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SUMMARY 

MODELLING THE TRANSMISSION DYNAMICS AND THE EFFECT OF 

DIFFERENT CONTROL STRATEGIES FOR AFRICAN SWINE FEVER VIRUS 

IN EAST AFRICA 

By 

MIKE BARONGO BITAMALE  

Promoter:        Prof D Knobel 

Co-promoters: Dr. RP Bishop, Dr. A Ssematimba 

Department:    Veterinary Tropical Diseases 

Degree:             PhD           

 African swine fever (ASF) is a highly contagious, lethal and economically devastating haemorrhagic 

disease of domestic pigs. Knowledge of the epidemiology of the disease is important for the design of 

improved control measures. Such insights of the dynamics of virus can be obtained from mathematical 

constructs. In this study, we used two methods to estimate the basic reproduction number (R0) from 

field data. Our estimates predicted persistence of ASF in pig populations and recommended enhanced 

biosecurity measures. We developed a stochastic model to assess the relative impact of the timing of 

the implementation of different control strategies on disease-related mortality. The results showed that 

intervention within 14 days of the outbreak and using a combination of strategies was the best control 

option. The modelling approach was particularly valuable in that it determined an optimal timing for 

implementation of interventions. 

A between-village spatial-deterministic model was developed. The model simulations showed that 

there were intervention windows of 30 days from the onset of the outbreak to reduce ASFV spread 

between villages. The study also analysed cross sectional data collected in a survey conducted in the 

study area to identify key parameters of low input production systems. We found out that farmers 

mostly kept local pig breeds by tethering. They fed the pigs on farm crop residues and household food 

leftovers or swill. We recommend timely intervention by authorities during outbreaks; the use of a 

cocktail of control strategies; restriction of free movement of animals; and improving the supply of 

affordable pig feeds to incentivize adoption of better husbandry and health practices and increasing 

pig productivity.
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Introduction 1 

  

Chapter 1   Introduction  
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1.1 Background   

African swine fever (ASF) is a devastating disease of domestic pigs caused by a large double 

stranded DNA (dsDNA) virus which is the sole member of the family, Asfarviridae [1–3]. The 

virus is ancestrally associated with and maintained either through a sylvatic cycle involving 

warthogs (Phacochoerus aethiopicus) and soft ticks in the genus Ornithodoros or in a domestic 

cycle that involves pigs of local breeds, with or without tick involvement [4]. The ASF virus is 

stable over a wide range of temperatures and pH which enables it to persist in excretions, carcasses 

and pork products from infected pigs [5]. 

The virus is contagious and can spread rapidly in naïve pig populations by direct or indirect 

contact. Susceptible pigs in most contemporary production systems become infected mainly 

through the direct oro-nasal route after contact with infected pigs or indirectly through feeding of 

virus contaminated products (swill and garbage), contact with fomites and sometimes by tick 

vectors, although the latter route of transmission has seldom been demonstrated for domestic pigs 

[5]. The incubation period of ASF is typically less than 7 days before infected pigs present a range 

of syndromes varying from per-acute, acute to chronic disease and apparently healthy but sub-

clinically infected depending on the virulence of the strain and perhaps also the pig genotype [6]. 

The virus causes acute haemorrhagic disease with high morbidity and mortality rates in domestic 

pigs that can be close to 100% in naïve populations but does not cause clinical disease in warthogs  

or other wild African suids [1]. 

ASF was confined to eastern and southern Africa in its reservoir hosts (soft ticks and wild suids) 

until the introduction into Africa of susceptible domestic pigs. The virus was first described in 

Kenya in the early twentieth century by Montgomery as an acute haemorrhagic fever of domestic 

pigs with clinical and pathological resemblances to classical swine fever (CSF) but differing 
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epidemiologically and immunologically. CSF is, as far as is known, absent from sub-Saharan 

Africa with the exception of the island of Madagascar, from which sporadic incursions into the 

island of Mauritius have occurred and been eradicated. Two incursions over a period a century 

apart have been reported from South Africa, both of which were eradicated [2]. The virus was 

ancestrally maintained through a sylvatic cycle of infection between soft ticks and young warthogs 

in the warthog burrows. The virus also circulated within the tick population by trans-stadial and 

trans-ovarial routes of transmission [7]. A domestic (pig-to-pig) cycle has become increasingly 

important, and is the only mechanism of transmission, particularly in West and Central Africa. 

There is currently no vaccine and ASF control is mainly by diagnosis, and slaughter to eradicate 

infected animals, combined with quarantine in areas where the outbreaks have occurred. The 

disease has spread to previously uninfected countries in Africa in the last two decades. Recent 

studies have described two novel ASF p72 genotypes from eastern Africa: Genotype XXIII from 

Ethiopia [8] and genotype XXIV from Mozambique [9].  

Pig populations in many sub-Saharan African countries have been increasing with Uganda and 

Nigeria topping the list with estimated populations over 3.2 million and over 7 million respectively 

[10–12]. It has recently been established that the rate of increase of demand for pig products is 

higher than that of other types of meat [13–15]. For most sub-Saharan countries this increase in 

pork production and consumption can be attributed to growth in smallholder or backyard 

husbandry systems. However, the full potential of the small-scale pig-keeping sector has been 

hampered by a number of constraints, including ASF, lack of institutional credit facilities, together 

with shortage of suitable feeds [16,17]. ASF is widely regarded as the major disease constraint to 

pig production and enhancement of pork value chains on the African continent [1]. The majority 

of smallholder farmers who supply pork products do not observe strict biosecurity measures, thus 
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exacerbating the challenge of disease prevention and control as the sector grows [5]. Increased 

awareness of biosecurity combined with vigilance is required to protect pig populations, the 

associated pig value chains and ultimately livelihoods. 

The economies of most sub-Saharan African countries are reliant on agriculture, with over 60% of 

their populations (especially those living in the rural areas) deriving their livelihoods directly from 

agriculture. The pig production sector has been growing rapidly in the recent past due to increased 

meat consumption in most sub-Saharan countries [18]. Pigs grow fast, and do not require a large 

amount of capital investment or space to rear them. Therefore, many smallholder farmers in rural 

areas have adopted pig production as a viable income generating enterprise. However, ASF inflicts 

economic and personal losses on farmers, resulting in loss of valuable protein and reduced income. 

Nonetheless, due to the flexibility of the pig keeping system and ease of sale, farmers have come 

to regard pigs as easily-liquidated assets. However, the risk of disease, particularly ASF, can 

prevent investment in the pig sector. 

Research efforts on ASF have focused on development of improved diagnostics [1,3] and on the 

unique biology of virus-host-macrophage interaction [19,20]. Several publications and reviews 

provide insight to guide formulation and implementation of control strategies in the region [21]. 

None of the research to date has explored the use of mathematical modelling to generate insight to 

guide formulation of improved control strategies in smallholder pig-keeping systems, where 

stamping out is not an economically viable option.  

Although ASF has been controlled and even eradicated in some countries outside the African 

continent [7], the control measures used are logistically impractical and too expensive to 

implement in the African context. It is therefore important to design control measures that are 
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appropriate in a regional context, cost effective and acceptable to various stakeholders. To attain 

this, a better understanding of the epidemiology of ASFV and evaluation of the effectiveness of 

different control options is required. Mathematical models provide an avenue for generating such 

knowledge. 

Mathematical models have been used to understand and predict the dynamics of infectious 

diseases. They play a central role in the design of disease control strategies by guiding the 

identification of critical intervention points [22], and quantifying the magnitude, duration and cost 

of disease outbreaks [23]. Models have also been used to assess benefits that accrue from given 

interventions and the probable changes to disease dynamics as a result of these interventions 

[22,24]. 

1.2 Problem statement  

ASF is known to be endemic in many rural communities in Africa affecting household livelihoods 

[1]. However, there has been virtually no significant effort to understand ASF epidemiology from 

the modelling perspective, especially in areas where it is endemic in Africa. Mathematical models 

can be used to better understand the disease, its infection dynamics and to assess the efficacy of 

different control programs [25–29]. In spite of significant efforts to control ASF in Africa, to date 

the role of ASF modelling in identifying the potential impact of control strategies has been under-

researched. Research has focused on improved diagnostics, molecular epidemiology and 

experimental studies primarily focused on preventing the incursion of the disease outside of the 

African continent. 

In the current project, we model the transmission dynamics of ASF in the East African context 

with the aim of better understanding epidemiology and the potential effect of different control 



6 

 

measures. We focus on measures intended to limit the spread of disease and minimize the social-

economic impact on smallholder pig farmers. Specifically, this entails the development and use of 

modelling tools capable of generating insight into ASFV dynamics, persistence in domestic pig 

population and evaluation of the effect of various control strategies. 

 

1.3 Significance of the study 

It is important to undertake this study because: 

1. Formal mathematical models for ASFV dynamics have value in identifying knowledge 

gaps in the literature;  

2. These models will improve our quantitative understanding of the biology of ASFV; 

3. Models will provide a framework for description of the impact of ASF on smallholder pig 

farmers and their livelihoods;  

4. The research outputs can be used to inform and guide policy development for ASF control. 

1.4 Study Objectives 

The overall objective of this study is to model the transmission dynamics of the ASF virus in 

smallholder pig farmer production systems, involving free ranging pigs in order to enhance our 

understanding of the epidemiology and inform the design of appropriate control measures. 

Specifically we aim at: 

1. Analysing key parameters of low input pig production systems  

2. Determining the rate of spread of the virus at a village level through estimating the 

between-village reproduction ratio using field data, 
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3. Developing compartment models for ASF to provide a framework for description of the 

dynamics of ASFV, 

4. Analysing models representing different states of disease equilibrium. 

5. Evaluating the potential effects of different control options, 

1.5 Structure of the thesis 

This thesis is based on articles that have been published (Chapter 3 and Chapter 4) [25,30] and 

others submitted for publication (Chapter 5 and Chapter 6). These articles are based on research 

that was conducted while I was registered as a doctoral candidate at the University of Pretoria.  

The thesis is structured in such a way that we provide a general introduction to ASF, ASFV and 

the objectives of the study in Chapter 1. Chapter 2 gives a review of ASF literature in relation to 

the study objectives. We estimate R0 for ASF from field data in Chapter 3, and we develop a 

stochastic model and use it to simulate the effect of different control options for ASF in Chapter 

4. In Chapter 5 we describe the production system practiced in the study area. A spatial-

deterministic model is developed to assess effect of time for introduction of control measures on 

the spatial transmission of ASFV in Chapter 6, and Chapter 7 sums up the thesis with a general 

discussion and conclusion. There were some modifications to published/submitted papers on the 

position of figures and tables, and formatting of references.  
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CHAPTER 

Literature Review 2 

Chapter 2   Literature Review  
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2.1 African swine fever and its causative virus 

African swine fever (ASF) is a contagious and lethal viral disease of domestic pigs. ASF has one 

of the highest mortality rates of any pig disease, frequently almost 100 percent of infected pigs in 

naïve herds [11,31,32]. It is classified as a notifiable disease by the World Organization of Animal 

Health (OIE), and its presence leads to immediate restrictions to trading in pigs and pig products. 

The disease can have a major impact on animal health, people’s livelihoods, global trade in pigs 

and pig products, and poses a threat to global food security, through its proven record of ‘escape’ 

from the African continent [33,34]. The causative agent, African swine fever virus (ASFV), is a 

double-stranded DNA virus in the genus Asfivirus. It is the sole member of the family Asfarviridae 

(although recently a related superfamily of viruses has been discovered) [2,35–37]. All ASFV 

strains are considered to be belong to a single serotype, with 24 genotypes identified to date [9]. 

The genome varies in length from about 170 to 193 kilo base pairs (kbp) depending on the isolate, 

and contains hairpin loops and terminal inverted repetitions [32]. ASFV is maintained either in a 

sylvatic cycle between warthogs and tampans (soft ticks) that live in warthog burrows, or in a 

domestic cycle that may, or more frequently may not, involve soft ticks [1,13,38]. As in the case 

of warthogs, other African suids such as bush pigs and giant forest hogs (Hylochoerus 

meinertzhageni) are also susceptible to ASFV infection though resistant to its pathogenic effects 

[2,11]. ASF disease usually has different clinical presentations and pathological lesions depending 

on the virus strain, how long the strain has been circulating in the area, route and dose of infection, 

and the host characteristics [2,34,39]. According to Sanchez-Vizcaino et al., [34,40], ASFV strains 

have been classified as highly virulent, moderately virulent or low virulence strains that are 

responsible for peracute, acute or  sub-acute to chronic forms of ASF respectively. ASFV is 

notably stable across a wide range of temperatures and pH. The virus is capable of surviving in 
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serum at room temperature for 18 months, in blood at 4 0C for six years, and at temperatures as 

high as 55 0C for 20 minutes [2].  

2.2 Distribution of ASF 

 

2.2.1 Global impact of ASF 

ASF was first reported outside of the African continent in Portugal in 1957 and again in 1960, 

probably from Angola through airline meals that were discarded and consumed by local pigs [1]. 

Subsequently, ASFV was introduced to other parts of Europe, the Caribbean and Latin America 

but was ultimately eradicated in these areas through test and slaughter by 1995, save for Sardinia 

where it has remained endemic [1,32]. As already mentioned, outbreaks were reported in Portugal 

in 1957 and 1960 before the virus established itself in the Iberian Peninsula. From there the virus 

spread to other European countries including France (1964, 1967, 1977), Italy (1967, 1980), Malta 

(1978), Spain (1960-95), Belgium (1985) and the Netherlands (1986) [1,2,41]. Recently, following 

eradication in the Iberian Peninsula, a different virus genotype (p72 genotype II) was introduced 

into the Caucasus region. This incursion into the Caucasus occurred in 2007 when ASF was 

confirmed in the Republic of Georgia, before spreading to Armenia and Azerbaijan. ASF was later 

confirmed in Chechnya (in dead wild boars) and a number of regions in the southern Russian 

Federation [42,43]. By 2014, ASFV had reached Belarus and Ukraine within the eastern sector of 

the European Union [31,32]. It spread further west into Poland and Lithuania, mainly through the 

movement of wild boars, and threatens the pig industry throughout Europe [32]. Prevention of 

further geographic expansion of ASF will require enhanced surveillance and biosecurity measures 

especially in small-scale private holdings in the endemic zones in order to protect pig farmers and 

their associated businesses and livelihoods in other parts of Europe [5,29,43].           
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2.2.2 The African impact of ASF 

In Africa, ASF was first reported in Kenya in 1921 [44]. Several studies demonstrated that a virus 

existed that caused a disease that differed epidemiologically and immunologically from classical 

swine fever, which was prevalent in Europe and Asia at the time ASF was first reported in Kenya 

[2]. These studies reported that outbreaks were related to contacts between free-ranging domestic 

pigs and wild suids. Following its recognition in Kenya, ASF outbreaks were reported in sub-

Saharan African countries [2]. The disease has since been described from most countries in eastern, 

western, central and southern Africa. By 1954, it had been diagnosed in domestic pigs in Angola 

and Mozambique [45]. It was reported in Guinea Bissau and Senegal by 1959 [38]. ASF has also 

been reported in the Democratic Republic of Congo, Republic of the Congo, Central African 

Republic and Cameroon. It made its first entrance in Chad in 2010 [46–48] while in Nigeria, it 

was first reported in Lagos state in 1997 and has continued to seriously impact the pig industry 

causing heavy socio-economic losses to pig farmers [49–51]. 

In the east African region, ASFV has remained endemic since its first detection in Kenya. In 1994, 

ASF outbreaks were reported in commercial farms in Kenya, after an apparent absence since 1963. 

These outbreaks were attributed to movements of domestic pigs from areas of high endemicity [2]. 

Recently two ASF outbreaks occured in western Kenya between October 2006 and February 2007 

and between December 2010 and March 2012, resulting in the death of 82 pigs and 163 pigs 

respectively [52]. In Uganda, the virus is maintained within the pig populations across the country 

[53]. It was estimated that at least 40 outbreaks occurred in the district of Gulu alone in a period 

of 18 months (October 2010 – March 2012) [30,54]. Furthermore, surveillance data from the 

Ministry of Agriculture, Animal Industry and Fisheries (MAAIF) annual reports indicate that 

Uganda had up to 143 ASF outbreaks between 2006 and 2014.  
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2.3 ASF Maintenance Cycles and Transmission routes 

ASFV is known to have three maintenance cycles: (1) a sylvatic cycle occurring in east and 

southern Africa involving soft ticks of the genus Ornithodoros and warthogs, (2) a cycle between 

domestic pigs and soft ticks, and (3) a domestic cycle involving naïve pigs and infected pigs  

[53,55]. In the sylvatic cycle, warthogs are natural reservoir hosts of ASFV, although they show 

no sign of disease. Their role in the epidemiology of ASF is well described [56,57]. Soft ticks that 

inhabit warthog burrows feed on neonatal warthogs infecting them in the process and they develop 

sufficiently high viraemia to infect new ticks [41]. Within the soft tick population, the virus can 

be transmitted from one tick to another by trans-stadial, trans-ovarial or sexual passage. Soft ticks 

have a life span of 15-20 years and are reported to live for at least five years without feeding and 

are known to retain and transmit the virus to susceptible hosts for periods of at least two years 

[1,58–60]. The maintenance of the virus in the sylvatic cycle is therefore dependent on the 

interaction between warthogs and soft ticks and transmission does not occur vertically or 

horizontally in warthog populations[1,61–63].  This cycle is limited to eastern and southern 

African countries where argasid ticks of the genus Ornithodoros are distributed. 

The pig-tick cycle has been documented in studies done in Malawi, Madagascar and Mozambique 

[64–68] but may be more widespread as evidenced by the high level of pig exposure to tick bites 

in the study region [69]. This could explain the sporadic nature of ASF outbreaks in the study 

region. 

The third and probably the most common cycle (domestic cycle) involves only domestic pigs 

without either wild suids or soft ticks. In this cycle, the virus is maintained among domestic pigs 

or from pig products to domestic pigs establishing a cycle of viral circulation. The development 
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of a higher degree of resistance to viruses of similar virulence by pigs in the study area seem to 

serve as a source of infection for naive pigs [52,70].  

Since the introduction of ASF in the European Union in 2014, a potential fourth maintenance cycle 

in wild boars in EU member states has been suggested. A recent study has described an 

epidemiological pattern that suggests a cycle that focuses on the wild boars and their habitat as a 

virus reservoir [71]. It is proposed that this cycle be named the ‘wild boar–habitat’ cycle. 

Transmission can occur by direct contact between domestic pigs for up to 30 days after infection 

or indirectly by contact with infected pig products and fomites for a considerably long period [1]. 

The relative stability of the virus under varying environmental conditions presents a potential risk 

of introduction to places previously free of ASF. In 2011, an ASF outbreak was reported in the 

coastal town of Mombasa, Kenya and virus genotyping confirmed that the virus had spread from 

the Kenya-Uganda border (unpublished data; Gallardo, Okoth and Bishop). According to [1,72–

74], the spread and maintenance of ASFV in the domestic pigs is governed by several factors 

including; (1) level of adoption of biosecurity practices, (2) production systems employed, (3) 

frequency of farmer contact with infected farms, other farmers, pig traders or veterinary officials, 

(4) use of swill and/or food left overs, (5) introduction of new asymptomatic animals on the farm, 

and (6) presence of an abattoir/ slaughter slabs in the community. Other practices that increase risk 

of transmission of ASF include (a) pig agistment, which involves sharing of animals between close 

neighbours, (b) mass pig sales during suspected ASF outbreaks, (c) delayed diagnostic 

confirmation of outbreaks, and (d) non-reporting of  suspected outbreaks to authorities [73]. 

Recent studies on ASF in the study area such as the “People, Animals & their Zoonoses” (PAZ) 

project in western Kenya aimed at investigating the presence of ASFV viral DNA in domestic pigs 
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presented to slaughter during a time period with no officially reported outbreaks of ASF found an 

apparent increased prevalence of the virus at slaughter slabs, relative to the population at large 

suggesting that sub-clinical, chronically infected or recovered pigs may be responsible for 

persistence of the virus in endemic areas [52]. Similarly, the recurring nature of small-scale ASF 

outbreaks in domestic pigs was investigated by testing for the virus in tissues in a proportion of 

animals. The study revealed that healthy pigs carrying ASFV exist in the swine population and it 

is hypothesized that these carrier pigs may play a role in sporadic disease outbreaks, although their 

trigger remains unclear [70].  

2.4 ASF prevention and control strategies 

There is currently no vaccine or chemotherapeutic available for ASF. Control therefore depends 

on preventing contact between pigs and the virus by adopting best practice pig husbandry [52]. It 

has been suggested that  

“eradication of ASFV from its natural hosts and vectors in Africa is not an option, 

eradication of ASFV in domestic pigs may theoretically be achievable, provided that pigs 

are managed in a way that excludes contact with the sylvatic sources of infection and 

prevents maintenance of the virus in domestic pig populations” [21]. 

In most endemic areas in Africa, ASF spread is often (although not exclusively) associated with 

free-ranging pig husbandry, unrestricted pig movements especially when ASF is suspected, and 

lack of - or improper implementation of - basic biosecurity measures. Pig traders often move 

between villages, slaughter slabs and live animal markets collecting and delivering pigs without 

use of protective clothing or disinfectants [73,75,76]. The nature of the pig trade suggests that 

traders may contribute to a rapid dissemination of the virus between villages [76]. Well-established 
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pig traders on the other hand have self-serving interests in eliminating the disruption and financial 

losses caused by market closures or quarantine imposed by veterinary authorities due to outbreaks. 

This highlights the possibility of future cooperation between authorities and pig traders in 

developing and implementing effective approaches to reduce the risk of ASF outbreaks [76].  

Due to the lack of established pig breeders in the majority of rural areas, pig farmers tend to buy 

piglets or weaners for restocking from neighbours, relatives, other famers or from live animal 

markets. These new pigs may be exposed to the virus at source or while in transit. Worse still, it 

is believed that some pig farmers sell off their pigs if they suspect them to have been exposed [73]. 

