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Abstract: This paper presents an improvement to the iterative method of Electric System Cascade Analysis 

(ESCA) for the optimisation of an isolated PV system with Battery Energy Storage System (BESS) for a 

residential load. The ESCA algorithm is implemented on MATLAB software environment with Final Excess 

Energy (FEE), Loss of Power Supply Probability (LPSP) and system cost as optimization constraints. The load, 

temperature and solar radiation profiles are considered for a year, based on historical data. Practical losses in solar 

radiation reaching the PV collector surface are considered for analysis. Change in PV efficiency due to variation 

in temperature and change in charge /discharge efficiency of the battery based on current State of Charge (SOC) 

of BESS are taken into consideration which further bolsters the credibility of the ESCA methodology. The ESCA 

methodology is used to optimize a PV-BESS system for a residential load with average daily consumption of 26.1 

kWh. The optimized result obtained from improved ESCA are compared and verified with benchmark HOMER 

software.  

Keywords- PV system, battery storage system, Power Pinch Analysis (PoPA), Electric System Cascade Analysis, 

HOMER, system optimization. 

1 Introduction 

Attention towards renewable energy generation has increased in the past two decades because of the high increase 

in energy demand and harmful impacts of the conventional energy generation [1]. Among the renewable sources 

like solar, wind, bio-power, geothermal, etc., the most popular resources are wind and solar [2]. For small load 

areas, solar energy presents the best solution because of ease of installation and low maintenance. In 2017, China 

with 131 GW of installed capacity is the world leader in solar PV generation followed by Japan at 49 GW and 

USA at 43 GW [3]. The total installed capacity of solar PV of the world in 2017 is 397 GW, which is expected to 

increase to 489 GW by 2020 and 1760 GW by 2030 [3]. Stress on the conventional energy sources can be greatly 

reduced by penetration of renewable energy sources into the current grid, but the popularity of standalone system 

with high renewable energy penetration has gained recently, for example, Liu et al. [4] have performed 

comparative study of various configuration of isolated renewable energy systems. Yilmaz et al. [5] have performed  

optimization of isolated hybrid renewable energy system for city in Turkey. Fara et al. [6] have designed and 

modelled an isolated PV system for a mountain village in Romania. Researchers [7]–[9] have shown in their 

literature review that hybrid renewable energy system has a rising trend in isolated system studies. For isolated 

systems, it is prudent to use energy storage unit(s) to overcome the uncertainty in power generation from 

renewable sources like solar and wind [10]. Even though addition of storage provides higher reliability of power, 

but the cost of the system and control complexity of the system increases [11]. Therefore, optimal sizing of the 

renewable energy system becomes important. There are several studies which have been conducted using 

optimization techniques like Particle Swarm Optimization (PSO), Genetic Algorithm (GA), etc. and software like  



2 
 

NOMENCLATURE 
 

Symbols   

EPV Hourly energy generated (Wh) Ec (t) Net accumulated charge in BESS (Wh) 

NPV Number of PV panels Pinv Inverter rating (Watts) 

APV Area of each PV panel (m2)  PL (max) Max load (Watts) 

I(t) Hourly solar radiation (Wh/m2) CICC Initial capital cost ($) 

ηpv Calculated PV panel efficiency (%) CTSC Total cost of the system ($) 

ηr Rated PV panel efficiency (%) CTASC Total annualized system cost ($) 

βT PV temperature coefficient of efficiency LCE Levelized cost of energy ($/kWh) 

Tr Temperature at rated PV efficiency (0C) CRF Capital recovery factor 

Tc Computed ambient temperature (0C) L Life time of the system 

NOCT PV normal operating cell temperature (0C) T Time period of analysis 

INOCT Solar radiation at NOCT (W/m2) LPS (t) Hourly loss in power supply (Wh) 

Ta Ambient temperature (0C) Nbat Nbat 

A Extra-terrestrial flux (W/m2) Ibat Nominal capacity of BESS (Ah) 

k Optical depth Vbat BESS voltage (Volt) 

m Air mass ratio 𝛼𝛼 Cost of each PV unit ($) 

n Day number of the year βb Cost of each battery ($) 

β Altitude angle of the sun C0 Total fixed cost ($) 

L Latitude EC,new(t) Hourly net cumulative energy (Wh) 

