝜙/% > 20 or 𝑇/[K] > 400 which are not experimentally feasible. In the event 

that the model was defined in terms of 𝑛 ≥ 4 meta-parameters, for example if we constructed a 

model such that 𝑘𝑒𝑓𝑓 = 𝑓(𝐱)  where 𝐱 = [𝑇, 𝑑𝑝, 𝜙, pH,𝒜]
T  where the nanofluid pH and 

agglomeration size 𝒜  were also considered, then a three-dimensional visualization of the 

clustering effect would not be possible and we would either have to plot a set of two dimensional 

visualizations 𝑥1/𝑥2 , 𝑥1/𝑥3 , 𝑥1/𝑥4 , 𝑥2/𝑥3 , 𝑥2/𝑥4  and 𝑥3/𝑥4  or utilize alternative algebraic 

techniques in order to determine an appropriate domain for the meta-parameter 𝐱. 

 

Although the copulas may be manually constructed in terms of building up the marginal 

distributions in terms of extended lambda distributions and using custom specified pair copula 

constructions (PCC’s) with parametric schemes or non-parametric schemes as previously outlined 

it is generally more convenient and efficient to use the available professionally written statistical 

software.  

 

Presently the most well known and widely utilized approach is the R package CDVine developed 

by Brechmann & Schepsmeier [188] which allows for constructing either C-vines or D-vines. In 

order to utilize the CDVine package after first selecting a convenient domain for 𝑇, 𝜙 and 𝑑𝑝 we 

extract all the multi-dimensional data points from the thermal conductivity database that reside 

within this domain and then save 90% of these points in a multidimensional set 𝐷𝑒 for building 

up a new experimental dataset and reserve the remaining 10%  of the points in another 

multidimensional set 𝐷𝑡 for testing the accuracy of our model predictions.  

 

Using the representative standard uncertainties for each of the components in 𝐷𝑒 we then use a 

Monte Carlo scheme to generate sampled statistical draws from 𝐷𝑒 in order to build up a larger 

dataset that takes into account the statistical uncertainties to produce the Monte Carlo data for 𝐱 =
[𝑘𝑛𝑓 , 𝑇, 𝜙, 𝑑𝑝]

T in natural physical units. The statistical data from the Monte Carlo simulation may 

then be used to construct the copula model where the mathematical modelling process is 

conceptually illustrated in Figure 3.21.  

 

Motivated by an earlier dimensional group approach originally developed by Sharifpur et al.[46] 

who generated dimensional groups for the meta-parameters it is considered beneficial to modify 

the Monte Carlo data 𝐱 by constructing the equivalent distribution functions for each component 

𝑥1, 𝑥2, 𝑥3, 𝑥4 as per the recommendations of Brechmann et al.[188]. This implementation may be 

performed using the discrete form of the univariate distribution function as documented in the 

GUM Supplement 1 by the BIPM [195].  
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Figure 3-21 Conceptual illustration of mathematical modelling process to generate a copula model of nanofluid thermophysical 

properties for a four dimensional model using three meta-parameters 

  

   

The results for the distribution functions for the random variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 from the Monte 

Carlo simulation obtained from the database are analysed  from where we comment that the 

distribution curves for the volume fraction 𝜙 and nanoparticle diameter 𝑑𝑝  are not “smooth” 

since the curves are based on actual physical experimental data reported in the literature which 

tended to use discrete values of the mass fractions 𝜔 (which we converted into equivalent volume 

fractions 𝜙) usually every 5% from 0% to 50% and where much of the nanoparticles used the 

existing manufacturer nanoparticle diameters such as 30 nm i.e. the meta-parameter values were 

discrete values of practical experimental quantities due to physical laboratory constraints. The 

results in this figure are scaled for easier visualization although natural units of 𝑥1/
[W  m−1  K−1], 𝑥2/[K], 𝑥3  which is dimensionless and not expressed in percentage, and 

𝑥4/[m] and not units of nanometres are utilized, however it should be noted that the “copula data” 

values of 𝑢1, 𝑢2, 𝑢3, 𝑢4  are all dimensionless and all scaled by definition such that 0 ≤
𝑢1, 𝑢2, 𝑢3, 𝑢4 ≤ 1 so the physical units are not an issue in the copula fitting process since the 

corresponding physical units can always be recovered from the 𝑢𝑖 = 𝐹(𝑥𝑖), 𝑖 = 1,2,3,4 marginal 

distribution relations which can either be approximated with an analytical expression such as for 

example an extended lambda distribution or with numerical interpolation schemes since the 𝑥𝑖 
and 𝐹(𝑥𝑖) data-points are univariate and unimodal curves. 

 

For simplicity a kernal density estimate (KDE) approach may be utilized in order to work out the 

corresponding marginal probability density functions 𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3), 𝑓(𝑥4) for which from 
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the data obtained in the literature review results in constructed PDF’s from which it may be 

observed that although the marginal PDF’s for the thermal conductivity 𝑓(𝑘𝑛𝑓) and temperature 

𝑓(𝑇) can obviously be modelled with analytical expressions such as for example the extended 

lambda distributions that for the present dataset that the concentration 𝑓(𝜙) and size distribution 

𝑓(𝑑𝑝)  PDF’s are too complicated to be adequately analytically with simple mathematical 

formulae. As a result a simple approach to mathematically capture the marginal distributions is to 

export the kernel density estimate data to a file which may then be subsequently accessed for 

univariate interpolations where the KDE data ere obtained with the built-in R function for 

calculating a KDE of the various marginal PDF’s as indicated below: 

 

  

pdfdata <- read.table("D:/University of Pretoria/MODELLING/ 

CONDUCTIVITY/pdfMonteCarlo.txt", header = FALSE)  

pdfxyresults <- density(pdfdata, bw = "nrd0", adjust = 1, kernel = c("gaussian"), weights = 

NULL, window = kernel, give.Rkern = FALSE,n = 250)}  

xvalues <- pdfxyresults$x  

yvalues <- pdfxyresults$y  

write.csv(xvalues, file = "D:/University of Pretoria/MODELLING/ 

CONDUCTIVITY/densityxvalues.csv")  

write.csv(yvalues, file = "D:/University of Pretoria/MODELLING/ 

CONDUCTIVITY/densityyvalues.csv")  

 

 

In the above fragment of R computer code a simple pdfMonteCarlo.txt file that contains a single 

column of the Monte Carlo data is loaded into the R workspace and after some computer coding 

implementation a total of 𝑛 = 250 data-points is generated and which is then saved to file. As a 

result the marginal probability density functions 𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3), 𝑓(𝑥4)  may then 

conveniently and simply evaluated with for example univariate spline routines. To avoid 

complicated scaling factors physical SI units should be utilized unless otherwise indicated since 

the four-dimensional joint PDF must formally satisfy the normalization condition 

 

∫
ℝ4
𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 1  (3.121) 

 

As a results the corresponding distribution functions 𝐹(𝑥1), 𝐹(𝑥2), 𝐹(𝑥3), 𝐹(𝑥4) as illustrated in 

Figure 3.22, Figure 3.23, Figure 3.24 and Figure 3.25 respectively may then be used to calculate 

the equivalent copula coordinate values 𝑢1, 𝑢2, 𝑢3, 𝑢4 where the corresponding probability density 

functions are illustrated in Figure 3.26, Figure 3.27, Figure 3.28 and Figure 3.29 respectively.  

 

Since the cumulative distributive function is unimodal by definition the equivalent copula value is 

simply specified as 𝑢𝑗 = 𝐹(𝑥𝑗), 𝑗 = 1,2,3,4 so that the coordinates 𝑥1, 𝑥2, 𝑥3, 𝑥4  are naturally 

scaled to reside in the hyper-cube [0,1] × [0,1] × [0,1] × [0,1] as per the recommended technical 

guidelines specified by Brechmann et al.in order to conveniently utilize the CDvine software 

package. 
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Figure 3-22 Illustration of marginal distribution function 𝐹(𝑥1) of nanofluid conductivity for thermal conductivity database 

 

 

 
Figure 3-23 Illustration of marginal distribution function 𝐹(𝑥2) of nanofluid temperature for thermal conductivity database 
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Figure 3-24 Illustration of marginal distribution function 𝐹(𝑥3) of nanofluid concentration for thermal conductivity database 

   

 
Figure 3-25 Illustration of marginal distribution function 𝐹(𝑥4) of nanoparticle size for thermal conductivity database 
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Figure 3-26 Illustration of marginal probability density function 𝑓(𝑥1) using a kernel density estimate approach for the Monte 

Carlo simulations of random variable 𝑥1 for thermal conductivity database 

    

 
Figure 3-27 Illustration of marginal probability density function 𝑓(𝑥2) using a kernel density estimate approach for the Monte 

Carlo simulations of random variable 𝑥2 for thermal conductivity database 
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Figure 3-28 Illustration of marginal probability density function 𝑓(𝑥3) using a kernel density estimate approach for the Monte 

Carlo simulations of random variable 𝑥3 for thermal conductivity database 

  

   

 
Figure 3-29 Illustration of marginal probability density function 𝑓(𝑥4) using a kernel density estimate approach for the Monte 

Carlo simulations of random variable 𝑥4 for thermal conductivity database 
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The next step is to select a tree structure for a C-vine scheme for our 𝑑 = 4 dataset however this 

choice whilst unique in the special case that 𝑑 = 3  is however not unique if 𝑑 ≥ 4 . A 

combinatorial analysis may be used to demonstrate that since there are in general 
𝑑(𝑑−1)

2
 different 

bivariate copula densities that must be selected as previously discussed.  

 

The selection of the particular tree structure for a C-vine would in general depend on the either the 

intuition of the analyst, additional statistical hypothesis testing, or a combination of these two 

approaches. A selection of potential vine based copula models based on a combination of physical 

intuition and a mathematical modelling hypothesis is illustrated in Figure 3.30. 

 

In general as per the the discussion by Nagler et al.[123] the tree structure of C-vines usually 

referred to as a R-vine is constructed in such a way as to satisfy the following general specifications 

for mathematical consistency such that: 

 

 

1. For a 𝑑-dimensional random variable 𝐱 = [𝑥1, … , 𝑥𝑑]
T the R-vine is constructed as a 

set of trees 𝑇𝑚 = (𝑉𝑚, 𝐸𝑚) where 𝑚 = 𝑑 − 1 is the total number of trees where 𝑉𝑚 is 

a set of vertices and 𝐸𝑚 a corresponding set of edges  

2. 𝑇1 is an initial tree with nodes 𝑉1 = {1,… , 𝑑} and edges 𝐸1 where the random 

variables are chosen in any convenient order (in our model we set node 1 as the 

nanofluid thermal conductivity or viscosity for convenience)  

3. For 𝑚 ≥ 2 the tree 𝑇𝑚 has nodes 𝑉𝑚 = 𝐸𝑚−1 and edges 𝐸𝑚  

4. Whenever two nodes is a tree 𝑇𝑚+1 are joined by some edge then the corresponding 

edges in the previous tree 𝑇𝑚  must then share a common node for mathematical 

consistency 

 

  

Due to the underlying statistical database in this investigation which contains the Monte Carlo data 

of four random variables i.e. 𝐱 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
T the dimension of the data is 𝑑 = 4 as as per the 

standard methodology of constructing C-vines there will then be 𝑚 = 𝑑 − 1 = 3 tree structures 

associated with the copula model.  

 

Using the approach of Brechmann & Schepsmeier [188] the corresponding copula density for 

example in Model 1 as specified in Figure 3.30 in order to demonstrate the general principle is 

then calculated as 

 

𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝑐1,2(𝑢1, 𝑢2) × 𝑐1,3(𝑢1, 𝑢3) × 𝑐1,4(𝑢1, 𝑢4) 
           ×  𝑐2,3|1(𝑢2|1, 𝑢3|1) × 𝑐3,4|1(𝑢3|1, 𝑢4|1) 

           × 𝑐2,4|1,3(𝑢2|1,3, 𝑢4|1,3) 
(3.122) 

 

where the notation of for example 𝐶2,3|1 means that this is the bivariate copula function for the 

variables 𝑥2 and 𝑥3 that is independent of the variable 𝑥1 i.e. this is a conditional distribution 

function. Slightly different expressions for the copula density 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4)  will occur 

depending on how the analyst opted to construct the tree structure for the copula model. 
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Figure 3-30 Illustration of different possible copula models constructed in terms of simplified R-vine tree structures for nanofluid 

thermophysical properties 

   

 

For consistency in the analysis the lower case 𝑓(𝑥) will signify a probability density function, an 

upper case 𝐹(𝑥) will signify a cumulative distribution function for the PDF 𝑓(𝑥) i.e. 𝐹(𝑥) =

∫
𝑥

−∞
𝑓(𝜉)  d𝜉 , an upper case 𝐶(𝑥, 𝑦)  will denote the bivariate copula function for random 

variables 𝑥 and 𝑦, and a lower case 𝑐(𝑢, 𝑣) will signify a corresponding copula density function. 

The corresponding joint PDF may then be calculated in the general case for a four-dimensional 

model as 

 

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓1(𝑥1) × 𝑓2(𝑥2) × 𝑓3(𝑥3) × 𝑓4(𝑥4) × 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) (3.123) 
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where for the specified scheme in Model 1 as previously illustrated 𝑓𝑗(𝑥𝑗), 𝑗 = 1,2,3,4 are the 

corresponding marginal distributions of the random variable 𝑥𝑗 , 𝑗 = 1,2,3,4 and 𝑢𝑗 , 𝑗 = 1,2,3,4 

are the corresponding cumulative distribution functions 𝐹(𝑥𝑗) as previously discussed where 0 ≤

𝑢𝑗 ≤ 1  by definition. From this equation it is seen that the construction of a pair copula 

construction (PCC) is critically dependent on a knowledge of the various conditional distributions 

terms such as 𝑢2|1. In certain texts such as that by Nagler et al.[123] the definition of conditional 

distribution is occasionally written as 𝑢𝑗𝑒|𝐷𝑒: = 𝐶𝑗𝑒|𝐷𝑒(𝑢𝑗𝑒|𝐮𝐷𝑒) to simplify the notation however a 

mechanism of calculating the conditional distributions is still necessary for completeness. The 

mathematical trick used in copula modelling was originally discussed by Brechmann et al.[188] 

who explains the relevant technical implementation details where 𝑣𝑗  is an arbitrary component of 

the vector 𝐯 of the conditional random variables and 𝐯−𝑗 is a corresponding vector defined as 

𝐯\{𝑣𝑗} i.e. the vector that is made up of 𝐯 but which excludes the element 𝑣𝑗 . Using this scheme 

the mathematical trick in the field of copulas for calculating the conditional distribution is to then 

calculate the conditional distribution constructed through a sequential iteration scheme such that 

the univariate/multivariate conditional distribution is of the form 

 

𝐹(𝑥|𝐯) =
∂

∂𝐹(𝑣𝑗|𝐯−𝑗)
[𝐶𝑥𝑣𝑗|𝐯−𝑗(𝐹(𝑥|𝐯−𝑗), 𝐹(𝑣𝑗|𝐯−𝑗))] (3.124) 

 

which is conveniently implemented in the CDVine software library. 

 

The above univariate/multivariate conditional distribution 𝐹(𝑥|𝐯) i.e. where it is desired to find 

the distribution function for some univariate random variable 𝑥, say for example to find a thermal 

conductivity, given a known multivariate random variable, say for example 𝐯 = [𝑥2, 𝑥3]
T for an 

experiment with a given bath temperature such as 𝑥2 = 𝑇𝑏𝑎𝑡ℎ = 310 K and a known nanoparticle 

diameter such as 𝑥3 = 𝑑𝑝 = 37 nm, as discussed is sequentially calculated through an iteration 

process of the various copula functions that were constructed in the previous trees for the particular 

R-, C- or D-vines that were used to build up the overall copula model. In the special case of a 

univariate/univariate conditional distribution 𝐹(𝑥|𝑣) the formula reduces to 

 

𝐹(𝑥|𝑣) =
∂𝐶𝑥𝑣(𝐹(𝑥),𝐹(𝑣))

∂𝐹(𝑣)
  (3.125) 

 

In order to illustrate how this formula works consider that we wish to calculate for example 

𝐹(𝑥1|𝑥2) where according to our previous model nanofluid thermal conductivity model we have 

𝑘𝑛𝑓 = fnc. (𝑇, 𝜙, 𝑑𝑝) so that the joint PDF is 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) where 𝑥1 = 𝑘𝑛𝑓, 𝑥2 = 𝑇, 𝑥3 = 𝜙 

and 𝑥4 = 𝑑𝑝 respectively. To calculate the conditional distribution we first work out 𝐹(𝑥1) from 

the statistical data and set it to say 𝑢 = 𝐹(𝑥1) noting that now 0 ≤ 𝑢 ≤ 1 by definition, and 

similarly we work out say 𝑣 = 𝐹(𝑥2) where again 0 ≤ 𝑣 ≤ 1. Now since two random variables 

are considered it is possible to simply construct the bivariate copula function 𝐶(𝑢, 𝑣) using any 

convenient and appropriate copula family such as a bivariate Gaussian or a bivariate Student’s 𝑡-
distribution, so that the conditional distribution is simply calculated as the partial derivative 

𝐹(𝑥1|𝑥2) =
∂𝐶

∂𝑣
 which can either be calculated analytically if the bivariate copula has a simple 

formula or numerically using for example any convenient finite difference scheme. 



141 

 

In practical terms this means that conditional distributions in tree 𝑇2 are defined in terms of the 

normal copula functions in tree 𝑇1, then conditional distributions in tree 𝑇3 are in turn defined in 

terms of functions from tree 𝑇2 (which are in turn defined in terms of functions from tree 𝑇1) and 

so on up to the final tree 𝑇𝑚 where 𝑚 = 𝑑 − 1. Whilst an analyst may in principle write their own 

computer code to implement these mathematical techniques it is usually easier to use the existing 

statistical functions in software such as R which at its base level is written in ANSI compliant C 

for fast compilation and performance.  

 

As a result the main challenge in copula modelling is to select an appropriate tree structure based 

on physical/mathematical intuition and/or statistical hypothesis testing, and then in the appropriate 

selection of bivariate copula models in each of the constituent “building blocks” used to construct 

the higher dimensional copula model. The selection of an appropriate bivariate copula for each of 

the underlying “building blocks” whilst conceptually simple is not a trivial undertaking if 

attempted manually through for example graphical comparisons of potential trial copulas since 

there are almost 40 different choices of bivariate copula families and since in the four dimensional 

case with 𝑑 = 4 there are 
𝑑(𝑑−1)

2
= 6 different bivariate copula building blocks there is then a 

need to select from a total of 40 × 6 = 240 possible bivariate copula families, which is why our 

recommended approach for constructing the “best” copula model is through the use of the Cdvine 

software library. 

 

Due to the fact that the choice of tree structure is not unique for higher dimensional models there 

is then a variety of possible different combinations of models as previously illustrated in Figure 

3.30 and of which each possible tree structure would have to be evaluated based on a combination 

of physical and mathematical criteria since not all potential combinations would necessarily be 

physically meaningful even if there are statistical correlations that are present. This issue is also a 

potential modelling challenge in for example some of the artificial intelligence (AI) and artificial 

neural network (ANN) approaches that were considered in the previous chapter due to the 

distinction between correlation and causality the resolution of which at least in the field of 

nanofluids remains an ongoing concern in the absence of a comprehensive physical theory and 

experimentally consistent high quality measurement data. The copula model construction may 

therefore be simplified using a conventional ‘star-shaped’ C-vine as illustrated in Figure 3.31. 

 

 
Figure 3-31 Illustration of four dimensional C-vine tree structures to model a four dimensional joint probability density function 
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As a result the joint PDF is then simply calculated as 

 

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓1(𝑥1) × 𝑓2(𝑥2) × 𝑓3(𝑥3) × 𝑓4(𝑥4) × 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) (3.126) 

 

where the corresponding copula density for a conventional C-vine is then 

 

𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝑐1,2 × 𝑐1,3 × 𝑐1,4 × 𝑐2,3|1 × 𝑐2,4|1 × 𝑐3,4|1,2 (3.127) 

 

The above standard C-vine structure for a four dimensional copula is not necessarily as restrictive 

as it may seem as the four random variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 can in turn be ordered in for example 

six different ways as summarized in Table 3.6 by simply changing the order of the columns in the 

Monte Carlo statistical data from a 𝑁 × 6 matrix where each column reports on each random 

variable. 

 

 

   
Copula Model  Ordering Scheme of Tree Nodes  

I  𝑥1 = 𝑘𝑛𝑓, 𝑥2 = 𝑇, 𝑥3 = 𝜙, 𝑥4 = 𝑑𝑝  

II  𝑥1 = 𝑘𝑛𝑓, 𝑥2 = 𝜙, 𝑥3 = 𝑑𝑝, 𝑥4 = 𝑇  

III  𝑥1 = 𝑘𝑛𝑓, 𝑥2 = 𝑑𝑝, 𝑥3 = 𝑇, 𝑥4 = 𝜙  

IV  𝑥1 = 𝑘𝑛𝑓, 𝑥2 = 𝑇, 𝑥3 = 𝑑𝑝, 𝑥4 = 𝜙  

V  𝑥1 = 𝑘𝑛𝑓, 𝑥2 = 𝜙, 𝑥3 = 𝑇, 𝑥4 = 𝑑𝑝  

VI  𝑥1 = 𝑘𝑛𝑓, 𝑥2 = 𝑑𝑝, 𝑥3 = 𝜙, 𝑥4 = 𝑇  

Table 3. 6 Selection of different possible four dimensional copula models based on a reordering of the tree nodes 

 

 

In this dissertation as previously discussed in the literature review we restrict the analysis to three 

meta-parameters since this is considered physically meaningful for a nanofluid thermophysical 

property and there is an absence of verified and complete experimental information of other 

potential meta-parameters. As a result to avoid unnecessary complications with recursive 

definitions of the conditional distribution terms when constructing the copula since a low order 

copula has been utilized explicit formulae are feasible when building a four dimensional copula. 