This was evidenced in a study on the presence of African swine fever virus in an endemic region 

of western Kenya where viral DNA was detected in a relatively high number of pigs delivered for 

slaughter in the absence of reported outbreaks [52]. Farmers who purchase pigs for restocking 

from live animal markets or pig traders stand a high risk of introducing the disease to their 

household. As a preventive measure, new pigs must be isolated for a period of at least two weeks 

before they are integrated in the herd [77,78]. For farmers who feed their pigs on swill or food 

leftovers, it is recommended that swill is boiled for 30 minutes to ensure that it is free of viral 

contaminants. Additionally, there should be a physical barrier to restrict people from having direct 

contact with the pigs unless they use protective clothing and walk through a foot bath after all solid 

material has been removed from the footware [73,79]. This restriction and use of disinfectants also 

applies to veterinary authorities when they visit a farm, pig traders as well as family members and 

other visitors.  Pig pens should be cleaned frequently. There is a need to sensitise pig farmers on 

the proper use of biosecurity practices to prevent or minimise the risk of ASF introduction and 

spread on and from their farms [80].  
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Several ASF control strategies have been proposed and implemented with varying degrees of 

success in different parts of the world. Early disease reporting is the first step towards ASF control. 

To enhance effective reporting, farmers or pig traders should be trained to recognize ASF based 

on high mortality in pigs of all ages and the typical clinical signs and lesions [2,81]. The higher 

prevalence in slaughter slabs might indicate that many farmers do require this kind of training. 

Stakeholders in the early reporting phase are usually not incentivised to report because of the 

consequences they face when veterinary authorities act by imposing quarantine and closing 

markets. Although it is very important to put in place mechanisms for rapid laboratory 

confirmation of suspected outbreaks, rapid quarantine responses and pig market closures at 

community level, these measures have frequently resulted in cases where market closures have 

lasted for more than a year severely impacting the livelihood of the stakeholders along the pig 

value chain [73]. The effect of these measures at the household level (including those households 

that are not directly affected by the outbreak) serves as a disincentive to report the disease next 

time it is suspected.   

 When ASF is suspected, rapid laboratory diagnosis is required to confirm the outbreak. This is 

because ASF should be differentiated from other swine diseases with similar clinical signs such as 

classical swine fever (CSF), porcine dermatitis and nephropathy syndrome (PDNS), porcine 

reproductive and respiratory syndrome (PRRS) and erysipelas as well as bacterial septicaemia. 

Laboratory confirmation requires rapid, reliable, sensitive and specific detection methods [32]. 

Currently available diagnostic methods in the literature are based on virological, molecular and 

serological techniques to detect ASFV [81,82]. Recently, effort has been put in developing pen 

side kits to provide tools for faster and more inexpensive ASF diagnosis on the farm, providing 

results within hours [83]. However, such assays have yet to be validated in endemic areas, which 
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are characterised by regular sporadic outbreaks and animals that carry virus in tissues other than 

blood. 

Once an ASF outbreak is confirmed, the first step is theoretically to notify the OIE, although it is 

unclear what proportion of outbreaks are actually reported in practice, then assess OIE 

recommended control measures for suitability and feasibility of implementation in the affected 

area. Some of the measures include proper disposal of carcasses or litter, thorough cleaning and 

disinfection of pig pens and houses [77,84]. Other measures to be performed routinely as a form 

of prevention even in the absence of an outbreak are pig confinement and efficient sterilisation of 

garbage and/ or food leftovers by boiling for 30 minutes before feeding to pigs. Areas with 

confirmed ASF cases should be designated, with control of pig movements, restriction of farm 

visits by stakeholders in the production chain, and closure of live pig markets, slaughter slabs and 

butchers. Farmers should be encouraged to confine their pigs, apply basic biosecurity measures 

and authorities must outlaw free movement of pigs at least for the period while the outbreak 

continues [1,85]. However, veterinary authorities lack resources to ensure compliance with these 

regulations, and such measures require changes in production systems and marketing habits. 

Furthermore pig farmers are more likely to comply if they perceive some benefits from these 

control measures and are involved in their development, which is currently not typically the case 

[1]. 

Many developed countries that suffered ASF incursions from 1958-1995, were able to eradicate it 

by ‘stamping out’ of all infected and in-contact pigs, with proper disposal of the carcasses. The 

culling was extended to include all of the pigs in a defined area, whether or not they were infected 

or in-contact [1]. In developing countries such swine depopulation programmes cannot be 

sustained due to inadequate resources in terms of funds to compensate affected stakeholders, and 
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veterinary staff and infrastructure to apply the measures [73,75]. The veterinary services should 

therefore develop more effective surveillance systems for improved reporting, early detection and 

rapid response to all suspected ASF outbreaks before spread has occurred.  

The use of mathematical models as tools for guiding the design and testing of control strategies 

for infectious diseases is well established [26,27,86–89]. Mathematical modelling is recognised as 

an important piece in the scientific toolbox for its ability to describe and structure biological 

phenomena, give insight into complex processes and predict future outcomes [28]. Models are 

useful in estimating important disease parameters and in assessing the effectiveness of control 

options [25,30]. They can be used to generate information for estimating the required effort and 

resources for implementing control strategies as well as assessing their efficacy. Modelling has 

played a pivotal role in providing policy support and enhanced decision making for infectious 

disease control [87,89]. Models have been applied to study livestock diseases and were insightful 

in aiding understanding of disease transmission and factors driving epidemic behaviour [90–92]. 

They are helpful in explaining and communicating fundamental principles of disease 

epidemiology. However, there have been few attempts in modelling transmission dynamics of 

ASFV for purposes of enhancing our understanding of its epidemiology and informing the design 

of appropriate control strategies in endemic situations in Africa. This thesis is an attempt to address 

this knowledge gap. 
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3.1 Abstract 

African swine fever (ASF) is a highly contagious, lethal and economically devastating 

haemorrhagic disease of domestic pigs.  Insights into the dynamics and scale of virus transmission 

can be obtained from estimates of the basic reproduction number (R0).  We estimate R0 for ASF 

virus in small holder, free-range pig production system in Gulu, Uganda. The estimation was based 

on data collected from outbreaks that affected 43 villages (out of the 289 villages with an overall 

pig population of 26,570) between April 2010 and November 2011. A total of 211 outbreaks met 

the criteria for inclusion in the study. Two methods were used, specifically; (i) Epidemic doubling 

time and (ii) a compartmental susceptible-infectious (SI) model. For implementation of the SI 

model, three approaches were used namely; curve fitting (CF), a linear regression model (LRM) 

and the SI/N proportion. The R0 estimate from epidemic doubling time method was 1.63. Estimates 

from the SI-based method were 1.58 for the CF approach, 1.90 for the LRM, and 1.77 for the SI/N 

proportion. Since all these values were above one, they predict the observed persistence of the 

virus in the population. We hypothesize that the observed variation in the estimates is a 

consequence of the data used. Higher resolution and temporally better defined data would likely 

reduce this variation. This is the first estimate of R0 for ASFV in a free range smallholder pig 

keeping system in sub-Saharan Africa and highlights the requirement for more efficient application 

of available disease control measures.  

Key words: African swine fever; basic reproductive number; mathematical modelling; Uganda. 
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3.2 Introduction 

African Swine Fever (ASF) is a highly contagious, lethal and economically devastating 

haemorrhagic fever of domestic pigs. The disease is of high economic importance both globally 

and in sub-Saharan Africa where demand for animal protein including pork has greatly increased 

in the last two decades [15,93].  

The disease is caused by African Swine Fever virus (ASFV), a large double-stranded DNA-virus 

and sole member of the family Asfarviridae [94]. ASFV isolates vary in their virulence, from 

highly virulent isolates that kill up to 100% of the pigs to moderately or low virulence viruses with 

mortalities ranging between 30-70% [34,95]. ASF produces clinical signs that range from peracute, 

acute, sub-acute and chronic forms depending on the virulence of the strain, intensity of exposure 

and pig breed [2,4]. The disease is characterised by high fever, loss of appetite, haemorrhages in 

the skin and internal organs, and death. Pigs that apparently recover from the disease become virus 

carriers [34].  

ASF has spread and is now established in many sub-Saharan countries since its discovery in Kenya 

in 1921 [44]. Initially it was reported from countries in East and Southern Africa but has now 

spread through Central and West Africa, and Indian Ocean islands with Chad becoming the most 

recent country to be affected [21]. The disease first spread outside the African continent to Portugal 

in 1957.  From 1968-1995, ASFV in the p72 genotype I was present in European countries 

including Malta, Sardinia, Italy, France, Belgium and the Netherlands. The prevalent genotype in 

Gulu district is genotype IX. It was eradicated in all these countries except Sardinia where it 

remains endemic and poses a continuous risk of re-introduction and spread in Europe [1,39]. ASF 

was accidentally introduced into the Caucasus in 2007 from where it spread rapidly and widely 
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within the Russian Federation. Outbreaks were reported more recently in Poland, Lithuania, Latvia 

and Estonia [96,97]. 

This virus is stable at a wide range of temperatures and pH and is capable of remaining infective 

in faeces, tissue and environment for many days [1]. The incubation period in domestic pigs varies 

from 5 to 15 days depending on the virus genotype [34]. ASFV is maintained in two main cycles: 

a sylvatic cycle that involves natural hosts, namely warthogs and soft ticks (Ornithodoros 

moubata) and a domestic cycle that may not involve the soft ticks [41]. In the domestic cycle, 

ASFV can be transmitted by direct contact with infected animals, indirect contact through fomites, 

and tick vectors. Transmission in the domestic cycle is exacerbated by sociocultural factors such 

as pig movement networks (traders, butchers, boar service), superstition and beliefs (e.g. that a 

carcass cannot be buried), use of untreated swill, lack of confinement of pigs and low biosecurity 

adoption [73,98]. 

There is currently no available vaccine against ASF and the available control strategies focus on 

preventing and controlling the spread of the virus although in better-resourced parts of the world, 

“stamping out” of pigs within infected farms and surrounding areas is used [1,99].  

This study was based on data from confirmed outbreaks that occurred in Gulu district, northern 

Uganda, in the period 2010-2011. The main economic activity in the district is subsistence 

agriculture which engages up to 90% of the population, with 9% of the households involved in pig 

farming. The pig production systems practiced in the study area are predominantly traditional free 

ranging and tethering, supplemented by very limited semi-intensive and intensive farming with 

virtually no biosecurity measures in regular use. In addition to the roaming of free ranging pigs, 

movements in the area occur for purposes of restocking, breeding, and trading [15,73]. Moving of 
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apparently asymptomatic pigs to neighbouring villages when an outbreak is suspected is an 

additional factor that may promote virus transmission. 

 

Estimates of the basic reproductive number (R0) are fundamental in underpinning rational control 

strategies based on disease modelling. R0 is the average number of secondary cases arising from a 

single infectious individual in a wholly susceptible population throughout its infectious period 

[100–105]. This parameter can be estimated using a variety of mathematical techniques 

[99,102,106]. This estimate provides a means to better understand the dynamics of infectious 

disease outbreaks and to assess the potential efficacy of disease control measures [107]. It is 

frequently used as a threshold parameter to quantify the spread of disease and is therefore a 

quantitative indicator of both the risk of an epidemic and the effort required to control it in a 

particular population. In order to control an infectious disease, it is necessary to reduce R0 to below 

unity (refer to appendix I) [107,108]. This parameter can predict the speed and scale of disease 

spread and the level of herd immunity required to contain the disease [99]. 

In many resources-constrained small holder communities, such as in East Africa,  information on 

transmissibility of diseases like ASF is often lacking and usually limited to daily counts of new 

cases [109,110]. Additionally, decisions about the best control strategies to implement during an 

epidemic are complex, usually involving technical, political, sociocultural and economic issues. 

ASF outbreaks are not reported quickly enough to allow collection of all the required empirical 

data for the estimation of disease parameters. To overcome this constraint, indirect methods can 

be used to estimate these parameters, including R0. There are a number of approaches available for 

estimating R0. Some methods are purely analytical, and not very reliable [111], while others are 

mathematical expressions involving multiple population parameters that have to be estimated 

separately [107,112] using outbreak data [86,102,106]. Ward et al. [102], Bett et al. [106] and Li 
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et al. [111] describe different methods for estimating R0 from outbreak data for a number of 

diseases across different geographical regions. In this study, we estimate R0 for ASF transmission 

between herds of pigs based on data from confirmed outbreaks using some of these methods as 

described next. 

3.3 Materials and methods 

This is to certify that any sampling of live or dead pigs described within this chapter on Estimating 

the basic reproductive number (R0) for African swine fever virus (ASFV) transmission between 

pig herds in Uganda by Barongo et al, was conducted in close collaboration between the District 

veterinary office in Gulu District and scientists from Uganda, Kenya and Sweden as part of disease 

investigations for African swine fever, and funded through a collaborative research project. 

Disease surveillance and disease investigations lie within the mandate of the District veterinary 

office. The district veterinarian thus holds a general permission to sample animals for this purpose. 

Data from these disease investigations were reported to the National Animal Disease Diagnostic 

and Epidemiology Centre, NADDEC, under the ministry of Agriculture Animal Industry and 

Fisheries in Entebbe. The data also formed part of the basis for international reporting to the OIE.  

3.4 Data source 

We used data collected during previous research activities from villages in Gulu District with 

laboratory confirmed outbreaks of ASF (material described in [113,114]). The two hundred eleven 

outbreaks included in this study occurred between April 2010 and November 2011. In brief, 

villages that reported outbreaks of disease characterized by fever and mortality in pigs to the 

district veterinary authorities were visited. Within each village, samples (blood and serum) were 

collected from clinically diseased and/or apparently healthy pigs from all affected households. 
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Samples were kept cool awaiting transportation to the Molecular Biology Laboratory at Makerere 

University Institute of Environment and Natural Resources (MUIENR) in Kampala for storage at 

-20°C until further processing. In the laboratory, outbreaks were confirmed by detection of ASFV 

nucleic acids using a commercially available real-time PCR (Tetracore Inc., Rockville, Maryland) 

in accordance with the instructions of the manufacturer [115]. During a second visit to all villages 

with laboratory confirmed outbreaks, additional data was collected using semi-structured 

questionnaires from a total of 211 households. The data collected included farm location (GPS 

coordinates), start month of the confirmed outbreak, number of pigs that had died, number that 

were still alive, disposal mechanism of carcasses, feed source and production system practiced.   

 A herd, here defined as a collection of all pigs in a pig-keeping household, was taken to be the 

epidemiological unit of interest [102]. Thus, our estimates of R0 reflect spread between herds. All 

outbreaks in the district during the period of study are assumed to have been reported. Additionally, 

it was assumed that all herds in the district were susceptible during the study period and the pigs 

from different herds were homogeneously mixing [15]. The exact number of herds present during 

the period of the study could not be directly determined and we estimated from the National 

Livestock Census Report (2008) on distribution of livestock in Uganda that there were 6,200 pig 

herds (mean herd size of 4.3) distributed over the 289 villages in Gulu district.  
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3.5 Data Analysis 

Two methods, adapted from previous studies, were used in the estimation of R0. These methods 

are epidemic doubling time and compartmental susceptible-infectious (SI) method [102].  

3.5.1 Epidemic doubling time method 

During the initial phase of an epidemic, the number of secondary cases increases exponentially, 

with each infection producing R0 new infections per generation assuming a constant doubling time 

(td) [102]. Anderson and May [103] defined a relationship between doubling time (td) and R0 as 

 0 1 T / td *log 2eR    where T is the herd infectious period.  For the outbreaks studied here, the 

herd from which the first case of death was reported was considered the index case.  Each herd 

that was subsequently infected was considered to present a new outbreak. Outbreaks were ordered 

by month and the average time for the number of outbreaks to double (td) for all possible 

combinations during this phase were computed using Microsoft Excel® 2010. We assumed an 

infectious period of one month because data was aggregated at a monthly scale and as mentioned 

there is evidence from the literature that herds can remain infectious for a prolonged period [116]. 

We then used the doubling time and infectious period to estimate R0 from the above equation.  

3.5.2 SI modelling method 

This method has been described and used in a number of studies [86,102,106,107]. We describe 

three approaches for estimating R0 using a simple deterministic SI model of the epidemic process. 

First we estimated the transmission rate, β, from epidemic data using a linear regression model 

(LRM) following an approach as described by Eblé et al. [117] and Gulenkin et al. [99]. The 

regression model was defined as          1 /       /log log E C S log log I t N     , where 

C, S, I are respectively the number of newly-infected herds, susceptible herds and infectious herds 
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at the start of the time interval Δt. We used Microsoft Excel® 2010 to run the regression model. 

These estimates were bootstrapped and their mean taken as an estimate of β. R0 was then estimated 

from the product of β and T where T is the infectious period of the herd.  

 Secondly, a curve fitting (CF) approach was used to fit a Susceptible-Infectious-Removed (SIR) 

model to the epidemic data in order to estimate β and the removal rate γ. This approach was used 

as described by Gulenkin et al. [99]. Curve fitting was implemented using a modelling software 

package Berkeley Madonna ver. 8.3.18. These two parameters were then used to compute an 

estimate for R0 from  0 *  /S   , where S0 is the size of the susceptible population.  

Lastly, we estimated β using an approach that describes disease transmission between 

epidemiological units in a Susceptible-Infectious (SI) model [102,106]. Here we assumed that all 

newly infected herds (C) were infected via contact with infectious herds (I) during the period of 

interest. Repeated infections reported from the same herd were considered to represent distinct 

outbreaks if they occurred in a period of more than two months of each other.  Stegeman et al. [86] 

and Bett et al. [106] have shown that the number of new cases/outbreaks C is given by 𝛽𝑆𝐼/𝑁 

from which β can be estimated given N as the total number of herds. The basic reproductive number 

R0 is calculated as the product βT, where T is the infectious period. Microsoft Excel® 2010 was 

used to estimate the monthly β (Table 2), which was then analysed using bootstrapping techniques 

[106].  

Sensitivity analysis was performed to assess whether the initial number of susceptible herds (N) 

had an effect on the estimate of R0, assuming N lies between (3 100 – 12 400) [118]. Due to the 

poor temporal resolution of the data arising from the reporting timescale, it was not possible to 

perform a sensitivity analysis of R0 to variation in the infectious period. 
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3.6 Results 

During the study period, ASF resulted in a total of 1141 deaths in 211 herds in 43 villages in Gulu 

district. We present the distribution of infected herds per month in Fig.3.1. Table 3.1 summarises 

all the parameters obtained using each of the method. 

 

Fig. 3.1. Number of African swine fever infected herds per month in Gulu District, Uganda, 

April 2010 – November 2011. 
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Table 3.1. Summary of the parameters estimated using the different methods 

Method 
Parameter estimates  Confidence Interval  

β td γ R0 LB UB 

Epidemic doubling time - 1.106 - 1.63 1.56 1.72 

SI model 

LRM 1.90 - - 1.90 1.87 1.94 

CF 0.0059 - 0.8236 1.58 - - 

SI/N 1.77 - - 1.77 1.74 1.81 

 

3.6.1 Estimate of R0 from the epidemic doubling time method 

During the initial period of study (April - November 2010), the number of outbreaks increased 

exponentially as depicted in Fig 3.2. The computed average doubling time (td) during the initial 

phase was 1.106 (95%CI: 0.97-1.25) months. Using this doubling time, we estimated R0 to be 1.63 

(95%CI: 1.56-1.72). 
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Fig. 3.2. Exponential curve fitted to the data from the first phase (April – November 2010) of the 

African swine fever outbreaks in Gulu District, Uganda. 

 

3.6.2 Estimate of R0 from the SI modelling method 

Linear regression approach 

Using the linear regression model approach the estimate for β was 1.90 (95% CI: 1.87- 1.94) herds 

per infected herd per month resulting in an R0 of 1.90 (95%CI: 1.87-1.94) since the infectious 

period is one month. 

Curve fitting approach 

Using the curve fitting approach an SI model was fitted to the epidemic data and the results are as 

shown in Fig S2 in appendix I. Here β was estimated to be 0.0059 herds per infected herd per 
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month while γ was 0.8236 per herd per month. We were not able to compute the confidence interval 

using this approach. Nonetheless these two parameters were used to estimate R0 = 1.58.  

SI/N proportion approach 

In Table 3.2, we show how the proportion SI/N, the number of newly infected households (C), the 

number of infected households (I) and the transmission rate (β) varied during the period of study. 

The monthly βi estimates were bootstrapped (Fig S3 in appendix I) giving an overall β of 1.77 

herds per infected herd per month and using this β value; R0 was estimated to be 1.77 (95%CI: 

1.74-1.81). Monthly R0 estimates were found to be robust with regard to variation in the initial 

number of susceptible herds (Fig S4 in appendix I). 
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Table 3.2. Estimated monthly SI/N, β and R0 during African swine fever outbreaks 

Month # Herds C I SI/N β(CN/SI) R0 

Apr-10 6198 2 0 0 - - 

May-10 6196 2 2 2 1.00 1.00 

Jul-10 6190 6 2 2 3.00 3.00 

Aug-10 6180 10 6 6 1.67 1.67 

Sep-10 6171 9 10 10 0.90 0.90 

Oct-10 6138 33 9 9 3.70 3.70 

Nov-10 6103 35 33 32 1.08 1.08 

Dec-10 6091 12 35 34 0.35 0.35 

Jan-11 6079 12 12 12 1.02 1.02 

Feb-11 6061 18 12 12 1.53 1.53 

Mar-11 6056 5 18 18 0.3 0.28 

Apr-11 6054 2 5 5 0.41 0.41 

May-11 6034 20 2 2 10.28 10.28 

Jun-11 6027 7 20 19 0.36 0.36 

Jul-11 6024 3 7 7 0.44 0.44 

Aug-11 6016 8 3 3 2.75 2.75 

Oct-11 5992 24 8 8 3.10 3.10 

Nov-11 5989 3 24 23 0.13 0.13 
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3.7 Discussion 

In this study, two methods were used to estimate R0 from ASF epidemic data in a predominantly 

free-ranging pig production system in northern Uganda. The mean estimates for R0 ranged between 

1.58 and 1.90. Considering the estimates from the methods used, doubling time method yielded 

the highest estimate of R0.  