H Hour angle  

𝛿𝛿 Solar declination angle Abbreviation 

IBN Normal component of solar radiation (Wh/m2) ESCA Electric System Cascade Analysis 

ID Diffused component of solar radiation (Wh/m2) BESS Battery Energy Storage System 

IR Reflected component of solar radiation (Wh/m2) FEE Final Excess Energy 

∅ Azimuth angle (degree) LPSP Loss of Power Supply Probability 

∈ Tilt angle of the collector (degree) PoPA Power Pinch Analysis 

𝜌𝜌 Ground reflectance coefficient (%) PSO Particle Swarm Optimization 

βN Altitude angle at noon GA Genetic Algorithm 

N(t) Hourly net surplus energy (Wh) PSO Particle Swarm Optimization 

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 Inverter efficiency (%) HES Hybrid Energy System 

El (t) Hourly primary load demand (Wh) TA Tabu Search 

CBat (t) Charging energy of BESS (Wh) SA Simulated Annealing 

𝜂𝜂𝑐𝑐ℎ𝑎𝑎𝑎𝑎 Charging efficiency of BESS (%) GA Genetic Algorithm 

DBat(t) Discharging energy of BESS (Wh) DOD Depth of Discharge 

𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 Discharging efficiency of BESS (%) SOC State of Charge of BESS 
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RETscreen, HOMER, HYBRID2, etc. For example, Upadhyay et al. [12] have compared different combinations 

of HRES with diesel generator to find the most economic configuration using Particle Swarm Optimization (PSO), 

Maleki et al. [13] have compared artificial intelligence techniques for optimization of Hybrid Energy System 

(HES) consisting of fuel cell and battery as storage units and found PSO to be the most effective. Katsigiannis et 

al. [14] have found the optimum generator scheduling to reduce the cost of energy of the HES using Tabu Search 

(TA) and Simulated Annealing (SA) methods. Paliwal et al. [15] have performed the reliability analysis of isolated 

HRES for a rural area using PSO. Koutroulis et al. [16] have analysed the optimization of a desalination system 

fed by PV, WECS and diesel generator using Genetic Algorithm (GA) technique. Bahramara et al. [17] have 

performed the optimal planning of an isolated HRES using HOMER. Hove et al. [18] have presented economic 

analysis of a PV and diesel system with the variation in renewable fraction using RETScreen. Singh et al. [19] 

have compared HRES in grid and islanding mode of operation for a residential load in Mumbai using HOMER. 

The major drawbacks of these studies are limited time period of 24 hours, simple system modelling, and complex 

system optimization technique, especially in case of GA, PSO, etc. There are several limitations to the 

optimization techniques, e.g., for GA approach there is no guarantee of finding the best solution, for fuzzy logic 

approach estimation of membership function is difficult and time consuming process and software provides results 

based on the only input range of the user.  Therefore, this paper presents a simple and goal oriented ESCA 

methodology which overcomes some of the flaws in other optimization techniques.  

ESCA is a technique which is based on power pinch analysis used during optimization of raw material like heat, 

mass, carbon and gasses [20]. Wan et al. [21] implemented this method to minimise the outsourced electricity for 

a grid connected load. Bandyopadhyay et al. [22] implemented power pinch analysis for the design and 

optimization of isolated energy system. Ho et al. [23] further improved upon this technique and introduced a new 

iterative method of ESCA for optimisation of non-intermittent source of biomass and energy storage system for 

distributed energy generation system. Ho et al. [24] further extended his work to optimize an isolated system with 

intermittent source of PV, where the cascade table analysis helped in PV system size optimization and power 

pinch analysis was performed to obtain the size of the storage unit. All these works provide a deep insight into the 

successful implementation of ESCA in optimization of the renewable energy system, but there is scope of 

improvement. 