The final results for a four dimensional copula density as reported by Barthel et al.[197] who 

investigated D-vines using h-functions defined as 

 

ℎ𝑖|𝑘(𝑢𝑖|𝑢𝑘) =
∂

∂𝑢𝑘
ℂ𝑖𝑘(𝑢𝑖, 𝑢𝑘)  (3.128) 

ℎ𝑘|𝑖(𝑢𝑘|𝑢𝑖) =
∂

∂𝑢𝑖
ℂ𝑖𝑘(𝑢𝑖 , 𝑢𝑘)  (3.129) 

ℎ𝑖|𝑗;𝑘(𝑢𝑖|𝑢𝑗) =
∂

∂𝑢𝑗
ℂ𝑖𝑗;𝑘(𝑢𝑖, 𝑢𝑗)  (3.130) 

ℎ𝑗|𝑖;𝑘(𝑢𝑗|𝑢𝑖) =
∂

∂𝑢𝑖
ℂ𝑖𝑗;𝑘(𝑢𝑖, 𝑢𝑗)  (3.131) 

 

When these explicit formulae are utilized it is then necessary to fit six bivariate copula for a 

conventional C-vine in standard form as summarized in Table 3.7 which provides explicit 

expressions for the first and second variables for each of the six copula building blocks.  
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  Tree  Bivariate copula  First variable  Second variable  

𝑇0  ℂ12(𝑢1, 𝑢2)  𝑣1 = 𝑢1  𝑣2 = 𝑢2  

𝑇0  ℂ13(𝑢1, 𝑢3)  𝑣1 = 𝑢1  𝑣2 = 𝑢3  

𝑇0  ℂ14(𝑢1, 𝑢4)  𝑣1 = 𝑢1  𝑣2 = 𝑢4  

𝑇1  𝑐12  𝑣1 = 𝑢1  𝑣2 = 𝑢2  

𝑇1  𝑐13  𝑣1 = 𝑢1  𝑣2 = 𝑢3  

𝑇1  𝑐14  𝑣1 = 𝑢1  𝑣2 = 𝑢4  

𝑇2  𝑐23|1  𝑣1 =
∂ℂ12(𝑢1,𝑢2)

∂𝑢1
  𝑣2 =

∂ℂ13(𝑢1,𝑢3)

∂𝑢1
  

𝑇2  𝑐24|1  𝑣1 =
∂ℂ12(𝑢1,𝑢2)

∂𝑢1
  𝑣2 =

∂ℂ14(𝑢1,𝑢4)

∂𝑢1
  

𝑇3  𝑐34|12   𝑣1 =
∂ℂ(𝑎,𝑏)

∂𝑏
, 𝑎 =

ℂ13(𝑢1,𝑢3)

∂𝑢1
, 𝑏 =

ℂ12(𝑢1,𝑢2)

∂𝑢1
  

𝑣2 =
∂ℂ(𝑎,𝑏)

∂𝑏
, 𝑎 =

∂ℂ14(𝑢1,𝑢4)

∂𝑢1
, 𝑏 =

∂ℂ12(𝑢1,𝑢2)

∂𝑢1
  

Table 3. 7 Illustration of the construction of a set of bivariate copula for building a four dimensional C-vine copula density 

𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝑐12 × 𝑐13 × 𝑐14 × 𝑐23|1 × 𝑐24|1 × 𝑐34|12  

 

For convenience when the copula mathematical is constructed the built in conditional distribution 

function from the CDVine software library is utilized which takes the form for 𝑢2|1 as 

 

 BiCopHfunc(u1val, u2val, family=C12family, par=C12theta1, par=C12theta2)$hfunc1  

 

In the above computer code fragment C12family is a numerical term that specified the bivariate 

copula family for 𝐶(𝑢1, 𝑢2), par is a numerical value of the 𝜃1 parameter for copula 𝐶(𝑢1, 𝑢2), 
par2 is a numerical value of the 𝜃2 parameter for copula 𝐶(𝑢1, 𝑢2), and u1val and u2val are the 

specified values for which the conditional distribution must be evaluated where the $hfunc1 

function-call extracts the corresponding partial derivative. Based on the preceding mathematical 

modelling analysis that we have performed the algorithm to build and construct a copula 

mathematical model for the nanofluid effective thermal conductivity may then be summarized as 

indicated in Table 3.8.  

 

The mathematical modelling of the nanofluid thermal conductivity using a copula in this algorithm 

after suitable manipulation is now reduced to the standard statistical form and we may then 

conveniently and simply use the existing CDvine software library to calculate the six 

corresponding copula families and their associated parameters. The computer code to generate the 

mathematical model in R using the CDVine software library is then: 

  

library(CDVine)  

udata <- read.table("D:/University of Pretoria/MODELLING/ CONDUCTIVITY/Udata.txt", 

header = FALSE)  

CV <- CDVineCopSelect(data = udata, familyset = NA, type = "CVine", selectioncrit = "AIC") 

optimized_families <- CV$family parameter_1 <- CV\$par parameter_2 <- CV$par2  

 

When this computer code is implemented using the 𝑁 = 4770 Monte Carlo data-points for the 

thermal conductivity it then produces the results by typing the commands: 

  

 optimized_families print(parameter_1, digits = 10) print(parameter_2, digits = 10)  
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Step  Implementation  

I  Load the physical statistical database information as a 𝑁 × 4 matrix into an appropriate 

computational workspace such that the columns of the data are ordered as 𝑘𝑛𝑓, 𝑇, 𝜙,𝑑𝑝   

II  Extract the physical data into univariate vectors such that 𝑝1 = [(𝑘𝑛𝑓)1, … , (𝑘𝑛𝑓)𝑁]
T, 𝑝2 =

[𝑇1, … , 𝑇𝑁]
T, 𝑝3 = [𝜙1, … , 𝜙𝑁]

T, and 𝑝4 = [(𝑑𝑝)1, … , (𝑑𝑝)𝑁]
T 

III  Convert the physical data into an equivalent copula data by constructing univariate distribution 

functions such that the random variables are 𝑥1 = 𝐹1(𝑝1), 𝑥2 = 𝐹2(𝑝2), 𝑥3 = 𝐹3(𝑝3) and 𝑥4 =
𝐹4(𝑝4) using the GUM Supplement 2   

IV  Analytically specify the marginal distributions as 𝑓𝑖(𝑥𝑖) = {𝑐𝑖[𝑎𝑖𝜌
(𝑏𝑖−1) + (1 − 𝜌)(𝑏𝑖−1)]}

−1
 for 

𝑖 = 1,2,3,4 using the previously constructed extended lambda parameters where 𝜌 is 

numerically solved from the equation 𝑥𝑖 = 𝑄𝑖(𝜌) where 𝑄𝑖(𝜌) = 𝑑𝑖 + (𝑐𝑖/𝑏𝑖)[𝑎𝑖𝜌
𝑏𝑖 − (1 −

𝜌)𝑏𝑖 + 1 − 𝑎𝑖] iff 𝑏𝑖 ≠ 0 whilst 𝑄𝑖(𝜌) = 𝑑𝑖 + 𝑐𝑖[𝑎𝑖ln(𝜌) − ln(1 − 𝜌)] iff 𝑏𝑖 = 0. 

Alternately if the data is too “messy” save the data as a 𝑁 × 8 matrix x1u1x2u2x3u3x4u4 so 

that univariate splines can simply and easily interpolate the relevant distributions 𝑢𝑖 = 𝐹(𝑥𝑖). 
V  Calculate the appropriate families and respective family parameter(s) for the bivariate copulas 

𝑐1,2, 𝑐1,3, 𝑐1,4, 𝑐2,3|1, 𝑐2,4|1, 𝑐3,4|1,2 for a four-dimensional C-vine of 𝑥1, 𝑥2, 𝑥3, 𝑥4 

VII  Specify the copula density as 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝑐1,2 × 𝑐1,3 × 𝑐1,4 × 𝑐2,3|1 × 𝑐3,4|1 × 𝑐2,4|3  

VIII  Calculate the joint PDF as 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓1(𝑥1) × 𝑓2(𝑥2) × 𝑓3(𝑥3) × 𝑓4(𝑥4) ×
𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4)  

Table 3. 8 Algorithm implementation for constructing a copula mathematical model of a nanofluid effective thermal conductivity 

transformed joint probability density function 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) with 𝑥1 = 𝑘𝑛𝑓, 𝑥2 = 𝑇, 𝑥3 = 𝜙 and 𝑥4 = 𝑑𝑝 

  

 

The above commands then produces the following computer output to screen as indicated below: 

 

  

copula #   family   par   par2  

1  10   1.92082298   0.884453438  

2  1   0.336285905   0  

3  20   1.17843781   0.986786  

4  23   -0.214856871   0  

5  2   0.016404251   9.776683  

6  5   -0.774240094   0  

 

 

Referring to the user manual of the CDVine software library then produces the following extracted 

information: 

  

family #   family name  

1  BB8 copula (Frank-Joe)  

2  Gaussian copula  

3  Rotated BB8 copula (180∘ survival BB8)  

4  Rotated Clayton copula (90∘)  

5  Student 𝑡-copula  

6  Frank copula 
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Copula  Family  Parameters  

𝑐1,2(𝑢1, 𝑢2)  BB8 (Frank-Joe) / 

family # 10  
𝜃1 = 1.92082298 & 𝜃2 = 8.84453438𝐸 − 01  

𝑐1,3(𝑢1, 𝑢3)  Gaussian / family # 1  𝜃1 = 3.36285905 × 10−1 & 𝜃2 = 0  

𝑐1,4(𝑢1, 𝑢4)  Rotated BB8 (180∘ 
survival BB8) / family # 

20  

𝜃1 = 1.17843781 & 𝜃2 = 9.86785516 × 10−1  

𝑐2,3;1(𝑢2|1, 𝑢3|1)  Rotated Clayton (90∘) / 
family # 23  

𝜃1 = −2.14856871 × 10−1 & 𝜃2 = 0  

𝑐2,4;1(𝑢2|1, 𝑢4|1)  Student-𝑡 / family # 2  𝜃1 = 1.64042514 × 10−2 & 𝜃2 = 9.77668263  

𝑐3,4;1,2(𝑢3|1,2, 𝑢4|1,2)  Frank / family #5  𝜃1 = −7.74240094 × 10−1 & 𝜃2 = 0  

Table 3. 9 Summary of bivariate copulas for nanofluid effective thermal conductivity mathematical model constructed in terms of 

a conventional four-dimensional C-vine 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) 

 

 
Copula  Family  Parameters  

𝑐1,2(𝑢1, 𝑢2)  Rotated BB8 

(90∘) / family # 

30  

𝜃1 = −1.96692 & 𝜃2 = −0.93747  

𝑐1,3(𝑢1, 𝑢3)  Frank / family # 5  𝜃1 = 4.469618 & 𝜃2 = 0  

𝑐1,4(𝑢1, 𝑢4)  BB8 / family # 10  𝜃1 = 1.438957 & 𝜃2 = 0.953844  

𝑐2,3;1(𝑢2|1, 𝑢3|1)  BB8 / family # 10  𝜃1 = 1.890264 & 𝜃2 = 0.887141  

𝑐2,4;1(𝑢2|1, 𝑢4|1)  Frank / family # 5  𝜃1 = 0.657003 & 𝜃2 = 0  

𝑐3,4;1,2(𝑢3|1,2, 𝑢4|1,2)  Rotated BB8 

(180∘) / family # 

20  

𝜃1 = 2.684825 & 𝜃2 = 0.437763  

Table 3. 10 Summary of bivariate copulas for nanofluid effective viscosity mathematical model constructed in terms of a 

conventional four-dimensional C-vine 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) 

  

 

Using the above information the nanofluid effective thermal conductivity model is then 

conveniently analytically summarized in Table 3.9 where we have used the notation that the 

respective copula building blocks each have a parameter 𝜽 = [𝜃1, 𝜃2]
T  that captures the 

information of the outputs par and par2 from the CDVine program.  

 

In the case where the particular copula only has one parameter the second parameter is then just 

set to 𝜃2 = 0 for mathematical consistency and practical convenience when utilizing software 

implementations for reporting copula mathematical models. 

 

A similar process may also be performed in order to construct a copula mathematical model for 

the nanofluid effective viscosity from the database reported in the previous chapter. Qualitative 

results for the viscosity copula model are shown in the following figures for the marginal 

distributions in Figure 3.32, Figure 3.33, Figure 3.34 and Figure 3.35 respectively, whilst the 

corresponding kernal density estimates (KDE’s) of the corresponding marginal PDF’s are shown 

in Figure 3.36, Figure 3.37, Figure 3.38 and Figure 3.39 respectively, whilst the copula families 

and associated parameters for the vine based copula modelling scheme for the effective viscosity 

is summarized in Table 3.10. 
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Figure 3-32 Illustration of marginal distribution function 𝐹(𝑥1) of viscosity database Monte Carlo simulations of random variable 

𝑥1 of nanofluid effective viscosity results 

  

 

 

 

 

 
Figure 3-33 Illustration of marginal distribution function 𝐹(𝑥2) of viscosity database Monte Carlo simulations of random variable 

𝑥2 of nanofluid effective viscosity results 
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Figure 3-34 Illustration of marginal distribution function 𝐹(𝑥3) of viscosity database Monte Carlo simulations of random variable 

𝑥3 of nanofluid effective viscosity results 

 
Figure 3-35 Illustration of marginal distribution function 𝐹(𝑥4) of viscosity database Monte Carlo simulations of random variable 

𝑥4 of nanofluid effective viscosity results 
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Figure 3-36 Illustration of marginal probability density functions 𝑓(𝑥1) using a kernel density estimate approach for the Monte 

Carlo simulations of random variables 𝑥1 for nanofluid effective viscosity 

 
Figure 3-37 Illustration of marginal probability density functions 𝑓(𝑥2) using a kernel density estimate approach for the Monte 

Carlo simulations of random variables 𝑥2 for nanofluid effective viscosity 
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Figure 3-38 Illustration of marginal probability density functions 𝑓(𝑥3) using a kernel density estimate approach for the Monte 

Carlo simulations of random variables 𝑥3 for nanofluid effective viscosity 

  

 
Figure 3-39 Illustration of marginal probability density functions 𝑓(𝑥4) using a kernel density estimate approach for the Monte 

Carlo simulations of random variables 𝑥4 for nanofluid effective viscosity 
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In general bivariate copulas are either elliptical of the form 

 

𝐶(𝑢1, 𝑢2) = 𝐹(𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2)) (3.132) 

 

by the direct application of Sklar’s theorem as previously discussed or they are Archimedian. A 

bivariate Archimedean copula takes the form 

 

𝐶(𝑢1, 𝑢2) = 𝜑
[−1](𝜑(𝑢1) + 𝜑(𝑢2))  (3.133) 

 

where 𝜑 is a generator that satisfies the following properties such that 

 

𝜑: [0,1] → [0,∞] (3.134) 

𝜑(1) = 0 (3.135) 

𝜑[−1](𝑡) = {
𝜑−1(𝑡), 0 ≤ 𝑡 ≤ 𝜑(0)
0, 𝜑(0) ≤ 𝑡 ≤ ∞

 (3.136) 

 

Although some explicit analytical formulae are available in the literature for certain types of 

copulas many copulas are in fact calculated in terms of special types of generating functions. The 

situation is analogous to how whilst power series expansions are in principle available for certain 

advanced types of mathematical functions, such as say Bessel functions or Abramowitz functions 

in the context of the linearized Boltzmann equation as discussed by Jiang & Luo [198], that they 

are nevertheless in practise rarely evaluated from first principles since software libraries are readily 

available in order to call and conveniently numerically evaluate these mathematical functions. A 

good example in the area of copulas is the well known bivariate Gaussian copula which whilst 

conceptually simple does not have a simple explicit mathematical function since it is defined as 

 

𝐶(𝑢1, 𝑢2) = Φ2(Φ
−1(𝑢1),Φ

−1(𝑢2))    (3.137) 

Φ2(ℎ, 𝑘) = ∫
ℎ

−∞

∫
𝑘

−∞

𝜑2(𝑥1, 𝑥2) d𝑥1 d𝑥2 (3.138) 

𝜑2(𝑥1, 𝑥2) =
1

2𝜋√1−𝜌2
exp (−

𝑥1
2−2𝜌𝑥1𝑥2+𝑥2

2

2(1−𝜌2)
)    (3.139) 

 

where 𝜌 is the correlation coefficient and the bivariate Gaussian copula value must be numerically 

solved when it has to be evaluated. Many copula families consequently do not possess simple 

analytical formulae and due to this fact in many practical situations it is sufficient to simple specify 

the families and their associated parameters as previously reported in Table 3.9 along with the 

associated marginal distributions since the function values can generally be evaluated with the aid 

of readily available statistical software library routines in languages such as R or equivalently in 

computer code written in for example Python. As a result in this dissertation the above 

specification of the bivariate copula families and their respective parameter(s) for each tree in the 

four-dimensional copula that we have investigated is considered to sufficient to fully describe and 

close the mathematical copula model for the water/alumina nanofluid. 

 

From a practical implementation perspective in the joint PDF 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) since 𝑥1 = 𝑘𝑛𝑓 is 

the main quantity of interest and 𝑥2 = 𝑇, 𝑥3 = 𝜙  and 𝑥4  are in our particular mathematical 

approach considered as meta-parameters we are therefore main interested in using the copula to 
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predict the characteristics of 𝑥1  in terms of the other quantities. This mathematical effect is 

formally specified in terms of conditional distribution for 𝑥1  and which is formally specified 

through repeated application of the formula 

 

𝐹(𝑥𝑖|𝐯) =
∂𝐶𝑥𝑖𝑣𝑗(𝐹(𝑥𝑖|𝐯−𝑗), 𝐹(𝑣𝑗|𝐯−𝑗))

∂𝐹(𝑣𝑗|𝑣−𝑗)
, 𝑥𝑖 = 𝑥1, 𝐯 = [𝑥2, 𝑥3, 𝑥4]

T (3.140) 

 

where in our particular study we have 𝑥𝑖 = 𝑥1  and 𝐯  due to our earlier choice of variable 

numbering for the C-vine copula scheme we opted to utilize. In the more general case where the 

are more meta-parameters such as 𝑥5 = pH and 𝑥6 = 𝛾̇ so that the conditional distribution would 

be specified as 𝐹(𝑥𝑖|𝐯)  where 𝐯  is a vector of random variables to specify the conditional 

distribution. By repeated application of the iterated scheme for our four dimensional model there 

are then 3 × 2 = 6 different approaches in constructing the conditional distribution where each 

of the six possible approaches would require the construction of additional corresponding bivariate 

copula. One particular option is 

 

𝐹(𝑥1|𝑥2, 𝑥3, 𝑥4) =
∂𝐶12|34(𝑢1|34,𝑢2|34)

∂𝑢2|34
  (3.141) 

 

where the first copula is constructed of random variables such that 

 

𝑢1|34 =
∂𝐶13|4(𝑢1|4,𝑢3|4)

∂𝑢3|4
    (3.142) 

𝑢2|34 =
∂𝐶23|4

∂𝑢3|4
  (3.143) 

 

and this copula is in turn constructed of the random variables defined as 

 

𝑢1|4 =
∂𝐶14(𝑢1,𝑢4)

∂𝑢4
  (3.144) 

𝑢2|4 =
∂𝐶24(𝑢2,𝑢4)

∂𝑢4
  (3.145) 

𝑢3|4 =
∂𝐶34(𝑢3,𝑢4)

∂𝑢4
  (3.146) 

 

The corresponding probability density may then be constructed as 

 

𝑓(𝑥1|𝑥2, 𝑥3, 𝑥4) =
d

d𝑥1
𝐹(𝑥1|𝑥2, 𝑥3, 𝑥4) (3.147) 

 

so that the expected value of the thermal conductivity 𝑥1 for specified values of 𝑥2, 𝑥3, 𝑥4 is 

then 

 

𝜇 = ∫
∞

−∞
𝑥1𝑓(𝑥1|𝑥2, 𝑥3, 𝑥4)  d𝑥1  (3.148) 

 

with an equivalent variance 
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𝜎2 = ∫
∞

−∞
(𝑥1 − 𝜇)

2𝑓(𝑥1|𝑥2, 𝑥3, 𝑥4) d𝑥1  (3.149) 

 

It is theoretically possible to also calculate the expected value directly from the distribution 

function however in this chapter the indirect approach is preferred for conceptual simplicity to 

illustrate the functionality of the copula mathematical modelling approach that we have utilized. 