The assumed period of infectiousness of herds is plausible given the existing factors that may 

favour prolonged infectiousness specifically pig agistment, increased sales and home slaughtering 

of sick animals [73]. Increased survival of some of the shedding animals may also favour a 

prolonged infectious period, as does the likely survival of the pathogen, which is a highly stable 

DNA virus, in the environment outside its host [39,116]. 

Under-reporting of outbreaks has been reported to influence transmission parameters estimates 

specifically leading to underestimation of R0, yet in most epidemics, a significant fraction of 

outbreaks may go unreported [102]. However, for the purposes of this analysis, we assumed that 

all outbreaks during the study period were reported. This assumption is supported by the fact that, 

in the study area, farmers were primed to report outbreaks due to the ongoing research activities. 

There were frequent information dissemination exercises by the research team which we expect to 

have minimized the rate of reporting failures. In the event that some outbreaks were unreported, 

then our analyses may have underestimated R0. 

Since R0 is known to be both population- and pathogen- specific [119] due to its sensitivity to 

production system, contact structure and  environmental factors, it is interesting that our R0 

estimates from doubling time method are in close agreement with those of Gulenkin et al. [99] and 

Iglesias et al. [120] who estimated R0 to range from 2 to 3 and 1.58 respectively at the between-
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farm level. This could be just a matter of coincidence since, for example, estimation approaches 

that ignore the latent period of an infection tend to underestimate its R0 [121–123]. Therefore 

comparison of estimates from different studies and geographical areas should be made with 

caution. The true value of R0 for most epidemics may be difficult to quantify for a number of 

reasons. The source of each outbreak is usually unknown, reporting time-scales are frequently 

inconsistent and obtaining good contact tracing data is further complicated  by the existence of 

multiple indirect routes of infection, farming systems and the role of human behaviour in 

transmission of ASFV and other pathogens [110]. Human behavioural factors such as poor 

handling and processing of pork and pork products at slaughter slabs, butchers and pork joints (i.e., 

makeshift kiosks where pork is roasted and eaten), farmers’ attitudes and cultural beliefs regarding 

handling of sick and dead animals, and use of swill are known risk factors for ASF transmission 

that may have influenced our estimates [73]. 

 

Gulenkin et al. [99] have identified road network density and pig density as significant risk factors 

for disease spread. The spatial distribution of ASF infected herds (April 2010 - November 2011) 

shown in Figure S5 in appendix I confirms that road network density and pig population density 

are key risk factors that may have also influenced our estimates. Their effect on our estimates 

needs to be investigated further and quantified. Despite these uncertainties, empirical data from 

epidemics can be a valuable source for estimating epidemiological parameters.  

De Carvalho Ferreira et al. [39] assert that controlling an ASF outbreak is highly dependent on 

measures implemented by veterinary authorities, such as ‘stamping out’ (slaughter) of infected 

herds and quarantining affected areas. However, such measures are only feasible in countries 

which have economic means to compensate farmers. In resource constrained countries such as 
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Uganda, the only feasible measures focus on preventive mitigation, including enhanced 

biosecurity, and early detection and response.  Estimates of R0 can inform the efficient application 

of these measures.  

Generally, few if any attempts have been made to estimate R0 from field data in the endemic 

regions of Africa. Here we have estimated R0 for ASF in a predominantly free-ranging production 

system, a system that is common in many parts of East Africa. All the mean estimates were above 

one which is consistent with the observed persistence of disease in the population. Though R0 >1, 

ASF endemicity can be due other factors than R0 =1. Maintenance cycles like sylvatic and tick-pig 

can cause ASF to be endemic even when R0<>1. It is plausible that we can have a backward 

bifurcation which would have consequences on equilibrium behaviour where endemicity can exist 

even when R0<1. It also been noted that bifurcation can be a consequence of host-related factors 

such as induced immunity and differential susceptibility [124]. 

This is indicative of the inadequacy of the existing control measures in curbing ASF dissemination 

thereby requiring enhanced effort in devising new strategies or improving adherence to existing 

ones. In conclusion, we recommend that more epidemiological studies be designed to collect daily 

outbreak data from the field this will enable the relaxation of several assumptions made in this 

work and result in more accurate estimates of R0.  
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4.1 Abstract 

A stochastic model designed to simulate transmission dynamics of African swine fever virus 

(ASFV) in a free-ranging pig population under various intervention scenarios is presented. 

The model was used to assess the relative impact of the timing of the implementation of 

different control strategies on disease-related mortality. The implementation of biosecurity 

measures was simulated through incorporation of a decay function on the transmission rate. 

The model predicts that biosecurity measures implemented within 14 days of the onset of an 

epidemic can avert up to 74% of pig deaths due to ASF while hypothetical vaccines that confer 

70% immunity when deployed prior to day 14 of the epidemic could avert 65% of pig deaths. 

When the two control measures are combined, the model predicts that 91% of the pigs that 

would have otherwise succumbed to the disease if no intervention was implemented would be 

saved. However, if the combined interventions are delayed (defined as implementation from 

> 60 days) only 30% of ASF-related deaths would be averted. In the absence of vaccines 

against ASF, we recommend early implementation of enhanced biosecurity measures. Active 

surveillance and use of pen-side diagnostic assays, preferably linked to rapid dissemination of 

this data to veterinary authorities through mobile phone technology platforms are essential for 

rapid detection and confirmation of ASF outbreaks. This prediction, although it may seem 

intuitive, rationally confirms the importance of early intervention in managing ASF 

epidemics. The modelling approach is particularly valuable in that it determines an optimal 

timing for implementation of interventions in controlling ASF outbreaks. 

Keywords: African swine fever; stochastic model; simulation; biosecurity; transmission rate 
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4.2 Introduction 

African swine fever (ASF) is a devastating disease in domestic pigs caused by a DNA virus of the 

Asfarviridae family [65,94]. This disease is a significant constraint to pig production, causing 

economic losses to pig farmers and posing a threat to food security. ASF is endemic in most parts 

of Africa and its recent introduction into Georgia and subsequent spread to Russia and the 

European Union [99] renders it a global animal health problem that needs to be dealt with urgently 

[95]. It is a highly contagious disease transmitted by either direct contact between infected and 

susceptible pigs or indirectly through contact with infectious material in the environment and on 

fomites [11]. African swine fever virus (ASFV) is a resistant and stable virus capable of persisting 

in the environment and in pig products over a wide range of temperatures and pH for a prolonged 

period of time thereby enabling its transmission over long distances [65]. Clinical forms of the 

disease vary across a spectrum from peracute through acute to chronic and in some cases, 

apparently healthy virus carriers arise [34]. Peracute and acute syndromes are characterised by 

high fever, loss of appetite, haemorrhages and cyanosis on the skin and internal organs with 

mortality rates of up to 100% in naïve pig herds [55,65,95,125].  

 

ASF has no cure or vaccine and its control depends on proper use of biosecurity measures, pig 

confinement and movement restriction plus culling of pigs on infected farms and in surrounding 

areas [126]. However, movement restriction is challenging to be effectively implemented in 

developing countries due to limited funding for public veterinary services. Likewise, pig 

confinement is not widely used in resource-poor countries where a large number of pigs are free-

ranging due to limited access to and high cost of quality feeds. For other livestock diseases, 

vaccination is a key component of control strategies. In the case of ASF, research to develop and 

test vaccines is ongoing and a few experimental vaccines are promising candidates but need wider 
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evaluation before being commercialised [127–129]. In the absence of vaccines and/or 

chemotherapy and a lack of funds to compensate farmers in the event of culling, enhanced 

biosecurity remains the main ASF control measure in resource-poor countries.  

 

In these resource-poor countries, there is limited information about animal movement patterns, 

factors that favour persistence of transmissible virus as well as the role of farmer behaviour in 

maintaining the endemic status of the disease. These factors, together with the limited knowledge 

about the disease’s transmission pathways renders the design of improved ASF control strategies 

even more difficult [1].  

 

Mathematical models may provide insight into the epidemiology of infectious diseases and the 

design of control strategies. They can be used to guide the identification of critical intervention 

points aimed at minimising disease-related mortality (hereafter referred to as disease burden) [22]. 

In addition, they can be used as tools for quantifying the magnitude, duration and cost of disease 

epidemics [23]. Models also provide an environment to assess how interventions may change the 

dynamics of the disease and how benefits may accrue from these interventions [22,24]. Therefore, 

integrating mathematical modelling benefits the design of ASF control strategies. In this study, we 

develop and parameterise a mathematical model to simulate the transmission of ASFV. We use 

the model to assess the relative impact of different intervention scenarios as well as to determine 

the optimum response time to suspected ASF epidemics.  

 

Due to data limitation, the scope of the current study was limited to simulations with the aim of 

using the outcomes to inform further studies. For example, the outcomes from this study provide 
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a means to; 1) guide the design of the required experimental studies and, 2) help improve field data 

collection during future epidemics. In a commensurate interaction, results from these studies will 

in turn further refine future modelling attempts. 

 

4.3 Materials and Methods 

4.3.1 Geographical Study Area 

The pattern of ASF outbreaks in Eastern Africa is different from that reported in Eastern Europe. 

In our study area some ASF outbreaks have been confirmed in areas with no wild pigs or argasid 

ticks (R. Bishop and E. Okoth, unpublished). Wilkinson [130] & OIE [125] have reported cases of 

pigs that survive ASF infection to become persistently infected (i.e., appear healthy while still 

shedding the ASFV virus) but when stressed they reactivate to infectious state. 

The production system in the study area is characterized by low input pig husbandry practices 

where pigs are mainly free ranging and occasionally tethered [73]. Pigs in this kind of production 

system are known to cover an area within a radius of about 3km per day scavenging for food [15]. 

We therefore assume that pigs are homogeneously mixing due to the wide area they cover per day. 

Our study unit was a Parish consisting of 9 villages. This unit covers a geographical area of over 

20 square Kilometers. 

4.3.2 Model formulation and assumptions 

Our model consists of five compartments categorising animals based on their status with respect 

to the disease: susceptible (S), infected but not yet infectious (E), infectious (I), carrier (i.e. 

persistently infected and asymptomatic animals, C) and the disease-induced deaths (D). The model 

incorporates population demographics as described by [103] and [131]. The model structure is 
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shown in Fig. 4.1 and events, parameter definitions, data sources and estimates are presented in 

Tables 4.1 and 4.2. The total population is given by N = S + E + I + C + D.  

 

Table 4.1. Events defining the effect of transition between compartments and the rate at which 

they occur.  

Event                Effect Transition rate 

Exposure (S, E, I, C)   (S-1, E+1, I, C)   S I C 
  

Infection (S, E, I, C)   (S, E-1, I+1, C) E   

Disease mortality (S, E, I, C)   (S, E, I-1, C) I  

Recruitment (S, E, I, C)   (S+1, E, I, C) N  

To Carrier (S, E, I, C)   (S, E, I-1, C+1) (1 )I   

Carrier reactivation (S, E, I, C)   (S, E, I+1, C-1) C  

Natural death in Susceptible (S, E, I, C)   (S-1, E, I, C) S  

Natural death in Exposed (S, E, I, C)   (S, E-1, I, C) E  

Natural death in Infectious (S, E, I, C)   (S, E, I-1, C) I  

Natural death in Carriers (S, E, I, C)   (S, E, I, C-1) C  

 
Several assumptions are made to allow for this formulation. New animals are born into the 

susceptible (S) class at a constant per capita birth rate equal to the natural mortality rate  . This 

assumption is vital to ensure that any system dynamics that we observe are likely to be disease-

related. The movement of susceptible pigs from S to the Exposed (E) class is governed by the 

transmission rate parameter  . After a latent period 
1 
days, exposed pigs transit to a state of 

infectiousness (I). A proportion   of infectious pigs succumb to the disease while those that 

survive beyond the infectious period (
1 
days) are assumed to become carrier pigs at a rate (1- ) 

[4,55,125,130]. Carrier pigs are also assumed to contribute to the infection pressure though at a 

reduced rate (  ) and may occasionally reactivate and transition back to the infectious class (I) 

at a rate [39]. Natural mortality occurs in all classes and additional disease-specific mortality 
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occurs in the infectious class at a rate ( ).We assume density-dependent transmission because 

the pigs freely interact and infection can occur when contact happens. 

 

Table 4.2. The Minimum, Mode and Maximum estimates used in the Pert distributions for the 

parameters of the model (day -1) 

 Definition Min Mode Max Key data source 

   

Non-specific mortality/ crude birth 

rate* 0.0020 0.0027 0.0035 User defined# 

   Transmission rate$ 0.200 0.300 0.500 [116] 

   ASF-specific mortality rate 0.080 0.125 0.250 [116] 

   Proportion of infectious that die 0.600 0.700 0.800 [95] 

   Transition rate from exposed to 

infectious class 

0.120 0.250 0.350 [2,95,96,125]  

   Rate of reactivation of carriers* 0.040 0.060 0.080 [125] 

   Scale-down factor on effective 

contact rate for carrier animals* 

0.250 0.300 0.350 User defined 

* User defined for purposes of this simulation, # Based on observed average life expectancy of 

370 days, $ The minimum   estimate of [116] is taken as the Max value for the Pert distribution 

in estimating  . We scaled down by a factor of (1.5)-1 and (1.5)-2 respectively for the mode and 

minimum values 
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Fig. 4.1 The schema shows the transition pathways between epidemiological classes of the ASF model 

The schema shows the transition pathways between epidemiological classes of the ASF model. The 

transition from class (S) to class (E) was governed by transmission rate (  ) while the transition from class 

(E) to class (I) was dependent on latent period ( ). The infectious animals either die at a rate ( ) and 

enter class (D) or enter the carrier class (C) at a rate (1 )  . Carriers also transmit at a reduced rate (

) and can re-activate to infectiousness at a rate ( ). There is natural mortality that occurs in each class at a 

rate μ. New recruits enter the S class at a rate μN 
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The dynamics of the system described and presented in Fig. 4.1 are captured by the differential 

equations:  

 

   - ,
dS

S I C N S
dt

        

  ( ) ,
dE

S I C E
dt

        

 - (1- ) ,
dI

E C I I I
dt

          

(1 ) ( ) ,
dC

I C
dt

      
 

dR
I

dt
  

 

The system’s events were implemented stochastically using Gillespie’s direct algorithm [26,132] 

and 1000 simulations were run per scenario described in the section of intervention scenarios.  

4.3.3 Model Parameters  

In Table 4.2 we present estimates for some model parameters obtained from literature. Generally, 

there is limited fields and /or experimental data to quantify model parameters and those accessed 

varied widely. We chose to use the Pert distribution to randomly generate parameter estimates over 

the extracted parameter ranges. The Pert distribution is best suited to situations when information 

available to estimate parameters is limited but sufficient to extract the Minimum, Maximum and 

Mode (i.e., most likely) estimate. The non-specific mortality (μ) was estimated as the reciprocal of 

the mean life expectancy of pigs in the study region (i.e. 280 - 500 days). The transmission rate 
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parameter β(t) has been estimated from the literature [116] taking into account the difference in 

pig interactions between those under experimental conditions and those in the natural setting. The 

scale-down factor (ε) on the transmission rate for carrier animals and the rate of reactivation of 

carriers (κ) to infectious state are user-defined for simulation purposes. These parameters have 

been set to values between zero and one due to lack of information on them pending further studies 

to give them appropriate values. For purposes of our exploration we set them in a low range of 0.3 

and 0.06 respectively. 

 

4.3.4 Intervention scenarios modelled 

Using scenario analysis approach, we assess the effect of different interventions on the cumulative 

number of pigs that succumb to ASF over a simulation period of 200 days. As a reference point 

for the assessment of impact of interventions, we started by simulating the dynamics of the disease 

in the population of 500 pigs without any intervention. Thereafter two categories of intervention 

scenarios were simulated, with each being initiated at various time points after the onset of the 

epidemic. The first category consisted of implementation of biosecurity measures which were 

modelled as a change in the time-dependent transmission rate parameter β(t) according to  

1

( )

0 1 0

( )
( ) t

t
t

e t

 


    


 

    

where τ is the time at which biosecurity interventions start [133]. β(t) is modelled to gradually 

reduce following an exponential decay from a baseline value β1 to a value that asymptotically 

approaches β0 (set to 0.05 in this study) [133,134]. The value of β0 can be set to zero if the 

biosecurity measures put in place are perceived to be able to stop all further transmission. 
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 The second category of interventions modelled the potential effect of using hypothetical vaccines 

with varying efficacies and coverage. The vaccine-protected proportion is obtained from the 

product of vaccine efficacy and coverage levels. In this study, we modelled vaccination at three 

protection levels; 30%, 50% and 70%. Vaccination was modelled as a single pulse event during 

the course of the simulation. The effect of time to intervention was assessed by implementing the 

above interventions at 14, 30 and 60 days after the start of the epidemic. As examples the naming 

of the intervention scenarios was as follows: “Vac_7030” is vaccine intervention with effect of 

70% and day 30 after onset of epidemic whereas “Bio_30” is a biosecurity intervention 30 days 

after the onset of the epidemic. Baseline is an intervention-free scenario while “Bio_Vac_7014” is 

a combination of biosecurity and vaccination strategy (with 70% effect) at day 14 and 

“Ctns_Vac_7014” is an intervention scenario where 70% are effectively vaccinated at day 14 and 

all new recruits thereafter are also vaccinated.  

We present results of a few of the many permutations of intervention scenarios that could be 

compared. Day 14 and day 60 were of particular interest because they represented the earliest 

practical date to implement an intervention and a representation of a date not very long into the 

complete course of an outbreak, yet too late for an intervention to cause the desired mitigating 

effect. The model simulations were run in Wolfram Mathematica 9. 

 

4.4 Results 

Model predictions of the impact of the different intervention strategies on the cumulative number 

of pigs that succumbed to the disease are presented. The results are presented as boxplots depicting 

the median, lower and upper quartiles of predicted disease burden from the 1000 simulations per 

intervention scenario. Fig. 4.2 depicts the disease burden for different times of introduction of 
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intervention scenarios while Fig. 4.3 presents a comparison of the potential impact of delaying the 

start of intervention strategies (scenarios for day 14 and day 60). 

4.4.1 Effect of enhanced biosecurity measures on the disease burden 

In Fig. 4.2a, the model predicts a 74% reduction on the disease burden if biosecurity measures are 

implemented 14 days after the onset of the epidemic (Bio_14) compared to the baseline scenario 

which predicts a median of 535 fatalities. Implementing biosecurity measures 30 and 60 days after 

the onset of the epidemic decreases the disease burden by 41% and 13.5% from the baseline 

scenario, respectively.  

4.4.2 Effect of vaccination interventions on the disease burden 

Fig. 4.2b shows the disease burden under pulse vaccination where 50% of the animals at risk are 

vaccine-protected at 14, 30 or 60 days after onset of the epidemic. Vaccinating 50% after 14 days 

of the epidemic onset reduced the burden by 44% while waiting for 60 days reduced the burden 

by 16%. Fig. 4.2c shows the impact of the different proportions protected by the vaccine when 

intervening at day 14, either singly or in combination with biosecurity measures. The model 

predicts a 65% reduction in cumulative pig deaths when the vaccine protects 70% of the animals 

at risk (i.e., Vac_7014). With a delayed intervention, i.e. when intervening at day 60 post epidemic 

onset, there is a minimal reduction (ranging from 4% to 14 %) in the disease burden across all 

simulated intervention scenarios (Fig. 4.2d). Among the simulated vaccine intervention scenarios, 

Vac_7014 is predicted to avert the highest number of pig deaths (only 185 deaths) compared to 

the baseline scenario.  
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Fig. 4.2 Box plots showing the effect of timing of introduction of different intervention scenarios on disease 

burden.  

The baseline box represents an intervention-free scenario. Panel (a) shows the effect of the timing of introduction of 

biosecurity measures after the onset of the epidemic (where Bio_xx = Biosecurity strategy implemented at day xx). 

Panel (b) depicts effects of vaccination (protecting 50%) implemented at day 14, 30 and 60 days on disease burden 

(i.e. Vac_50xx = Vaccination conferring 50% protection at day xx). Panel (c) compares the effects of different vaccine 

efficacies and a combination intervention strategy on disease burden when intervention is started at day 14 

(Bio_Vac_7014 = Combination of biosecurity and 70% Vaccine efficacy implemented at day 14). Panel (d) depicts 

the effects of delayed intervention on disease burden across different strategies of vaccine efficacies and combination 

scenarios (i.e. Vac_yyxx = Pulse Vaccination of efficacy yy% implemented at day xx while Bio_Vac_7060 is a 

combination strategy of Biosecurity measures and 70% efficacy vaccine implemented at day 60). 

In Fig. 4.3a we compare the impact of interventions implemented at day 14 involving protection 

of 70% of the pigs at risk through vaccination under different vaccination and biosecurity schemes. 

An intervention scenario involving a pulse vaccination at day 14 coupled with a continuous 

vaccination (and protection) of 70% of the new recruits (i.e., Ctns_Vac_7014) reduces the disease 

burden by 82%. A strategy combining intensified biosecurity measures and pulse vaccination and 
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protecting 70% of the pigs at risk (i.e., Bio_Vac_7014) could avert up to 91% of pig deaths, yet 

the same strategy, when implemented after 60 days post epidemic onset could only save 30% (Fig. 

4.3b).  

 

Fig. 4.3  Box plots comparing different intervention scenarios at day 14 and day 60. 

Panel (a) shows relative impact of the intervention scenarios at day 14. Bio_Vac_7014 is a combination of 

biosecurity measures and vaccination with 70% effect at day 14. Box Ctns_Vac_7014 is a scenario of pulse 

vaccination at day 14 followed by continuous vaccination programme of new recruits. Panel (b) compares 

the effects similar intervention scenarios at day 14 and day 60 to show the effect of timing of intervention 

on disease burden irrespective of the strategy implemented. 