The common approach in all these studies is having load and geometric climate data for 24 hours only, which has 

its limitations on practical implementation. Therefore, this paper considers the historical data for a year of load, 

temperature and solar radiation for optimal system design of an isolated PV generating system using ESCA 

methodology with constraints of FEE, LPSP and system cost. Unlike other techniques which optimize the system 

first and then find the most economical solution, in this paper reliability and economic constraints are analysed 

simultaneously to arrive at the optimized results. Also included in the analysis, is the practical variation of the PV 

efficiency with temperature and the battery efficiency with state of charge. The solar radiation profile is considered 

by incorporating the attenuation, diffusion and reflection of the solar beam radiation reaching the PV collector 

surface. The FEE constraint is used to optimize the BESS. FEE > 0, may lead to accretion in the initial charge of 

BESS on recursive use thereby over estimating the BESS capacity and FEE < 0, may lead to depletion in the 

initial charge of BESS over recursive use which can lead to failure of the system.  LPSP constraint is a good 

indicator of the reliability of the system, which is the main optimization constraint for the PV system planning. 

The LPSP constraint can be achieved by reducing BESS capacity and/or reducing PV system rating, therefore 
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system cost constraint is also incorporated in the analysis to obtain an optimized system configuration with 

minimum cost.  In this work, the load profile considered is for a residential load with latitude and longitude as 400 

N and 700 W respectively. The ESCA algorithm is implemented firstly, with a time period of 288 hours with the 

constraint of reducing FEE below 100 Wh. The load, solar and temperature profile for this analysis are formed by 

combining 24 hours profile of each month, assuming that the profile remains same for all the days of the month. 

Therefore, it is a good indicator of how the system would respond to the monthly variations in these parameters. 

Secondly, ESCA is executed for time period of 8760 hours with the aim to improve the optimized result obtained 

with LPSP less than 2% and minimum system cost, for an entire year of system usage. Finally, the optimized 

result obtained from ESCA are compared to that obtained from HOMER software. 

The rest of the paper is organized as follows: Section 2, describes the system architecture and the choice of system 

storage. Section 3, explains the modelling of system components and solar radiation profile. Section 4, formulates 

the system cost and reliability parameters. Section 5, describes the ESCA methodology implemented for a time 

period of 288 hours. Section 6, describes the ESCA methodology implemented for a time period of 8760 hours 

along with the graphical approach used to find the system with minimum cost. Section 7, the system parameters 

and details of system component is presented. Section 8, shows the results obtained on implementation of the 

ESCA methodology which are also compared to that obtained from HOMER. Section 9, concludes the paper 

signifying the integrity of ESCA methodology. 

2 Isolated PV system architecture 

For this case study, an isolated system as shown in Fig. 1 is considered with PV system and BESS connected to a 

DC bus. The interface between the DC and AC bus is through a converter which rectifies the DC power generated 

by the PV panels and stored in battery bank, into AC. On the AC bus, the primary load is connected along with a 

dummy load. The dummy load has the prime function of absorbing the excess energy generated after catering to 

the primary load, which cannot be stored in BESS [25]. If the BESS has reached its maximum charge storage 

capacity, then the excess energy generated by the PV system, after catering the primary load is fed to the connected 

dummy load. This dummy load can be water heating system or space cooling system, etc. depending on the load 

area. There are many options available for the storage unit for the PV energy system but the most common storage 

units are battery and hydrogen energy storage system [26]. Hydrogen energy storage system based on fuel cell is 

the new upcoming technology with high modularity, low standing losses and longer lifetime, hence making them 

an attractive storage options for renewable energy storage system [27]. But due to its low energy density, slow 

dynamics, low efficiency, high cost of equipment and maintenance, tilts the balance towards conventional battery 

energy storage system. For isolated system, quick switching is required between generating unit and storage 

system which is provided by the battery storage system. Therefore for the scope of this paper Trojan T-1275 deep 

cycle Li-ion battery system is used out of the various options available [28], [29]. 

 
Fig. 1 Block diagram of PV/ battery system 
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3 Modelling of system components 

3.1 PV model 

For a mono-crystalline PV system, the hourly energy output can be expressed as shown in (1) [26], [30]: 

𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑁𝑁𝑃𝑃𝑃𝑃 × 𝐴𝐴𝑃𝑃𝑃𝑃 × 𝜂𝜂𝑝𝑝𝑖𝑖 × 𝐼𝐼(𝑡𝑡) (1) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒,                                                     𝜂𝜂𝑝𝑝𝑖𝑖 = 𝜂𝜂𝑎𝑎[1 − 𝛽𝛽𝑇𝑇(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑎𝑎)] (2) 

𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑎𝑎 + �
𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇 − 𝑇𝑇𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇

𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇
� × 𝐼𝐼(𝑡𝑡) (3) 

where, EPV (t) is the hourly energy generated by the PV system in Wh, NPV is the number of PV panels in the 

system, APV is the area of each PV panel in m2, I(t) is the hourly solar radiation falling on the PV panels in Wh/m2, 

ηpv is the PV panel efficiency calculated from (2), ηr is the rated PV panel efficiency, βT is the temperature 

coefficient of efficiency, Tr is the temperature for rated PV efficiency in 0C, Tc is the computed ambient 

temperature in 0C calculated from (3) [31], NOCT is the normal operating cell temperature in 0C, INOCT is the solar 

radiation at NOCT in W/m2 and Ta is the ambient temperature in 0C. 

3.2 Solar radiation model 

The amount of solar radiation that reaches the collector surface depends on various factors and cannot be 

considered constant. The beam portion of solar radiation reaching the earth surface after attenuation from the 

atmosphere is expressed as shown in (4) [32]: 

𝐼𝐼𝐵𝐵 = 𝐴𝐴 × 𝑒𝑒−𝑘𝑘𝑘𝑘 (4) 

where, A is the extra-terrestrial flux in W/m2 expressed by (5), k is a dimensionless factor called optical depth 

expressed in (6) and m is the air mass ratio expressed in (7) [32]. 

𝐴𝐴 = 1160 + 75𝑠𝑠𝑠𝑠𝑠𝑠 �
360
365

(𝑠𝑠 − 275)� (5) 

𝑘𝑘 = 0.174 + 0.035 sin �
360
365

(𝑠𝑠 − 100)� (6) 

𝑚𝑚 =
1

𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽
 (7) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒,                                           𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝛿𝛿𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿 (8) 

𝛿𝛿 = 23.45𝑠𝑠𝑠𝑠𝑠𝑠 �
360
365

(𝑠𝑠 − 81)� (9) 

𝑐𝑐 = 150 × ℎ (10) 

where, n is the day number of the year and β is the altitude angle of the sun which is a function of latitude (L), 

hour angle (H), and solar declination angle (𝛿𝛿) and h is the number of hours before noon, which is considered 

positive before noon and negative after noon. After reaching the earth surface, the solar radiation that reaches the 

collector surface comprises of three components: IBN which is the direct beam component falling normally to the 

collector surface, ID the diffused beam component falling at some angle to the collector surface and IR the reflected 

beam component falling to the collector surface after reflecting from the ground. They are expressed by (11-15) 

[33]: 

𝐼𝐼𝐵𝐵𝑁𝑁 = 𝐼𝐼𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 (11) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒,                                          𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑠𝑠∅𝑠𝑠𝑠𝑠𝑠𝑠 ∈ +𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑠𝑠 ∈ (12) 

𝐼𝐼𝐷𝐷 = 𝑁𝑁𝐼𝐼𝐵𝐵 (13) 
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𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒,                                          𝑁𝑁 = 0.095 + 0.04𝑠𝑠𝑠𝑠𝑠𝑠 �
360
365

(𝑠𝑠 − 100)� (14) 

𝐼𝐼𝑅𝑅 = 𝜌𝜌𝐼𝐼𝐵𝐵(𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽 + 𝑁𝑁) �
1 − 𝑐𝑐𝑐𝑐𝑠𝑠 ∈

2
� (15) 

where, ∅ is the azimuth angle in degree, ∈ is the tilt angle of the PV collector in degree and 𝜌𝜌 is the ground 

reflectance coefficient. The ideal tilt angle for the collector can be evaluated using (16). 

∈ = 90 − 𝛽𝛽𝑁𝑁 (16) 

where, βN is the altitude angle at noon. 

3.3 Battery model 

Whenever the power generation from the PV system exceeds the load demand, excess energy is used to charge 

the BESS. This energy from the batteries is used to cater the primary load when the power from the PV system is 

less than the load demand. It is to be emphasised that the power generation from the PV system is firstly provided 

to primary load and thereafter excess energy is used to charge the BESS [23]. By doing this we prevent conversion 

loss from DC to AC. The net surplus/deficient supply during a time interval is given by (17) [23] . 