 

In the above approach the different possible approaches to calculating the conditional distribution 

are all considered mathematically consistent however in practical terms some possible choices 

may be considered preferable as not all possible bivariate copulas are amenable to closed form 

mathematical solutions or alternately if they are mathematically tractable then it is not necessarily 

the case that they are already implemented in available statistical software library routines. This 

issue is not necessarily a fundamental problem since nowadays the partial derivatives of two 

dimensional functions may be readily computed using computer algebra systems (CAS) such as 

the open source symbolic Python package sympy or the commercially available Mathematica 

software, or directly numerically evaluated using finite difference schemes in C/C++ or Matlab 

when determining the partial derivatives for the bivariate conditional distributions such as 𝑢3|4 =

∂𝐶34(𝑢3, 𝑢4)/ ∂𝑢4. 

 

Once the conditional distribution 𝐹(𝑥1|𝑥2, 𝑥3, 𝑥4)  has been constructed it may then be 

conveniently be used to sample random points from the corresponding probability density function 

for the thermal conductivity. In the next chapter we demonstrate how to utilize the developed 

copula models for performing predictions of nanofluid thermophysical properties. 

 

In most practical CFD studies the use of auxiliary thermodynamic relations such as that for the 

density is mainly used to estimate the thermodynamic parameter value for known operating 

conditions. Under this scenario the problem is then how to use the joint PDF 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) to 

estimate the most likely value of 𝑥1  if 𝑥2, 𝑥3, 𝑥4  are specified. Assume for simplicity after 

appropriate conversion between physical data values 𝑝1, 𝑝2, 𝑝3, 𝑝4  and copula data values 

𝑥1, 𝑥2, 𝑥3, 𝑥4 as previously discussed that the supplied values of the meta-parameters are 𝑥2
∗, 𝑥3

∗ 

and 𝑥4
∗ and simply substitute them in the joint PDF so that only free variable is now 𝑥1. For this 

situation define a new function 𝑔(𝜉) such that 

 

𝜉 = 𝑥1 (3.150) 

𝑔(𝜉) =
𝑓(𝜉,𝑥2

∗ ,𝑥3
∗ ,𝑥4

∗)

∫
∞
−∞𝑓(𝜉,𝑥2

∗ ,𝑥3
∗ ,𝑥4

∗)  d𝜉
  (3.151) 

 

The above function 𝑔(𝜉) is an equivalent probability density function for the random variable 𝑥1 

so that the expected value is then calculated as 

 

𝑥1
∗ = ∫

∞

−∞
𝜉𝑓(𝜉) d𝜉  (3.152) 

 

and then the physical data value, say 𝑝1
∗  which corresponds to the copula data value 𝑥1

∗ , is 

recovered from this copula data value by solving the equation 

 

𝑝1
∗ ← 𝑥1

∗ = 𝐹1(𝑝1
∗)  (3.153) 
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which completes the nanofluid mathematical modelling with copula process. 

 

In many practical applications numerical simulations are usually performed with the finite volume 

based CFD solver Ansys Fluent with user defined functions for the auxiliary relations for 

convenience when implementing the numerical results in the computational simulations as 

discussed earlier by Maripia et al.[199] and later by Ghodsinezhad [152] who note the ongoing 

challenge of occasionally contradictory numerical results from experimental measurement data 

which sometimes exhibits discrepancies. These issues have subsequently been addressed by more 

advanced alternative mathematical modelling approaches such multiphase based schemes for 

nanofluid models as discussed by Mahdavi [154] as previously discussed in systems where a 

continuum modelling hypothesis is valid for nanoparticles with a diameter 𝑑𝑝  such that 

𝒪(𝑑𝑝/[nm])~100, and through improved slip models recently developed by Mahdavi et al.[200] 

for multiphase nanofluid modelling which incorporates Brownian and thermophoretic diffusion 

effects in addition to electrostatic effects in the calculation of the slip velocity and which gives 

good agreement with water/alumina experimental measurements. Newer improved mathematical 

models that combine aspects of the more conventional mixture and discrete phase model (DPM) 

approaches in a nanofluid numerical studies as recently developed have also been reported in the 

literature by Mahdavi et al.[201] and as a result continuum based nanofluid models for 

computational fluid dynamic simulations using multiphase modelling approaches are still an active 

and rewarding area of research that is complementary to particle based simulations using ab initio 

molecular dynamics simulations without any particular modelling approximations or 

simplifications as increased high performance computing (HPC) super-computing resources start 

to become available to researchers. 

 

As a result the previous formulae as outlined above may be used to first calculate the base fluid 

thermodynamic properties of density 𝜌𝑤 , thermal conductivity 𝑘𝑤 , viscosity 𝜇𝑤  and enthalpy 

ℎ𝑤 for water. Then once the base fluid properties are known the water temperature is set as the 

nanofluid temperature 𝑇 assuming local thermodynamic equilibrium and similarly the volume 

fraction 𝜙 and nanoparticle size 𝑑𝑝  are also specified in the copula model. Once the copula 

model has these inputs the corresponding PDF for the nanofluid thermal conductivity or viscosity 

is complete and it can then be used to estimate the expected value 𝜇 = ∫
∞

−∞
𝑥𝑑𝑓(𝐱)  d𝑥𝑑  of 

either 𝑘𝑛𝑓 or 𝜇𝑛𝑓 which is then used as the values for the auxiliary thermodynamic properties in 

for example a finite volume based CFD code that is used to perform any subsequent computational 

simulations. 

 

In this dissertation the research focus and scope has been limited to the building, construction and 

development of a mathematical model for the nanofluid thermophysical properties using copulas 

so we have opted to use the R based CDVine software library for convenience. Whilst the 

numerical application of mathematical copula models can in principle be natively implemented in 

other software languages we comment that in many practical situations it may be easier and more 

convenient to simply interface a Python code to R using for example the rpy2 interface as discussed 

by Belopolsky et al.[202] or to interface a code written in the C/C++ language to a R based copula 

function using the Rcpp based application programming interface as discussed by Eddelbuettel et 

al.[203]. The practical consequence of this is that since many commercial and open source CFD 

codes now offer the ability to incorporate either scripts written in Python and user defined 

functions (UDF’s) written in the C language it is not strictly necessary to rewrite the professionally 
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developed statistical R based copula libraries which have already been extensively validated and 

verified (V&V’ed) from a software engineering quality perspective, but to simply call this 

functionality for calculating the nanofluid thermophysical properties from the associated software 

routines implemented in R with any convenient software interfacing routine for computational 

applications that utilize the developed multivariate copula mathematical models to calculate the 

nanofluid thermophysical properties. 

 

 

3.3 Conclusions 
 

In this chapter investigations have been performed of the physical characteristics and limitations 

of the existing mathematical and statistical modelling approaches for nanofluids and compared 

and contrasted the available techniques in order to determine the optimal approach in applying and 

constructing copula mathematical models of thermophysical properties. From this research 

investigation two new mathematical techniques have been developed to incorporate the aleatory 

uncertainties into mathematical models of nanofluid thermophysical properties such that both 

models are able to predict both values for the nanofluid properties as well the associated 

uncertainties in the respective predictions. 

The first mathematical modelling technique that was developed is applicable to algebraic based 

models where the model is defined in terms of a specified analytical algebraic function of input 

variables and model parameters with associated parameter uncertainties such that the predictions 

of results and uncertainties may be conveniently calculated with the application of the law of 

propagation of uncertainties (LPU) as encapsulated by the Guide to the Expression of Uncertainty 

in Measurement (GUM) either analytically through the use of multivariate calculus techniques or 

with a pure numerical Monte Carlo based propagation scheme using the specified parameter values 

and uncertainties in conjunction with the algebraic model. Novel research aspects of this 

mathematical approach are the functionality to model either independent nanofluid thermophysical 

properties such as just the effective thermal conductivity or just the effective viscosity as 

uncoupled systems, or in addition the functionality to also model coupled effective thermal 

conductivity and effective viscosity values simultaneously which is considered a more physically 

realistic approach since the application of these predictions are at a fundamental level always 

considered simultaneously when solving the mass, momentum and energy conservation equations 

using the single-phase formulation of the Navier-Stokes equations for nanofluids. 

 

This first mathematical development which we investigated now offers the functionality for 

constructing either uncoupled or coupled model constructions of the nanofluid auxiliary 

thermodynamic properties of thermal conductivity and viscosity and may be usefully applied to 

obtaining optimal mathematical expressions for the nanofluid’s properties in situations where a 

particular piece of equipment or instrument has an overall performance and quality that is 

simultaneously critically dependent on both a thermal conductivity and a viscosity such as certain 

types of heat exchangers where the overall heat exchanger performance/quality depends on the 

convective heat transfer coefficient ℎ𝑐 and the pumping power 𝑃 which are functions that are 

simultaneously dependent on the nanofluid’s effective thermal conductivity and effective 

viscosity. Due to the fact that many mechanical engineers working in industry have a preference 

for the use of simple to apply algebraic formulae in spreadsheet environments such as MS Excel 

for the calculation of fluid properties it is recommended that this first mathematical modelling 
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approach be further investigated and developed such that a selection of equations, their parameters 

and the associated parameter uncertainties as determined with this technique are available to 

potential users within the South African industry sector. 

 

A second mathematical development which was investigated is applicable to statistical based 

models where the model is defined in terms of higher dimensional copulas where the joint 

probability density function of the respective nanofluid thermophysical properties and meta-

parameters were built using Monte Carlo simulations of the previously determined database of 

statistical information through the use of canonical vines constructed through a tree based scheme 

of bivariate copulas. This model is also in principle completely specified by a set of constants for 

the marginal distributions and a set of copula families with their associated parameters. The 

mathematical model for the water/alumina nanofluid effective thermal conductivity using the 

second mathematical approach developed in this dissertation has marginal distribution functions 

for the meta-parameters 𝑘𝑛𝑓/[W  m
−1  K−1] = 𝑥1 , 𝑇/[K] = 𝑥2 , 𝜙 = 𝑥3  and 𝑥4/[m] = 𝑑𝑝 

and which are suitable for univariate spline interpolations of 𝑢𝑖 = 𝐹(𝑥𝑖), 𝑖 = 1,2,3,4 . The 

corresponding marginal probability density functions may then be calculated in terms of these 

specified distribution functions through the application of the fundamental mathematical statistical 

relation 𝑓𝑖(𝑥𝑖) =
d

d𝑥𝑖
[𝐹𝑖(𝑥𝑖)], and the corresponding bivariate copula densities have analytical 

expressions that are completely specified for mathematical completeness. Analogous results 

following a similar mathematical modelling approach for the copula model of the water/alumina 

nanofluid effective viscosity were also performed however it is concluded that additional 

experimental data for the nanofluid viscosity is necessary as only preliminary qualitative results 

are feasible due to the limited number of points from the constructed database.  

 

Since the mathematical technique in this second approach may readily applied to higher 

dimensional models with additional parameters such as the nanofluid pH value and shear strain 

rate it is recommended that the application of copulas be further investigated for both higher 

dimensional copula models of specific nanofluid properties as well as higher dimensional coupled 

nanofluid property systems where experimental data-sets of coupled simultaneous nanofluid 

properties are available in order to refine the interaction effects between the model inputs for 

higher accuracies and confidence in the predicted results with potential future application in the 

field of reliability engineering studies and operations that utilize nanofluids. 
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Influence of 𝑇 

 

 
Influence of 𝜙 

 

 
Influence of 𝑑𝑝 

 

 
Influence of 𝑇 and 𝜙 

 

 
Influence of 𝑇 and 𝑑𝑝 

 

 
Influence of 𝜙 and 𝑑𝑝 with 𝑇 

 
Figure 3-40 Visualization of bivariate copulas for constructing a thermal conductivity mathematical model with random variables 

𝑘𝑛𝑓 = 𝑥1, 𝑇 = 𝑥2, 𝜙 = 𝑥3 and 𝑑𝑝 = 𝑥4using a four-dimensional conventional C-vine copula mathematical model 
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Influence of 𝑇 

 
Influence of 𝜙 

 

 
Influence of 𝑑𝑝 

 

 
Influence of 𝑇 and 𝜙 

 

 
Influence of 𝑇 and 𝑑𝑝 

 

 
Influence of 𝜙 and 𝑑𝑝 with 𝑇 

 
Figure 3-41 Summarized illustration of bivariate copulas for constructing a viscosity mathematical model with random variables 

µ𝑛𝑓 = 𝑥1, 𝑇 = 𝑥2, 𝜙 = 𝑥3 and 𝑑𝑝 = 𝑥4using a four-dimensional conventional C-vine copula mathematical model 
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4 Mathematical Predictions Using Copulas 
 

 

4.1 Validity of Model Based Inputs in Mathematical Predictions 
 

In the previous chapter the marginal probability density functions 𝑢𝑖 = 𝐹(𝑥𝑖), 𝑖 = 1,2,3,4 for the 

thermal conductivity were determined and the associated bivariate copulas for a conventional C-

vine copula construction scheme using Monte Carlo numerical simulations. In order to utilize the 

joint PDF 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) for engineering work a convenient means to evaluate quantities and 

make predictions with this mathematical model is necessary. Due to the fact that the model was 

constructed with actual physical experimental data reported in the open literature for various 

operating conditions the distribution function data is “messy” even with almost 𝑁 = 5000 Monte 

Carlo simulation events mainly due to particular choices of available experimental data for the 

volume concentrations 𝜙 and nanoparticle diameter sizes 𝑑𝑝 when constructing the database of 

thermal conductivity data. Although it is well known that a higher number of Monte Carlo 

simulation events increases the accuracy of solutions which converges as 𝑁 → ∞ this is in many 

practical cases less important as convergence is usually obtained in many practical laboratory 

situations for simulation events in the range between 𝑁 = 2500 to 𝑁 = 7500, and as a result the 

accuracy of predictions is essentially based on the underlying quality of the data that is used to 

perform the simulations. One approach to mitigate against poor quality experimental data is to 

increase the uncertainties of the data-points from for example standard uncertainties of ±2.5% 

for the 𝑥𝑖 data to for example standard uncertainties of ±10%, however this approach could then 

in turn produce artificial discrepancies in the predictions used with the developed mathematical 

models. In the field of nanofluids the central challenge is a lack of consistency in many of the 

experimental research performed in the literature as discussed by Aybar [121] who reached this 

conclusion based on a very wide review of the available data and also observed that in some cases 

the inconsistencies of observations could in certain cases lead to contradictory predictions. This 

observation is composed of two aspects from a mathematical modelling context with regards to 

the validity of the model inputs which is applicable to both our present focus in this dissertation of 

copula models and to alternative mathematical modelling schemes such as artificial intelligence 

(AI) and radial basis function (RBF) approaches amongst others, namely that the degree of 

confidence in any constructed mathematical model depends on both the quality of the 

measurements 𝑥𝑖 as well as the quality of the associated uncertainties of the measurements 𝑢(𝑥𝑖). 
It has already been established that there are occasionally inconsistencies in measurement data 𝑥𝑖 
however the simplest conceptual solution to this problem of increasing the associated uncertainties 

until the measurement data is statistically consistent is based on the assumption that the data are 

inconsistent as opposed to being contradictory. Specialist measurement techniques using the well 

known metrological based mathematical concepts of degrees-of-equivalence in for example the 

computation of Key Comparison Reference Values (KCRV’s) are available to address this issue 

as discussed by Cox [112] who developed a concept known as the largest consistent subset (LCS) 

if the 𝑥𝑖 data has an element of reliability and there is a high degree of confidence in its associated 

uncertainty 𝑢(𝑥𝑖), however these two criteria are not necessarily always adequately satisfied in 

nanofluid measurements. There are technically four general scenarios in describing the state of 

knowledge of the combination of 𝑥𝑖  and 𝑢(𝑥𝑖) in terms of a high confidence (H) and a low 

confidence (L) namely (i) 𝑥𝑖/H & 𝑢(𝑥𝑖)/L, (ii) 𝑥𝑖/L & 𝑢(𝑥𝑖)/H, (iii) 𝑥𝑖/H & 𝑢(𝑥𝑖)/H, and (iv) 
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𝑥𝑖/L & 𝑢(𝑥𝑖)/L respectively. 

 

Examples of a lower level of confidence in the quality of the 𝑥𝑖 data is present due for example 

through the use of different experimental procedures in manufacturing the nanofluids as not all of 

the data sources consulted in the open literature adequately or consistently document the relevant 

methods and procedures. The use of different operating procedures in laboratories is manifested 

in for example different qualities of nanoparticles, sonification times, and physical procedures used 

by the respective laboratory staff for the mixing of the base fluid and nanoparticles for obtaining 

the required nanoparticle volume concentrations. It is therefore technically possible to have a low 

uncertainty 𝑢(𝑥𝑖) for a certain measurement by very strictly adhering to a particular laboratory’s 

measurement protocol using for example many repeat measurements but a low confidence in the 

value of 𝑥𝑖  since the measurement procedure was undertaken use different or non-standard 

equipment/instrumentation when compared to another different laboratory measurement 𝑥𝑗 . A 

practical example of how this occurs is in for example the quantification of the nanoparticle 

diameter size 𝑑𝑝 where some researchers use different equipment and techniques such as SEM, 

TEM and DLS approaches amongst others where both the measurement operating principles as 

well as the physical differences between equipment/instrument by different 

manufacturers/suppliers differs, and there is an additional complicating issue of how the 

measurement data is post-processed using different mathematical/software routines in order to 

arrive at the final estimates of 𝑥𝑖. 
 

A related difficulty in nanofluid studies is in terms of the quantification of the estimated 

uncertainty 𝑢(𝑥𝑖) for a measurement. From the earlier literature review conducted it has been 

established that very few investigators perform an uncertainty analysis in a mathematically 

rigorous and statistically consistent manner. This lack of rigorous statistical uncertainty analysis 

is partly addressed through the introduction of assumed accuracy levels however these 

assumptions are difficult to independently assess for appropriateness since physical and 

mathematical aspects of the uncertainty analysis process are not widely or consistently reported in 

the various data sources in the open literature. Examples of some physical aspects include the type 

of thermo-couples or RTD’s used to measure temperatures, the submerged lengths of the 

temperature devices, and the spatial and temporal homogeneity of the liquid baths in which the 

measurements were performed amongst other relevant physical information that is necessary to 

adequately construct a reasonable “uncertainty budget” since in many practical cases the 

manufacturer/supplier specified accuracy may be larger or even smaller than the uncertainty of the 

physical system measurement that is used to estimate the relevant meta-parameter. Two examples 

of how this could affect some measurement uncertainties is in the effective nanofluid temperature 

which may differ in different paths of a liquid bath away from the temperature sensor, and in for 

example the estimates of the nanoparticle mass densities which are usually assumed used in the 

volume concentration calculation based on separate estimates of the mass values used in the 

mixtures which have different statistical assumptions such as covariance estimates and slight 

differences between conventional and apparent mass values which different laboratories 

occasionally calculate in different measurement operating procedures as discussed in more 

technical detail by Palencar [204]. 

 

Based on these observations the overall reliability of the experimental data both in terms of the 

estimates of the quantities 𝑥𝑖  and 𝑢(𝑥𝑖) of which there are four different possibilities of high 
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reliability (H) or low reliability (L) that is used to construct mathematical models for nanofluid 

thermophysical properties is difficult to independently verify and assess. As a result a practical 

consequence of this limitation is that any mathematical models that are constructed are at a 

fundamental level only as good as the underlying experimental data that was used to build them. 

 

 

4.2 Numerical Techniques for Performing Predictions Using 

Copulas 
 

In the available data from the previous chapter, it was observed that the distribution functions for 

the thermal conductivity 𝑘𝑛𝑓 = 𝑥1 and base fluid temperature 𝑇 = 𝑥2 from the available data 

may be conveniently modelled in terms of extended lambda distributions, but that the distribution 

functions for the volume fraction 𝜙 = 𝑥3 and nanoparticle diameter 𝑥4 = 𝑑𝑝 were “messy” due 

to the quality of the physical experimental data in the database constructed from the available open 

literature sources. Although it is technically possible to also “smooth” the distribution function 

data for 𝜙 = 𝑥3 and 𝑑𝑝 = 𝑥4 this approach is not considered appropriate since there will then be 

a “mismatch” between the marginal distributions and the copulas. In order to preserve 

mathematical consistency, we have therefore opted to retain the original distribution function data. 

 

The joint PDF is formally specified as 

 

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓1(𝑥1) × 𝑓2(𝑥2) × 𝑓3(𝑥3) × 𝑓4(𝑥4) 
            × 𝑐1,2(𝑢1, 𝑢2) × 𝑐1,3(𝑢1, 𝑢3) × 𝑐1,4(𝑢1, 𝑢4) 
            × 𝑐2,3;1(𝑢2|1, 𝑢3|1) × 𝑐2,4;1(𝑢2|1, 𝑢4|1) 

            × 𝑐3,4;1,2(𝑢3|1,2, 𝑢4|1,2) 

(4.1) 

 

To numerically evaluate the above expression numerical values for the various arguments of each 

of the six bivariate copulas are necessary. For a specified meta-parameter value 𝑥𝑖  the 

corresponding copula data value 𝑢𝑖  may be conveniently calculated using a univariate spline 

approach for sampled/specified known values of the copula values 𝑢𝑗
∗, 𝑗 = 1,2,3,4 from the earlier 

Monte Carlo simulations with a simple spline interpolation of the form 

 

𝑢𝑗
∗ = 𝑠𝑝𝑙𝑖𝑛𝑒(𝑥𝑗𝑑𝑎𝑡𝑎, 𝑢𝑗𝑑𝑎𝑡𝑎, 𝑥𝑗𝑠𝑡𝑎𝑟) (4.2) 

 

As a result of specified values of 𝑥1, 𝑥2, 𝑥3, 𝑥4 the corresponding copula data values 𝑢1, 𝑢2, 𝑢3, 𝑢4 

in tree 𝑇1 of the copula are relatively easy to directly calculate, however the calculation of the 

remaining four copula data values 𝑢2|1, 𝑢3|1, 𝑢4|1, 𝑢3|1,2, 𝑢4|1,2 which are also required must be 

calculated indirectly. 