 

4.5 Discussion 

ASF continues to be a major constraint to the growth of the pig industry in sub-Saharan Africa and 

poses a significant risk to established pig industries in the developed world mainly the European 

Union and China. There is a need to continuously refine and update both our knowledge of its 

epidemiology and control measures. In the present study, we used a stochastic compartmental 

mathematical model to assess the potential impact of different intervention scenarios on the disease 

burden.  

a b
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In the absence of treatment or vaccines against ASF, control strategies primarily rely on biosecurity 

measures [34,126]. It has been noted that smallholder pig farmers find it difficult to fully comply 

with biosecurity measures for a prolonged period of time because of the nature of their production 

systems [73]. We investigated the benefits of compelling small holder farmers to adopt and 

intensify biosecurity measures specifically in times of ASF outbreaks, in order to minimize the 

disease burden. When compared to the baseline scenario of not intervening at all, our model 

predicts that if biosecurity measures are enhanced within a fortnight of an epidemic onset, the 

disease burden can be reduced by up to 74%. This finding emphasises the need to hasten the 

intensification of biosecurity measures in the event of suspicion. This can be achieved through 

measures such as improved hygiene, isolation of sick or new pigs, movement control, treatment of 

swill, use of disinfectants, proper confinement and disposal of dead pigs as soon as ASF is 

suspected [73]. This is achievable if resources are available to implement this intervention however 

if left entirely in the hands of farmers, they may not have the resources or incentive to meet these 

costs. Above all, farmers in the settings in question need to be highly aware of ASF and of the 

tools available to them to quickly upscale their on-farm biosecurity. This is in agreement with 

standard ASF control protocols, which emphasises that biosecurity is essential in the control of 

ASF [95,135]. 

In addition, we modelled three protection levels of hypothetical vaccines and three intervention 

time points for their use. The greatest vaccine impact (of 65% reduction in disease burden) was 

predicted at the highest simulated vaccine protection level of 70% when implemented at day 14 

post epidemic onset. The impact of this pulse vaccination on disease burden is likely to be affected 

by the continuous influx of susceptible new recruits that enter the system. In an ideal situation, 

vaccination schemes should be designed in such a way as to include newly-recruited animals on a 
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continuous basis. We capture this scenario by simulating interventions where vaccination is 

continuous and conclude that continuous vaccination reduces the disease burden by 82%. 

The most effective simulated intervention strategy (with 91% of deaths averted) is a combination 

of pulse vaccination (protecting 70% of the pigs at risk) together with enhanced biosecurity 

measures implemented by day 14. However, vaccines are still a long way from being commercially 

available, let alone accessible and affordable to the rural pig farmers. Early attempts to develop 

conventional vaccines against ASFV achieved partial protection or could not be scaled up for 

commercial production [128]. Nonetheless, these results, although theoretical at this point, 

illustrate the potential impact of vaccines on disease burden and how they could improve control 

efficacy when combined with biosecurity measures. They also help in identifying the levels of 

protection that any eventual vaccine would need to attain in order to be effective in preventing 

epidemics. 

The predicted effect of intervention strategies on the disease burden was found to be dependent on 

time to intervention with delayed intervention reducing the impact of intervention scenarios. For 

example, intervening 60 days post epidemic onset reduced the impact of all scenarios, with only 

4% to 30% of baseline deaths averted as compared to reductions of 65% to 91% when intervening 

at day 14. This prediction, although intuitive, emphasises the importance of early intervention in 

managing ASF epidemics, and our modelling approach provides a means to determine appropriate 

and feasible intervention moments in controlling ASF, in this case found to be 14 days post 

epidemic onset. 

ASFV varies in virulence with some strains causing 100% mortality while less virulent ones allow 

some pigs to recover from either sub-acute or chronic infections to become persistently infected 
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or carrier pigs. These carrier animals are assumed to play a role in maintaining the disease in the 

domestic cycle and pose a major challenge to its control [35,125]. However, there is no sufficient 

evidence to quantify the contribution of carrier pigs to infection pressure and what proportion 

reactivate to an infectious state.  

We recommend that further studies be carried out to more reliably quantify these model parameters 

using empirical data from field activities. Our studies [4,136] on  ASFV p72 genotypes IX and 

X  in East African smallholder systems indicates that transmission data is particularly hard to 

collect in the  field with the currently available techniques, since anthropogenic effects (rapid 

selling to butchers, or pig farmers in distant villages) complicate collection and interpretation of 

transmission data. In this study we have relied on using random parameter choice based on the 

Pert distribution informed by available data to improve reliability of the study’s outcomes. We 

envisage that in future projects involving appropriately designed experimental infections will be 

used to refine ASFV transmission parameters. 

Although our model predicts a combination of vaccination and enhanced biosecurity as the best 

intervention scenario, the only currently feasible strategy is implementation of enhanced 

biosecurity measures. We therefore recommend intensification of active surveillance and use of 

pen-side diagnostic assays for rapid detection and confirmation of ASF to allow for timely 

implementation of enhanced biosecurity. However, we also recommend continued research on the 

development of a vaccine against ASFV to allow for deployment of a hybrid intervention strategy. 

Most importantly, given the importance of the time to implementing biosecurity measures, we 

recommend that veterinary services in ASF outbreak risk areas work to educate farmers on the 

most feasible biosecurity measures to adopt in a time efficient manner [73]. Finally, we also 
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suggest that further work on cost-benefit analyses should be performed to compare the simulated 

interventions from an economic perspective.  
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5.1 Abstract 

Livestock production systems influence disease spread dynamics. For example, in pig production, 

economically important diseases such as African swine fever and Foot- and- mouth Disease are 

largely driven by the nature of production systems practiced. Hence, deeper knowledge on the 

factors that determine production systems especially in low income countries are key parameters if 

better disease control strategies are to be developed. The main purpose of this cross-sectional 

research was to identify the key parameters governing low input production systems in smallholder 

pig farmers in four districts along the Kenya-Uganda border. Data were collected by administering 

questionnaires to 640 households selected in the study area. These data were analyzed to obtain 

information pertaining demography of the producers, pig breeds kept, farm-inputs, and the 

husbandry types practiced among others. Analysis results showed that 86% of the households were 

headed by males though activities relating to pig farming were primarily performed by females. 

Approximately 43% of pig keepers had been educated to secondary level, but a low proportion of 

these were female. Over 90% of the households surveyed kept local pig breeds with the weaner pig 

category constituting 48% of the pigs on the farm. The predominant husbandry system was 

tethering (71%). The farmers feed their pigs mainly on crop residues/grass (40%) and 

Swill/household leftovers (40%). The main challenge faced by these pig farmers was access to 

affordable and reliable feed supplies. A significant proportion of small scale pig farmers were 

willing to accept advice from government extension workers. The study therefore strongly suggests 

that improving the supply of affordable pig feeds would be a key step in incentivizing adoption of 

better husbandry and health practices and increasing productivity in the small pig sector.  

Keywords: Low input systems; Small holder Pig farmers; pig husbandry systems; pig breeds 
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5.2 Introduction 

Many developing countries in the sub-Saharan Africa are reliant on agriculture as their main 

economic activity and source of livelihood. According to recent studies, agriculture is the most 

important sector of the Ugandan economy, employing over one third of the work force and 69% 

of the population, mainly women, in the rural areas [137]. Livestock farming as a subsector of 

agriculture has continued to play an important role in meeting the ever increasing demand for 

animal proteins as a result of an increase in urbanization and also the general increase in population 

[138,139].  It has been noted that pigs are important livestock capable of providing much needed 

animal protein due to their high productive rates, quick maturation and  ease of conversion to cash 

to meet urgent household needs that have a direct impact on smallholder farmers’ livelihoods and 

food security [16,21,73].  

Different breeds of pigs tend to be reared across the farmers’ economic profile with the more 

economically empowered farmers keeping both pure and cross breed pigs from European 

domestication  centers in commercial farms while the small holder farmers keep African genotype 

pigs [16,140]. African genotype pigs  are the predominant breeds in areas where low input systems 

are used [141]. Pigs require minimal family labour and feeding if allowed to roam freely, although 

it is illegal according to the animal disease act (Section 9 and Rules 15–28) of Kenya allowing 

pigs to roam freely scavenging for food. This free-range practice is risky in relation to spread of 

diseases such as African Swine Fever (ASF) and Foot and mouth Disease (FMD) within the pig 

populations. Hence, there is need to conduct studies to assess the pros and cons of such a practice 

with an underlying aim of devising means on how to minimize it. The first step towards achieving 

this is through understanding the factors that influence the choice of a pig husbandry system. 
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Such knowledge can, among others, be derived from conducting interview studies in the 

geographical areas of interest. To this effect, previously, studies focusing on farmer perceptions 

[141], characteristics of free-range systems [16] and risk factors associated with small holder pig 

production systems on the Kenya-Uganda border [75] have been conducted. The current study 

builds on the study of [75] and focuses on gaining deeper understanding of the factors that favour 

the predominantly practiced pig husbandry system along the Kenya-Uganda border. The main 

study aim was to analyse the key parameters of low input pig production system in the selected 

geographical area. The other objective was to capture data on the diversity of pig keeping practices, 

to understand pig keeping systems in relation to ASF prevalence. It is expected that the findings 

of this study will provide subsidies for public sector agencies to assist farmers by developing good 

production practices with pigs, reducing rates of disease infestation, and improving the health 

status of farms.  

5.3 Materials and Methods 

5.3.1 Data source 

The data were collected through a household cross-sectional survey using structured 

questionnaires. The study was conducted along the Kenya-Uganda border between July and 

November 2012, targeting farmers operating on either side of the shared border. Primarily, 

households with pigs on farm were targeted for interview and any adult household member 

conversant with the pig farming activities was interviewed. A total of 640 pig keeping households 

participated in the study.  

Details on the selection and inclusion criteria of respondents was earlier described in [73,75] and 

are only briefly described here. The study was conducted in two districts in Uganda (Busia and 
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Tororo) and two in Kenya (Teso and Busia, Figure 5.1). The sampling frame was designed in such 

a way that eight sub-counties on the Ugandan side that lie along the border were selected (four 

from each district) and eight locations on the Kenyan side of the border were selected (four from 

each district) with the help of GIS software.  In each sub-county in Uganda (and corresponding 

location in Kenya), two parishes (and corresponding sub-locations in Kenya) were randomly 

selected. Subsequently, a list of villages in each selected parish in Uganda (corresponding sub-

location in Kenya) was obtained with the help of district veterinary staff and local leaders. Two 

villages were randomly sampled from each list and a list of all pig keeping households in the 

selected village was generated with assistance from the local leaders.  

Twenty households were systematically sampled from the list of all pig keeping households. 

Where villages had less than 20 pig keeping households, the selection was extended to pig keeping 

households from adjoining villages. The sampling frame generated 32 villages and 640 households 

that were involved in the study. The questions were set with an underlying objective of capturing 

data on the diversity of pig husbandry practices and to further relates this information to ASF 

prevalence. The data collected included household information, pig production systems, 

phenotypic characteristics of pigs on farm, socioeconomic indicators, ASF awareness, biosecurity 

practices, access to advisory services and pig farmers social networks. 
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5.3.2 Study Area 

 

Fig. 5.1. Map showing the study area along the Busia/Tororo (Uganda) and Busia/ Teso (Kenya) border. 

 

5.3.3 Data Analysis 

The data were captured using Palm Digital Assistants (PDA) running on Pendragon forms 5.1 and 

was downloaded into a Microsoft Access 2010 database. Descriptive Statistical analyses of the 

data were performed using Microsoft Access 2010 and Statistical Package for the Social Sciences 

(SPSS) Ver. 18 software.  
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5.4 Results 

5.4.1 Household Characteristics 

The descriptive results from the study are presented in Table 5.1. The age group of the respondents 

ranged from 16 to 84 years with the highest proportion (48%) in the 30-50 age group. About half 

of all household heads had only primary level education and 43% had attained a secondary 

education. Of the respondents, 65% had primary level education only, and 22% had attained at 

least secondary level education. The main occupation in the study area is farming (51%) followed 

by those engaged in some form of business (17%), civil service employment (15%) while casual 

labor and others constituted (17%). The average pig keeping household size was seven people even 

though overall the average household size in the region is officially between 4 to 5 people (2014 

Uganda census and Kenya population data sheet 2011).  

 

Fig. 5.2 Education characteristics of respondents by gender 
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In figure 5.2 we characterize education level by gender of respondent. The majority of respondents 

(60%) were female of which 70% had primary level education while 17 % had no formal 

education. For the males, only 8% had no formal education while 56% had attained primary level 

education. There were only 3% of respondents who had post-secondary education. Table 5.2 

presents education level by gender of respondent 

Table 5.1. Summary descriptive results for selected Household (HH) characteristics from the 

study area 

Characteristics 

Number of HHs 

Overall Kenya Uganda Overall % 

HH head Gender     

Male 553 276 277 86.4 

Female 87 44 43 13.6 

Respondent's Gender     

Male 256 117 139 40.0 

Female 384 203 181 60.0 

Respondent's age (years)     

Below 30 172 87 85 26.9 

30-49 307 158 149 48.0 

50 Above 161 75 86 25.2 

Education Level of HH head     

No Education  24 19 5 6.9 

Primary 174 111 63 49.7 

Secondary 109 43 66 31.1 
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Post-secondary 43 15 28 12.3 

Respondent's Education     

None 87 45 42 13.6 

Primary 413 214 199 64.5 

Secondary 121 48 73 18.9 

Post-secondary 19 13 6 3.0 

Occupation of HH head     

Business 58 35 23 16.5 

Casual Laborers 15 10 5 4.3 

Farmers 179 96 83 51.0 

Civil servants 54 21 33 15.4 

Others 45 27 18 12.8 

Household Size     

1-5 207 120 87 32.3 

6-10 363 178 185 56.7 

above 10 70 22 48 10.9 
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Table 5.2 . Education characteristics of respondents by gender 

 

  

 

 

 

5.4.2 Household level production system parameters 

Table 5.3 presents results on the identified key system parameters in the study area. One important 

observation is that 92% of the 640 pig keeping households surveyed had local African pig breeds 

on the farm while only 23 households (3.6%) had pure European-domestication centre breeds and 

16% kept crosses. The majority of the pigs on the farms were weaners (48%). There were 

marginally more weaners on Ugandan side (51.8%) than on the Kenyan side of the border. The 

most frequently purchased pig category by the farmers was piglets (71.8%) followed by weaners 

(21.7%). We observed that for all pig categories purchased, other than piglets, the Kenyan side 

accounts for most such purchases with 64% for weaners, 75% for sows and 76.5% for boars.  The 

most common sources for pigs that were introduced into the households during the previous year 

were from acquaintances such as friends, relatives and neighbors (47.4%) and other farmers 

(29.4%) while only 18.1% were born in the household. There is more in-house breeding in Uganda 

(54.2%) compared to Kenya (45.8%). 

 

Education Level 

Gender of Respondents 

Male % Female % 

     

None/ Not specified 20 23 67 77 

Primary 145 35 268 65 

Secondary 78 64 43 36 

Post-secondary 13 68 6 32 
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Table 5.3 Characterizing Household (HH) level pig systems parameters on the Kenya – Uganda 

border  

Parameter Total Ugandan side  Kenyan side 

 No. HH % No. HH % No. HH % 

Breed kept 

Local 590 92.0 282 48.0 308 52.0 

Cross 

 

105 16.0 33 31.0 72 69.0 

Grade/Exotic 

 

23 3.6 12 52.0 11 48.0 

        

Pig Categories 

Piglets 114 12.6 51 44.7 63 55.3 

Weaners 436 48.1 226 51.8 210 48.2 

Sows 227 25.1 113 49.8 114 50.2 

Boars 129 14.2 61 47.2 68 52.8 

        

Pigs purchased 

 

Piglets 322 71.8 163 50.6 159 49.4 

Weaners 97 21.7 35 36.0 62 64.0 

Sows 12 2.7 3 25.0 9 75.0 

Boars 17 3.8 4 23.5 13 76.5 

        

Pig source 

Pig farmer 234 29.4 102 43.6 132 56.4 

In house 144 18.1 78 54.2 66 45.8 

Friend/relatives/ neighbor 378 47.4 159 42.1 219 57.9 

Market/ pig traders 36 4.5 32 88.9 4 11.1 

Other (NAADS, NGOs) 5 0.6 2 40 3 60 

        

Management  

system 

Free range 238 27.1 122 51.3 116 48.7 

Tether 626 71.4 309 49.4 317 50.6 

Housed 13 1.5 7 53.9 6 46.1 

        

Feed source 

Crop Residue/ Grass 617 39.8 314 

 

50.9 303 49.1 

Swill/HH leftovers 615 39.7 309 50.2 306 49.8 

Commercial feeds 316 20.5 152 48.1 164 51.9 

        

Advisory 

services 

HH member/friend 180 29.5 100 55.6 80 44.4 

Local Leaders 80 13.1 39 48.7 41 51.3 

Other farmers 64 10.5 35 54.7 29 45.3 

Pig Traders 8 1.3 3 37.5 5 62.5 

Vet/NAADS officers 278 45.6 154 55.4 124 44.6 
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Pig agisting On-farm 46 31.1 28 60.1 18 39.9 

 Off-Farm 102 68.9 64 62.7 38 37.3 

 

The pig husbandry systems practiced in the study area were a mix of tethering, housing and free 

range. The majority of the households tethered (71.4%) their pigs, although not all the time while 

27.1% of the farms surveyed practiced free- range with occasional tethering. Only 1.5% of the 

farmers housed their pigs. The farmers interviewed feed their pigs on Crop Residues/ Grass 

(39.8%) and Swill/household leftovers (39.7%) and commercial feeds were only used by 20.5% 

of the farmers. From the households surveyed, feeding practices were found to be similar on both 

sides of the border. For advice on issues pertaining to pig keeping, it was found that 45.6% of the 

farmers relied on Veterinary or National Agricultural Advisory Services (NAADS) officers, and 

29.5% on a Household member/friend and only 1.3% relied on pig traders.  

In the study area, there is a practice of keeping some pigs away from the household farm (agisting). 

This is intended to provide a fall-back position in the event of a tragedy hitting the farm. This acts 

as a form of insurance. Of the households visited 23% used agisting, and of these, 31.1% kept a 

friend’s pig (on-farm) while and 68.9 % had someone else keep their pig (on a different farm). 

5.4.3 Challenges of these production systems 

Some of the challenges faced by low input pig production systems are shown in Table 5.4.  Animal 

feeds were found to be the most important constraint that low input farmers face. The price of feed 

was considered high by 45.4% of farmers interviewed while 47.8% of the farmers reported that 

feeds are scarce or that the supply is unreliable. Surprisingly very few households (6.8%) were 

concerned about feed quality. The second major challenge farmers identified was pig health. 
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Approximately 11% of the households (71 among 640) reported health related issues that resulted 

in pig death on the farm. Some of these deaths were reported to be sudden and African swine fever 

was suspected.  

Table 5.4. Challenges faced by low input pig production systems on the Kenya-Uganda border  

Parameter Total Ugandan side  Kenyan side 

 Number % Number % Number % 

Feeds 
High Prices 227 45.4 113 49.8 114 50.2 

Quality 

 

34 6.8 25 73.5 9 26.5 

Supply/access 

 

239 47.8 95 39.8 144 60.2 

        

Pig Health Pig death 71 70.3 56 78.9 15 21.1 

Disinfectants 30 29.7 30 100.

0 

0 0.0 

Market issues 

       

Poor prices 2 28.6 0 0.0 2 100.0 

Market disruptions 2 28.6 1 50.0 1 50.0 

Others (No pig buyers) 3 42.8 2 67.0 1 33.0 

 

Of the surveyed households, 5% occasionally used disinfectants as a way to mitigate pig health 

related issues. A handful of farmers (1.1%) expressed challenges with market related issues such 

as poor prices, market disruptions and transportation of pigs to the market. The relatively small 

number of pig farmers reporting market related challenges could be due to lack of a pig supply 

relative to demand hence a potential for increase in pig production.   

 

5.5 Discussion 

Outbreaks involving most economically important pig diseases for example ASF and FMD are 

known to be partly driven by the pig production systems practiced in the area of interest [73,74,79]. 
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This current study was conducted among the pig producers on the Kenya-Uganda border with the 

aim of capturing data on the diversity of husbandry practices. 

From the survey, it was found that males were the majority household heads, yet most of the 

respondents were female. The low male attendance for interviews could be an indication that they 

are engaged in other economic activities other than pig farming [75] or that they attach less 

economic value to the pigs. Nantima et al. (2015) found that males owned the majority of the pigs, 

even though much of the day to day care of the pigs is given by females. This finding was in 

agreement with those from a study carried out in Kakamega in Western Kenya in which it was 

found that women took the lead in the management of family pigs since men were rarely at home 

[141] 

The dominant age-group of respondents was 30 to 49 years, age range that is still active and 

capable of receiving technical training in managing animals. A study conducted in rural villages 

of Western Kenya on indigenous pig management practices reported that farmers in pig production 

were of a similar age range [140]. Importantly, most respondents in this study had at least primary 

level education which creates an opportunity for the relevant authorities to train and disseminate 

appropriate technologies for improved and sustainable production of pig products. This is 

convenient especially in this situation where 51% of the sampled households state that farming is 

their main occupation.  

Among the key parameters of low input pig production systems investigated, pig breed kept was 

the most important and almost every household (92%) in the study area kept local African 

genotype pigs. A few farmers kept a mix of local and cross or local and pure European breed pigs. 

This finding confirms that local pig genotypes remain predominant in rural areas despite numerous 
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calls to introduce exotic breeds for better outputs. It has been pointed out that lack of knowledge 

regarding different pig breeds, their growth properties and their ability to cope in local 

environments are among the most important impediments to breed improvement [141].  

The predominant management system was tethering (71%) while free ranging was 27% with only 

1.5% housing their pigs. For those practicing a mixture of systems, tethering was mainly during 

the day and when crops were still in the gardens while free-range was at night and almost all the 

time when there are no crops in the gardens that pigs could destroy. Therefore when the farmers 

think there are no crops that could be destroyed by pigs, they free-range them, which is a significant 

risk factor for disease spread.  The distribution of pig-type kept in the households provides some 

insight into the factors that inform management decisions on what to stock and the producer’s 

valuation of their stock. For example, nearly half of the pigs found in the households were weaners 

and only 25% were sows. This high proportion of weaners could be attributed to the fact that some 

farmers look at a pig as an easily-liquidated asset, in some ways comparable to operating a bank 

account. The weaner pigs category is the most marketable and is easily disposed of without having 

to wait for a market day or having to transport them to the market which would require obtaining 

a movement permit [141].  