𝑁𝑁(𝑡𝑡) = (𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) × 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑙𝑙(𝑡𝑡) (17) 

where, N(t) is the net surplus energy in the current time step in Wh, 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 is the inverter efficiency and El (t) is the 

primary load demand in the current time step in Wh. If N (t) > 0 then batteries are charged and if N (t) < 0 then 

batteries are discharged. The charging and discharging of the batteries are governed by (18-19) which considers 

the charging and discharging losses [24] . 

𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵(𝑡𝑡) = �𝑁𝑁(𝑡𝑡) × 𝜂𝜂𝑐𝑐ℎ𝑎𝑎𝑎𝑎 , 𝑁𝑁(𝑡𝑡) > 0
0, 𝑁𝑁(𝑡𝑡) ≤ 0 (18) 

𝐷𝐷𝐵𝐵𝑎𝑎𝐵𝐵(𝑡𝑡) = �
𝑁𝑁(𝑡𝑡)

𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎 × 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖
, 𝑁𝑁(𝑡𝑡) < 0

0, 𝑁𝑁(𝑡𝑡) ≥ 0
 (19) 

where, CBat (t) is the energy by which BESS is charged in Wh, 𝜂𝜂𝑐𝑐ℎ𝑎𝑎𝑎𝑎  is the charging efficiency of the battery, 

DBat(t) is the energy by which the BESS is discharged in Wh and 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎  is the discharging efficiency of the 

battery. As the charging/discharging efficiency is effected by the SOC of BESS therefore, based on the research 

presented in [34]–[37] and the data sheet provided by the manufacturer [38] variation in efficiency is also 

considered. The net accumulated energy in the BESS is given by (20) [39]. 

𝐸𝐸𝑐𝑐(𝑡𝑡) = 𝐸𝐸𝑐𝑐(𝑡𝑡 − 1) + 𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵(𝑡𝑡) + 𝐷𝐷𝐵𝐵𝑎𝑎𝐵𝐵(𝑡𝑡) (20) 

where, Ec (t) is the net accumulated charge in the BESS in the current time interval in Wh and Ec (t-1) is the net 

accumulated charge in the battery in the previous time interval in Wh.  

3.4 Converter model 

The converter forms an essential part of the PV-BESS system as the energy generated by the PV panels and stored 

in BESS is DC, which needs to be converted into AC to cater the AC load. The rating of the converter/inverter 

required for the system is governed by (21) [23]. 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝐿𝐿(𝑚𝑚𝑚𝑚𝑚𝑚)/𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 (21) 

where, Pinv is the inverter rating in Watts, PL (max) is the peak value of the load demand in Watts. The output 

voltage from the PV system and the BESS are equal to the DC bus voltage, therefore no conversion is required 

for charging of the battery from PV panels. 
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4 System cost and reliability parameters 

4.1 Calculating the cost of the system 

The system cost can be evaluated in different ways such as, initial capital cost of the system, the total cost of the 

system, the total annualized cost of the system or levelized cost of energy. The initial capital cost (CICC) includes 

the initial cost of system components and installation cost. The total cost of the system (CTCS) includes the cost of 

system components, cost of replacement of system components, installation cost and maintenance cost of system 

throughout the lifetime of the system. The total annualized system cost (CTASC) is the total system cost contribution 

annually, this is used for system which has a line of credit. The levelized cost of energy (LCE) gives the cost of 

each unit of energy generated by the system. These costs are expressed in (22-27) [40]–[43]. 

𝑁𝑁𝐼𝐼𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑃𝑃𝑃𝑃 ∗ (𝑁𝑁𝑃𝑃𝑃𝑃,𝑁𝑁 + 𝑁𝑁𝑃𝑃𝑃𝑃,𝐼𝐼) + 𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵 ∗ 𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵,𝑁𝑁  (22) 

𝑁𝑁𝑇𝑇𝑁𝑁𝑇𝑇 = 𝑁𝑁𝑃𝑃𝑃𝑃 ∗ (𝑁𝑁𝑃𝑃𝑃𝑃,𝑁𝑁 + 𝑁𝑁𝑃𝑃𝑃𝑃,𝑀𝑀 + 𝑁𝑁𝑃𝑃𝑃𝑃,𝐼𝐼) + 𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵 ∗ 𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵,𝑁𝑁 + 𝑁𝑁𝐵𝐵𝑁𝑁𝑇𝑇  (23) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒           𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵,𝑁𝑁 = 𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵,𝑁𝑁 ∗ �1 +
𝑒𝑒