 

In tree 𝑇2  the values are calculated using the results from tree 𝑇1  and the definition of a 

conditional distribution as 

 

𝑢2|1 =
∂𝐶1,2(𝑢1,𝑢2)

∂𝑢1
  (4.3) 
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𝑢3|1 =
∂𝐶1,3(𝑢1,𝑢3)

∂𝑢1
  (4.4) 

𝑢4|1 =
∂𝐶1,4(𝑢1,𝑢4)

∂𝑢1
  (4.5) 

 

Following a similar approach, it may be shown that the copula data values in tree 𝑇3 may then in 

turn be calculated as 

 

𝑢3|1,2 =
∂𝐶2,3|1(𝑢3|1,𝑢2|1)

∂𝑢2|1
  (4.6) 

𝑢4|1,2 =
∂𝐶2,4|1(𝑢4|1,𝑢2|1)

∂𝑢2|1
  (4.7) 

 

As a result, the general algorithm to evaluate the joint PDF 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)  may then be 

summarized as indicated in Table 4.1 where the final numerical predictions for the selected test 

points when compared to model predictions are reported in Table 4.1 for the thermal conductivity 

only since a similar numerical procedure will also apply for predictions using the viscosity copula 

model. 

 

   
Step  Procedure  

0  Specify values of the physical data inputs 𝑥1, 𝑥2, 𝑥3, 𝑥4  

1  Calculate the corresponding copula data inputs  

 𝑢𝑖 = 𝐹(𝑥𝑖), 𝑖 = 1,2,3,4 using the univariate spline  

 interpolation routines or equivalent extended lamba distributions if available  

2  In tree 𝑇1 use the previously calculated values of 𝑢1, 𝑢2, 𝑢3, 𝑢4 to work out the values  

 of the bivariate copulas 𝑐12(𝑢1, 𝑢2), 𝑐13(𝑢1, 𝑢3) and 𝑐14(𝑢1, 𝑢4)  

3  In tree 𝑇2 first work out the values of the conditional distributions as  

 𝑢2|1 =
∂𝐶(𝑢1,𝑢2)

∂𝑢1
, 𝑢3|1 =

∂𝐶(𝑢1,𝑢3)

∂𝑢1
 and 𝑢4|1 =

∂𝐶(𝑢1,𝑢4)

∂𝑢1
, then use these values in turn to  

 work out copula densities 𝑐23|1(𝑢2|1, 𝑢3|1) and 𝑐24|1(𝑢2|1, 𝑢4|1)  

4  In tree 𝑇3 first work the conditional distributions as 𝑢3|12 =
∂𝐶23|1(𝑢3|1,𝑢2|1)

∂𝑢2|1
 and  

 𝑢4|12 =
∂𝐶24|1(𝑢4|1,𝑢2|1)

∂𝑢2|1
, and then inn turn use these values to work out the  

 copula density as 𝑐34|12(𝑢3|12, 𝑢4|12)  

5  Use the above copula densities to work out the overall copula density  

 as 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝑐12𝑐13𝑐14𝑐23|1𝑐24|1𝑐34|12  

6  Evaluate the marginal probability density functions as  

 𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3), 𝑓(𝑥4) using the specified values  

 of 𝑥1, 𝑥2, 𝑥3, 𝑥4  

7  Calculate the overall joint PDF as  

 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓(𝑥1)𝑓(𝑥2)𝑓(𝑥3)𝑓(𝑥4)𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4)  
Table 4. 1 Algorithm to evaluate joint probability density function 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) for specified values of 𝑥1, 𝑥2, 𝑥3, 𝑥4 

    

Whilst the joint PDF is technically a function of all of the random variables as model inputs 

𝑥1, 𝑥2, 𝑥3, 𝑥4 that when evaluating the joint PDF in the special case of conditional distributions 

where 𝑥2, 𝑥3, 𝑥4  are fixed it logically follows that the marginal distribution PDF’s 

𝑓(𝑥2), 𝑓(𝑥3), 𝑓(𝑥4) are also by definition fixed constants. In practical terms this then means that 

the behaviour of the PDF of for example a thermal conductivity 𝑓(𝑥1|𝑥2, 𝑥3, 𝑥4)  may be 
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approximated as 

 

𝑓(𝑥1|𝑥2, 𝑥3, 𝑥4) ≈ 𝑓(𝑥1) × 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4)) (4.8) 

 

where 𝑓(𝑥1) is the marginal distribution and 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) the corresponding copula density 

from our choice of C-vine tree construction after suitable scaling and normalization post-

processing for statistical consistency. Selected technical aspects of how the above mathematical 

equations are numerically implemented using the R computer libraries however we elaborate on a 

few pertinent issues with the numerical implementation of a copula nanofluid model for 

performing predictions. 

 

The first issue is the requirement of a good quality univariate interpolation routine particularly 

when the marginal distributions are “messy” as in our particular database for both the nanofluid 

effective thermal conductivity and effective viscosity. Unfortunately due to the wide variety of 

experimental results that have been reported in the open literature when the marginal distributions 

are constructed it becomes problematic to obtain smoothly varying marginal distributions mainly 

due to the choice of experimental data-points that are used to construct a nanofluid thermophysical 

database. Examples of these effects referring to the marginal PDF’s reported in the previous 

chapter include the presence of “double-peaks” in the PDF’s of the nanoparticle volume 

concentrations 𝜙 due to the preference of performing experimental measurements at selected 

choices of volume fractions and “spikes” in the PDF for the nanoparticle diameter 𝑑𝑝 mainly due 

to the supply of nanoparticles from suppliers for fixed nanoparticle sizes. 

 

Final illustrative results are shown for the data-point 𝑢1 = 0.57918 , 𝑢2 = 0.77553 , 𝑢3 =
0.36755 are shown in Figure 4.1, Figure = 4.2 and Figure 4.3 respectively corresponding to the 

prediction of the nanofluid thermal conductivity for a meta-parameter specification of 𝑥2/[K] =
305.599555, 𝑥3 = 0.06 and 𝑥4/[nm] = 36 to demonstrate the general principle. The general 

steps to work out a predicted value of the thermal conductivity is to first work out the respective 

marginal PDF’s and then the copula density term 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) as previously discussed. When 

these two terms are multiplied by keeping the random variable 𝑥1 free an equivalent probability 

density function will result. In our particular case we then use this PDF to calculate the expected 

value for the thermal conductivity and the associated standard deviation. For simplicity it has been  

assumed that the expanded uncertainty for the thermal conductivity predictions from our copula 

model at a 95% confidence level may be approximated by taking a coverage factor of 𝑘𝑝 = 2. 

This procedure is repeated for each of the test points and the final results reported in Table 4.2. 

 

The results in Table 4.2 after further analysis to determine the quality and consistency of 

predictions with the copula model is shown in Figure 4.4. Referring to this figure it is observed 

that model predictions are consistent with independent test points from the original database which 

were not used in the model construction. When these results are further analysed it is found that 

the corresponding 𝐸𝑛 normalized error values are all less than unity i.e. 𝐸𝑛 ≤ 1 for all of the 

tested points and as a result it may be concluded that the developed model is able to provide 

statistically consistent predictions within the specified uncertainties of the database points that 

were used to build the mathematical model. Due to the fact that the database from the previous 

chapter incorporated extensive data from a variety of data sources in the literature with large 

experimental variances in measurement data a more restricted benchmarking is necessary in order 
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to compare the accuracy of the predictions with the copula model. This benchmarking for restricted 

experimental datasets is considered necessary due to the fact that nanofluids may exhibit complex 

and/or inconsistent behaviour even for low dimensional multivariate experimental data.  

 

 
Figure 4-1 Illustrative example of the copula density 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4)variation with the copula input 𝑢1 for a nanofluid thermal 

conductivity model 

  

   

  

 
Figure 4-2 Illustrative example of the copula density 𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢4) variation with the physical input for a nanofluid thermal 

conductivity model 
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Figure 4-3 Illustrative example of the final probability density function 𝑓(𝑥1) variation with the physical input 𝑥1 for a nanofluid 

thermal conductivity model 

  

   

  

 

 

 
Figure 4-4 Illustration of copula model validity results for nanofluid effective thermal conductivity predictions for testing subset 

data 
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Point ktest Ttest phitest dtest u(ktest) kpredict u(kpredict) 

1 0.688234952 304.164808 0.013 0.000000013 0.017205874 0.679633101 0.038517106 

2 0.760329577 320.091948 0.028 0.000000013 0.019008239 0.732535324 0.044141292 

3 0.766457489 319.949177 0.028 0.000000013 0.019161437 0.732268843 0.044089676 

4 0.690650783 304.15 0.019842554 3.84E-08 0.01726627 0.682754411 0.035667364 

5 0.727949482 309.15 0.020093098 3.84E-08 0.018198737 0.708830513 0.038624785 

6 0.764962513 324.15 0.020216968 3.84E-08 0.019124063 0.753856301 0.045826654 

7 0.703720523 301.014985 0.02 0.000000036 0.017593013 0.66835484 0.034370844 

8 0.758132165 305.970475 0.02 0.000000036 0.018953304 0.69223035 0.036812208 

9 0.846877546 308.952671 0.06 0.000000036 0.021171939 0.752538147 0.046583394 

10 0.727698418 301.193027 0.1 0.000000036 0.01819246 0.736561903 0.052920656 

11 0.72953329 301.92547 0.02 0.000000036 0.018238332 0.671882624 0.03472664 

12 0.672275293 298.15 0.018244267 6.04E-08 0.016806882 0.651280007 0.033551211 

13 0.730530525 298.15 0.050299287 6.04E-08 0.018263263 0.674587532 0.03917312 

14 0.740935918 298.15 0.050417003 6.04E-08 0.018523398 0.6746375 0.039188447 

15 0.713540368 323.436779 0.059844075 0.00000002 0.017838509 0.777633318 0.050835229 

16 0.6633478 303.565954 0.02 0.000000036 0.016583695 0.680117498 0.035552348 

17 0.6684483 309.495093 0.04 0.000000036 0.016711208 0.735887319 0.042891013 

18 0.6612167 301.376604 0.02 0.000000047 0.016530418 0.665992729 0.034294675 

19 0.6678423 308.728297 0.04 0.000000047 0.016696058 0.727883069 0.042719429 

20 0.6625398 302.717875 0.06 0.000000047 0.016563495 0.708470635 0.043356561 

21 0.83922898 323.990198 0.04 3.84E-08 0.020980725 0.774438778 0.048454826 

22 0.697310707 303.194863 0.01 0.00000008 0.017432768 0.649660619 0.034817664 

23 0.663657038 299.860139 0.04 0.000000047 0.016591426 0.6756976 0.036586023 

24 0.674384939 300.291163 0.04 0.000000047 0.016859623 0.678264786 0.036902743 

25 0.739085227 311.731105 0.04 0.000000047 0.018477131 0.739692977 0.044172117 

26 0.799357148 314.531188 0.04 0.000000047 0.019983929 0.750893107 0.045650719 

27 0.658472554 298.389502 0.031 0.000000036 0.016461814 0.662070535 0.033984206 

28 0.709069212 305.709376 0.031 0.000000036 0.01772673 0.702171674 0.038054956 

29 0.740572792 308.595097 0.031 0.000000036 0.01851432 0.717880137 0.03992551 

30 0.730071599 310.720277 0.031 0.000000036 0.01825179 0.726937361 0.041091797 

31 0.740572792 312.054556 0.031 0.000000036 0.01851432 0.731538772 0.041713692 

32 0.648926014 298.712966 0.06 0.000000036 0.01622315 0.684414222 0.039340411 

33 0.701431981 303.366345 0.06 0.000000036 0.0175358 0.716892548 0.043202488 

34 0.700477327 306.104998 0.06 0.000000036 0.017511933 0.734693679 0.045041709 

35 0.71097852 309.60144 0.06 0.000000036 0.017774463 0.75567624 0.046823185 

36 0.750119332 310.505867 0.06 0.000000036 0.018752983 0.758775145 0.047052643 

37 0.712887828 302.394404 0.09 0.000000036 0.017822196 0.725370902 0.047447707 

38 0.72052506 303.368065 0.09 0.000000036 0.018013127 0.732813164 0.048036263 

39 0.711933174 303.547471 0.09 0.000000036 0.017798329 0.734318369 0.048141921 

40 0.710023866 304.772525 0.09 0.000000036 0.017750597 0.744266398 0.048722208 

41 0.71097852 305.313151 0.09 0.000000036 0.017774463 0.746958983 0.048842916 
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42 0.770167064 311.949114 0.09 0.000000036 0.019254177 0.776143953 0.049136472 

43 0.712209152 303.15 0.005238963 0.00000002 0.017805229 0.660026002 0.037267935 

44 0.724540175 323.15 0.005227967 0.00000002 0.018113504 0.701262445 0.042340361 

45 0.646 322.3 0.0297 0.000000012 0.01615 0.740114558 0.045831724 

46 0.67267581 300 0.007525926 0.000000043 0.016816895 0.64947018 0.032872754 

47 0.726486371 313.15 0.049921997 0.000000055 0.018162159 0.753868026 0.048191212 

48 0.721067929 312.824757 0.043185 0.000000075 0.018026698 0.741399238 0.049417284 

49 0.739987937 303.146293 0.060432 0.000000075 0.018499698 0.711545744 0.04863721 

50 0.858775803 312.96387 0.098778 0.000000075 0.021469395 0.779862818 0.053454852 
Table 4. 2 Numerical predictions of nanofluid effective thermal conductivity using developed copula mathematical model 

   

An example of how complex nanofluid multivariate data may be is that of measurements recently 

reported by Bouguerra et al.[205] for the simultaneous measurements of effective thermal 

conductivity 𝑘𝑒𝑓𝑓 and effective viscosity 𝜇𝑒𝑓𝑓. This work was performed in order to investigate 

agglomeration/clustering and nanoparticle dispersion effects as summarized in Figure 4.5 and 

Figure 4.6 which illustrates the contrasting behaviour for the 𝑘𝑒𝑓𝑓 and 𝜇𝑒𝑓𝑓 enhancement ratios 

relative to the base fluid values for varying pH and volume concentrations at a constant 

temperature of 𝑡 = 25 ∘C. 

 

 

 

 

 
Figure 4-5 Illustration of water/alumina effective thermal conductivity enhancement ratio behaviour for a low dimensional 

mathematical model from data reported by Bouguerra et al.[205] 
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Figure 4-6 Illustration of water/alumina effective viscosity enhancement ratio behaviour for a low dimensional mathematical model 

from data reported by Bouguerra et al.[205] 

 

 

4.3 Numerical Techniques for Neural Network Predictions 
 

In order to perform predictions such as that for a nanofluid effective thermal conductivity 𝑘𝑛𝑓 

with a standard neural network model assume that there are 𝑑 inputs 𝑥1, 𝑥2, … , 𝑥𝑑  for a single 

output 𝑦1, and that there are ℓ hidden layers ℎ1, ℎ2, … , ℎℓ. For simplicity we assume a sigmoid 

activation function 

 

𝑓(𝑥) =
1

1+𝑒−𝑥
  (4.9) 

 

for the input/hidden layers as per conventional nanofluid neural network modelling practise. If the 

throughputs to the hidden layer is 𝜉 with a bias 𝑏, and the throughput to the outer layer is 𝜂 then 

using vector/matrix notation we have that the input/hidden layer are then specified as 

 

𝝃 = 𝐖𝐱 + 𝐛  (4.10) 

𝐡 = 𝐟(𝝃)  (4.11) 

 

and similarly 

 

𝑦 = 𝐕𝑉𝐡 (4.12) 

𝐕 = [1,… ,1]T  (4.13) 

 

where 𝐕 is a 1 × 𝐿 unit vector. 
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Figure 4-7 Illustration of conventional multiple layer perceptron neural network single layer scheme for modelling nanofluid 

thermophysical properties 

  

   

The topology for this particular neural network configuration with the hidden/output layer is 

conceptually illustrated in Figure 4.7. For this particular configuration it follows that the 

vector/matrix dimensions are 𝐖 = 𝐿 × 𝑑 , 𝐛 = 𝐿 × 1  and 𝐕 = 1 × 𝐿  which is the standard 

MLP-NN configuration in nanofluid mathematical modelling studies. Due to the fact that there are 

formally two different weighting parameters our approach to optimize these parameters will be to 

use the standard trick of writing a vector/matrix variable in column-vector notation and then 

concatenating the various terms to create a new single parameter 

 

𝐚 = {𝐖, 𝐛} (4.14) 

 

which has a dimension of dim(𝐚) = 𝐿𝑑 + 𝐿 = (𝑑 + 1)𝐿. When this scheme is used then the 𝜒2-

merit function takes the familiar form 

 

𝜒2(𝐚) = ∑𝑀𝑖=1 [𝑦𝑖 − 𝑦𝑚𝑜𝑑𝑒𝑙(𝑥𝑖)]
2  (4.15) 

 

This particular optimization may then be performed using a Levenberg-Marquardt or Nelder-Mead 

minimization technique and the with the technical implementation details that are outlined in the 

open literature utilizing the standard conventional neural network mathematical modelling 

approach for nanofluids. A limitation of this approach is that it does not explicitly consider the 

uncertainties of the model inputs such as 𝑢(𝑇), 𝑢(𝜙) and 𝑢(𝑑𝑝) respectively, and similarly also 

the uncertainties of the measured nanofluid properties such as 𝑢(𝑘𝑛𝑓) or 𝑢(𝜇𝑛𝑓). Considering a 

maximum likelihood argument presented by Saunders [145] it is known that for the univariate 

model 

 

𝑦 = 𝑦(𝑥; 𝑥1, 𝑥2, … , 𝑥𝑀 , 𝑦1, 𝑦2, … , 𝑦𝑀)   (4.16) 
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with 𝑀 experimental data points that the chi-squared function is constructed as 

 

𝜒2 = ∑𝑀𝑖=1 [
𝑦𝑖−𝑦model(𝑥𝑖;𝐚)

𝜎𝑖
]
2

    (4.17) 

 

In the above approach the weighting factor is specified as 

 

𝜎𝑖
2 = 𝑢2(𝑦𝑖) + (

∂𝑦

∂𝑥
|
𝑥=𝑥𝑖

⋅ 𝑢(𝑥𝑖))
2

  (4.18) 

 

Utilizing a similar line of statistical reasoning with the aid of the Guide to the Uncertainty of 

Measurement (GUM) the corresponding variance for the multidimensional model 𝑦 =
𝑓(𝑥1, 𝑥2, … , 𝑥𝑑) may then be specified as 

 

𝜎𝑖
2 = 𝑢2(𝑦𝑖) + ∑

𝑑
𝑗=1 (

∂𝑓

∂𝑥𝑗
𝑢(𝑥𝑗))

2

   (4.19) 

 

The chief difficulty with the application of the above formula which explicitly incorporates the 

measurement uncertainties is that there is no a priori means of correctly estimating the weighting 

factors 𝜎𝑖 in the absence of knowledge of the mathematical function 𝑓(𝑥1, … , 𝑥𝑑) which is used 

to specify the sensitivity coefficient 
∂𝑓

∂𝑥𝑗
 terms. This is currently one of the major limitations of 

neural network modelling schemes as physical experimental measurement uncertainties cannot be 

incorporated into the mathematical modelling process. One practical implication of this limitation 

is that measures of the accuracy of the fit are usually restricted to AARD/MSE estimates, however 

these measures always attach equal weight to predictions everywhere in the 𝑑 -dimensional 

domain ℝ𝑑  for a model input 𝐱 = [𝑥1, … , 𝑥𝑑]
T ⊂ ℝ𝑑 . Consequently contributing terms to the 

underlying 𝜒2-merit function always carry equal values even for poor quality measurements or 

measurements with low accuracies although these deviations when calculating the AARD/MSE 

estimates may not be physically meaningful since the deviations are statistically consistent with 

the underlying measurement experimental uncertainties. As a result if for example high 

AARD/MSE values occur in some localized region i.e. for a restricted ranges of temperature, 

volume fraction and nanoparticle diameter whilst relatively low AARD/MSE values occur in the 

rest of the domain due to the equal weight attached to all the data points the localized discrepancies 

may adversely influence the global accuracy of the model since in practical terms the neural 

network topology is usually determined by a minimization of the AARD/MSE value from a 

Levenberg-Marquardt optimization. Nevertheless due to the fact that the use of the AARD and 

MSE statistics are widespread in nanofluid modelling studies we will for consistency utilize an 

AARD statistic in order to quantitatively benchmark our numerical simulation results. 