With regard to restocking during one-year period preceding the study, piglets dominated (72% of 

households) the number purchased with only 22% purchasing weaners. It is worth noting that 

Kenyan farmers were more engaged in the purchase of older categories of pigs than Ugandan 

farmers. This trend could be attributed to the higher consumption of pork in Uganda [142,143], 

leading to most of the pigs going to the market for slaughter rather than being sold to fellow pig 

farmers. On the source of pigs purchased, friends/relatives/ neighbours led with 47%. Although 
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this provides an ‘easy to reach’ source for pig restocking, the pig safety and health cannot be 

ascertained and therefore pose a great risk of ASF introduction on the farm.  In-house breeding 

constituted only 18% of all the pigs on the farms. This low number can be attributed to the cost 

and risks involved in rearing a sow to maturity, yet purchasing of piglets that reach market weight 

easily, provides faster returns [141].   

On the role of NAADS and other Non-Governmental Organizations in pig farming, it was 

surprising that close to 95% of the farmers did not buy pigs and/or piglets from these organizations 

or some other established breeders. Over 45% of households reported that NAADS’ played a 

primarily role in providing advisory services. Friends and household members too were a source 

of advice to 29.5% of the households but the least trusted, as a source of advice were the pig traders 

at 1.3%. The demonstrated lack of trust in pig traders is likely due to the fact that traders have 

previously been found to originate rumours of suspected diseases outbreak in order to set off an 

avalanche of pig sales by farmers at giveaway prices for fear of losing their animals [73].  

Smallholder farmers in low input production systems are faced with several challenges. Farmers 

are faced with constraints such as high costs of feeds coupled with poor quality and unreliability 

of feed supplies. In an effort to cut production costs, pig farmers choose farming approaches that 

cost them as little as possible. For example, it was found that scavenging in the neighbourhood for 

food accounts for 40% of the feed intake. Household leftovers and swill (including by products 

from food processing and brew by-products) are also used to feed pigs in 40% of the farms 

surveyed and only 20% of the interviewed households used commercial feeds and only as a 

supplement to other sources of feed. On the other hand, given its relatively low cost, there were 

some farmers that relied almost entirely on either household leftovers/ crop residues from the farm 
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or forage for feed needs and majority of the farmers used some combination of at least two of the 

above sources [73,75,84].  

The other approach that farmers use to mitigate risks and also reduce costs associated with rearing 

pigs was agistment. The proportion of farmers agisting pigs was 23% of which 69% kept some of 

their pig(s) with a separate pig keeping household and 31% agisted on farm (i.e., they kept some 

pigs in their own household that never belonged to them). Among the risks attributable to the cost-

cutting husbandry systems is that of disease introduction and spread in pig populations. It was 

reported that free ranging pigs are capable of roaming as far away from the household as 4 km in 

search for food in a single night [15] and this could present a huge risk of disease introduction and 

spread. Agistment too, as does free-ranging, may pose its own risk of disease spread.  

The high costs of farm inputs like feeds have perpetuated these practices since the only other (non-

appealing) alternative is the selloff of their pigs at very low profits [16,75]. Besides cost of inputs, 

another important issue is pig health. In this context, farmers highlighted the inability to diagnose 

disease due to lack of veterinarians. Conflict with neighbors and market issues such as poor prices 

offered by pig traders (usually by under estimating the live weight of the pigs) were additional 

issues of concern. A further problem was market disruptions during suspected ASF outbreaks. 

These findings are in agreement with challenges identified in previous studies [75,140,144]. 

5.6 Conclusion 

This study has highlighted the key parameters constraining low input pig production systems in 

the Kenya-Uganda border area. Factors such as the cost of inputs like feeds as well as farmers’ 

awareness pertaining disease diagnosis training are known to impact the choice of husbandry 

practices. Therefore the most important area would be to improve the supply of pig feed which 
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would leverage adoption of husbandry practices designed to improve production efficiency and 

promote sustainable pork production to meet the increasing demand for animal protein from the 

increasing human population, as well as improving pig farmers’ incomes. Better management 

systems could also have a significant impact on reducing pig diseases like African swine fever, 

thus mitigating animal health risks.  
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6.1 Abstract 

African swine fever virus (ASFV) causes a highly contagious disease of domestic pigs in 

Africa and Europe. This virus spreads through aerosols and close contact with infectious pigs, 

as well as pig products, fomites and soft ticks. For improved control of the spread of the virus, 

knowledge on its spatial transmission is needed. A spatial-deterministic compartmental model 

for the epidemiology of ASFV was developed to simulate the effects of pig interaction on the 

spatial spread of the disease. The model tracks the spread of the disease across various villages 

from one village where it was introduced. The model was parameterised using data from 

existing literature and expert opinion. The results show that restricting pig interactions does 

not only contain an outbreak within the village of introduction but also helps create a window 

to allow for implementation of other control measures after the onset of the outbreak. The 

study recommends prompt interventions after onset of reported outbreaks and development of 

programmes that will enable smallholder pig farmers to access affordable and reliable pig feed 

which in turn may lead to improved compliance of farmers to animal confinement regulations. 

 Keywords: African swine fever virus, spatial-deterministic model, spatial transmission; 

mathematical modelling 

 

6.2 Introduction 

African swine fever (ASF) is one of the most devastating diseases in domestic pigs. It is caused 

by African swine fever virus (ASFV), a DNA virus of the Asfarviridae family. It results in acute 

haemorrhagic fever in susceptible animals with mortalities of up to 100% [65]. Currently, ASF has 

no treatment or vaccine and its control is based primarily on preventive sanitary measures, which 
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rely on knowledge of the epidemiological patterns [1,126]. This disease spreads through several 

pathways, including through aerosols and close contact with infectious pigs. Knowledge of its 

spatial transmission is therefore vital for the design of improved control measures. Modelling 

techniques that incorporate spatial aspects of the disease provide a useful approach to understand 

spatial transmission and the impact of various control measures. 

Mathematical models are increasingly being used as valuable tools for studying the magnitude, 

duration and cost of disease outbreaks, and for comparing control strategies [23]. These models 

have been applied in the study of livestock diseases and play a fundamental role in aiding our 

understanding of underlying processes of disease transmission, factors driving epidemic behaviour 

and assessment of interventions on the epidemiology of the disease [22,24]. Models have been 

used to explain and communicate the fundamental principles of disease transmission. Insight 

gained through mathematical modelling can be valuable for the decision-making process in the 

management and control of livestock diseases like ASF.  

There have been a few attempts in modelling ASF transmission dynamics for purposes of 

informing control strategies. Recently, Barongo et al. [25] conducted a modelling study to assess 

the effects of control measures and their timing on the burden of ASF in a pig herd. In another 

study [30], the same authors used outbreak field data to compute the basic reproductive number 

(R0) for ASF. Iglesias et al. [120] recently conducted a study to estimate R0 for ASF albeit in wild 

boars in the Russian Federation. On the role of modelling in informing policy, Halasa et al. [145], 

conducted a simulation study to assess the epidemiological and economic effects of an ASF 

epidemic in Denmark and predicted ASF-induced median direct costs and export losses of €12 and 

€349 million respectively. Spatial transmission of ASF has received limited attention in modelling 
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efforts to date. Recently, Mur et al. [146] conducted a modelling study to understand ASF infection 

dynamics in Sardinian pig farms. One of their aims was to identify geographic areas at highest risk 

of infection in Sardinia. They used a spatially explicit transmission model and concluded that ASF 

epidemiology and infection dynamics in Sardinia created a complex and multifactorial disease 

situation. 

In this study, we demonstrate the use of spatial-deterministic models to reproduce the transmission 

dynamics of ASF in the context of smallholder pig farmers in East Africa. This was implemented 

using a deterministic compartmental model that simulated the epidemiology of ASFV in a 

homogenously mixing pig population within a village, modelled its transmission between villages 

using a probabilistic Monte Carlo function, and tracked its spread across villages. The study 

findings show that restricting pig interactions does not only contain an outbreak within the village 

of introduction but also helps create a window to allow for implementation of other control 

measures after the onset of the outbreak.  

6.3 Methods 

 6.3.1 Model formulation and assumptions 

In this study, we extend the susceptible, exposed, infected and resistant (SEIR) model to include a 

carrier state C, which comprises pigs that are capable of transmitting the disease at a lower rate, 

based on previous works [131,147]. The other compartments that make up the SEICR model are:  

the susceptible compartment (S) which contains individuals who do not have any type of immunity 

to the disease and can become infected upon contact with adequate infectious material; the exposed 

compartment (E) that contains individuals who have experienced adequate contact with an 

infective pig (such that transmission has occurred) but who are not yet infectious; the infectious 
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compartment (I) comprising individuals who have transited from the exposed compartment after 

the latent period and who are now infectious. A proportion of the infectious individuals who 

survive beyond the infectious period transit to the carrier compartment (C) while the infectious 

individuals who succumb to the disease are removed from the system through the Removed 

compartment (R).  

Let S, E, I, C and R be the number of individuals in the susceptible, exposed, infectious, carrier 

and removed compartments at a given time. The total population at that time is given by N = S + 

E + I + C. Assuming a homogeneously mixing population of pigs within each village and further 

assuming that the residency time in the various states are exponentially distributed, the following 

disease and/or population related processes are considered: 1) there is recruitment of susceptible 

pigs into the village at a constant rate Λ pigs per day through pig birth, purchases, gifts and 

loaning/agistment (pigs brought into the village and kept on behalf of someone else) during the 

period of the outbreak; 2) there is disease transmission at a per capita rate 𝛽 pigs per day; 3) once 

infected, exposed pigs spend a latent period  days before becoming infectious, 4) once 

infectious, they remain so for a period  days, after which a proportion of typically infectious 

pigs transits to carrier state while the rest (1- ) are removed from the system as a result of disease-

induced death; 5) the infectiousness of carriers pigs is reduced by a factor 𝜀; 6) carriers pigs remain 

so for an average period  days and finally, 7) there is natural (non-ASF) mortality in all four 

compartments (S, E, I, C) at per capita rate μ. 

The processes are summarized in the compartmental diagram in Figure 6.1 and the ordinary 

differential equations for the SEICR model are presented in Equations 2.1. This model was adopted 

from [25] by incorporating the infection pressure from carrier pigs.  

1 

1 




1 
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Fig. 6.1. Schematic representation of the SEICR Model for this study (Adopted from[25]) 

 

The above process is depicted by the following system of ordinary differential equations (ODEs) 

as:  
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 (2.1) 

 

 

  

6.3.2 Qualitative analysis of the system 

A qualitative analysis of the model was performed, which specifically entailed investigations of 

the existence and stability of the system’s equilibrium states to infer the probable course of an 

infection introduced within the village. We use the analysis methods as described in [148], [149] 

and elsewhere. Briefly, let (𝑆∗, 𝐸∗, 𝐼∗, 𝐶∗) be the equilibrium states of the system described by the 

Equations (2.1). At an equilibrium state, we have 
𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
= 0. For establishment of the 

existence of equilibrium points, we note that, by definition, a trivial equilibrium state is that where 

all individuals go extinct in the village, while for the disease-free equilibrium, we require that all 

𝐸∗ = 𝐼∗ = 𝐶∗ = 0, and for the endemic equilibrium, at least one of these three variables should be 

above zero. Stability analyses are conducted based on the well-documented stability criteria 

analyses in dynamical systems theory [148,149]. 
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 6.3.3 Quantitative analysis: model formulation and assumptions  

Under the quantitative analysis of the model, we used simulation techniques to achieve our goals. 

For the between-villages disease dynamics model, Nambuku Sub-location in Busia County in 

Kenya was randomly selected from the list of all administrative units that participated in an ASF 

epidemiology study on the Uganda-Kenya border in 2012-2013 [73]. Using ArcGIS software, a 

5x5 cell grid was overlaid on Nambuku. The individual cells in Figure 2 are taken to represent the 

villages in Nambuku Sub-location. This grid overlay made it possible to define the SEICR 

transmission model in Equations (2.1) on each village and to track the spatial spread of the disease 

if it was introduced in one of the villages. A two-dimensional array (coupled lattice-based) was 

used to define this overlay grid in System dynamics software, Stella ver. 8.1.1. This method is 

based on those previously described by [150] and [151]. 

The grid is numbered from top left row-wise with the first cell as cell(1, 1) and the last bottom 

right cell as cell(5, 5). The cells (1, 1), (1, 2), (1, 5), (4, 1), (4, 5), (5, 1), (5, 4), (5, 5) are assumed 

to be outside the model boundary and are therefore not affected by the disease dynamics (see Fig 

2). We assumed that cells are not infected by diagonal infectious neighbours and we modelled the 

within-village dynamics using the deterministic model (Equations (2.1)) but assuming a stochastic 

process for transmission between adjacent villages.  
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Fig. 6.2 Grid overlay on Nambuku Sub-location to represent the villages modelled 

 

If A represents the system of ordinary differential Equations (2.1), then for an arbitrary village 

represented by C(i, j), the dynamics of the system will be governed by the equation: 

 

where  is a System Dynamics Monte Carlo function that samples a random number 

equal to 1 for  percent of the time in each iteration of the model. When the function returns 1, 

then this village C(i, j) is at risk of infection by any of the four villages adjacent to it  (i.e. C(i-1, 

j), C(i, j-1), C(i, j+1) and C(i+1, j)) that are within the grid. The System Dynamics formulation is 
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given in appendix II and has also been previously presented by Neuwirth et al. [150]. The 

schematic representation of this model formulation is given in Fig 6.3. 

 

Fig. 6.3. Schematic representation of SEICR model in System Dynamics Software. 

 

In Table 6.1, we map model parameters as defined in Equations (2.1) to their corresponding 

definitions in the System Dynamics formulation and also define the added parameters that relate 

to the between-village spatial formulation.  

Table 6.1. Mapping the deterministic ordinary DE parameters and System Dynamics parameters 

Parameter DE 

formulation 

System Dynamics 

formulation equivalent 

Estimate and 

Citation 

Transmission rate (per day) 𝛽 Transmission rate 0.3 [116] 

Recruitment rate (per day) Λ Birth  0.001* 

GiftAgistIN Normal(2,1)* 

S
I C

E

Recov ery Rate

Infec tion Rate

Infec tiuos Rate

Fraction dying

Transmis sion Rate

DeathRate

Recov eryTime

Infec tivity Reduction

Inflow

CDeathRate

CarrierDuration

Birth
IncubationRate

C
BirthRate

GiftAgistIN R

SpatialTrans

Spar tialIn teractn
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Incubation rate (per day) σ IncubationRate 3 [116] 

Infection Period (days) γ-1 RecoveryTime 3 [116] 

Fraction dying ρ Fraction dying 0.8** 

Duration in carrier state 

(days) 

α-1 Carrier duration 45[39,116] 

Infectivity reduction ε Infectivity Reduction 0.35* 

Spatial Interaction between 

villages 

 SpartialInteractn 0.1** 

Transmission on spatial 

contact  

 SpatialTrans 20%** 

*The estimates are from published literature and data collected during a cross-sectional study in 

the area [73,75]  

**Parameters for scenario setting based on expert opinion and observations during field studies.  

 

6.4 Results 

6.4.1 Qualitative Analysis of the SEICR model 

The ordinary differential equations model (Equation (2.1)) was analysed to identify the equilibrium 

states and investigate their stability. Due to analytical intractability, we analysed only the disease 

free equilibrium (DFE) state where there are no infectious, exposed or carriers (i.e. S = S0 =Λ/μ, 

E*= I* = C*= 0) and while the properties of the endemic equilibrium state (i.e. either E, I or C >0) 

are often times inferred from the findings of the stability properties of the DFE. This inference is 

largely informed by the relationship between the stability conditions for the DFE and the parameter 

restrictions that ensure 𝑅0 < 1 and the endemic equilibrium being stable if 𝑅0 > 1 [148,149]. 
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6.4.2 Existence of the trivial equilibrium state 

For as long as the recruitment rateΛ > 0, the population of the pigs will never go extinct in the 

village, implying that, the trivial equilibrium point cannot exist. 

6.4.3 Existence and stability of endemic equilibrium state 

Following the methods described in [148] and [149], we first determine the Jacobian at an 

equilibrium state and assess the stability of the state using given criteria, for example the Routh-

Hurwitz conditions or any other dynamical systems criteria based on the roots of the characteristic 

equation. 

At the Disease free equilibrium state, 
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At DFE, I*= E*= C*=0 which implies . Therefore the Jacobian matrix for the system is 

given as:  

JDFE =  

and the characteristic equation from the matrix above is of fourth degree, derived by evaluating 

Det(JDFE - rI) = 0 where r is an eigenvalue of the matrix. Upon simplification, the characteristic 

equation for the DFE is obtained as: 

 

where . 

The roots of this equation are the eigenvalues to the Jacobian matrix and we use them to determine 

the stability of DFE. Note that stability is ensured if all eigenvalues have a negative real part. In 

this case, the first solution is 𝑟1 = −𝜇 which is has a negative real part since 𝜇 > 0. For the other 

three eigenvalues, we applied the Routh-Hurwitz conditions to determine the stability of this 

equilibrium point [148,149]. The Routh-Hurwitz conditions guarantee that all eigenvalues of a 

characteristic equation of the form  have negative real parts if and only if
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For the equation 

, 

we have that 

,  and . 

In this case, all the parameters in expressions for (i=1, 2, 3) are positive; this satisfies the first 

two Routh-Hurwitz conditions. Thus, we only need to further investigate whether  and 

from this requirement, we establish the condition for the stability of the DFE as 

[(𝜎 + 𝜇) + (𝛾 + 𝜇) + (𝛼 + 𝜇)] × [(𝜎 + 𝜇)(𝛾 + 𝜇) + (𝛾 + 𝜇)(𝛼 + 𝜇) + (𝜎 + 𝜇)(𝛼 + 𝜇) +

𝜎𝛽𝑆0] > [(𝜎 + 𝜇)(𝛾 + 𝜇)(𝛼 + 𝜇) + (𝛼 + 𝜇)𝜎𝛽𝑆0 + 𝜎𝛾𝜌𝛽𝜀𝑆0]. 

Rearranging the stability condition DFE, we get; 

 

 or  

 Comparing to R0 <1 for stability of DFE,  

 

R0 = 
[(𝜎+𝜇)(𝛾+𝜇)(𝛼+𝜇)+(𝛼+𝜇)𝜎𝛽𝑆0+𝜎𝛾𝜌𝛽𝜀𝑆0]
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If the expression is less than one, the DFE is stable and any disease introduction will not be 

established in the village. 

6.4.4 Numerical Simulation of SEICR model 

The model in Section 2.3 was calibrated using parameter estimates from Table 6.1. Due to a lack 

of empirical data, we assumed different degrees of interaction between pigs in adjacent villages 

for disease transmission to take place. It was further assumed that there is a 20% probability of 

contracting the disease as a result of between village interactions. Numerical simulations were 

performed for three different scenarios. For each scenario, we introduced an infection in the village 

represented by cell (3, 2) and we traced the spatial transmission of the disease to other villages 

over time under the different scenarios. We extracted results for the disease burden in cell (3, 2) 

as well as in the adjacent cell (3, 3) and a far off border cell (5, 4). 
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Scenario 1: Assuming no pig interaction between villages 

 Fig 6.4 shows the disease burden on cell (3, 2) and there is no spread to other cells because there 

is no pig interaction allowed between villages. Therefore the infection is contained within the 

village but it progresses to an endemic state. 

 

Fig. 6.4. Simulation run for the dynamics in the village represented by cell (3, 3) assuming no 

interaction between villages 
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Scenario 2: Pig interaction between villages set at 10% 

Next we modelled a scenario where the infection is introduced into the same village, cell (3, 2) 

and the interaction with pigs from neighbouring villages is set at 10%. The results showed a 

gradual but lagged spread of the infection to adjacent villages as shown in Fig 6.5. The graphical 

estimate of the lag between epidemic curves for two adjacent villages (cells) is 30 days. 

 

Fig. 6.5. Infection burden in villages represented by cells (3, 2), (3, 3) and (5, 4) assuming a 10% 

between-village interaction 
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Scenario 3: Pig interaction between villages set at 30% 

When the interaction between pigs of adjacent villages was increased from 10% to 30%, the 

epidemic curves developed marked spikes and the lag between adjacent villages was almost wiped 

away as shown in figure 6.6. 

 

Fig. 6.6. Infection burden in villages represented by cells (3, 2), (3, 3) and (5, 4) assuming a 30% 

between-village interaction 

 

6.5 Discussion 

We formulated a deterministic model to characterize the transmission of ASFV within a village 

and probabilistic spatial spread of the virus as a result of pig interaction between villages. Since 

there is currently no treatment or vaccine for ASF, control is dependent on preventing contact 

between domestic pigs and sources of the virus [2]. We assessed the effect of herd interaction 

between villages on the disease burden at a village level. The results showed that restricting pig 

interaction between villages creates a lag (time from when the outbreak in the first village is first 
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‘detectable’ to the time of the first case in the next village) of 30 days before the start of an outbreak 

in the neighbouring village and this lag may accord outbreak response teams an opportunity to 

contain the outbreak with minimal damage.  

The model incorporated a carrier state, which caters for pigs that have been exposed to the virus 

but recovered from the disease. Previous studies have shown the presence of African swine fever 

virus in sub-clinical, chronically infected or recovered pigs [52,53]. These carrier pigs are thought 

to be responsible for the persistence of the virus thereby extending circulation of ASFV within the 

herd [32]. It is possible that repeated ASF outbreaks may not necessarily be due to carrier pigs 

reactivating to fully blown infectiousness but rather dependent on pork processing and handling 

procedures/activities (i.e. slaughter slabs, pork joints, use of swill and food leftovers) that involve 

these carrier pigs that have persistent virions in blood or tissues [32]. 

We derived an expression for R0 based on the dynamics of ASF. This expression can be used to 

quantify the force of invasion of ASF for a particular outbreak if the key parameters are known. 