(1 + 𝑒𝑒)5
+

𝑒𝑒
(1 + 𝑒𝑒)10

+
𝑒𝑒

(1 + 𝑒𝑒)15
+

𝑒𝑒
(1 + 𝑒𝑒)20

� + 𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵,𝐼𝐼 (24) 

where, CPV,C is the cost of a single PV panel, CPV,M is the maintenance cost, CPV,I is the cost of installation of PV, 

CBat,C is the cost of a single battery, CBat,I is the installation cost of the battery, CBOS is the cost of balance of system 

and r is the discount rate. The annual cost of system can be found (25-26) [39]. 

𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁 × 𝑁𝑁𝐶𝐶𝐶𝐶 (25) 

where,                                                         𝑁𝑁𝐶𝐶𝐶𝐶 =
𝑒𝑒 × (1 + 𝑒𝑒)𝐿𝐿

(1 + 𝑒𝑒)𝐿𝐿 − 1
 (26) 

where, CTASC is total annual system cost, CRF is the capital recovery factor and L is the life time of the system. 

In order to calculate the levelized cost of energy (27) [44] can be used. 

𝑐𝑐𝑁𝑁𝐸𝐸 =
𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁

∑ 𝐸𝐸𝑙𝑙(𝑡𝑡)𝑇𝑇
𝐵𝐵=0

 (27) 

4.2  Loss of power supply probability  

It is defined as the long term average fraction of the load not supplied by the system. The load will not be satisfied 

if the power generated by the PV system and the storage is depleted below the allowable limit. LPSP of 1 means 

the load will never be satisfied and LPSP of 0 means load will always be satisfied. In terms of BESS charge, LPSP 

is defined (28) [45]. 

𝑐𝑐𝑃𝑃𝐿𝐿𝑃𝑃 = Pr {𝐸𝐸𝑁𝑁(𝑡𝑡) ≤ 𝐸𝐸𝑁𝑁  𝑘𝑘𝑖𝑖𝑖𝑖(𝑡𝑡) ; 𝑓𝑓𝑐𝑐𝑒𝑒 𝑡𝑡 < 𝑇𝑇} (28) 

where, Pr stands for probability. Implementing (17) to the ESCA methodology applied, we obtain LPSP for the 

time period of analysis as shown in (29-30) [46]. 

𝑐𝑐𝑃𝑃𝐿𝐿𝑃𝑃 =
∑ 𝑐𝑐𝑃𝑃𝐿𝐿 (𝑡𝑡)𝑇𝑇
𝐵𝐵=1

∑ 𝐸𝐸𝑙𝑙(𝑡𝑡)𝑇𝑇
𝐵𝐵=1

 (29) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒,                                𝑐𝑐𝑃𝑃𝐿𝐿(𝑡𝑡) =  𝐸𝐸𝑙𝑙(𝑡𝑡) − (𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑁𝑁(𝑡𝑡 − 1) − 𝐸𝐸𝑁𝑁  𝑘𝑘𝑖𝑖𝑖𝑖) × 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 (30) 

5 ESCA methodology for time period of 288 hours 

Power pinch analysis forms the guideline in implementing the ECSA methodology. The algorithm of the 

implemented ESCA methodology is shown in Fig. 2. It is emphasised that the constraint for optimization 
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considered is FEE as an alternative to the change in area of PV generating unit, as proposed by Ho et al.[23].  The 

steps involved in implementing the ESCA methodology are as follows [24]: 

Step 1. Data extraction and initial estimation of PV panels. 

Step 2. Construct the cascade table for intermittent system. 

Step 3. Recalculate the size of PV generating unit with FEE constraint. 

Step 4. Check if constraint is satisfied, If not repeat step 2-3. 

Step 5. Calculate the size of BESS after constraint is satisfied. 

Step 6. Calculate the size of the converter required for the system. 

Step 7. Calculate the cost of the system. 