 

As a result, the assumption of equal weighting factors reduces to the special case of the 

conventional neural network nanofluid mathematical modelling approach where the variance is 

implicitly specified as 𝜎𝑖 = 1 for 𝑖 = 1,2, … ,𝑀. The sensitivity coefficient may nevertheless be 

formally estimated using finite differences as 

 
∂𝑓(𝑥1,…,𝑥𝑖,…,𝑥𝑑)

∂𝑥𝑖
≈

𝑓(𝑥1,…,𝑥𝑖+𝛿𝑖,…,𝑥𝑑)−𝑓(𝑥1,…,𝑥𝑖,…,𝑥𝑑)

𝛿𝑖
  (4.20) 
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for inclusion in the 𝜒2-optimization in order estimate the corresponding value of the weighting 

factor 𝜎𝑖 . This direct non-instrusive numerical discretization approach whilst algebraically 

complex nevertheless introduces a conceptual simplicity for incorporating input/output but has not 

to date been utilized in any of the reported open literature sources that were consulted in the course 

of this research investigation. This approach may thus potentially offer a computationally cheaper 

alternative to the Kullback-Leibler (KL) divergence approach discussed by Levasseur et al.[87] 

for incorporating input/output uncertainties in order to estimate variances in the neural network 

parameters. 

 

Due to these complexities in this chapter, it is considered advantageous to perform nanofluid 

predictions with a conventional neural network scheme for benchmarking for simplicity purposes 

by performing an unweighted 𝜒2-optimization for consistency. This approach is implemented 

through sequentially testing a range of possible numbers of hidden layers. From the earlier 

literature review variation of the number of hidden layers from 𝐿 = 5 through to 𝐿 = 25 hidden 

layers was considered as per the general guidelines reported by other researchers in order to reduce 

the AARD statistic as an indicator of the model accuracy. The results of this investigation are 

summarized in Figure 4.8 from which it was concluded that a value of 𝐿 = 8 was able to produce 

the minimum 𝐴𝐴𝑅𝐷 accuracy level for the underlying thermal conductivity database information. 

 

 

 
Figure 4-8 Summary of influence of variation of the number of hidden layers on MLP-NN nanofluid thermal conductivity model 

accuracy level 
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Figure 4-9 Graphical summary of MLP-NN nanofluid effective thermal conductivity mathematical model fit 

  

    

From the numerical experiments that were performed using computer codes written in GNU 

Octave it was observed that convergence of the Levenberg-Marquardt optimization algorithm was 

not possible for all of the hidden layers that were tested due to the choice of multivariate starting 

solution for the scaled model parameter 𝐚 = {𝐖, 𝐛} , where the termination criteria for the 

optimization was set as either a relative scalar tolerance of 0.001 × 10−3  or alternately a 

maximum number of iterations of 𝑁max = 100. This observation is consistent with the discussion 

by Press et al.[132] who remark that the optimization routine convergence is dependant on the 

relative closeness of the starting solution estimate to the final converged value and can fail to 

converge or diverge depending on the underlying data. For the MLP-NN model implementation 

both the input as well as the output data were normalized from the database limits such that 

 

𝑋𝑖 = [
𝑇−𝑇min

𝑇max−𝑇min
,

𝜙−𝜙min

𝜙max−𝜙min
,
(𝑑𝑝)max−(𝑑𝑝)min

(𝑑𝑝)max−(𝑑𝑝)min
]
T

  (4.21) 

𝑌𝑖 =
𝑘𝑛𝑓−(𝑘𝑛𝑓)min

(𝑘𝑛𝑓)max−(𝑘𝑛𝑓)min
     (4.22) 

 

were row vectors that were used to construct a corresponding matrix input 𝐗 and vector output 𝐘. 

These nanofluid input/output data from the thermal conductivity database were then utilized to 

construct the 𝜒2-merit function which was optimized with the Levenberg-Marquardt algorithm 

for a subset of nanofluid thermal conductivity information from the previously constructed 

database with model input ranges such that 
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25 ≤ 𝑡/[∘C] ≤ 65  (4.23) 

0.5 ≤ 𝜙/[%] ≤ 10  (4.24) 

10 ≤ 𝑑𝑝/[nm] ≤ 100  (4.25) 

 

The neural network fitting process using the above information and specifications is graphically 

summarized in Figure 4.10. For this modelling process, the final accuracies for the nanofluid 

effective thermal conductivity MLP-NN mathematical model were found to be 

 

Training Subset(𝑁𝑡𝑟𝑎𝑖𝑛 = 219): 𝐴𝐴𝑅𝐷𝑡𝑟𝑎𝑖𝑛 = 4.4144%  (4.26) 

Test Subset(𝑁𝑡𝑒𝑠𝑡 = 45): 𝐴𝐴𝑅𝐷𝑡𝑒𝑠𝑡 = 4.2376%  (4.27) 

 

 

4.4 Comparison of Copula and Neural Network Model Predictions 
 

The previous sections have outlined the technical numerical implementation approaches that are 

applicable for performing predictions with the neural network and copula mathematical models. 

To benchmark these approaches, it is necessary to compare them against the same dataset, 

however, due to the fact that a neural network cannot technically formally perform a statistical 

probability prediction of nanofluid thermophysical properties with conventional methods it is 

beneficial to to compare the conventional AARD% test statistics previously defined as 

 

𝐴𝐴𝑅𝐷% =
100

𝑁
∑𝑁𝑖=1 (|

𝑘𝑖
𝑒𝑥𝑝

−𝑘𝑖
𝑐𝑎𝑙𝑐

𝑘
𝑖
𝑒𝑥𝑝 |)      (4.28) 

 

The results of this comparison are shown in Figure 4.10 for the same test set that was constructed 

from the thermal conductivity database where 80% of the points were used to build the respective 

models and the comparison was done for the remaining 20% of the data points. When both sets 

of data are analysed is was concluded that the conventional single layer MLP-NN model can 

produce an AARD accuracy of 4.2376% for the test set whilst the copula model can produce an 

AARD accuracy of 3.0953% for the same test set. As a result, it was concluded that the proposed 

copula model can offer an AARD accuracy improvement of 3.0953% − 4.2376% = 1.1423% 

in absolute terms when benchmarked against the existing standard nanofluid neural network 

modelling approach.  

 

Although a dual layer MLP-NN scheme was also investigated as documented in the Appendix 

where the two-layer topology and mathematical scheme technical details are  presented it was 

found that this was only able to achieve an AARD accuracy of 5.9048% with variation of the 

number of hidden neurons where the chief difficulty encountered was a lack of convergence for 

the more complex merit function which occasionally failed convergence criteria when an 

Levenberg-Marquardt optimization scheme was used. Although a dual layer MLP-NN may offer 

increased accuracies it was concluded that this comes at the potential cost of longer and more 

challenging optimization computational costs if inadequate computer codes are utilized. This 

observation is consistent with the earlier conclusions of Ariana et al [66] who reported a MLP 

network with only one hidden layer can in principal approximate any multivariate function to any 

desired accuracy, and as a result a trade off may be necessary in deciding on the appropriate 

number of hidden layers in a MLP-NN modelling scheme. This potential issue is largely avoided 
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in a copula modelling approach if conventional star-shaped topology schemes are utilized for 

simplicity.   

 

Due to these observations, it can reasonably be concluded that a copula mathematical modelling 

technique has the research potential to offer improved accuracy predictive capabilities in the field 

of nanofluid studies. A fundamental key strength of the developed approach from this research 

investigation is that the use of copulas allows for the incorporation of physical experimental 

statistical uncertainties in the mathematical modelling construction process which is presently not 

considered computationally feasible with existing neural network modelling approaches that are 

coupled and incorporated into for example Markov Chain Monte Carlo (MCMC) based 

simulations as discussed by Levasseur et al.[177] . 

 

 

 
Figure 4-10 Comparison between prediction of neural network and copula nanofluid effective thermal conductivity mathematical 

models  

 

 

4.5 Conclusions 
 

In this chapter, a demonstration of how to perform numerical predictions of nanofluid effective 

thermal conductivities properties from the previously constructed database by utilizing univariate 

marginal distributions and the developed four-dimensional copula mathematical model has been 

presented. In the model physical units were utilized for the base fluid temperature 𝑇, nanoparticle 

volume fraction 𝜙 and nanoparticle diameter 𝑑𝑝 as input meta-parameters along the physically 

measured nanofluid effective thermal conductivity 𝑘𝑛𝑓 so that joint PDF was constructed in terms 

of four random variables. As a result, the model was mathematically closed with just a set of six 

bivariate copula families where each family has a set of two parameters. The results of these 
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simulations for the thermal conductivity model were analysed and bench-marked against 

independent test data-points obtained in the earlier literature review and it was concluded that a 

copula based mathematical model can indeed perform reasonably well even with the presence of 

“messy” statistical data due to the Monte Carlo simulation process which is used to generate 

additional statistically consistent synthetic data-points using the input meta-parameter 

uncertainties such that the copula model construction automatically accounts for the natural 

aleatoric statistical variations that are present in the underlying physical experimental 

measurements. When the results between the current copula model were analysed it was concluded 

that the copula model predictions produced an average absolute relative deviation of AARD =
3.0953% whilst the standard neural network model for the same dataset produced a corresponding 

value of AARD = 4.2376%. As a result it is concluded that the developed copula modelling 

approach has the potential to offer improved accuracy predictions of 1.1423% for the AARD in 

absolute terms when compared to the standard neural network approach. When both techniques 

were further investigated it was also determined that the developed copula approach has the 

competitive advantage of being able to incorporate predicted physical experimental statistical 

probability density function distributions i.e. PDF’s at specified input conditions. This information 

may be used to quantitatively predict the model predicted expected values and variances, which is 

presently not considered computationally feasible with existing neural network modelling 

approaches. 

 

Based on an analysis of the associated copula densities 𝑐(𝐮) for the various test points in the 

numerical simulations it was discovered that copula density function’s behaviour varied from a 

conventional Gaussian type of PDF behaviour for certain values of the specified meta-parameters 

to a log-normal type of PDF behaviour for other ranges of the meta-parameters. Consequently 

whilst the variation in copula density 𝑐(𝐮) is slight in certain regions of the copula 𝐮 coordinates 

it was observed that 𝑐(𝐮) may vary significantly in other regions. As a result due to the fact that 

the joint PDF is composed as a product of the marginal distributions and the copula density it is 

concluded that higher accuracy nanofluid thermophysical predictions may be possible for either 

smaller ranges of the meta-parameters or in corresponding regions of the meta-parameters where 

the copula density terms have less variation. This physical observation may therefore offer a 

potential future research advantage in nanofluid modelling studies by building models composed 

of unions of copulas of smaller domains so that instead of a single global model the nanofluid 

properties are specified in terms of sets of copulas for smaller regions of the meta-parameters. An 

example of this phenomenon is illustrated in Figure 4.11 which shows a visualization of a 

nanofluid effective viscosity model construction for our viscosity database. In this graph it is 

observed that there are a finite number of statistical outlier data-points in the region Ω4 for the 

nanofluid effective viscosity 𝜇𝑛𝑓  which are considered to be physically inconsistent with the 

underlying experimental data. The level of inconsistency is qualitatively indicated by the 

“distance” from the parity line for which points regardless of the magnitude of the corresponding 

physical uncertainties are at least in a certain sense “too far away” from the parity line. Our 

proposed solution for this issue is through the utilization of smaller domains such as for example 

Ω1, Ω2 and Ω3 for illustrative purposes as shown in Figure 4.11.  
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Figure 4-11 Illustration of statistical outliers for viscosity database model construction 

  

 

In this approach the construction of the nanofluid model is subdivided into smaller domains Ω𝑖 
where 

 

 Ω𝑖 = [𝑇min
(𝑖)
, 𝑇max

(𝑖)
]T × [𝜙min

(𝑖)
, 𝜙max

(𝑖)
]T × [(𝑑𝑝)min

(𝑖)
, (𝑑𝑝)max

(𝑖)
]T, 𝑖 ∈ [1,2,3]        (4.29) 

 

consists of a region of the model input meta-parameters 𝑇(𝑖), 𝜙(𝑖) and 𝑑𝑝
(𝑖)

 for smaller restricted 

regions. Consequently, a set of nanofluid models for each of the smaller sub-domains may be 

constructed instead of attempting to fit a single nanofluid for a global domain. Methods for the 

identification of statistical outlier data-points to refine the model input data-points are also 

necessary and this has recently been investigated by Hemmati-Sarapardeh et al.[106] who 

elaborate on the mathematical implementation details of using William’s plots for detecting 

probable statistical outliers and which is a recommended future refinement that may be used to 

pre-process the measurement data before implementing the copula mathematical model to achieve 

more consistent and better accuracy model predictions. 

    

Potential areas of future research investigation include the exploration of different C-, D- and R-

vine schemes as previously discussed for parametrized copulas in order to refine the interaction 

effects between the meta-parameter model inputs so that the accuracy of the numerical predictions 

may be increased, and in the utilization of the copula based nanofluid fluid property probability 

density functions in reliability engineering studies for mainly nanofluid thermal conductivity 

measurements as this exhibits relatively consistent statistical characteristics. Additional areas of 
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future research include the use of non-parametrized empirical copulas such as the Bernstein 

polynomial based empirical copulas recently reported by Segers et al.[191] with numerical 

schemes to efficiently calculate the corresponding copula density in order to directly compute the 

coupling interactions between the inputs for nanofluid viscosity measurements without any 

limiting parameter based restrictions due to the presence of noisy input statistical data. 
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5 Summary and Conclusions 
 

 

5.1 Summary 
 

This research study investigated the possibility of using copulas as mathematical objects to model 

nanofluid thermophysical properties such as either the effective thermal conductivity or alternately 

the effective viscosity. A detailed comprehensive literature study was first performed to establish 

the current state of knowledge both in terms of the available experimental data as well regarding 

the available mathematical techniques. The outcome of the literature review was that at present, 

there does not exist a complete physical or mathematical theory that adequately encompasses all 

of the features, properties and characteristics of nanofluids. Based on the literature review a 

database of a water/alumina nanofluid effective thermal conductivity and effective viscosity 

properties in terms of the temperature, nanoparticle volume concentration and nanoparticle 

diameter was constructed. 

 

In the course of investigating the underlying database information, we developed two 

complementary mathematical techniques to construct nanofluid models of the respective 

thermophysical properties. The first approach is a variation on the GUM Supplement 1 Monte 

Carlo technique that utilizes a modified merit function optimization to estimate the probability 

density function distributions of algebraic models of nanofluids so that the algebraic model is then 

able to incorporate the aleatory statistical uncertainties of the physical experimental measurements. 

A novel research outcome of this first mathematical approach is that we developed a technique to 

either construct an uncoupled algebraic model of a nanofluid’s properties such as just for the 

effective thermal conductivity or alternatively just for the effective viscosity, and in addition we 

developed the mathematical formalism to construct coupled algebraic models for the nanofluid’s 

properties. Building on these earlier outcomes, we then proceeded to investigate the mechanism 

of utilizing copulas to model a nanofluid’s properties, and this was also based on a Monte Carlo 

simulation technique, however, the key difference was that we did not make any a priori 

assumptions on the algebraic form of the nanofluid model. We considered analytical, empirical 

and vine copula schemes and determined that star-shaped C-vine tree-based schemes of copulas 

offered the most immediate functionality and generality to account for the wide variance in 

reported experimental results. 

 

The second mathematical approach, therefore, developed and constructed a four-dimensional joint 

probability density function for the respective nanofluid thermophysical property and the three 

meta-parameters, and this was performed for both the effective thermal conductivity as well as for 

the effective viscosity. Results for the corresponding copulas were reported regarding the types of 

bivariate copulas as building blocks for the higher dimensional copula and their respective 

parameters. As a result, the copula density function is completely analytically specified however 

a difficulty that we encountered was that the associated marginal distributions for the meta-

parameters is not easily amenable to a simple analytical expression such as an extended lambda 

distribution. This difficulty was determined as being primarily due to a finite number of 

nanoparticle size and volume concentration experimental measurements in the literature and was 

addressed through the adoption of univariate spline interpolations for the respective marginal 

distributions. 
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Once the copulas were mathematically characterized, we then developed statistical sampling 

techniques to utilize the copula models for the prediction of expected values and variances of the 

nanofluid thermophysical properties. The outcome of this investigation was that the developed 

copula mathematical models are considered to be statistically consistent and can offer moderate 

accuracy improvements on nanofluid model predictions compared to conventional algebraic and 

neural network modelling schemes. A unique powerful feature of our novel mathematical approach 

is the complete generality and ease of use of copulas for building, characterising and extending 

existing models for both model predictions as well as model uncertainty quantification analysis 

with relative ease as new data and meta-parameters become available. 

 

 

5.2 Conclusions 
 

Based on the outcomes of the present research investigation, the following conclusions were 

reached: 

 

● 

Alternative tree based copula structures using either regular R-vines or dependence D-

vines should be investigated as potential copula structures to incorporate existing 

experimental know-how and observations due to the wide variety of construction schemes 

for higher dimensional copulas; 

  

● 

Higher dimensional copula models that incorporate the effect of the nanofluid pH and 

shear strain rate as additional meta-parameters should be investigated where 

experimentally feasible to generalize and extend the utility of existing models; 

  

● 

The application of non-equilibrium molecular dynamics simulations for ab initio 

numerical predictions of nanofluid properties should be considered as a potential PhD 

study as the availability of high-performance computing (HPC) clusters starts to become 

more widely available within South Africa in order to independently address some of the 

inconsistencies and ambiguities such as nanoparticle sizes and agglomeration effects in 

the experimental results reported in the literature particularly for the nanofluid effective 

viscosity measurements; 

  

● 

Existing parameter based algebraic nanofluid models may be refined using the developed 

mathematical approach in order to generate probability density functions of the parameters 

so that the existing formulae may be conveniently utilized in uncertainty analysis 

calculations within industry; 

  

● 

The application of copula-based statistical models of nanofluid thermophysical properties 

may be utilized in heat exchanger reliability designs and associated equipment and 

instruments within the nuclear engineering sector that require estimates of probability 

density functions of fluid properties.  
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6 Appendix 
 

 

6.1 Dual Layer Multi-Level Perceptron Neural Network 
 

In neural network theory a common modelling approach is the Multi-Level Perceptron Neural 

Network (MLP-NN) approach. One particular topology approach for this scheme is shown below. 

 

 
In the above topology 𝑥1, 𝑥2 and 𝑥3 are the model inputs and 𝑦1 the model output. Two hidden 

layers are present in the system and using a vector/matrix notation the intermediate neuron signals 

may be calculated as 

 

𝝃 = 𝒇(𝑼𝒙 + 𝒂) (A1) 

𝜼 = 𝒇(𝑽𝝃 + 𝒃) (A2) 

𝑦1 = ∑ 𝜂𝑖
𝑝
𝑖=1   (A3) 

  

If both layers have 𝑝 neurons then the vector/matrix parameters have dimensions such that 

 

dim(𝑼) = [𝑝, 3] (A4) 

dim(𝒂) = [𝑝, 1] (A5) 

dim(𝑽) = [𝑝, 𝑝] (A6) 

𝑑𝑖𝑚(𝒃) = [𝑝, 1] (A7) 

 

Although each hidden layer can technically have a different number of neurons if the largest 

number of neurons are used then by the judicious selection of non-zero and zero weighting factors 
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refinements can still be accomodated. When this model is implemented using 𝑛 = 25 iterations 

as a convergence limit for a Levenberg-Marquardt optimization in a GNU Octave simulation then 

the following results are obtained as shown below for the thermal conductivity test data utilized 

from the earlier single layer MLP-NN and copula simulations from Chapter 4. 

 

 

𝑝 𝐴𝐴𝑅𝐷% 

3 10.4325 

4 17.5509 

5 8.2756 

6 5.9048 

7 17.5507 

8 17.5509 

 

It was observed that the main challenge with the implementation of a dual layer MLP-NN scheme 

for the in-house computer code that was developed was with the specification of the starting values 

for the optimization search. This is an area of future research to refine the code to achieve better 

results.  

 

 

6.2 Representive Computer Codes 
   

The following m-files were developed in GNU Octave to test the feasibility of a dual layer MLP-

NN approach but unfortuantely it was not considered feasible to utilize a two layer scheme, and a 

single layer MLP-NN approach was utilized as per the recommendations of Ariana et al [66].  