One of the key parameter in the expression for R0 is β. An effective way to reduce β has been 

found to be the implementation of biosecurity measures that minimize direct pig to pig contact 

such as tethering, housing pigs and isolation of new pig recruits on the farm[73,75]. On the other 

hand, previous studies have emphasized quick isolation, quarantining and/or culling of infected 

animals as a means to curb disease transmission [73,152].  However, in developing countries early 

detection and isolation remain big challenges, let alone culling without compensation mechanisms 

in place. In many rural areas where smallholder pig farmers live, veterinary officials lack the basics 

facilities to confirm suspected ASF cases, the means to reach these rural areas in time.  
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Besides the deterministic model, we also used a spatial-deterministic model to investigate the 

spatial spread of ASFV between villages in the study area resulting from interactions of pigs from 

neighbouring villages. A previous study on the spatial ecology of free-ranging domestic pigs in 

western Kenya found that pigs could roam up to 3 km away from the household in a single night 

[15]. There are a number of pathways through which ASF is spread which include direct contact 

between domestic pigs, contact with infectious material, contact with wild suids and exposure to 

soft ticks [1]. Transmission via these routes is exacerbated by pig movements due to the free-

ranging production system practiced in the study area making it difficult to eliminated between-

village pig contacts and exposures. The results of this study show that by applying pig movement 

restrictions between villages, it is possible to prevent ASF from spreading from village to village 

once it is accidentally introduced in one of the villages. A closely related study by Mur et al., 

(2017)[146]  concluded that spatial transmission of the pathogen further complicated the dynamics 

of the disease, thereby rendering control efforts insufficient. 

To further understand the effect of restricting pig movements/interaction on the spatial spread of 

ASF, we allowed for up to 30% interaction. The simulation results showed that the disease could 

spread to adjacent villages after some time. This lag in disease invasion to the neighbouring village 

provides a window of 30 days. With proactive and incentivized veterinary authorities, this window 

provides an opportunity to contain the outbreak within a village before it progresses to ravage the 

next village. However, if pig interaction of up to 30% is allowed, results show that this level of pig 

interaction can greatly curtail the effectiveness of the instituted control measures. This finding 

though with a relatively relaxed time interval, agrees with findings of Barongo et al. [25] who 

found that the optimal timing for the introduction of control measures was within 14 days of the 

onset of an outbreak.  
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The findings of this study strengthen the case for authorities to implement animal movement 

restrictions for a reasonable period and confinement in order to curb repeated outbreaks of ASF. 

This may require sensitizing pig farmers and getting their buy in on how long movement 

restrictions will be in place. In events of reported ASF outbreaks, quick implementation of some 

biosecurity measures such as tethering or use of thorny vegetation to provide reasonable pig-proof 

pens and avoiding use of swill are recommended in order to contain the disease within the area of 

the reported outbreak. We strongly recommend that governments (local or national) should 

develop programmes that focus on tackling the factors that prevent small pig farmers from 

adopting more modern husbandry methods such as lack of awareness and the required investment.  

Top on the list are the identification of locally available safe feeds and building pig pens to house 

the pigs.  
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7.1 Summarising Discussion  

We have modelled the transmission dynamics of ASF disease in East Africa in the context of 

smallholder farming systems, with a view to understanding ASFV epidemiology in order to 

optimise control strategies that minimise the spread of the virus and mitigate social-economic 

impact on small-scale pig farmers. Several modelling tools were used to generate insight into ASF 

transmission mechanisms, probable causes of persistence in domestic pig populations and most 

importantly evaluation of various control strategies [25,30]. Additionally, we analysed key 

parameters of low input system husbandry practices among the pig producers on the Kenya-

Uganda border that could facilitate ASF spread among pigs in the study area.   

We used three methods to estimate R0 from ASF epidemic data in a predominantly free-ranging 

pig production system in northern Uganda. These were the nearest infectious neighbour, the 

doubling time and the SI model methods. The mean estimates for R0 ranged between 1.58 and 

3.24. Considering that the estimates from all the methods are above the critical threshold of one, 

the disease is bound to be established when it is introduced in naïve pig populations, consistent 

with the observed persistence of disease. These estimates may have been affected by 

underestimation of infectious period and under-reporting of outbreaks, leading to underestimation 

of R0 [102]; however, for the purposes of this analysis, we assumed that all outbreaks during the 

study period were reported. This assumption is supported by the fact that, in the study area, farmers 

were primed to report outbreaks due to the on-going research activities.  

Though R0 is known to be sensitive to production system, contact structure and environmental 

factors, our R0 estimates from the nearest infectious neighbour and doubling time methods were in 

close agreement with those of Gulenkin et al. [99] and Iglesias et al. [120] who estimated R0 to 

range from 2 to 3 and 1.58 respectively at the between-farm level. Comparison of estimates from 
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different studies and geographical areas should be made with caution. The true value of R0 for 

most epidemics may be difficult to quantify for a number of reasons such as unknown source of 

outbreaks, inconsistent reporting time-scales, complication of obtaining good contact tracing data 

from the multiple indirect routes of infection, farming systems and the role of human behaviour in 

transmission of ASFV. When reporting is on a higher resolution time-scale, the parameter 

estimates are better and more generalizable. With high-resolution data, we would recommend the 

use of the doubling time method to estimate a more realistic figure for R0. Despite these 

uncertainties, empirical data from epidemics can be a valuable source for estimating 

epidemiological parameters. This was the first attempt to estimate R0 from field data for ASF in a 

predominantly free-ranging production system in an endemic region of East Africa.  

 

In order to formalize questions relating to ASF epidemiology and the impact of control measures, 

we formulated a stochastic compartmental mathematical model to assess the potential impact of 

different intervention scenarios on disease burden. We investigated the benefits of compelling 

smallholder farmers to adopt and intensify biosecurity measures during ASF outbreaks, in order 

to minimize the disease burden. When compared to the baseline scenario of no intervention, our 

model predicted that if biosecurity measures are enhanced within a fortnight from the time ASF is 

first suspected, the disease burden can be significantly reduced. However, this typically takes too 

long given current reporting mechanisms and infrastructure. We believe this is achievable if 

resources are made available to veterinary services to support and guide the implementation of 

these interventions and control so that it is not left entirely in the hands of resource-poor pig 

farmers, which is currently the prevailing scenario in our study area on the Uganda-Kenya border.  
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Three protection levels of hypothetical vaccines and three intervention time points for their use 

were assessed using our models. The greatest vaccine impact was predicted at a simulated vaccine 

protection level of 70% when implemented at day 14 post-epidemic onset, although if continuous 

vaccination of susceptible new recruits that enter the system is included, this is predicted to reduce 

the disease burden by as much as 82%. The most effective simulated intervention strategy (with 

91% of deaths averted) is a combination of pulse vaccination (protecting 70% of the pigs at risk) 

together with enhanced biosecurity measures implemented by day 14. Unfortunately, vaccines are 

still a long way from being commercially available, even in the developed world let alone 

accessible and affordable to rural pig farmers in sub-Saharan Africa. Initial attempts to develop 

experimental live attenuated vaccines against ASFV have achieved in some instances good level 

of protection against homologous infection. However the current constraint is lack of suitable cells 

for enabling scale up for commercial production at a realistic cost in relation to the value of the 

animals [128].  

There was a clear pattern between the disease burden and timing of intervention, whereby delayed 

implementation of control reduced the positive impact of intervention scenarios. This prediction, 

although intuitive, emphasizes the importance of early intervention in managing ASF epidemics, 

and our modelling approach provides a means to determine timescales beyond which interventions 

were of limited value in controlling ASF. Although our model predicts a combination of 

vaccination and enhanced biosecurity as the best intervention scenario, the only currently feasible 

strategy is implementation of enhanced biosecurity measures. We therefore recommend 

intensification of active surveillance and use of pen-side diagnostic assays, where these are 

available, for rapid detection and confirmation of ASF to allow for timely implementation of 

enhanced biosecurity. Given the importance of the time to implementation of biosecurity 
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measures, we recommend that veterinary services in ASF outbreak risk areas work to educate 

farmers on the most feasible basic biosecurity measures to prevent ASF and additional measures 

to adopt, as soon as ASFV infection is suspected [73].  

Outbreaks of pig diseases such as ASF are known to be entirely driven by the pig production 

systems that allow pigs access to sources of infection in the area of interest. We assessed key 

parameters of low input production systems among the pig producers on the Kenya-Uganda border 

to identify practices that could contribute to propagation of ASF spread among pigs in the area. It 

was found that pigs are mainly looked after by women and that the dominant age-group of 

respondents was 30 to 49 years. Most of the respondents had at least primary level education, 

which creates an opportunity for training on best practices and disseminating appropriate 

technologies for improved and sustainable pig production.  

Among the key parameters of low input pig production systems investigated, the pig genotype and 

phenotype were the most important. Therefore knowledge of different pig types, which may 

ultimately be defined as breeds, their growth properties and their ability to cope in local 

environments are among the most important factors for fostering increased pig production [153], 

although there are arguments against it in the absence of markets for more and better quality pig 

products. Secondly, the type of management system used was found to be another key element. 

Although tethering was the predominant type of management, farmers stated that tethering was 

mainly used during the day and when crops were still in the gardens, but pigs would be allowed to 

free-range at night and almost all the time when there were no crops in the gardens.  

It was noted that pig restocking and the source of pigs purchased were also key parameters in 

determining how rapidly and over what range ASF could spread. Recent studies have shown a 



98 

 

high prevalence of ASFV in slaughter animals in the absence of reported outbreaks [52]. When 

farmers purchase pigs from pig traders or live animal markets, there is a high possibility of 

introducing the disease on the farm. It is therefore vital that NAADS and NGOs play a key role in 

providing farmers with piglets from ASF-free sources or help to support local pig breeders, 

employing efficient husbandry practices.  

Smallholder farmers are faced with several challenges ranging from high costs of feeds coupled 

with poor quality and unreliability of feed supplies. In an effort to cut production costs, pig farmers 

choose farming approaches that cost them as little as possible. For example, allowing pigs to 

scavenge in the neighbourhood for food accounts for 40% of the feed intake while swill and 

commercial feeds are the remaining sources of feed. On the other hand, given its relatively low 

cost, there were some farmers that relied almost entirely on either household leftovers/ crop 

residues from the farm or forage for feed needs. The majority of the farmers used some 

combination of at least two of the above sources.  

The other approach that farmers use to mitigate risks and also reduce costs associated with rearing 

pigs was agistment, which involves sharing of animals between close neighbours or relatives. 

Agistment may pose its own risk of disease spread due to pig movement between households. The 

high costs of farm inputs, particularly feeds have perpetuated these practices since the only other 

(non-appealing) alternative is the sale of pigs at very low prices [16,75]. Besides cost of inputs, 

another important issue is pig health. The farmers highlighted their inability to diagnose disease in 

the absence of veterinarians. Market issues such as poor prices offered by pig traders (usually by 

under-estimating the live weight of the pigs) were of additional concern. A further problem was 

market disruptions during suspected ASF outbreaks [75,140,144]. 
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We formulated a deterministic model to characterize the transmission of ASFV within a village 

and probabilistic spatial spread of the virus as a result of pig interaction between villages. We 

assessed the effect of herd interactions between villages on the disease burden at a village level. 

The results showed that restricting pig interaction between villages creates a lag of 30 days before 

the start of an outbreak in the neighbouring village and this lag may afford outbreak response teams 

an opportunity to contain the outbreak with minimal damage.  

There are a number of pathways through which ASF is spread, including direct contact between 

domestic pigs, contact with infectious material, contact with wild suids and exposure to soft ticks 

[1]. Transmission via these routes is exacerbated by pig movements due to the free-ranging 

production system practiced in the study area, making it difficult to eliminate between-village pig 

contacts and exposures. The modelling research frameworks described in this thesis emphasize 

that there is lack of quantitative data for most of these parameters and basic information still needs 

to be collected to provide more realistic predictions. However, one clear conclusion is that by 

applying pig movement restrictions between villages significantly lowered the chance of spreading 

to the next village.  

The findings of this study strengthen the case for authorities to implement animal movement 

restrictions and confinement in order to curb repeated outbreaks of ASF. In the event of reported 

ASF outbreaks, quick implementation of some basic biosecurity measures such as 

tethering/confinement and avoiding use of swill are recommended in order to contain the disease 

within the area of the reported outbreak. We strongly recommend that governments (local or 

national) and NGOs should develop programmes that focus on tackling the factors that inhibit 

small pig farmers entering the potentially profitable pig market. Key areas include biosecurity 



100 

 

education, innovative solutions to providing reliable low cost pig feed and loans to subsidize the 

building of pig pens to house the pigs.  

7.2 Recommendations 

Based on the findings of this research, we recommend the following measures and further studies 

in order to implement these findings or further this work. We therefore recommend: 

1. Gender-targeted training on improved husbandry practices through strengthened advisory 

services, focused on women’s groups. Governments need to develop the entire pig value 

chain in particular supporting input suppliers to work with researchers to support 

production of cost-effective pig feeds. 

2. More epidemiological studies be designed to confirm whether ticks are involved in 

maintaining the virus in the study area, because confining the pigs in housing with the ticks 

is not helpful in preventing infection.   

3. Intensification of active surveillance and use of pen-side diagnostic assays for rapid 

detection and confirmation of ASF to allow for timely implementation of enhanced 

biosecurity.  

4. Continued research on the development of a vaccine against ASFV to allow for deployment 

of a hybrid intervention strategy. 

5. Early implementation of animal movement restrictions and confinement especially during 

suspected ASF outbreaks. 
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Appendix I 

Philosophical underpinning of R0 

Consider a 'closed' and 'naive' pig population that is in one way or the other invaded by a disease-

causing organism. For simplicity of derivations, the following assumptions are made: 

 There is homogeneous mixing of individuals 

 That all subsequent infections are a result of contacts between susceptible (S) and the 

infectious (I) individuals 

 That every infection results into either death or immunity (R) 

Under these assumptions, the following state-transition SIR (density-dependent) model is 

formulated: 

dS
βSI,

dt
                                         (1) 

dI
βSI γI,

dt
                                   (2) 

dR
γI.

dt
                                            (3) 

Subject to the initial conditions: S(0) = S0 > 0;  I(0) = I0 > 0 and R(0) = 0.  (4) 

Where β is the transmission term (a product of probability of transmission and contact rate) and 

is the removal rate (1/   = average infectious period). Give the initial conditions and parameters, 

we are interested in knowing if the infection will spread or not and how it will develop over time. 

Initially, it follows from equation (2), that: 

0 0( ) –  
dI

S I
dt

    

If   0
dI

dt
 , 0   ) 0( S   , then I(t) starts to increase and there is likelihood of an epidemic. This 

implies 0S   or 0 /   1S    . The expression 0 /S   is the reproduction number (R0) of the 

infection. If   0
dI

dt
 , then 0 0( )S   , then I(t) remains below I0 implying the epidemic does 

not occur. If 0  1R   , the disease dies out, whereas if 0 1R   , the disease persists in the 

population (Li et al., 2011). 
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Fig S2: SIR model used to simulate outbreak data of African swine fever, Gulu District, Uganda, 

April 2010 - November 2011 
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Fig S3: Distribution of bootstrapped monthly transmission rate coefficient β estimates 

 

 

Fig S4: Sensitivity of basic reproduction number R0 to variation in initial number of herds 
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Fig S5. Spatial distribution of ASF infected herds (April 2010 - November 2011) 
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Appendix II: System Dynamics formulation 

C[West,North](t) = C[West,North](t - dt) + (Recovery_Rate[West,North] - 

CDeathRate[West,North]) * dt 

INIT C[West,North] = 0 

INFLOWS: 

Recovery_Rate[West,North] = CONVEYOR OUTFLOW 

 TRANSIT TIME = RecoveryTime[West,North] 

OUTFLOWS: 

CDeathRate[West,North] = C[West,North]/CarrierDuration[West,North] 

E[West,North](t) = E[West,North](t - dt) + (Infection_Rate[West,North] - 

Infectious_Rate[West,North]) * dt 

INIT E[West,North] = 0 

INFLOWS: 

Infection_Rate[1,1] = 

Transmission_Rate[1,1]*S[1,1]*I[1,1]/(S[1,1]+I[1,1]+E[1,1]+C[1,1])+Infectivity_Reduction[1,1

]*C[1,1]*S[1,1]*Transmission_Rate[1,1]/(S[1,1]+I[1,1]+E[1,1]+C[1,1])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[1,2] = 

Transmission_Rate[1,2]*S[1,2]*I[1,2]/(S[1,2]+I[1,2]+E[1,2]+C[1,2])+Infectivity_Reduction[1,2

]*C[1,2]*S[1,2]*Transmission_Rate[1,2]/(S[1,2]+I[1,2]+E[1,2]+C[1,2]) 

+0*SpartialInteractn*MONTECARLO(SpatialTrans) 

Infection_Rate[1,3] = 

Transmission_Rate[1,3]*S[1,3]*I[1,3]/(S[1,3]+I[1,3]+E[1,3]+C[1,3])+Infectivity_Reduction[1,3
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]*C[1,3]*S[1,3]*Transmission_Rate[1,3]/(S[1,3]+I[1,3]+E[1,3]+C[1,3]) 

+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[1,3]*S[1,3]*I[2,3]/(S[1,

3]+I[1,3]+E[1,3]+C[1,3])+Infectivity_Reduction[1,3]*C[2,3]*S[1,3]*Transmission_Rate[1,3]/(S

[1,3]+I[1,3]+E[1,3]+C[1,3])) 

+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[1,3]*S[1,3]*I[1,4]/(S[1,

3]+I[1,3]+E[1,3]+C[1,3])+Infectivity_Reduction[1,3]*C[1,4]*S[1,3]*Transmission_Rate[1,3]/(S

[1,3]+I[1,3]+E[1,3]+C[1,3])) 

Infection_Rate[1,4] = 

Transmission_Rate[1,4]*S[1,4]*I[1,4]/(S[1,4]+I[1,4]+E[1,4]+C[1,4])+Infectivity_Reduction[1,4

]*C[1,4]*S[1,4]*Transmission_Rate[1,4]/(S[1,4]+I[1,4]+E[1,4]+C[1,4]) + 

SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[1,4]*S[1,4]*I[1,3]/(S[1,4

]+I[1,4]+E[1,4]+C[1,4])+Infectivity_Reduction[1,4]*C[1,3]*S[1,4]*Transmission_Rate[1,4]/(S[

1,4]+I[1,4]+E[1,4]+C[1,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_

Rate[1,4]*S[1,4]*I[2,4]/(S[1,4]+I[1,4]+E[1,4]+C[1,4])+Infectivity_Reduction[1,4]*C[2,4]*S[1,4

]*Transmission_Rate[1,4]/(S[1,4]+I[1,4]+E[1,4]+C[1,4])) 

Infection_Rate[1,5] = 

Transmission_Rate[1,5]*S[1,5]*I[1,5]/(S[1,5]+I[1,5]+E[1,5]+C[1,5])+Infectivity_Reduction[1,5

]*C[1,5]*S[1,5]*Transmission_Rate[1,5]/(S[1,5]+I[1,5]+E[1,5]+C[1,5])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[2,1] = 

Transmission_Rate[2,1]*S[2,1]*I[2,1]/(S[2,1]+I[2,1]+E[2,1]+C[2,1])+Infectivity_Reduction[2,1

]*C[2,1]*S[2,1]*Transmission_Rate[2,1]/(S[2,1]+I[2,1]+E[2,1]+C[2,1])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,1]*S[2,1]*I[2,2]/(S[2,1]+I[2,1]+E[2,1]+C[2,
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1])+Infectivity_Reduction[2,1]*C[2,2]*S[2,1]*Transmission_Rate[2,1]/(S[2,1]+I[2,1]+E[2,1]+C

[2,1]))+MONTECARLO(SpatialTrans)*SpartialInteractn*(Transmission_Rate[2,1]*S[2,1]*I[3,1

]/(S[2,1]+I[2,1]+E[2,1]+C[2,1])+Infectivity_Reduction[2,1]*C[3,1]*S[2,1]*Transmission_Rate[

2,1]/(S[2,1]+I[2,1]+E[2,1]+C[2,1])) 

Infection_Rate[2,2] = 

Transmission_Rate[2,2]*S[2,2]*I[2,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])+Infectivity_Reduction[2,2

]*C[2,2]*S[2,2]*Transmission_Rate[2,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,2]*S[2,2]*I[2,2]/(S[2,2]+I[2,1]+E[2,2]+C[2,

2])+Infectivity_Reduction[2,2]*C[2,1]*S[2,2]*Transmission_Rate[2,2]/(S[2,2]+I[2,2]+E[2,2]+C

[2,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[2,2]*S[2,2]*I[2,3

]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])+Infectivity_Reduction[2,2]*C[2,3]*S[2,2]*Transmission_Rate[

2,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[2,2]*S[2,2]*I[3,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])+Infectivity_Reduction[2,2]*C[3,2]

*S[2,2]*Transmission_Rate[2,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])) 

Infection_Rate[2,3] = 

Transmission_Rate[2,3]*S[2,3]*I[2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+Infectivity_Reduction[2,3

]*C[2,3]*S[2,3]*Transmission_Rate[2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,3]*S[2,3]*I[2,2]/(S[2,3]+I[2,3]+E[2,3]+C[2,

3])+Infectivity_Reduction[2,3]*C[2,2]*S[2,3]*Transmission_Rate[2,3]/(S[2,3]+I[2,3]+E[2,3]+C

[2,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[2,3]*S[2,3]*I[1,3

]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+Infectivity_Reduction[2,3]*C[1,3]*S[2,3]*Transmission_Rate[

2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[2,3]*S[2,3]*I[2,4]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+Infectivity_Reduction[2,3]*C[2,4]



130 

 

*S[2,3]*Transmission_Rate[2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3]))+MONTECARLO(SpatialTrans

)*SpartialInteractn*(Transmission_Rate[2,3]*S[2,3]*I[3,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+Infec

tivity_Reduction[2,3]*C[3,3]*S[2,3]*Transmission_Rate[2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])) 

Infection_Rate[2,4] = 

Transmission_Rate[2,4]*S[2,4]*I[2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+Infectivity_Reduction[2,4

]*C[2,4]*S[2,4]*Transmission_Rate[2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,4]*S[2,4]*I[2,3]/(S[2,4]+I[2,4]+E[2,4]+C[2,

4])+Infectivity_Reduction[2,4]*C[2,3]*S[2,4]*Transmission_Rate[2,4]/(S[2,4]+I[2,4]+E[2,4]+C

[2,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[2,4]*S[2,4]*I[1,4

]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+Infectivity_Reduction[2,4]*C[1,4]*S[2,4]*Transmission_Rate[

2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4]))+MONTECARLO(SpatialTrans)*SpartialInteractn*(Transmi

ssion_Rate[2,4]*S[2,4]*I[2,5]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+Infectivity_Reduction[2,4]*C[2,5]

*S[2,4]*Transmission_Rate[2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[2,4]*S[2,4]*I[3,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+Infec

tivity_Reduction[2,4]*C[3,4]*S[2,4]*Transmission_Rate[2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])) 

Infection_Rate[2,5] = 

Transmission_Rate[2,5]*S[2,5]*I[2,5]/(S[2,5]+I[2,5]+E[2,5]+C[2,5])+Infectivity_Reduction[2,5

]*C[2,5]*S[2,5]*Transmission_Rate[2,5]/(S[2,5]+I[2,5]+E[2,5]+C[2,5])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,5]*S[2,5]*I[2,4]/(S[2,5]+I[2,5]+E[2,5]+C[2,

5])+Infectivity_Reduction[2,5]*C[2,4]*S[2,5]*Transmission_Rate[2,5]/(S[2,5]+I[2,5]+E[2,5]+C

[2,5]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[2,5]*S[2,5]*I[3,5

]/(S[2,5]+I[2,5]+E[2,5]+C[2,5])+Infectivity_Reduction[2,5]*C[3,5]*S[2,5]*Transmission_Rate[

2,5]/(S[2,5]+I[2,5]+E[2,5]+C[2,5])) 
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Infection_Rate[3,1] = 

Transmission_Rate[3,1]*S[3,1]*I[3,1]/(S[3,1]+I[3,1]+E[3,1]+C[3,1])+Infectivity_Reduction[3,1

]*C[3,1]*S[3,1]*Transmission_Rate[3,1]/(S[3,1]+I[3,1]+E[3,1]+C[3,1])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,1]*S[3,1]*I[2,1]/(S[3,1]+I[3,1]+E[3,1]+C[3,

1])+Infectivity_Reduction[3,1]*C[2,1]*S[3,1]*Transmission_Rate[3,1]/(S[3,1]+I[3,1]+E[3,1]+C

[3,1]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,1]*S[3,1]*I[3,2

]/(S[3,1]+I[3,1]+E[3,1]+C[3,1])+Infectivity_Reduction[3,1]*C[3,2]*S[3,1]*Transmission_Rate[

3,1]/(S[3,1]+I[3,1]+E[3,1]+C[3,1])) 

Infection_Rate[3,2] = 

Transmission_Rate[3,2]*S[3,2]*I[3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+Infectivity_Reduction[3,2

]*C[3,2]*S[3,2]*Transmission_Rate[3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,2]*S[3,2]*I[3,1]/(S[3,2]+I[3,2]+E[3,2]+C[3,

2])+Infectivity_Reduction[3,2]*C[3,1]*S[3,2]*Transmission_Rate[3,2]/(S[3,2]+I[3,2]+E[3,2]+C

[3,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,2]*S[3,2]*I[2,2

]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+Infectivity_Reduction[3,2]*C[2,2]*S[3,2]*Transmission_Rate[

3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[3,2]*S[3,2]*I[3,3]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+Infectivity_Reduction[3,2]*C[3,3]

*S[3,2]*Transmission_Rate[3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[3,2]*S[3,2]*I[4,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+Infec

tivity_Reduction[3,2]*C[4,2]*S[3,2]*Transmission_Rate[3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])) 

Infection_Rate[3,3] = 

Transmission_Rate[3,3]*S[3,3]*I[3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+Infectivity_Reduction[3,3

]*C[3,3]*S[3,3]*Transmission_Rate[3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+SpartialInteractn*MO
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NTECARLO(SpatialTrans)*(Transmission_Rate[3,3]*S[3,3]*I[3,2]/(S[3,3]+I[3,3]+E[3,3]+C[3,

3])+Infectivity_Reduction[3,3]*C[3,2]*S[3,3]*Transmission_Rate[3,3]/(S[3,3]+I[3,3]+E[3,3]+C

[3,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,3]*S[3,3]*I[2,3

]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+Infectivity_Reduction[3,3]*C[2,3]*S[3,3]*Transmission_Rate[

3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[3,3]*S[3,3]*I[3,4]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+Infectivity_Reduction[3,3]*C[3,4]

*S[3,3]*Transmission_Rate[3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[3,3]*S[3,3]*I[4,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+Infec

tivity_Reduction[3,3]*C[4,3]*S[3,3]*Transmission_Rate[3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])) 

Infection_Rate[3,4] = 

Transmission_Rate[3,4]*S[3,4]*I[3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+Infectivity_Reduction[3,4

]*C[3,4]*S[3,4]*Transmission_Rate[3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,4]*S[3,4]*I[3,3]/(S[3,4]+I[3,4]+E[3,4]+C[3,

4])+Infectivity_Reduction[3,4]*C[3,3]*S[3,4]*Transmission_Rate[3,4]/(S[3,4]+I[3,4]+E[3,4]+C

[3,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,4]*S[3,4]*I[2,4

]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+Infectivity_Reduction[3,4]*C[2,4]*S[3,4]*Transmission_Rate[

3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[3,4]*S[3,4]*I[3,5]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+Infectivity_Reduction[3,4]*C[3,5]

*S[3,4]*Transmission_Rate[3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[3,4]*S[3,4]*I[4,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+Infec

tivity_Reduction[3,4]*C[4,4]*S[3,4]*Transmission_Rate[3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])) 

Infection_Rate[3,5] = 

Transmission_Rate[3,5]*S[3,5]*I[3,5]/(S[3,5]+I[3,5]+E[3,5]+C[3,5])+Infectivity_Reduction[3,5



133 

 

]*C[3,5]*S[3,5]*Transmission_Rate[3,5]/(S[3,5]+I[3,5]+E[3,5]+C[3,5])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,5]*S[3,5]*I[3,4]/(S[3,5]+I[3,5]+E[3,5]+C[3,

5])+Infectivity_Reduction[3,5]*C[3,4]*S[3,5]*Transmission_Rate[3,5]/(S[3,5]+I[3,5]+E[3,5]+C

[3,5]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,5]*S[3,5]*I[2,5

]/(S[3,5]+I[3,5]+E[3,5]+C[3,5])+Infectivity_Reduction[3,5]*C[2,5]*S[3,5]*Transmission_Rate[

3,5]/(S[3,5]+I[3,5]+E[3,5]+C[3,5])) 

Infection_Rate[4,1] = 

Transmission_Rate[4,1]*S[4,1]*I[4,1]/(S[4,1]+I[4,1]+E[4,1]+C[4,1])+Infectivity_Reduction[4,1

]*C[4,1]*S[4,1]*Transmission_Rate[4,1]/(S[4,1]+I[4,1]+E[4,1]+C[4,1])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[4,2] = 

Transmission_Rate[4,2]*S[4,2]*I[4,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])+Infectivity_Reduction[4,2

]*C[4,2]*S[4,2]*Transmission_Rate[4,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[4,2]*S[4,2]*I[3,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,

2])+Infectivity_Reduction[4,2]*C[3,2]*S[4,2]*Transmission_Rate[4,2]/(S[4,2]+I[4,2]+E[4,2]+C

[4,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[4,2]*S[4,2]*I[4,3

]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])+Infectivity_Reduction[4,2]*C[4,3]*S[4,2]*Transmission_Rate[

4,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[4,2]*S[4,2]*I[5,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])+Infectivity_Reduction[4,2]*C[5,2]

*S[4,2]*Transmission_Rate[4,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])) 

Infection_Rate[4,3] = 

Transmission_Rate[4,3]*S[4,3]*I[4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+Infectivity_Reduction[4,3

]*C[4,3]*S[4,3]*Transmission_Rate[4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+SpartialInteractn*MO
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NTECARLO(SpatialTrans)*(Transmission_Rate[4,3]*S[4,3]*I[4,2]/(S[4,3]+I[4,3]+E[4,3]+C[4,

3])+Infectivity_Reduction[4,3]*C[4,2]*S[4,3]*Transmission_Rate[4,3]/(S[4,3]+I[4,3]+E[4,3]+C

[4,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[4,3]*S[4,3]*I[3,3

]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+Infectivity_Reduction[4,3]*C[3,3]*S[4,3]*Transmission_Rate[

4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[4,3]*S[4,3]*I[4,4]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+Infectivity_Reduction[4,3]*C[4,4]

*S[4,3]*Transmission_Rate[4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[4,3]*S[4,3]*I[5,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+Infec

tivity_Reduction[4,3]*C[5,3]*S[4,3]*Transmission_Rate[4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])) 

Infection_Rate[4,4] = 

Transmission_Rate[4,4]*S[4,4]*I[4,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])+Infectivity_Reduction[4,4

]*C[4,4]*S[4,4]*Transmission_Rate[4,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[4,4]*S[4,4]*I[4,3]/(S[4,4]+I[4,4]+E[4,4]+C[4,

4])+Infectivity_Reduction[4,4]*C[4,3]*S[4,4]*Transmission_Rate[4,4]/(S[4,4]+I[4,4]+E[4,4]+C

[4,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[4,4]*S[4,4]*I[3,4

]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])+Infectivity_Reduction[4,4]*C[3,4]*S[4,4]*Transmission_Rate[

4,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[4,4]*S[4,4]*I[5,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])+Infectivity_Reduction[4,4]*C[5,4]

*S[4,4]*Transmission_Rate[4,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])) 

Infection_Rate[4,5] = 

Transmission_Rate[4,5]*S[4,5]*I[4,5]/(S[4,5]+I[4,5]+E[4,5]+C[4,5])+Infectivity_Reduction[4,5

]*C[4,5]*S[4,5]*Transmission_Rate[4,5]/(S[4,5]+I[4,5]+E[4,5]+C[4,5])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 
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Infection_Rate[5,1] = 

Transmission_Rate[5,1]*S[5,1]*I[5,1]/(S[5,1]+I[5,1]+E[5,1]+C[5,1])+Infectivity_Reduction[5,1

]*C[5,1]*S[5,1]*Transmission_Rate[5,1]/(S[5,1]+I[5,1]+E[5,1]+C[5,1])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[5,2] = 

Transmission_Rate[5,2]*S[5,2]*I[5,2]/(S[5,2]+I[5,2]+E[5,2]+C[5,2])+Infectivity_Reduction[5,2

]*C[5,2]*S[5,2]*Transmission_Rate[5,2]/(S[5,2]+I[5,2]+E[5,2]+C[5,2])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[5,2]*S[5,2]*I[4,2]/(S[5,2]+I[5,2]+E[5,2]+C[5,

2])+Infectivity_Reduction[5,2]*C[4,2]*S[5,2]*Transmission_Rate[5,2]/(S[5,2]+I[5,2]+E[5,2]+C

[5,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[5,2]*S[5,2]*I[5,3

]/(S[5,2]+I[5,2]+E[5,2]+C[5,2])+Infectivity_Reduction[5,2]*C[5,3]*S[5,2]*Transmission_Rate[

5,2]/(S[5,2]+I[5,2]+E[5,2]+C[5,2])) 

Infection_Rate[5,3] = 

Transmission_Rate[5,3]*S[5,3]*I[5,3]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])+Infectivity_Reduction[5,3

]*C[5,3]*S[5,3]*Transmission_Rate[5,3]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[5,3]*S[5,3]*I[5,2]/(S[5,3]+I[5,3]+E[5,3]+C[5,

3])+Infectivity_Reduction[5,3]*C[5,2]*S[5,3]*Transmission_Rate[5,3]/(S[5,3]+I[5,3]+E[5,3]+C

[5,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[5,3]*S[5,3]*I[4,3

]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])+Infectivity_Reduction[5,3]*C[4,3]*S[5,3]*Transmission_Rate[

5,3]/(S[5,3]+I[5,3]+E[5,3]+C[5,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[5,3]*S[5,3]*I[5,4]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])+Infectivity_Reduction[5,3]*C[5,4]

*S[5,3]*Transmission_Rate[5,3]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])) 
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Infection_Rate[5,4] = 

Transmission_Rate[5,4]*S[5,4]*I[5,4]/(S[5,4]+I[5,4]+E[5,4]+C[5,4])+Infectivity_Reduction[5,4

]*C[5,4]*S[5,4]*Transmission_Rate[5,4]/(S[5,4]+I[5,4]+E[5,4]+C[5,4]) 

+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[5,4]*S[5,4]*I[5,3]/(S[5,

4]+I[5,4]+E[5,4]+C[5,4])+Infectivity_Reduction[5,4]*C[5,3]*S[5,4]*Transmission_Rate[5,4]/(S

[5,4]+I[5,4]+E[5,4]+C[5,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_

Rate[5,4]*S[5,4]*I[4,4]/(S[5,4]+I[5,4]+E[5,4]+C[5,4])+Infectivity_Reduction[5,4]*C[4,4]*S[5,4

]*Transmission_Rate[5,4]/(S[5,4]+I[5,4]+E[5,4]+C[5,4])) 

Infection_Rate[5,5] = 

Transmission_Rate[5,5]*S[5,5]*I[5,5]/(S[5,5]+I[5,5]+E[5,5]+C[5,5])+Infectivity_Reduction[5,5

]*C[5,5]*S[5,5]*Transmission_Rate[5,5]/(S[5,5]+I[5,5]+E[5,5]+C[5,5])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

OUTFLOWS: 

Infectiuos_Rate[West,North] = CONVEYOR OUTFLOW 

 TRANSIT TIME = IncubationRate[West,North] 

I[1,1](t) = I[1,1](t - dt) + (Infectiuos_Rate[1,1] - Recovery_Rate[1,1] - DeathRate[1,1]) * dt 

INIT I[1,1] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[1,2](t) = I[1,2](t - dt) + (Infectiuos_Rate[1,2] - Recovery_Rate[1,2] - DeathRate[1,2]) * dt 

INIT I[1,2] = 0 

 TRANSIT TIME = varies 
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 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[1,3](t) = I[1,3](t - dt) + (Infectiuos_Rate[1,3] - Recovery_Rate[1,3] - DeathRate[1,3]) * dt 

INIT I[1,3] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[1,4](t) = I[1,4](t - dt) + (Infectiuos_Rate[1,4] - Recovery_Rate[1,4] - DeathRate[1,4]) * dt 

INIT I[1,4] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[1,5](t) = I[1,5](t - dt) + (Infectiuos_Rate[1,5] - Recovery_Rate[1,5] - DeathRate[1,5]) * dt 

INIT I[1,5] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[2,1](t) = I[2,1](t - dt) + (Infectiuos_Rate[2,1] - Recovery_Rate[2,1] - DeathRate[2,1]) * dt 

INIT I[2,1] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 
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I[2,2](t) = I[2,2](t - dt) + (Infectiuos_Rate[2,2] - Recovery_Rate[2,2] - DeathRate[2,2]) * dt 

INIT I[2,2] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[2,3](t) = I[2,3](t - dt) + (Infectiuos_Rate[2,3] - Recovery_Rate[2,3] - DeathRate[2,3]) * dt 

INIT I[2,3] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

 

I[2,4](t) = I[2,4](t - dt) + (Infectiuos_Rate[2,4] - Recovery_Rate[2,4] - DeathRate[2,4]) * dt 

INIT I[2,4] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[2,5](t) = I[2,5](t - dt) + (Infectiuos_Rate[2,5] - Recovery_Rate[2,5] - DeathRate[2,5]) * dt 

INIT I[2,5] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[3,1](t) = I[3,1](t - dt) + (Infectiuos_Rate[3,1] - Recovery_Rate[3,1] - DeathRate[3,1]) * dt 

INIT I[3,1] = 0 
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 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[3,2](t) = I[3,2](t - dt) + (Infectiuos_Rate[3,2] - Recovery_Rate[3,2] - DeathRate[3,2]) * dt 

INIT I[3,2] = 2 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[3,3](t) = I[3,3](t - dt) + (Infectiuos_Rate[3,3] - Recovery_Rate[3,3] - DeathRate[3,3]) * dt 

INIT I[3,3] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[3,4](t) = I[3,4](t - dt) + (Infectiuos_Rate[3,4] - Recovery_Rate[3,4] - DeathRate[3,4]) * dt 

INIT I[3,4] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[3,5](t) = I[3,5](t - dt) + (Infectiuos_Rate[3,5] - Recovery_Rate[3,5] - DeathRate[3,5]) * dt 

INIT I[3,5] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 
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I[4,1](t) = I[4,1](t - dt) + (Infectiuos_Rate[4,1] - Recovery_Rate[4,1] - DeathRate[4,1]) * dt 

INIT I[4,1] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[4,2](t) = I[4,2](t - dt) + (Infectiuos_Rate[4,2] - Recovery_Rate[4,2] - DeathRate[4,2]) * dt 

INIT I[4,2] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[4,3](t) = I[4,3](t - dt) + (Infectiuos_Rate[4,3] - Recovery_Rate[4,3] - DeathRate[4,3]) * dt 

INIT I[4,3] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[4,4](t) = I[4,4](t - dt) + (Infectiuos_Rate[4,4] - Recovery_Rate[4,4] - DeathRate[4,4]) * dt 

INIT I[4,4] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[4,5](t) = I[4,5](t - dt) + (Infectiuos_Rate[4,5] - Recovery_Rate[4,5] - DeathRate[4,5]) * dt 

INIT I[4,5] = 0 

 TRANSIT TIME = varies 
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 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[5,1](t) = I[5,1](t - dt) + (Infectiuos_Rate[5,1] - Recovery_Rate[5,1] - DeathRate[5,1]) * dt 

INIT I[5,1] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[5,2](t) = I[5,2](t - dt) + (Infectiuos_Rate[5,2] - Recovery_Rate[5,2] - DeathRate[5,2]) * dt 

INIT I[5,2] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[5,3](t) = I[5,3](t - dt) + (Infectiuos_Rate[5,3] - Recovery_Rate[5,3] - DeathRate[5,3]) * dt 

INIT I[5,3] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[5,4](t) = I[5,4](t - dt) + (Infectiuos_Rate[5,4] - Recovery_Rate[5,4] - DeathRate[5,4]) * dt 

INIT I[5,4] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

I[5,5](t) = I[5,5](t - dt) + (Infectiuos_Rate[5,5] - Recovery_Rate[5,5] - DeathRate[5,5]) * dt 
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INIT I[5,5] = 0 

 TRANSIT TIME = varies 

 INFLOW LIMIT = INF 

 CAPACITY = INF 

INFLOWS: 

Infectiuos_Rate[West,North] = CONVEYOR OUTFLOW 

 TRANSIT TIME = IncubationRate[West,North] 

OUTFLOWS: 

Recovery_Rate[West,North] = CONVEYOR OUTFLOW 

 TRANSIT TIME = RecoveryTime[West,North] 

DeathRate[West,North] = LEAKAGE OUTFLOW 

 LEAKAGE FRACTION = Fraction_dying[West,North] 

 NO-LEAK ZONE = 20.8333% 

R[West,North](t) = R[West,North](t - dt) + (DeathRate[West,North] + 

CDeathRate[West,North]) * dt 

INIT R[West,North] = 0 

INFLOWS: 

DeathRate[West,North] = LEAKAGE OUTFLOW 

 LEAKAGE FRACTION = Fraction_dying[West,North] 

 NO-LEAK ZONE = 20.8333% 

CDeathRate[West,North] = C[West,North]/CarrierDuration[West,North] 

S[West,North](t) = S[West,North](t - dt) + (Inflow[West,North] - Infection_Rate[West,North]) * 

dt 



143 

 

INIT S[West,North] = 500 

INFLOWS: 

Inflow[West,North] = Birth[West,North]+GiftAgistIN[West,North] 

OUTFLOWS: 

Infection_Rate[1,1] = 

Transmission_Rate[1,1]*S[1,1]*I[1,1]/(S[1,1]+I[1,1]+E[1,1]+C[1,1])+Infectivity_Reduction[1,1

]*C[1,1]*S[1,1]*Transmission_Rate[1,1]/(S[1,1]+I[1,1]+E[1,1]+C[1,1])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[1,2] = 

Transmission_Rate[1,2]*S[1,2]*I[1,2]/(S[1,2]+I[1,2]+E[1,2]+C[1,2])+Infectivity_Reduction[1,2

]*C[1,2]*S[1,2]*Transmission_Rate[1,2]/(S[1,2]+I[1,2]+E[1,2]+C[1,2]) 

+0*SpartialInteractn*MONTECARLO(SpatialTrans) 

Infection_Rate[1,3] = 

Transmission_Rate[1,3]*S[1,3]*I[1,3]/(S[1,3]+I[1,3]+E[1,3]+C[1,3])+Infectivity_Reduction[1,3

]*C[1,3]*S[1,3]*Transmission_Rate[1,3]/(S[1,3]+I[1,3]+E[1,3]+C[1,3]) 

+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[1,3]*S[1,3]*I[2,3]/(S[1,

3]+I[1,3]+E[1,3]+C[1,3])+Infectivity_Reduction[1,3]*C[2,3]*S[1,3]*Transmission_Rate[1,3]/(S

[1,3]+I[1,3]+E[1,3]+C[1,3])) 

+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[1,3]*S[1,3]*I[1,4]/(S[1,

3]+I[1,3]+E[1,3]+C[1,3])+Infectivity_Reduction[1,3]*C[1,4]*S[1,3]*Transmission_Rate[1,3]/(S

[1,3]+I[1,3]+E[1,3]+C[1,3])) 