 

Main Program 

 

clear all 

clc 

 

pkg load optim 

 

global X Y p 

 

disp('Dual Layer MLP-NN') 

ktrain = load('kmodel.txt'); 

Ttrain = load('Tmodel.txt'); 

phitrain = 1E2*load('phimodel.txt'); 

dtrain = 1E9*load('dmodel.txt'); 

 

ktest = load('ktest.txt'); 

Ttest = load('Ttest.txt'); 

phitest = 1E2*load('phitest.txt'); 

dtest = 1E9*load('dtest.txt'); 

 



181 

 

kmin = min(ktrain); 

kmax = max(ktrain); 

Tmin = min(Ttrain); 

Tmax = max(Ttrain); 

 

phimin = min(phitrain); 

phimax = max(phitrain); 

 

dmin = min(dtrain); 

dmax = max(dtrain); 

 

N = length(ktrain); 

 

% x = [ T phi d ] 

 

deltaT = (Tmax - Tmin); 

deltaphi = (phimax - phimin); 

deltad = (dmax - dmin); 

 

deltak = (kmax - kmin); 

 

for i = 1:N 

    Xtrain(i, 1) = (Ttrain(i) - Tmin)/deltaT; 

    Xtrain(i, 2) = (phitrain(i) - phimin)/deltaphi; 

    Xtrain(i, 3) = (dtrain(i) - dmin)/deltad; 

    Ytrain(i, 1) = (ktrain(i) - kmin)/deltak;  

end 

 

X = Xtrain; 

Y = Ytrain; 

 

 

p = 3; % number of hidden neurons 

 

U0 = abs( randn(p, 3) ); % random matrix all components  between 0 and 1  

 

a0 = abs( randn(p, 1) ); % random vector all components between 0 and 1 

 

V0 = abs( randn(p, p) ); % random vector all components between 0 and 1 

 

b0 = abs( randn(p, 1) ); % random vector all components between 0 and 1 

 

 

Ucolumn = U0(:); 

acolumn = a0(:); 

Vcolumn = V0(:); 
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bcolumn = b0(:); 

 

A0 = [Ucolumn; acolumn; Vcolumn; bcolumn]; 

 

% U = p x 3 

% a = p x 1 

% V = p x p 

% b = p x 1 

 

optimizeLevenbergMarquardt = 1; 

 

if optimizeLevenbergMarquardt == 1 

    [f1, p1, cvg1, iter1, corp1, covp1, covr1, stdresid1, Z1, r21] = leasqr(X, Y, A0, 

'modelDualLayerMLPNN', 0.0001, 25); 

    % Set the converged Levenberg-Marquardt optimization solution to the optimal parameter in 

column 

    % format using standard Matlab/Fortran matrix-column notation  

    aopt = p1; 

    % Extract the coefficients from the optimal parameter and reconstruct the vector/matrix 

terms  

    % U = p x 3 

    I1 = 1; 

    I2 = 3*p; 

    % a = p x 1 

    I3 = I2 + 1; 

    I4 = I2 + p; 

    % V = p x p 

    I5 = I4 + 1; 

    I6 = I4 + (p*p); 

    % b = p x 1 

    I7 = I6 + 1; 

    I8 = I6 + p; 

    % reshape and reconstruct 

    colU = aopt(I1:I2); 

    U = reshape(colU, [p, 3]); 

    cola = aopt(I3:I4); 

    a = cola; 

    colV = aopt(I5:I6); 

    V = reshape(colV, [p, p]); 

    colb = aopt(I7:I8); 

    b = reshape(colb, [p, 1]); 

end 

 

 

M = length(ktest); 
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for i = 1:M 

    Xtest(i, 1) = (Ttest(i) - Tmin)/deltaT; 

    Xtest(i, 2) = (phitest(i) - phimin)/deltaphi; 

    Xtest(i, 3) = (dtest(i) - dmin)/deltad; 

    Ytest(i, 1) = (ktest(i) - kmin)/deltak;  

end 

 

for j = 1:M 

    x = Xtest(i, :); 

 x = x'; 

 xi = factivation(U*x + a); 

 eta = factivation(V*xi + b); 

 y = gactivation(eta); 

 ypredict(j, 1) = y; 

end 

 

% Reconstruct the physical values from the normalized coordinates 

 

ktestdata = (kmax - kmin)*Ytest + kmin; 

kpredictdata = (kmax - kmin)*ypredict + kmin; 

 

y1 = ktestdata; 

y2 = kpredictdata; 

 

AARDtest = (100/M)*sum( abs( (y1 - y2)./y1 ) ); 

 

figure(1) 

clf 

plot(y1, y2, '-sk') 

grid on 

xlabel('ktest') 

ylabel('kpredict') 

titlestr = ['AARD% = ', num2str(AARDtest)]; 

title(titlestr); 

 

Associated Model Implementation 

 

function fval = modelDualLayerMLPNN(X, amodel) 

 

global p 

 

% U = p x 3 

I1 = 1; 

I2 = 3*p; 

% a = p x 1 

I3 = I2 + 1; 
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I4 = I2 + p; 

 

% V = p x p 

I5 = I4 + 1; 

I6 = I4 + (p*p); 

 

% b = p x 1 

I7 = I6 + 1; 

I8 = I6 + p; 

 

% reshape and reconstruct 

colU = amodel(I1:I2); 

U = reshape(colU, [p, 3]); 

 

cola = amodel(I3:I4); 

a = cola; 

colV = amodel(I5:I6); 

V = reshape(colV, [p, p]); 

 

colb = amodel(I7:I8); 

b = reshape(colb, [p, 1]); 

 

dimX = size(X); 

rowX = dimX(1, 1); 

colX = dimX(1, 2); 

 

M = rowX; 

 

for i = 1:M 

    x = X(i, :)'; 

 xi = factivation(U*x + a); 

 eta = factivation(V*xi + b); 

 ymodel(i, 1) = gactivation(eta); 

end  

 

fval = ymodel; 

 

Activation Function for Both Input/Intermediate Layers 

 

function fval = factivation(x) 

fval = ( 1 + exp(-x) ).^(-1); 

 

Activation Function for Output Layer 

 

function gval = gactivation(x) 

gval = sum(x); 



185 

 

7 References 
 

 

[1] F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer.  John Wiley & Sons, 4th 

ed., 1996. ISBN 0-471-30460-3. 

[2] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Cengage Learning, 1st ed., 1976. ISBN 0-03-

083993-9. 

[3] R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer. Taylor & Francis, 4th ed., 2002. ISBN 1-

56032-839-8. 

[4] J. I. Castor, Radiation Hydrodynamics. Cambridge University Press, 1st ed., 2004. ISBN 0-521-83309-

4. 

[5] A. F. Mills, Basic Heat and Mass Transfer. Prentice Hall, 2nd ed., 1999. ISBN 0-13-096247-3.  

[6] S. U. S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” in Developments and 

Applications of Non-Newtonian Flows – Proceedings of the 1995 ASME International Mechanical 

Engineering Congress and Exposition (D. A. Siginer and H. P. Wang, eds.), vol. 231, pp. 99–105, 

American Society of Mechanical Engineers Fluids Engineering Division, November 1995. 

[7] Department of Trade and Industry, “Industrial Policy Action Plan (IPAP) Part 1: 2017/18–2019/20,” 

tech. rep., Government of the Republic of South Africa, May 2017. 

https://www.gov.za/sites/default/files/IPAP1718_1920.pdf, ISBN 978-0-621-453669-0. 

[8] D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics. Dover Publications, 

1999. ISBN 0-486-40925-2. 

[9] E. W. Lemmon and R. T. Jacobsen, “Viscosity and Thermal Conductivity Equations for Nitro- gen, 

Oxygen, Argon, and Air,”  International Journal of Thermophysics, vol. 25, no. 1, pp. 21–69, 2004. 

DOI: 10.1023/B:IJOT.0000022327.04529.f3. 

[10] F. Reif, Fundamentals of Statistical and Thermal Physics. McGraw-Hill Book Company, 1965. ISBN 

0-07-085615-X. 

[11] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the 

Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases. Cambridge University Press, 

2nd ed., 1953. ISBN 052140844X. 

[12] J. N. Reddy, Principle of Continuum Mechanics: A Study of Conservation Principles with Applications. 

Cambridge University Press, 2010. ISBN 978-0-521-51369-2. 

[13] L.  S. Garc´ıa-Col´ın,   R.  M.  Velasco, and F.  J.  Uribe, “Beyond the Navier-Stokes Equations: 

Burnett   Hydrodynamics,” Physics Reports, vol.  465, pp. 149–189, 2008.    DOI: 

10.1016/j.physrep.2008.04.010. 

[14] F. M. White, Viscous Fluid Flow. McGraw-Hill, 2nd ed., 1991. ISBN 0070697132. 

[15] J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer. 

Taylor & Francis, 2nd ed., 1997. ISBN 1-56032-046-X. 

[16] V. Y. Rudyak, “Viscosity of Nanofluids – Why It Is Not Described by the Classical Theories,” Advances 

in Nanoparticles, vol. 2, pp. 266–279, 2013. DOI: 10.4236/anp.2013.23037. 

[17] J. B. Young, “Calculation of Knudsen Layers and Jump Conditions Using the Linearised G13 and R13 

Moment Methods,” International Journal of Heat and Mass Transfer, vol. 54, pp. 2902–2912, 2011. 

DOI: 10.1016/j.ijheatmasstransfer.2011.03.009. 

[18] Y. Y. Yan, Y. Q. Zu, and B. Dong, “LBM, A Useful Tool for Mesoscale Modelling of Single- Phase 

and Multiphase Flow,” Applied Thermal Engineering, vol. 31, pp. 649–655, 2011. DOI: 

10.1016/j.applthermaleng.2010.10.010. 

[19] M. Sheikholeslami, M. Gorji-Bandpy, S. M. Seyyedi, D. D. Ganji, H. B. Rokni, and S. Soleimani, 

“Application   of  LBM  in  Simulation  of  Natural  Convection in  a Nanofluid  Filled  Square 

Cavity  with  Curve  Boundaries,”  Powder Technology,  vol.  247, pp.  87–94, 2013.    DOI: 

10.1016/j.powtec.2013.06.008. 

[20] T. J. Scanlon, E. Roohi, C. White, M. Darbandi, and J. M. Reese, “An Open Source, Parallel DSMC 

Code for Rarefied Gas Flows in Arbitary Geometries,” Computers & Fluids, vol. 39, pp. 2078–2089, 

2010. DOI: 10.1016/j.compfluid.2010.07.014. 

[21] G. A. Bird, “The Q-K Model for Gas-Phase Chemical Reaction Rates,” Physics of Fluids, vol. 23, p. 

106101, 2011. DOI: 10.1063/1.3650424. 

[22] G. E. Karniadakis, A.  Beskok, and N.  Aluru,  Microflows:   Fundamentals and Simulation. 

https://www.gov.za/sites/default/files/IPAP1718_1920.pdf


186 

 

Springer, 1st ed., 2002. ISBN 978-0-387-95324-3. 

[23] F. Sharipov and J. L. Strapasson, “Direct Simulation Monte Carlo Method for Arbitrary  Intermolecular 

Potential,”  Physics of Fluids, vol. 24, p. 011703, 2012. DOI: 10.1063/1.3676060. 

[24] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods – Evolution to Complex 

Geometries and Applications to Fluid Dynamics. Springer-Verlag, 2007. ISBN 978-3-540-30727-3. 

[25] X.-Q. Wang and A.  S.  Mujumdar,   “Heat Transfer Characteristics of Nanofluids:    A Review,” 

International Journal of Thermal Sciences,   vol.  46, pp.  1–19, 2007.    DOI: 

10.1016/j.ijthermalsci.2006.06.010. 

[26] H. Bruus, Theoretical Microfluidics.  Oxford University Press, 2008. ISBN 978-0-19-923508-7.  

[27] D.-W. Oh, A.  Jain, J. K.  Eaton, K.  E. Goodson, and J. S. Lee, “Thermal Conductivity Measurement 

and Sedimentation Detection of Aluminium Oxide Nanofluids by Using the 3ω Method,” International 

Journal of Heat and Fluid Flow, vol. 29, pp. 1456–1461, 2008. DOI: 

10.1016/j.ijheatfluidflow.2008.04.007. 

[28] A. Turgut, I. Tavman, M. Chirtoc, H. P. Schuchmann, C. Sauter, and S. Tavman, “Thermal Con- 

ductivity  and Viscosity Measurements of Water-Based TiO2  Nanofluids,” International Journal of 

Thermophysics, vol. 30, pp. 1213–1226, 2009. DOI: 10.1007/s10765-009-0594-2. 

[29] C. H. Li and G. P. Peterson, “Experimental Investigation of Temperature and Volume Fraction 

Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids),” Journal 

of Applied Physics, vol. 99, p. 084314, 2007. DOI: 10.1063/1.2191571. 

[30] B. Ravisankar and V. T.  Chand, “Influence of Nanoparticle Volume Fraction, Particle Size and 

Temperature on Thermal Conductivity and Viscosity of Nanofluids – A Review,” International Journal 

of Automotive and Mechanical Engineering, vol. 8, pp. 1316–1338, 2013. DOI: 

10.15282/ijame.8.2013.20.0108. 

[31] X.-Q. Wang and A. S. Mujumdar, “A Review of Nanofluids – Part I: Theoretical and Numerical 

Investigations,” Brazilian Journal of Chemical Engineering, vol. 25, pp. 613–630, 2008. DOI: 

10.1590/S0104-66322008000400001. 

[32] R. S. Vajjha, D. K. Das, and B. M. Mahagaonkar, “Density Measurement of Different Nanofluids and 

Their Comparison with Theory,” Petroleum Science and Technology, vol. 27, pp. 612–624, 2009. DOI: 

10.1080/10916460701857714. 

[33] T.-P. Teng and Y.-H. Hung, “Estimation and Experimental Study of the Density and Specific Heat for 

Alumina Nanofluid,” Journal of Experimental Nanoscience, vol. 9, no. 7, pp. 707–718, 2014. DOI: 

10.1080/17458080.2012.696219. 

[34] T.-P. Teng, Y.-H. Hung, T.-C. Teng, H.-E. Mo, and H.-G. Hsu, “The Effect of Alumina/Water 

Nanofluid Particle Size on Thermal Conductivity,” Applied Thermal Engineering, vol. 30, pp. 2213–

2218, 2010. DOI: 10.1016/j.applthermaleng.2010.05.036. 

[35] M. Sharifpur, S. Yousefi, and J. P. Meyer, “A New Model for Density of Nanofluids Including 

Nanolayer,” International Communications in Heat and Mass Transfer, vol. 78, pp. 168–174, 2016. DOI: 

10.1016/j.powtec.2016.11.032. 

[36] M.  Sharifpur and J.  P.  Meyer,  “The   Effect  of  Uncertainty   of  Conductivity   and  

Viscosity  of  Nanofluids  on  Heat  Transfer,”   in   1st  International   Conference   on  

Nanostructures  and  Nanomaterial:   Science  and  Application  (Nanotech2012) (P.  Molaei,  

ed.), pp.  1–7,  Iran  University   of  Science and  Technology   (IUST),   February  2012.     

URL: https://www.researchgate.net/publication/280611155. 

[37] M. Mehrabi, M. Sharifpur, and J. P. Meyer, “Modelling and Multi-Objective Optimisation of the 

Convective Heat Transfer Characteristics and Pressure Drop of Low Concentration TiO2-Water 

Nanofluids in the Turbulent Flow Regime,” International Journal of Heat and Mass Transfer, vol. 67, 

pp. 646–653, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.013. 

[38] M. Mehrabi, M. Sharifpur, and J. P. Meyer, “Viscosity of Nanofluids Based On An Artificial 

Intelligence Model,” International Communications in Heat and Mass Transfer, vol. 43, pp. 16–21, 

2013. DOI: 10.1016/j.icheatmasstransfer.2013.02.008. 

[39] C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mar´e,  S. Boucher, and H. A. Mintsa, 

“Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids – Hysteresis 

Phenomenon,” International  Journal of Heat and Fluid Flow, vol. 28, pp. 1492–1506, 2007. DOI: 

10.1016/j.ijheatfluidflow.2007.02.004. 

[40] I. Tavman, A. Turgut,  M. Chirtoc, H. P. Schuchmann, and S. Tavman, “Experimental Investigation of 

Viscosity and Thermal Conductivity  of Suspensions Containing Nanosized Ceramic Particles,” 

https://www.researchgate.net/publication/280611155


187 

 

Archives of Material Science and Engineering, vol. 34, no. 2, pp. 99–104, 2008. 

[41] J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim,  S. U. S. Choi, and C. J. Choi, “Effective 

Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume 

Concentrations of Al2O3 Nanoparticles,” International Journal of Heat and Mass Transfer, vol. 51, pp. 

2651–2656, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.10.026. 

[42] K. B. Anoop, S. Kabelac, T. Sundararajan, and S. K. Das, “Rheological and Flow Characteristics of 

Nanofluids: Influence of Electroviscous Effects and Particle Agglomeration,” Journal of Applied 

Physics, vol. 106, pp. 034909–1–034909–7, 2009. DOI: 10.1063/1.3182807. 

[43] M.  J. Pastoriza-Gallego,  C. Casanova, R. Paramo,  B. Barbes,  J. L. Legido, and M. M. P. Neiro, “A  

Study on Stability  and Thermophysical Properties (Density and Viscosity) of Al2O3 in Water 

Nanofluid,” Journal of Applied Physics, vol. 106, pp. 064301–1–064301–8, 2009. DOI: 

10.1063/1.3187732. 

[44] D. Kwek, A. Crivoi, and F. Duan, “Effects of Temperature and Particle Size on the Thermal Property 

Measurements of Al2O3-Water Nanofluids,” Journal Chemical Engineering Data, vol. 55, pp. 5690–

5695, 2010. DOI: 10.1021/je1006407. 

[45] S.  A.  Adio, M. Sharifpur, and J.  P.  Meyer, “Investigation  Into  Effective  Viscosity,  Elec- 

trical   Conductivity,   and  pH  of  γ-Al2O3-Glycerol  Nanofluids  in  Einstein  Concentration 

Regime,”  Heat  Transfer  Engineering,  vol.  36, no.  14–15, pp.  1241–1251, 2015.    DOI: 

10.1080/01457632.2015.994971. 

[46] M. Sharifpur,  S. A. Adio, and J. P. Meyer, “Experimental Investigation and Model Development for 

Effective Viscosity of Al2O3-Glycerol Nanofluids By Using Dimensional Analysis and GMDH- NN 

Methods,” International Communications in Heat and Mass Transfer, vol. 68, pp. 208–219, 2015. DOI: 

10.1016/j.icheatmasstransfer.2015.09.002. 

[47] J.  A.  R.  Babu, K.  K.  Kumar, and S. S. Rao, “State-of-Art   Review on Hybrid Nanofluids,”   

Renewable and  Sustainable Energy  Reviews, vol.  77, pp.  551–565, 2017.    DOI: 

10.1016/j.rser.2017.04.040. 

[48] S. Kumar, S. K. Prasad, and J. Banerjee, “Analysis of Flow and Thermal Field in Nanofluid Using a 

Single Phase Thermal Dispersion Model,” Applied Mathematical Modelling, vol. 34, pp. 573–592, 

2010. DOI: 10.1016/j.apm.2009.06.026. 

[49] M. K. Moraveji and R. M. Ardehali, “CFD Modeling (Comparing Single and Two-Phase Ap- proaches) 

on Thermal Performance of Al2O3/Water Nanofluid in Mini-Channel Heat Sink,” International 

Communications in Heat and Mass Transfer, vol. 44, pp. 157–164, 2013. DOI: 

10.1016/j.icheatmasstransfer.2013.02.012. 

[50] R. Davarnejad,  S. Barati, and M. Kooshki, “CFD Simulation of the Effect of Particle Size on the 

Nanofluids Convective Heat Transfer in the Developed Region in a Circular Tube,” SpringerPlus, vol. 

2, pp. 1–6, 2013. URL: http://www.springerplus.com/content/2/1/192. 

[51] K. Khanafer and K. Vafai, “A Critical Sythesis of Thermophysical Characteristis of Nanofluids,” 

International Journal of Heat and Mass Transfer, vol. 54, pp. 4410–4428, 2011. DOI: 

10.1016/j.ijheatmasstransfer.2011.04.048. 

[52] C. T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Mar´e,  S. Boucher, and H. A. Mintsa, “Viscosity 

Data for Al2O3-Water Nanofluid – Hysteris: Is Heat Transfer Enhancement Using Nanofluids 

Reliable?,” International Journal of Thermal Sciences, vol. 47, pp. 103–111, 2008. DOI: 

10.1016/j.ijthermalsci.2007.01.033. 

[53] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OILM, “Guide to the Expression of Un- certainty 

in Measurement,” tech. rep., Bureau International de Poids et Mesures (BIPM),  2008. 

www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. 

[54] M. Chandrasekar, S. Suresh, and A. C. Bose, “Experimental Investigations and Theoretical De- 

termination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid,” Experimental and 

Thermal Science, vol. 29, pp. 210–216, 2010. DOI: 10.1016/j.expthermflusci.2009.10.022. 

[55] M. Hosseini and S. Ghader, “A Model for Temperature and Particle Volume Fraction Effect on 

Nanofluid Viscosity,” Journal of Molecular Liquids, vol. 153, pp. 139–145, 2010.  DOI: 

10.1016/j.molliq.2010.02.003. 

[56] M.  Corcione, E.  Habib, and A.  Quintino,  “A  Two  Phase Numerical Study  of Buoyancy 

Driven  Convection of  Alumina-Water  Nanofluids in  Differentially-Heated  Horizontal  An- 

nuli,”  International  Journal of Heat and Mass Transfer,  vol. 65, pp. 327–338,  2013.  DOI: 

10.1016/j.ijheatmasstransfer.2013.06.014. 

http://www.springerplus.com/content/2/1/192
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf


188 

 

[57] J. Albard, S. Tayal, and M. Alasadi, “Heat Transfer Through Heat Exchanger Using Al2O3 Nanofluid 

at Different Concentrations,” Case Studies in Thermal Engineering, vol. 1, pp. 38–44, 2013. DOI: 

10.1016/j.csite.2013.08.004. 

[58] M. R. Safaei, A. H. Jahanbin, A. Kianifar, S. Gharehkhani, A. S. Kherbeet, M. Goodarzi, and M. Dahari, 

“Modeling and Simulation in Engineering Sciences,” in Mathematical Modeling for Nanofluids 

Simulation: A Review of the Latest Works (N. S. Akbar and O. A. Beg, eds.), ch. 9, pp. 189–220, 

InTechOpen,  2016. ISBN 978-953-51-2608-09 DOI: 10.5772/64154. 

[59] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics – The Finite 

Volume Method. Pearson/Prentice Hall, 1st ed., 1995. ISBN 0-582-21884-5. 

[60] N. A. C. Sidik, M. N. A. W. M. Yazid, and S. Samion, “Latest Development on Computational 

Approaches for Nanofluid Flow Modeling:   Navier-Stokes Based Multiphase Models,” International 

Communications in Heat and Mass Transfer, vol. 74, pp. 114–124, 2016. DOI: 

10.1016/j.icheatmasstransfer.2016.03.007. 

[61] M. Ghanbarpour, E. B. Haghigi, and R. Khodabandeh, “Thermal Properties and Rheological Behavior 

of Water Based Al2O3 Nanofluid as a Heat Transfer Fluid,” Experimental Thermal and Fluid Science, 

vol. 53, pp. 227–235, 2014. DOI: 10.1016/j.expthermflusci.2013.12.013. 

[62] E.  Abu-Nada,  “Effects  of  Variable  Viscosity  and Thermal  Conductivity  of  Al2O3-Water 

Nanofluid on Heat Transfer Enhancement  in Natural  Convection,” International  Journal of Heat and 

Fluid Flow, vol. 30, pp. 679–690, 2009. DOI: 10.1016/j.ijheatfluidflow.2009.02.003. 

[63] P. N. Nwosu, J. Meyer, and M. Sharifpur, “Nanofluid Viscosity:  A Simple Model Selection Algorithm 

and Parametric Evaluation,” Computers and Fluids, vol. 101, pp. 241–249, 2014. DOI: 

10.1016/j.compfluid.2014.04.001. 

[64] E. A. Baltz, E. Trask, M. Binderbauer, M. Dikovsky, H. Gota, R. Mendoza, J. C. Platt,  and P. F. Riley, 

“Achievement of Sustained Net Plasma Heating in a Fusion Experiment with the Optometrist 

Algorithm,” Scientific Reports, vol. 7, p. 6425, 2017. DOI: 10.1038/s41598-017-06645-7. 

[65] N. Zhao, X. Wen, J. Yang, S. Li, and Z. Wang, “Modeling and Prediction of Viscosity of Water- Based 

Nanofluids by Radial Basis Function Neural Networks,” Powder Technology, vol. 281, pp. 173–183, 

2015. DOI: 10.1016/j.powtec.2015.04.058. 

[66] M. A. Ariana, B. Vaferi, and G. Karimi, “Prediction of Thermal Conductivity of Alumina Water-Based 

Nanofluids by Artificial Neural Networks,” Powder Technology, vol. 278, pp. 1–10, 2015. DOI: 

10.1016/j.powtec.2015.03.005. 

[67] M. K. Meybodi, S. Naseri, A. Shokrollahi, and A. Daryasafar, “Prediction of Viscosity of Water- Based 

Al2O3, TiO2, SiO2, and CuO Nanofluids Using a Reliable Approach,” Chemometrics and Intelligent 

Laboratory Systems, vol. 149, pp. 60–69, 2015. DOI: 10.1016/j.chemolab.2015.10.001. 

[68] E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, and Y. V. Tolmachev, “Thermal Conductivity and 

Particle Agglomeration in Alumina Nanofluids: Experiment and Theory,” Physical Review E, vol. 76, 

pp. 061203–1–061203–16, 2007. DOI: 10.1103/PhysRevE.76.061203. 

[69] J. Meyer, S. Adio, M. Sharifpur, and P. Nwosu, “The Viscosity of Nanofluids: A Review of the 

Theoretical, Empirical and Numerical Models,” Heat Transfer Engineering, vol. 37, no. 5, pp. 387–421, 

2015. DOI: 10.1080/01457632.2015.1057447. 

[70] N. Masoumi, N. Sohrabi, and A. Behzadmehr, “A New Model for Calculating the Effective Viscosity 

of Nanofluids,” Journal of Physics D: Applied Physics, vol. 42, pp. 055501–1–055501–6, 2009. DOI: 

10.1088/0022-3727/42/5/055501. 

[71] S. M. Hosseini, A. R. Moghadassi, and D. E. Henneke, “A New Dimensionless Group Model for 

Determing the Viscosity of Nanofluids,” Journal of Thermal Analysis and Calorimetry, vol. 100, pp. 

873–877, 2010. DOI: 10.1007/s10973-010-0721-0. 

[72] M. F. Zawrah, R. M. Khattab,  L. G. Girgis, H. E. Daidamony, and R. e. Abdel Aziz, “Sta- bility  and 

Electrical Conductivity pf Water-Base Al2O3  Nanofluids for Different Applications,” Housing and 

Building National Research  Center Journal, vol. 12, pp. 227–234,  2016.  DOI: 

10.1016/j.hbrcj.2014.12.001. 

[73] H. Konakanchi, R. S. Vajjha, G. Chukwu, and D. K.  Das, “Measurements of pH of Three Nanofluids 

and Development of New Correlations,” Heat Transfer Engineering, vol. 36, no. 1, pp. 81–90, 2015. 

DOI: 10.1080/01457632.2014.906286. 

[74] M.  Gupta, V.  Singh, R. Kumar, and Z. Said, “A Review of Thermophysical Properties of Nanofluids 

and Heat Transfer Applications,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 638–670, 

2017. DOI: 10.1016/j.rser.2017.02.073. 



189 

 

[75] S.  M.  S. Murshed and P.  Estelle, “A State of the Art Review on Viscosity of Nanofluids,”   

Renewable and Sustainable Energy Reviews, vol.  76, pp.  1134–1152, 2017.    DOI: 

10.1016/j.rser.2017.03.113. 

[76] M. Mehrabi, M. Sharifpur, and J. P. Meyer, “Application of the FCM-Based Neuro-Fuzzy Inference 

System and Genetic Algorithm-Polynomial Neural Network Approaches to Modelling the Thermal 

Conductivity of Alumina-Water Nanofluids,” International Communications in Heat and Mass Transfer, 

vol. 39, pp. 971–977, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.05.017. 

[77] H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of Thermal Conductivity and 

Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of c-Al2O3, SiO2 and TiO2 Ultra-

Fine Particles),” Netsu Bussei, vol. 4, pp. 227–233, 1993. DOI: 10.2963/jjtp.7.227 (In Japanese). 

[78] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring Thermal Conductivity  of Fluids Containing 

Oxide Nanoparticles,” Journal of Heat Transfer, vol. 121, no. 2, pp. 280–289, 1999. DOI: 

10.1115/1.2825978. 

[79] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature Dependence of Thermal Conductivity 

Enhancement for Nanofluids,” Journal of Heat Transfer, vol. 125, pp. 567–574, 2004. DOI: 

10.1115/1.1571080. 

[80] N. Putra, W. Roetzel, and S. Das, “Natural Convection of Nano-Fluids,” Heat and Mass Transfer, vol. 

39, pp. 775–784, 2003. URL: DOI: 10.1007/s00231-002-0382-z. 

[81] C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, “Empirical Correlation Finding the Role of 

Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement,” Applied 

Physics Letters, vol. 87, pp. 153107–1–153107–3, 2007. DOI: 10.1063/1.2093936. 

[82] C. H. Li and G. P. Peterson, “The Effect of Particle Size on the Effective Thermal Conductiv- ity of 

Al2O3-Water Nanofluids,” Journal of Applied Physics, vol. 101, p. 044312, 2007. DOI: 

10.1063/1.2436472. 

[83] S. H. Kim, S. R. Choi, and D. Kim, “Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size 

Dependence and Effect of Laser Irradiation,” Journal of Heat Transfer, vol. 129, no. 3, pp. 298–307, 

2006. DOI: 10.1115/1.2427071. 

[84] X. Zhang, H. Gu, and M. Fujii, “Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids 

Containing Spherical and Cylindrical Nanoparticles,” Experimental Thermal and Fluid Science, vol. 31, 

pp. 593–599, 2007. DOI: 10.1016/j.expthermflusci.2006.06.009. 

[85] Y. S. Ju, J. Kim, and M.-T. Hung, “Experimental Study of Heat Conduction in Aqueous Sus- pensions 

of Aluminium Oxide Nanoparticles,” Journal of Heat Transfer, vol. 130, pp. 092403–1–092403–6, 

2008. DOI: 10.1115/1.2945886. 

[86] S. M. S. Murshed, K. C. Leong, and C. Yang, “Investigations of Thermal Conductivity and Viscosity 

of Nanofluids,” International Journal of Thermal Sciences, vol. 47, pp. 560–568, 2008. DOI: 

10.1016/j.ijthermalsci.2007.05.004. 

[87] H. E. Patel, T. Sundararajan, and S. K. Das, “An Experimental Investigation Into The Ther- mal 

Conductivity Enhancement on Oxide and Metallic Nanofluids,” Journal of Nanoparticle Research, vol. 

12, pp. 1015–1031, 2010. DOI: 10.1007/s11051-009-9658-2. 

[88] J. P. Meyer, P. N. Nwosu, M. Sharifpur, and T. Ntumba, “Parametric Analysis of Effective Viscosity 

Models for Nanofluids,” in ASME 2012 International Mechanical Engineering Congress and Exposition 

– Volume 7:  Fluids and Heat Transfer, Parts A, B, C and D (S. A. Sherif, F. Battaglia,  and S. Neti,  

eds.), pp. 1149–1157,  American Society of Mechanical Engineers (ASME), November 2012. ISBN 

978-0-7918-4523-3 / DOI: 10.1115/IMECE2012-93200. 

[89] A.  Rohatgi, “WebPlotDigitizer.”  http://arohatgi.info/WebPlotDigitizer/app/. Version 

3.12 (Gnu Affero GPL v3).  

[90] M. G. Cox and P. M. Harris, “Validating the Applicability of the GUM Procedure,” Metrologia, vol. 51, 

pp. S167–S175, 2014. DOI: 10.1088/0026-1394/51/4/S167. 

[91] M. G. Cox and S. K, “Informative Bayesian TypeA Uncertainty Evaluation, Especially Applicable to a 

Small Number of Observations,” Metrologia, vol. 54, pp. 642–652, 2017. DOI: 10.1088/1681-

7575/aa787f. 

[92] V. Ramnath, “Application of Quantile Functions for the Analysis and Comparison of Gas Pressure 

Balance Uncertainties,” International Journal of Metrology and Quality Engineering, vol. 8, no. 4, pp. 

1–18, 2017. DOI: 10.1051/ijmqe/2016020. 

[93] R. Willink, “A Generalization of the Welch-Satterthwaite Formula for Use with Correlated Uncertainty 

Components,” Metrologia, vol.  44, pp.  340–349, 2007. DOI:  10.1088/0026-1394/44/5/010. 



190 

 

[94] M. G. Cox and B. R. L. Siebert, “The Use of a Monte Carlo Method for Evaluating Uncertainty and 

Expanded Uncertainty,” Metrologia, vol. 43, pp. S178–S188, 2006.  DOI:  10.1088/0026-

1394/43/4/S03. 

[95] L. M. Lye, “Design of Experiments in Civil Engineering: Are We Still in the 1920’s,” in Annual 

Conference of the Canadian Society for Civil Engineering, Canadian Society for Civil Engineering, 

2002. 

[96] U. Army Materiel Command, “Experimental Design Handbook: Experimental Statistics Section 3 – 

Planning and Analysis of Comparative Experiments,” tech. rep., U. S. Army, 1965. AMC Pamphlet No. 

706-112. 

[97] J. K. Telford, “A Brief Introduction to Design of Experiments,” APL Technical Digest, vol. 27, no. 3, 

pp. 224–232, 2007. 

[98] H. Spliid, “Design and Analysis of Experiments with k Factors Having p Levels,” 2002. Lecture Notes 

in the Design and Analysis of Experiments. 

[99] D. C. Montgomery, Design and Analysis of Experiments.  John Wiley & Sons, 5th ed., 2001. 

ISBN 0-471-31649-0. 

[100] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and l. A. Escaleira, “Response Surface 

Methodology (RSM) as a Tool for Optimization  in Analytical  Chemistry,”  Talanta, vol. 76, pp. 

965–977, 2008. DOI: 10.1016/j.talanta.2008.05.019. 

[101] NIST, “NIST/SEMATECH e-Handbook of Statistical Methods,” tech. rep., Statistical Methods Group, 

2012. http://www.itl.nist.gov/div898/handbook/index.htm. 

[102] A. I. Khuri  and S. Mukhopadhyay, “Response Surface Methodology,”  WIREs Computational 

Statistics, vol. 2, pp. 128–149, March/April 2010. DOI: 10.1002/wics.73. 

[103] R. V. Lenth, “Response-Surface Analysis.” https://cran.r-project.org.  Version 2.8. 

[104] H.  Safikhani, A.  Abbassi, A.  Khalkhali, and M.  Kaltech, “Multi-Objective Optimization of 

Nanofluid Flow in Flat Tubes Using CFD, Artificial   Neural Networks and Genetic Algorithms,”   

Advanced Powder Technology,   vol.  25, no.  5,  pp.  1608–1617, 2014.    DOI: 

10.1016/j.apt.2014.05.014. 

[105] E. Ahmadloo and S. Azizi, “Prediction of Thermal Conductivity of Various Nanofluids Using Artificial 

Neural Network,” International Communications in Heat and Mass Transfer, vol. 74, pp. 69–75, 2016. 

DOI: 10.1016/j.icheatmasstransfer.2016.03.008. 

[106] A. Hemmati-Sarapardeh, A. Varamesh, M. M. Husein, and K. Karan, “On the Evaluation of the 

Viscosity of Nanofluid Systems: Modeling and Data Assessment,” Renewable and Sustainable Energy 

Reviews, vol. 81, pp. 313–329, 2018. DOI: 10.1016/j.rser.2017.07.049. 

[107] MetGen, “Calculation of the Density of Water.”  http://metgen.pagesperso-

orange.fr/metrologieen19.htm, 2017. 

[108] M. L. V. Ramires, C. A. N. de Castro, Y. Nagasaka, A. Nagashima, M. J. Assael, and W. A. Wakeham, 

“Standard Reference Data for the Thermal Conductivity of Water,” Journal of Physical and Chemical 

Reference Data, vol. 24, pp. 1377–1381, 1995. DOI: 10.1063/1.555963. 

[109] C. J. Seeton, “Viscosity–Temperature Correlation for Liquids,” Tribology Letters, vol. 22, no. 1, pp. 

67–78, 2006. DOI: 10.1007/s11249-006-9071-2. 

[110] M. L. Huber, R. A. Perkins, A. laesecke, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, E. 

Vogel, R. Mares, and K. Miyagawa, “New International  Formulation for the Viscosity  of H2O,”  

Journal of Physical and Chemical Reference Data, vol. 38, no. 2, pp. 101–125, 2009. DOI: 

10.1063/1.3088050. 

[111] V. Ramnath, “Deterministic Numerical Simulation of a Non-Isothermal Blackbody Effective Emissivity 

Using a Coupled Fredholm Integral Equation System,” in 6th IASTED International Conference of 

Modelling and Simulation (AfricaMS2016) (G. Mmopelwa, N. M. Seboni, J. Prakash, and G. O. 

Anderson, eds.), pp. 246–253, Acta Press, September 2016. ISBN 978-0-88986-984-4 / DOI: 

10.2316/P.2016.838-012. 

[112] M. G. Cox, “The Evaluation of Key Comparison Data: Determing the Largest Consistent Subset,” 

Metrologia, vol. 44, pp. 187–200, 2007. DOI: 10.1088/0026-1394/44/3/005. 

[113] X. Wang, X. Xu, and S. U. S. Choi, “Thermal conductivity of nanoparticle - fluid mixture,” Jour- nal of 

Thermophysics and Heat Transfer, vol. 13, no. 4, pp. 474–480, 1999. DOI: 10.2514/2.6486. 

[114]  J.  Li and C.  Kleinstreuer,  “Thermal  Performance of  Nanofluid  Flow  in  Microchannels,” 

International   Journal  of  Heat  and  Fluid  Flow,  vol.  29, pp.  1221–1232, 2008. DOI: 

10.1016/j.ijheatfluidflow.2008.01.005. 

http://www.itl.nist.gov/div898/handbook/index.htm


191 

 

[115] M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, “The Effect of Particle Size on the Thermal 

Conductivity of Alumina Nanofluids,” Journal of Nanoparticle Research, vol. 11, pp. 1129–1136, 2009. 

DOI: 10.1007/s11051-008-9500-2. 

[116] H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, “New Temperature Dependent Thermal 

Conductivity Data for Water-Based Nanofluids,” International Journal of Thermal Sciences, vol. 48, pp. 

363–371, 2009. DOI: 10.1016/j.ijthermalsci.2008.03.009. 

[117] M. P. Beck, Y. Yuan, P. Warrier,  and A. S. Teja, “The  Thermal Conductivity  of Alumina 

Nanofluids in Water, Ethylene Glycol, and Ethylene Glycol + Water Mixtures,”  Journal of 

Nanoparticle Research, vol. 12, pp. 1469–1477, 2010. DOI: 10.1007/s11051-009-9716-9. 

[118] G. A. Longo and C. Zilio, “Experimemtal Measurement of Thermophysical Properties of Oxide- Water 

Nano-Fluids Down to Ice-Point,” Experimental Thermal and Fluid Science, vol. 35, pp. 1313–1324, 

2011. DOI: 10.1016/j.expthermflusci.2011.04.019. 

[119] T. Yiamsawasd, A. S. Dalkilic, and S. Wongwises, “Measurement of the Thermal Conductivity of 

Titania and Alumina Nanofluids,” Thermochimica Acta, vol. 545, pp. 48–56, 2012. DOI: 

10.1016/j.tca.2012.06.026. 

[120] M.   H.   Buschmann, “Thermal   Conductivity and Heat Transfer of Ceramic Nanofluids,” 

International   Journal of Thermal Sciences,   vol.  62, pp.  19–28, 2012.     DOI: 

10.1016/j.ijthermalsci.2011.09.019. 

[121] H. S. Aybar, M. Sharifpur, M. R. Azizian, M. Mehrabi, and J. P. Meyer, “A Review of Thermal 

Conductivity Models for Nanofluids,” Heat Transfer Engineering, vol. 36, no. 13, pp. 1085–1110, 2014. 

DOI: 10.1080/01457632.2015.987586. 

[122] C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, “Natural Convection Heat Transfer of Alumina- Water 

Nanofluid in Vertical Square Enclosures:  An Experimental Study,” International Journal of Thermal 

Sciences, vol. 49, pp. 1345–1353, 2017. DOI: 10.1016/j.ijthermalsci.2010.02.013. 

[123] X.  Wang, X. Xu, and S. U.  S. Choi, “Thermal Conductivity of Nanoparticle-Fluid Mixture,” Journal 

of Thermophyiscs and Heat Transfer, vol. 13, no. 4, pp. 474–480, 1999. DOI: 10.2514/2.6486. 

[124] B. C. Pak and Y. I. Cho, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron 

Metallic Oxide Particles,” Experimental Heat Transfer, vol. 11, no. 2, pp. 151–170, 2007. DOI: 

10.1080/08916159808946559. 

[125] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, “Heat Transfer and Flow Behaviour of Aqueous 

Suspensions of TiO2  Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe,” 

International Journal of Heat and Mass Transfer, vol. 50, pp. 2272–2281, 2007. DOI: 

10.1016/j.ijheatmasstransfer.2006.10.024. 

[126] W. Duangthongsuk and S. Wongwises, “Measurement of Temperature-Dependent Thermal 

Conductivity and Viscosity of TiO2-Water Nanofluids,” Experimental Thermal and Fluid Science, vol. 

33, pp. 706–714, 2009. DOI: 10.1016/j.expthermflusci.2009.01.005. 

[127] W. Duangthongsuk and S. Wongwises,  “An  Experimental Study on the Heat Transfer Performance 

and Pressure Drop  of TiO2-Water  Nanofluids  Flowing  Under a Turbulent  Flow Regime,” 

International Journal of Heat and Mass Transfer, vol. 53, pp. 334–344, 2010. DOI: 

10.1016/j.ijheatmasstransfer.2009.09.024. 

[128] J. Lee, P. E. Gharagozloo, B. Kolade,  J. K. Eaton, and K. E. Goodson, “Nanofluid Convection in 

Microtubes,”  Journal of Heat Transfer, vol. 132, pp. 092401–1–092401–5, 2010. DOI: 

10.1115/1.4001637. 

[129] M.  J. Pastoriza-Gallego, C. Casanova, J. L.  Legido, and M.  M.  P. neiro, “CuO in Water Nanofluid:  

Influence of Particle Size and Polydispersity on Volumetric Behavior and Viscos- ity,” Fluid Phase 

Equilibria, vol. 300, pp. 188–196, 2011. DOI: 10.1016/j.fluid.2010.10.015. 

[130] I. M. Mahbubul, R. Saidur, and M. A. Amalina, “Latest Developments on the Viscosity of Nanofluids,” 

International Journal on Heat and Mass Transfer, vol. 55, pp. 874–885, 2012. DOI: 

10.1016/j.ijheatmasstransfer.2011.10.021. 

[131] L. Fedele, L. Colla, and S. Bobbo, “Viscosity and Thermal Conductivity Measurements of Water- Based 

Nanofluids Containing Titanium Oxide Nanoparticles,” International Journal of Refrig- eration, vol. 35, 

pp. 1359–1366, 2012. DOI: 10.1016/j.ijrefrig.2012.03.012. 