Infection_Rate[1,4] = 

Transmission_Rate[1,4]*S[1,4]*I[1,4]/(S[1,4]+I[1,4]+E[1,4]+C[1,4])+Infectivity_Reduction[1,4
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]*C[1,4]*S[1,4]*Transmission_Rate[1,4]/(S[1,4]+I[1,4]+E[1,4]+C[1,4]) + 

SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[1,4]*S[1,4]*I[1,3]/(S[1,4

]+I[1,4]+E[1,4]+C[1,4])+Infectivity_Reduction[1,4]*C[1,3]*S[1,4]*Transmission_Rate[1,4]/(S[

1,4]+I[1,4]+E[1,4]+C[1,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_

Rate[1,4]*S[1,4]*I[2,4]/(S[1,4]+I[1,4]+E[1,4]+C[1,4])+Infectivity_Reduction[1,4]*C[2,4]*S[1,4

]*Transmission_Rate[1,4]/(S[1,4]+I[1,4]+E[1,4]+C[1,4])) 

Infection_Rate[1,5] = 

Transmission_Rate[1,5]*S[1,5]*I[1,5]/(S[1,5]+I[1,5]+E[1,5]+C[1,5])+Infectivity_Reduction[1,5

]*C[1,5]*S[1,5]*Transmission_Rate[1,5]/(S[1,5]+I[1,5]+E[1,5]+C[1,5])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[2,1] = 

Transmission_Rate[2,1]*S[2,1]*I[2,1]/(S[2,1]+I[2,1]+E[2,1]+C[2,1])+Infectivity_Reduction[2,1

]*C[2,1]*S[2,1]*Transmission_Rate[2,1]/(S[2,1]+I[2,1]+E[2,1]+C[2,1])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,1]*S[2,1]*I[2,2]/(S[2,1]+I[2,1]+E[2,1]+C[2,

1])+Infectivity_Reduction[2,1]*C[2,2]*S[2,1]*Transmission_Rate[2,1]/(S[2,1]+I[2,1]+E[2,1]+C

[2,1]))+MONTECARLO(SpatialTrans)*SpartialInteractn*(Transmission_Rate[2,1]*S[2,1]*I[3,1

]/(S[2,1]+I[2,1]+E[2,1]+C[2,1])+Infectivity_Reduction[2,1]*C[3,1]*S[2,1]*Transmission_Rate[

2,1]/(S[2,1]+I[2,1]+E[2,1]+C[2,1])) 

Infection_Rate[2,2] = 

Transmission_Rate[2,2]*S[2,2]*I[2,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])+Infectivity_Reduction[2,2

]*C[2,2]*S[2,2]*Transmission_Rate[2,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,2]*S[2,2]*I[2,2]/(S[2,2]+I[2,1]+E[2,2]+C[2,

2])+Infectivity_Reduction[2,2]*C[2,1]*S[2,2]*Transmission_Rate[2,2]/(S[2,2]+I[2,2]+E[2,2]+C
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[2,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[2,2]*S[2,2]*I[2,3

]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])+Infectivity_Reduction[2,2]*C[2,3]*S[2,2]*Transmission_Rate[

2,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[2,2]*S[2,2]*I[3,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])+Infectivity_Reduction[2,2]*C[3,2]

*S[2,2]*Transmission_Rate[2,2]/(S[2,2]+I[2,2]+E[2,2]+C[2,2])) 

Infection_Rate[2,3] = 

Transmission_Rate[2,3]*S[2,3]*I[2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+Infectivity_Reduction[2,3

]*C[2,3]*S[2,3]*Transmission_Rate[2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,3]*S[2,3]*I[2,2]/(S[2,3]+I[2,3]+E[2,3]+C[2,

3])+Infectivity_Reduction[2,3]*C[2,2]*S[2,3]*Transmission_Rate[2,3]/(S[2,3]+I[2,3]+E[2,3]+C

[2,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[2,3]*S[2,3]*I[1,3

]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+Infectivity_Reduction[2,3]*C[1,3]*S[2,3]*Transmission_Rate[

2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[2,3]*S[2,3]*I[2,4]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+Infectivity_Reduction[2,3]*C[2,4]

*S[2,3]*Transmission_Rate[2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3]))+MONTECARLO(SpatialTrans

)*SpartialInteractn*(Transmission_Rate[2,3]*S[2,3]*I[3,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])+Infec

tivity_Reduction[2,3]*C[3,3]*S[2,3]*Transmission_Rate[2,3]/(S[2,3]+I[2,3]+E[2,3]+C[2,3])) 

Infection_Rate[2,4] = 

Transmission_Rate[2,4]*S[2,4]*I[2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+Infectivity_Reduction[2,4

]*C[2,4]*S[2,4]*Transmission_Rate[2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,4]*S[2,4]*I[2,3]/(S[2,4]+I[2,4]+E[2,4]+C[2,

4])+Infectivity_Reduction[2,4]*C[2,3]*S[2,4]*Transmission_Rate[2,4]/(S[2,4]+I[2,4]+E[2,4]+C

[2,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[2,4]*S[2,4]*I[1,4
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]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+Infectivity_Reduction[2,4]*C[1,4]*S[2,4]*Transmission_Rate[

2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4]))+MONTECARLO(SpatialTrans)*SpartialInteractn*(Transmi

ssion_Rate[2,4]*S[2,4]*I[2,5]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+Infectivity_Reduction[2,4]*C[2,5]

*S[2,4]*Transmission_Rate[2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[2,4]*S[2,4]*I[3,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])+Infec

tivity_Reduction[2,4]*C[3,4]*S[2,4]*Transmission_Rate[2,4]/(S[2,4]+I[2,4]+E[2,4]+C[2,4])) 

Infection_Rate[2,5] = 

Transmission_Rate[2,5]*S[2,5]*I[2,5]/(S[2,5]+I[2,5]+E[2,5]+C[2,5])+Infectivity_Reduction[2,5

]*C[2,5]*S[2,5]*Transmission_Rate[2,5]/(S[2,5]+I[2,5]+E[2,5]+C[2,5])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[2,5]*S[2,5]*I[2,4]/(S[2,5]+I[2,5]+E[2,5]+C[2,

5])+Infectivity_Reduction[2,5]*C[2,4]*S[2,5]*Transmission_Rate[2,5]/(S[2,5]+I[2,5]+E[2,5]+C

[2,5]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[2,5]*S[2,5]*I[3,5

]/(S[2,5]+I[2,5]+E[2,5]+C[2,5])+Infectivity_Reduction[2,5]*C[3,5]*S[2,5]*Transmission_Rate[

2,5]/(S[2,5]+I[2,5]+E[2,5]+C[2,5])) 

Infection_Rate[3,1] = 

Transmission_Rate[3,1]*S[3,1]*I[3,1]/(S[3,1]+I[3,1]+E[3,1]+C[3,1])+Infectivity_Reduction[3,1

]*C[3,1]*S[3,1]*Transmission_Rate[3,1]/(S[3,1]+I[3,1]+E[3,1]+C[3,1])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,1]*S[3,1]*I[2,1]/(S[3,1]+I[3,1]+E[3,1]+C[3,

1])+Infectivity_Reduction[3,1]*C[2,1]*S[3,1]*Transmission_Rate[3,1]/(S[3,1]+I[3,1]+E[3,1]+C

[3,1]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,1]*S[3,1]*I[3,2

]/(S[3,1]+I[3,1]+E[3,1]+C[3,1])+Infectivity_Reduction[3,1]*C[3,2]*S[3,1]*Transmission_Rate[

3,1]/(S[3,1]+I[3,1]+E[3,1]+C[3,1])) 
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Infection_Rate[3,2] = 

Transmission_Rate[3,2]*S[3,2]*I[3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+Infectivity_Reduction[3,2

]*C[3,2]*S[3,2]*Transmission_Rate[3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,2]*S[3,2]*I[3,1]/(S[3,2]+I[3,2]+E[3,2]+C[3,

2])+Infectivity_Reduction[3,2]*C[3,1]*S[3,2]*Transmission_Rate[3,2]/(S[3,2]+I[3,2]+E[3,2]+C

[3,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,2]*S[3,2]*I[2,2

]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+Infectivity_Reduction[3,2]*C[2,2]*S[3,2]*Transmission_Rate[

3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[3,2]*S[3,2]*I[3,3]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+Infectivity_Reduction[3,2]*C[3,3]

*S[3,2]*Transmission_Rate[3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[3,2]*S[3,2]*I[4,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])+Infec

tivity_Reduction[3,2]*C[4,2]*S[3,2]*Transmission_Rate[3,2]/(S[3,2]+I[3,2]+E[3,2]+C[3,2])) 

Infection_Rate[3,3] = 

Transmission_Rate[3,3]*S[3,3]*I[3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+Infectivity_Reduction[3,3

]*C[3,3]*S[3,3]*Transmission_Rate[3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,3]*S[3,3]*I[3,2]/(S[3,3]+I[3,3]+E[3,3]+C[3,

3])+Infectivity_Reduction[3,3]*C[3,2]*S[3,3]*Transmission_Rate[3,3]/(S[3,3]+I[3,3]+E[3,3]+C

[3,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,3]*S[3,3]*I[2,3

]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+Infectivity_Reduction[3,3]*C[2,3]*S[3,3]*Transmission_Rate[

3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[3,3]*S[3,3]*I[3,4]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+Infectivity_Reduction[3,3]*C[3,4]

*S[3,3]*Transmission_Rate[3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3]))+SpartialInteractn*MONTECA
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RLO(SpatialTrans)*(Transmission_Rate[3,3]*S[3,3]*I[4,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])+Infec

tivity_Reduction[3,3]*C[4,3]*S[3,3]*Transmission_Rate[3,3]/(S[3,3]+I[3,3]+E[3,3]+C[3,3])) 

Infection_Rate[3,4] = 

Transmission_Rate[3,4]*S[3,4]*I[3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+Infectivity_Reduction[3,4

]*C[3,4]*S[3,4]*Transmission_Rate[3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,4]*S[3,4]*I[3,3]/(S[3,4]+I[3,4]+E[3,4]+C[3,

4])+Infectivity_Reduction[3,4]*C[3,3]*S[3,4]*Transmission_Rate[3,4]/(S[3,4]+I[3,4]+E[3,4]+C

[3,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,4]*S[3,4]*I[2,4

]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+Infectivity_Reduction[3,4]*C[2,4]*S[3,4]*Transmission_Rate[

3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[3,4]*S[3,4]*I[3,5]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+Infectivity_Reduction[3,4]*C[3,5]

*S[3,4]*Transmission_Rate[3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[3,4]*S[3,4]*I[4,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])+Infec

tivity_Reduction[3,4]*C[4,4]*S[3,4]*Transmission_Rate[3,4]/(S[3,4]+I[3,4]+E[3,4]+C[3,4])) 

Infection_Rate[3,5] = 

Transmission_Rate[3,5]*S[3,5]*I[3,5]/(S[3,5]+I[3,5]+E[3,5]+C[3,5])+Infectivity_Reduction[3,5

]*C[3,5]*S[3,5]*Transmission_Rate[3,5]/(S[3,5]+I[3,5]+E[3,5]+C[3,5])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[3,5]*S[3,5]*I[3,4]/(S[3,5]+I[3,5]+E[3,5]+C[3,

5])+Infectivity_Reduction[3,5]*C[3,4]*S[3,5]*Transmission_Rate[3,5]/(S[3,5]+I[3,5]+E[3,5]+C

[3,5]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[3,5]*S[3,5]*I[2,5

]/(S[3,5]+I[3,5]+E[3,5]+C[3,5])+Infectivity_Reduction[3,5]*C[2,5]*S[3,5]*Transmission_Rate[

3,5]/(S[3,5]+I[3,5]+E[3,5]+C[3,5])) 
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Infection_Rate[4,1] = 

Transmission_Rate[4,1]*S[4,1]*I[4,1]/(S[4,1]+I[4,1]+E[4,1]+C[4,1])+Infectivity_Reduction[4,1

]*C[4,1]*S[4,1]*Transmission_Rate[4,1]/(S[4,1]+I[4,1]+E[4,1]+C[4,1])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[4,2] = 

Transmission_Rate[4,2]*S[4,2]*I[4,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])+Infectivity_Reduction[4,2

]*C[4,2]*S[4,2]*Transmission_Rate[4,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[4,2]*S[4,2]*I[3,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,

2])+Infectivity_Reduction[4,2]*C[3,2]*S[4,2]*Transmission_Rate[4,2]/(S[4,2]+I[4,2]+E[4,2]+C

[4,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[4,2]*S[4,2]*I[4,3

]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])+Infectivity_Reduction[4,2]*C[4,3]*S[4,2]*Transmission_Rate[

4,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[4,2]*S[4,2]*I[5,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])+Infectivity_Reduction[4,2]*C[5,2]

*S[4,2]*Transmission_Rate[4,2]/(S[4,2]+I[4,2]+E[4,2]+C[4,2])) 

Infection_Rate[4,3] = 

Transmission_Rate[4,3]*S[4,3]*I[4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+Infectivity_Reduction[4,3

]*C[4,3]*S[4,3]*Transmission_Rate[4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[4,3]*S[4,3]*I[4,2]/(S[4,3]+I[4,3]+E[4,3]+C[4,

3])+Infectivity_Reduction[4,3]*C[4,2]*S[4,3]*Transmission_Rate[4,3]/(S[4,3]+I[4,3]+E[4,3]+C

[4,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[4,3]*S[4,3]*I[3,3

]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+Infectivity_Reduction[4,3]*C[3,3]*S[4,3]*Transmission_Rate[

4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[4,3]*S[4,3]*I[4,4]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+Infectivity_Reduction[4,3]*C[4,4]
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*S[4,3]*Transmission_Rate[4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3]))+SpartialInteractn*MONTECA

RLO(SpatialTrans)*(Transmission_Rate[4,3]*S[4,3]*I[5,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])+Infec

tivity_Reduction[4,3]*C[5,3]*S[4,3]*Transmission_Rate[4,3]/(S[4,3]+I[4,3]+E[4,3]+C[4,3])) 

Infection_Rate[4,4] = 

Transmission_Rate[4,4]*S[4,4]*I[4,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])+Infectivity_Reduction[4,4

]*C[4,4]*S[4,4]*Transmission_Rate[4,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[4,4]*S[4,4]*I[4,3]/(S[4,4]+I[4,4]+E[4,4]+C[4,

4])+Infectivity_Reduction[4,4]*C[4,3]*S[4,4]*Transmission_Rate[4,4]/(S[4,4]+I[4,4]+E[4,4]+C

[4,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[4,4]*S[4,4]*I[3,4

]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])+Infectivity_Reduction[4,4]*C[3,4]*S[4,4]*Transmission_Rate[

4,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[4,4]*S[4,4]*I[5,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])+Infectivity_Reduction[4,4]*C[5,4]

*S[4,4]*Transmission_Rate[4,4]/(S[4,4]+I[4,4]+E[4,4]+C[4,4])) 

Infection_Rate[4,5] = 

Transmission_Rate[4,5]*S[4,5]*I[4,5]/(S[4,5]+I[4,5]+E[4,5]+C[4,5])+Infectivity_Reduction[4,5

]*C[4,5]*S[4,5]*Transmission_Rate[4,5]/(S[4,5]+I[4,5]+E[4,5]+C[4,5])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[5,1] = 

Transmission_Rate[5,1]*S[5,1]*I[5,1]/(S[5,1]+I[5,1]+E[5,1]+C[5,1])+Infectivity_Reduction[5,1

]*C[5,1]*S[5,1]*Transmission_Rate[5,1]/(S[5,1]+I[5,1]+E[5,1]+C[5,1])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Infection_Rate[5,2] = 

Transmission_Rate[5,2]*S[5,2]*I[5,2]/(S[5,2]+I[5,2]+E[5,2]+C[5,2])+Infectivity_Reduction[5,2
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]*C[5,2]*S[5,2]*Transmission_Rate[5,2]/(S[5,2]+I[5,2]+E[5,2]+C[5,2])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[5,2]*S[5,2]*I[4,2]/(S[5,2]+I[5,2]+E[5,2]+C[5,

2])+Infectivity_Reduction[5,2]*C[4,2]*S[5,2]*Transmission_Rate[5,2]/(S[5,2]+I[5,2]+E[5,2]+C

[5,2]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[5,2]*S[5,2]*I[5,3

]/(S[5,2]+I[5,2]+E[5,2]+C[5,2])+Infectivity_Reduction[5,2]*C[5,3]*S[5,2]*Transmission_Rate[

5,2]/(S[5,2]+I[5,2]+E[5,2]+C[5,2])) 

Infection_Rate[5,3] = 

Transmission_Rate[5,3]*S[5,3]*I[5,3]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])+Infectivity_Reduction[5,3

]*C[5,3]*S[5,3]*Transmission_Rate[5,3]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])+SpartialInteractn*MO

NTECARLO(SpatialTrans)*(Transmission_Rate[5,3]*S[5,3]*I[5,2]/(S[5,3]+I[5,3]+E[5,3]+C[5,

3])+Infectivity_Reduction[5,3]*C[5,2]*S[5,3]*Transmission_Rate[5,3]/(S[5,3]+I[5,3]+E[5,3]+C

[5,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[5,3]*S[5,3]*I[4,3

]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])+Infectivity_Reduction[5,3]*C[4,3]*S[5,3]*Transmission_Rate[

5,3]/(S[5,3]+I[5,3]+E[5,3]+C[5,3]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmi

ssion_Rate[5,3]*S[5,3]*I[5,4]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])+Infectivity_Reduction[5,3]*C[5,4]

*S[5,3]*Transmission_Rate[5,3]/(S[5,3]+I[5,3]+E[5,3]+C[5,3])) 

Infection_Rate[5,4] = 

Transmission_Rate[5,4]*S[5,4]*I[5,4]/(S[5,4]+I[5,4]+E[5,4]+C[5,4])+Infectivity_Reduction[5,4

]*C[5,4]*S[5,4]*Transmission_Rate[5,4]/(S[5,4]+I[5,4]+E[5,4]+C[5,4]) 

+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_Rate[5,4]*S[5,4]*I[5,3]/(S[5,

4]+I[5,4]+E[5,4]+C[5,4])+Infectivity_Reduction[5,4]*C[5,3]*S[5,4]*Transmission_Rate[5,4]/(S

[5,4]+I[5,4]+E[5,4]+C[5,4]))+SpartialInteractn*MONTECARLO(SpatialTrans)*(Transmission_
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Rate[5,4]*S[5,4]*I[4,4]/(S[5,4]+I[5,4]+E[5,4]+C[5,4])+Infectivity_Reduction[5,4]*C[4,4]*S[5,4

]*Transmission_Rate[5,4]/(S[5,4]+I[5,4]+E[5,4]+C[5,4])) 

Infection_Rate[5,5] = 

Transmission_Rate[5,5]*S[5,5]*I[5,5]/(S[5,5]+I[5,5]+E[5,5]+C[5,5])+Infectivity_Reduction[5,5

]*C[5,5]*S[5,5]*Transmission_Rate[5,5]/(S[5,5]+I[5,5]+E[5,5]+C[5,5])+0*SpartialInteractn*M

ONTECARLO(SpatialTrans) 

Birth[West,North] = MIN(BirthRate[West,North]*(C[West,North]+S[West,North]),1) 

BirthRate[1,1] = 0 

BirthRate[1,2] = 0 

BirthRate[1,3] = 0.001 

BirthRate[1,4] = 0.001 

BirthRate[1,5] = 0 

BirthRate[2,1] = 0.001 

BirthRate[2,2] = 0.001 

BirthRate[2,3] = 0.001 

BirthRate[2,4] = 0.001 

BirthRate[2,5] = 0.001 

BirthRate[3,1] = 0.001 

BirthRate[3,2] = 0.001 

BirthRate[3,3] = 0.001 

BirthRate[3,4] = 0.001 

BirthRate[3,5] = 0.001 

BirthRate[4,1] = 0 
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BirthRate[4,2] = 0.001 

BirthRate[4,3] = 0.001 

BirthRate[4,4] = 0.001 

BirthRate[4,5] = 0 

BirthRate[5,1] = 0 

BirthRate[5,2] = 0.001 

BirthRate[5,3] = 0.001 

BirthRate[5,4] = 0.001 

BirthRate[5,5] = .001 

CarrierDuration[West,North] = 45 

Fraction_dying[West,North] = .8 

GiftAgistIN[1,1] = NORMAL(2,1) 

GiftAgistIN[1,2] = 0*NORMAL(2,1) 

GiftAgistIN[1,3] = NORMAL(2,1) 

GiftAgistIN[1,4] = NORMAL(2,1) 

GiftAgistIN[1,5] = 0*NORMAL(2,1) 

GiftAgistIN[2,1] = NORMAL(2,1) 

GiftAgistIN[2,2] = NORMAL(2,1) 

GiftAgistIN[2,3] = NORMAL(2,1) 

GiftAgistIN[2,4] = NORMAL(2,1) 

GiftAgistIN[2,5] = NORMAL(2,1) 

GiftAgistIN[3,1] = NORMAL(2,1) 

GiftAgistIN[3,2] = NORMAL(2,1) 
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GiftAgistIN[3,3] = NORMAL(2,1) 

GiftAgistIN[3,4] = NORMAL(2,1) 

GiftAgistIN[3,5] = NORMAL(2,1) 

GiftAgistIN[4,1] = 0*NORMAL(2,1) 

GiftAgistIN[4,2] = NORMAL(2,1) 

GiftAgistIN[4,3] = NORMAL(2,1) 

GiftAgistIN[4,4] = NORMAL(2,1) 

GiftAgistIN[4,5] = 0*NORMAL(2,1) 

GiftAgistIN[5,1] = 0*NORMAL(2,1) 

GiftAgistIN[5,2] = NORMAL(2,1) 

GiftAgistIN[5,3] = NORMAL(2,1) 

GiftAgistIN[5,4] = NORMAL(2,1) 

GiftAgistIN[5,5] = 0*NORMAL(2,1) 

IncubationRate[West,North] = 3 

Infectivity_Reduction[West,North] = .35 

RecoveryTime[West,North] = 3 

SpartialInteractn = 0.1 

SpatialTrans = 20 

Transmission_Rate[West,North] = 0.3 
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