[132] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes – The Art of 

Scientific Computing. Cambridge University Press, 3rd ed., 2007. ISBN 978-0-521-88068-8. 

[133] R. L. Burden and J. D. Faires, Numerical Analysis. Brookes/Cole, 7th ed., 2001. ISBN 0-534-38216-9. 

[134] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. Anthena Scientific, 1996. 



192 

 

ISBN 1-886529-04-3. 

[135] P. M. Harris and M. G. Cox, “On a Monte Carlo Method for Measurement Uncertainty Evaluation and 

Its Implementation,” Metrologia, vol. 51, pp. S176–S182, 2014. DOI: 10.1088/0026-1394/51/4/S176. 

[136] R. Willink, “Representing Monte Carlo Output Distributions for Transferability in Uncertainty 

Analysis: Modelling with Quantile Functions,” Metrologia, vol. 46, pp. 154–166, 2009. DOI: 

10.1088/0026-1394/46/3/002. 

[137] G. Anastasiades and P. McSharry, “Quantile Forecasting of Wind Power Using Variability Indices,” 

Energies, vol. 6, pp. 662–695, 2013. DOI: 10.3390/en6020662. 

[138] L.  Yang, J.  Xu, K. Du, and X.  Zhang, “Recent Developments on Viscosity and Thermal 

Conductivity of Nanofluids,” Powder Technology, vol. 317, pp. 348–369, 2017.  DOI: 

10.1016/j.powtec.2017.04.061. 

[139] M.  Kole and T.  K.  Dey, “Viscosity of Alumina Nanoparticles Dispersed in Car Engine Coolant,”   

Exp.  Thermal Fluid Sci., vol.  34, no.  6, pp.  677–683, 2010.     DOI: 

10.1016/j.expthermflusci.2009.12.009. 

[140] P. K. Nambura, D. P. Kulkarni, D. Misra, and D. K. Das, “Viscosity of Copper Oxide Nanoparticles 

Dispersed in Ethylene Glycol and Water Mixture,” Exp. Thermal Fluid Sci., vol. 32, no. 2, pp. 397–402, 

2007. DOI: 10.1016/j.expthermflusci.2007.05.001. 

[141] K. Sharma, P. K. Sarm, W. H. Azmi, R. Mamat, and K. Kadirgama, “Correlations to Predict Friction 

and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a 

Tube,” Int.  J. Microscale Nanoscale Therm. Fluid Transp. Phenom., vol. 3, no. 4, pp. 283–307, 2012. 

ISSN 1949-4955. 

[142] P. K. Nambura, D. P. Kulkarni,  A. Dandekar, and D. K. Das, “Experimental Investigation of Viscosity 

and Specific Heat of Silicon Dioxide Nanofluids,” Micro Nano Letter Iet, vol. 2, no. 3, pp. 67–71, 2007. 

DOI: 10.1049/mnl:20070037. 

[143] Y. Xuan, Q. Li, and W. Hu, “Aggregation Structure and Thermal Conductivity of Nanofluids,” AICHE 

Journal, vol. 49, no. 4, pp. 1038–1043, 2003. DOI: 10.1002/aic.690490420. 

[144] J. Koo and C. Kleinstreuer, “A New Thermal Conductivity Model for Nanofluids,” Journal of 

Nanoparticle Research, vol. 6, no. 6, pp. 577–588, 2004. DOI: 10.1007/s11051-004-3170-5. 

[145] P.  Saunders, “Propagation  of Uncertainty  for  Non-Linear Calibration  Equations with  An 

Application  in  Radiation  Thermometry,”  Metrologia,  vol.  40, pp.  93–101, 2003.    URL: 

http://stacks.iop.org/Met/40/93. 

[146] BIPM,  IEC,  IFCC,  ILAC,  ISO, IUPAC,  IUPAP,  and OILM,  “Evaluation  of Measurement 

Data – Supplement 2 to the “Guide to the Expression of Uncertainty in Measurement” – Extension to 

Any Number  of Output  Quantities,”  tech. rep., Bureau International  de Poids et Mesures (BIPM),  

2011. http://www.bipm.org/utils/common/documents/jcgm/JCGM_102_2011_E.pdf. 

[147] A. H. Harvey, R. Span, K.  Fujii,  M. Tanaka, and R. S. Davies, “Density  of Water:  Roles of the 

CIPM  and IAPWS  Standards,” Metrologia, vol. 46, no. 3, pp. 196–198,  2009.  DOI: 10.1088/0026-

1394/46/3/006. 

[148] D. Hussain, K. Ahmad, J. Song, and H. Xie, “Advancess in the Atomic Force Microscopy for Critical 

Dimension Metrology,” Measuremnt Science Technology, vol. 28, p. 012001, 2017. DOI: 

10.1088/0957-0233/28/1/012001. 

[149] C. B. McDonald, “OctSymPy  – An Implementation Of A Symbolic Toolbox Using SymPy.” 

https://octave.sourceforge.io/symbolic/index.html. Version 2.6.0. 

[150] R. Johansson, Numerical Python: A Practical Techniques Approach for Industry. Apress, 1st ed., 2015. 

ISBN 978-1-4842-0553-2 / DOI: 10.1007/978-1-4842-0553-2. 

[151] V. Ramnath, “Numerical Analysis of the Accuracy of Bivariate Quantile Distributions  Utilizing 

Copulas Compared to the GUM  Supplement  2 for Oil  Pressure Balance Uncertainties,” 

International Journal of Metrology and Quality Engineering, vol. 8, no. 4, 2017. DOI: 

10.1051/ijmqe/2017018. 

[152] H. Ghodsinezhad, “Experimental Investigation on Natural Convection of Al2O3-Water Nanofluids in 

Cavity Flow,” Master’s thesis, Department of Mechanical and Aeronautical Engineering, Faculty of 

Engineering, Built Environment and Information Technology, University of Pretoria, Gauteng Province, 

Republic of South Africa, 2016. 

[153] M. Liu, C. Ding, and J. Wang, “Modeling of Thermal Conductivity of Nanofluids Considering 

Aggregation and Interfacial Thermal Resistance,” Royal Society of Chemistry Advances, vol. 6, p. 

3571, 2016. DOI: 10.1039/c5ra16327g. 

http://stacks.iop.org/Met/40/93
http://www.bipm.org/utils/common/documents/jcgm/JCGM_102_2011_E.pdf


193 

 

[154] M. Mahdavi, Study of Flow and Heat Transfer Features of Nanofluids Using Multiphase Models: 

Eulerian Multiphase and Discrete Lagrangian Approaches. PhD thesis, Department of Mechanical and 

Aeronautical Engineering, Faculty of Engineering, Built  Environment and Information Technology, 

University of Pretoria, Gauteng Province, Republic of South Africa, 2016. 

[155] M. J. Uddin, K. S. A. Kalbani, M. M. Rahman, M. S. Alam, N. Al-Salti,  and I. A. Eltayeb, 

“Fundamentals of Nanofluids: Evolution, Applications and New Theory,” International Journal of 

Biomathematics and Systems Biology, vol. 2, no. 1, pp. 1–32, 2016. ISSN 2394-7772, URL: 

http://biomathsociety.in/issue2/paper4.pdf. 

[156] N. G. Hadjiconstantinou, “Comment on Cercignani’s Second-Order Slip Coefficient,” Physics of Fluids, 

vol. 15, no. 8, p. 2352, 2003. DOI: 10.1063/1.1587155. 

[157] V. Ramnath, “Computational Solution of the Extended Navier-Stokes PDE’s:  Incorporating Nonlinear 

Fluid-Solid Boundary Conditions for Microfluidic Simulations,” in 4th International Conference of 

Metrology in Africa (CAFMET 2012) (A. Charki, ed.), pp. 78–88, Curran Associates, April 2012. ISBN 

978-1-62276-063-3. 

[158] N. Singh, R. S. Jadhav, and A. Agrawal, “Derivation of Stable Burnett Equations for Rarefied Gas 

Flows,” Physical Review E, vol. 96, p. 013106, 2017. DOI: 10.1103/PhsRevE.96.013106. 

[159] O.  A.  Rogozin, “Slow Nonisothermal Flows: Numerical and Asymptotic Analysis of the Boltzmann 

Equation,” Computational Mathematics and Mathematical Physics, vol. 57, no. 7, pp. 1201–1224, 2017. 

DOI: 10.1134/S0965542517060112. 

[160] F. Sharipov and V. Seleznev, “Data on Internal Rarefied Gas Flows,” Journal of Physical and Chemical 

Reference Data, vol. 27, pp. 657–706, 1998. DOI: 10.1063/1.556019. 

[161] F. H. Stillinger, “Theory and Molecular Models for Water,” in Advances in Chemical Physics: Non-

Simple Liquids (I. Prigogine and S. A. Rice, eds.), vol. 31, ch. 1, pp. 1–101, Wiley, 1975. DOI: 

10.1002/9780470143834. 

[162] J. Mrazek and J. V. Burda, “Can the pH of Water Solutions be Estimated by Quantum Chemical 

Calculations of Small Water Clusters?,” The Journal of Chemical Physics, vol. 125, pp. 194518–1–

194518–15, 2006. DOI: 10.1063/1.2363383. 

[163] W.-Q. Lu and Q.-M. Fan, “Study for the Particle’s Scale Effect on Some Thermophysical Properties of 

Nanofluids by a Simplified Molecular Dynamics Method,” Engineering Analysis with Boundary 

Elements, vol. 32, pp. 282–289, 2008. DOI: 10.1016/j.enganabound.2007.10.006. 

[164] L. Li, Y. Zhang, H. ma, and M. Yang, “An Investigation of Molecular Layering at the Liquid- Solid 

Interface in Nanofluids by Molecular Dynamics Simulation,” Physics Letters A, vol. 372, pp. 4541–

4544, 2008. DOI: 10.1016/j.phsleta.2008.04.046. 

[165] N. Sankar, N. Mathew, and C. B. Sobhan, “Molecular Dynamics Modeling of Thermal Conductivity 

Enhancement in Metal Nanoparticle Suspensions,” International Communications in Heat and Mass 

Transfer, vol. 35, pp. 867–872, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.03.006. 

[166] P. Sachdeva, Molecular Dynamics Study of Thermal Conductivity Enhancement of Water Based 

Nanofluids. PhD thesis, University of Central Florida, College of Engineering and Computer Science, 

Orlando, Florida, United States of America, 2009. 

[167] C. Sun, W.-Q. Lu, J. Liu, and B. Bai, “Molecular Dynamics Simulation of Nanofluid’s Effective 

Thermal Conductivity  in High-Shear-Rate Couette Flow,”  International Journal of Heat and Mass 

Transfer, vol. 54, pp. 2560–2567, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.005. 

[168] Z. Lou and M. Yang, “Molecular Dynamics Simulations on the Shear Viscosity of Al2O3 Nanofluids,” 

Computers & Fluids, vol. 117, pp. 17–23, 2015. DOI: 10.1016/j.compfluid.2015.05.006. 

[169] W. Cui, Z. Shen, J. Yang, and S. Wu, “Effect of Chatic Movements of Nanoparticles for Nanofluid Heat 

Transfer Augmentation by Molecular Dynamics Simulation,” Applied Thermal Engineering, vol. 76, 

pp. 261–271, 2015. DOI: 10.1016/j.applthermaleng.2014.11.030. 

[170] D. Frenkel and B. Smit, Understanding Molecular Simulation – From Algorithms to Applications. 

Academic Press, 2nd ed., 2002. ISBN 978-0-12-267351-1. 

[171] S. Pirhadi, J. Sunseri, and D. R. Koes, “Open Source Molecular Modeling,” Journal of Molecular 

Graphics and Modelling, vol. 69, pp. 127–143, 2016. DOI: 10.1016/j.jmgm.2016.07.008. 

[172] M. E. Fortunato and C. M. Colina, “pysimm : A Python Package for Simulation of Molecular Systems,” 

SoftwareX, vol. 7–12, pp. 1–6, 2016. DOI: 10.1016/j.softx.2016.12.002. 

[173] P. N. Nwosu, J. P. Meyer, and M. Sharifpur, “A Review and Parametric Investigation Into Nanofluid 

Viscosity Models,” Journal of Nanotechnology in Engineering and Medicine, vol. 5, pp. 031008–1–

031008–11, 2014. DOI: 10.1115/1.4029079. 

http://biomathsociety.in/issue2/paper4.pdf


194 

 

[174] M. Mehrabi, M. Sharifpur, and J. P. Meyer, “Adaptive Neuro-Fuzzy Modeling of the Thermal 

Conductivity of Alumina-Water Nanofluids,” in ASME 2012 3rd Micro/Nanoscale Heat & Mass 

Transfer International Conference (MNHMT2012) (P. Cheng, Y. Bayazitoglu, G. Chen, S. Choi, Y. 

Jaluria, D. Li,  P. Norris, B. Peterson,  and B. Tzou, eds.), pp. 155–161, American Society of 

Mechanical Engineers (ASME), March 2012. ISBN 978-0-7918-5477-8 / DOI: 10.1115/MNHMT2012-

75023. 

[175] S. Raschka, Python Machine Learning. PACKT Publishing, 1st ed., 2015. ISBN 978-1-78355-513-0 / 

www.packtpub.com. 

[176] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation.  Society for 

Industrial and Applied Mathematics (SIAM), 2005. ISBN 0-89871-572-5. 

[177] L.   P.   Levasseur, Y. D. Hezaveh, and R.   H.   Wechsler,   “Uncertainties   in   Parame- ters 

with Neural Networks:   Application to Strong Gravitational Lensing.”     arXiv: 

https://arxiv.org/abs/1708.08843, Preprint Version 1 – 29 August 2017. 

[178] A. B. Forbes, “Approaches to Evaluating Measurement Uncertainty,” International Journal of 

Metrology and Quality Engineering, vol. 3, pp. 71–77, 2012. DOI: 10.1051/ijmqe/2012017. 

[179] S. Scardapane and D. Wang, “Randomness in Neural Networks: An Overview,” Wiley Inter- 

disciplinary Reviews: Data Mining and Knowledge Discovery, vol. X, p. Y, 2017. To Appear: January 

2017 – Preprint https://www.researchgate.net/publication/312057617. 

[180] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB. World Scientific, 2007. ISBN 978-

981-270-633-1. 

[181] W.  Li, G. Song, and G. Yao, “Piece-Wise Moving Least Squares Approximation,”   Applied 

Numerical Mathematics, vol. 115, pp. 68–81, 2017. DOI: 10.1016/j.apnum.2017.01.001. 

[182] V. Skala, “RBF  Interpolation with CSRBF of Large Data Sets,” Procedia Computer Science, vol. 

108C, pp. 2433–2437, 2017. DOI: 10.1016/j.procs.2017.05.081. 

[183] S.  A.  Sarra and S.  Cogar, “An Examination of Evaluation Algorithms for the   RBF Method,” 

Engineering Analysis with Boundary Elements, vol. 75, pp. 36–45, 2017.  DOI: 

10.1016/j.enganabound.2016.11.006. 

[184] N. Kolev, U. dos Anjos, and B. V. de M. Mendes, “Copulas: A Review and Recent Develop- ments,” 

Stochastic Models, vol. 22, pp. 617–660, 2005. DOI: 10.1080/15326340600878206. 

[185] P. M. Harris, C. E. Matthews, M. G. Cox, and A. B. Forbes, “Summarizing the Output of a Monte Carlo 

Method for Uncertainty Evaluation,” Metrologia, vol. 51, pp. 243–252, 2014. DOI: 10.1088/0026-

1394/51/3/243. 

[186] M.   Fischer,   “Multivariate   Copula Models at   Work.”    http://www.statistik.wiso. uni-

erlangen.de University of Erlangen-Nuremberg, Germany, 2009. 

[187] K. Aas, C. Czado, A. Frigessi, and H. Bakken, “Pair-Copula Constructions of Multiple  De- pendence,” 

Insurance: Mathematics and Economics, vol. 44, no. 2, pp. 182–198, 2009. DOI: 

10.1016/j.insmatheco.2007.02.001. 

[188] E. C. Brechmann and U. Schepsmeier, “Modeling Dependence with C- and D-Vine Copulas: The R 

Package CDVine,” Journal of Statistical Software, vol. 52, no. 3, pp. 1–27, 2013. URL: 

http://www.jstatsoftware.org/. 

[189] U. Schepsmeier, “A Goodness-of-Fit Test for Regular Vine Copula Models,” Econometric Reviews, pp. 

1–22, 2016. DOI: 10.1080/07474938.2016.1222231. 

[190] CRAN, “The R Project for Statistical Computing.” http://www.r-project.org/.  The Comprehensive R 

Archive Network Version 3.3.3 (Another Canoe). 

[191] J. Segers, M. Sibuya, and H. Tsukahara, “The Empirical Beta Copula,” Journal of Multivariate Analysis, 

vol. 155, pp. 35–51, 2017. DOI: 10.1016/j.jmva.2016.11.010. 

[192] W. Asquith, “The Comprehensive R Archive Network – General Bivariate Copula Theory and Many 

Utility Functions.” https://cran.r-project.org.  Version 2.0.4. 

[193] L. D. Capitani, F. Nicolussi, and A. Zini, “Trivariate Burr-III Copula With Applications to Income 

Data,” METRON, vol. 7–12, pp. 1–16, 2016. DOI: 10.1007/s40300-016-0104-9. 

[194] S. S. Dhar, B. Chakraborty, and P. Chaudhuri, “Comparison of Multivariate Distributions Using 

Quantile-Quantile Plots and Related Tests,” Bernoulli, pp. 1484–1506, 2014. DOI: 10.3150/13- 

BEJ530. 

[195] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OILM, “Evaluation of Measurement Data – 

Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement” – Propaga- tion of 

Distributions using a Monte Carlo Method,” tech. rep., Bureau International de Poids et Mesures 

http://www.packtpub.com/
https://www.researchgate.net/publication/312057617
http://www.jstatsoftware.org/


195 

 

(BIPM), 2008. http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf. 

[196] T. Nagler, C. Schellhase, and C. Czado, “Nonparametric Estimation of Simplified Vine Cop- ula 

Models: Comparison of Methods,” Dependence Modeling, vol. 5, pp. 99–120, 2017. DOI: 

10.1515/demo-2017-0007. 

[197] N. Barthel, C. Geerdens, M. Killiches, P. Janssen, and C. Czado, “Vine Copula Based Likelihood 

Estimation of Dependence Patterns in Multivariate Event Time Data.”  https://arxiv.org/ 

abs/1603.01476. Version 2. 

[198] S. Jiang and L. S. Luo, “Analysis and Accurate Numerical Solutions of the Integral Equation Derived 

from the Linearized BGKW Equation for the Steady Couette Flow,” Journal of Com- putational Physics, 

vol. 316, pp. 416–434, 2016. DOI: 10.1016/j.jcp.2016.04.011. 

[199] A. Maripia, M. Sharifpur, and J. P. Meyer, “Investigation into Cavity Flow Natural Convection for 

Al2O3-Water Nanofluids Numerically,” in 10th International Conference on Heat Transfer, Fluid 

Mechanics and Thermodynamics (HEFAT2014) (J. P. Meyer, ed.), pp. 1–7, International Centre for 

Heat and Mass Transfer (ICHMT), July 2014. ISBN 978-1-77592-068-7. 

[200] M. Mahdavi, M. Sharifpur, and J. P. Meyer, “Implementation of Diffusion and Electrostatic Forces to 

Produce a New Slip Velocity in the Multiphase Approach to Nanofluids,” Powder Technology, vol. 307, 

pp. 153–162, 2016. DOI: 10.1016/j.powtec.2016.11.032. 

[201] M. Mahdavi, M. Sharifpur, and J. P. Meyer, “A Novel Model of Discrete and Mixture Phases for 

Nanoparticles in Convective Turbulent Flow,” Physics of Fluids, vol. 29, no. 8, p. 082005, 2017. DOI: 

10.1063/1.4998181. 

[202] A.  Belopolsky, B. Chapman, P. Cock, D. Eddelbuettel, T.  Kluyver, W.  Moreira, L.  Oget, J.  

Owens, N.  Rapin, G.  Slodkowicz, N. Smith, and G.  Warnes, “rpy2 – R in Python.” 

https://rpy2.bitbucket.io/.  Version 2.9.1. 

[203] D. Eddelbuettel, R. Francois, J. J. Allaire,  K.  Ushey, Q. Kou,  N. Russell, D. Bates, and J. Chambers, 

“Rcpp:  Seamless R and C++  Integration.”  https://cran.r-project.org/web/ 

packages/Rcpp/index.html. Version 0.12.13. 

[204] R. Palencar, G. Wimmer, and M. Halaj, “Determination of the Uncertainties and Covariances in the 

Calibration of the Set of Weights,” Measurement Science Review, vol. 2, no. 1, pp. 9–20, 2002. 

http://www.measurement.sk/2002/S1/Palencar1.pdf. 

[205] N. Bouguerra, S. Poncet, and S. Elkoun, “Dispersion of Regimes in Alumina/Water-Based Nanofluids:  

Simultaneous Measurements of Thermal Conductivity and Dynamic Viscosity,” International 

Communications in Heat and Mass Transfer, vol. 92, pp. 51–55, 2018.  DOI: 

10.1016/j.icheatmasstransfer.2018.02.015. 

 

 

 

 

http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
http://www.measurement.sk/2002/S1/Palencar1.pdf