For successful implementation of ESCA for optimization of the HRES certain conditions have to be satisfied, 

which are as follows [47]: 

i. Power generated from the PV system is first supplied to load, before storing it in the BESS to reduce 

conversion losses. 

ii. Losses during charging and discharging of the battery should be considered. 

iii. Amount of energy stored at the starting (t = 0) and end of the time cycle (t = 288, in this case) should 

almost remain same. This prevents aggregation/depletion of initial charge on cyclic use. 

iv. Accumulation of charge EC, in the BESS should always be positive and above the DOD limit. 

v. Load, temperature and solar radiation remains constant for each time interval (1 hour for this study). 

5.1 Data extraction and initial size estimation 

The first step of implementing ESCA is data extraction which include the following data: (i) Time period of 

analysis (ii) Hourly load demand (iii) Hourly ambient temperature (iv) Hourly average solar irradiance (v) Rated 

PV module efficiency (vi) Area of each PV module used (vii) Inverter efficiency (viii) Type and characteristic of 

battery (ix) Battery charging and discharging efficiencies (x) Depth of discharge of the battery (xi) Initial estimate 

of PV panels. The optimization algorithm implemented is immune to the initial estimate of the PV panels and can 

give the optimum value for both over-estimation and under-estimation of the PV panels. The only effect of the 

initial estimate is that the number of iterations required to reach to the optimum result may vary.   

5.2 Construction of cascade table 

Once the data is extracted, the next step is to form the cascade table after which the power pinch analysis is 

performed. The method of constructing the table is as follows: 

Column 1. It consists of the time period arranged in ascending order. The time interval considered for analysis 

is 1 hour. 

Column 2. The hourly load demand in Wh denoted by El (t). 

Column 3. The hourly ambient temperature. 

Column 4. The hourly solar radiation in Wh/m2, denoted by I (t), calculated using (11-16). 

Column 5. The hourly energy generated by the PV generating unit in Wh, calculated using (1). 

Column 6. The net demand of energy in Wh, calculated using (17). 

Column 7. It represents the charging status of BESS. If N (t) > 0 the battery is charged using (18). 

Column 8. It represents the discharging status of BESS. If N (t) < 0 the battery is discharged using (19). 



9 
 

Column 9. Net accumulated energy or the current status of BESS is calculated using (20). During initial analysis 

Ec (t = 0) is considered zero. 

 

 
Fig. 2 Flowchart of implemented ESCA algorithm 

5.3 Recalculating the size of PV system 

The new size of the number of PV panels based on the FEE constraint is calculated by (32) or (33). The advantage 

of using (32) is faster realisation of the FEE constraint irrespective of the initial NPV estimation. It may lead to 

infinite iteration in cases where FEE constraint is set too small/large in comparison to the each system component 

rating (each PV module rating in this case). In contrast using (33) provides definite realisation of the FEE 

constraint, but may require more iteration based on the initial NPV estimation. 

𝐶𝐶𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑐𝑐(𝑇𝑇) − 𝐸𝐸𝑐𝑐(0) (31) 

𝑁𝑁𝑃𝑃𝑃𝑃,𝑖𝑖𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑃𝑃𝑃𝑃,𝑜𝑜𝑙𝑙𝑑𝑑 − (
𝐶𝐶𝐸𝐸𝐸𝐸

∑ 𝐸𝐸𝑃𝑃𝑃𝑃𝑇𝑇
0 × 𝜂𝜂𝑃𝑃𝑃𝑃 × 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖

) (32) 

𝑁𝑁𝑃𝑃𝑃𝑃,𝑖𝑖𝑛𝑛𝑛𝑛 = �
𝑁𝑁𝑝𝑝𝑖𝑖,𝑜𝑜𝑙𝑙𝑑𝑑 − 1,𝐶𝐶𝐸𝐸𝐸𝐸 > 0
𝑁𝑁𝑝𝑝𝑖𝑖,𝑜𝑜𝑙𝑙𝑑𝑑 + 1,𝐶𝐶𝐸𝐸𝐸𝐸 < 0 (33) 

5.4 Calculating BESS size 

Once the constraint of FEE is met the second condition of having all the values of Ec (t) > 0 has to be satisfied, 

which is inspired from the concept of Power Pinch Analysis (PoPA). For PoPA, the most negative value of the 

accumulated energy (Ec) is found from the cascaded table. The time at which this value is obtained, is the pinch 

point of the analysis. Ec (t = 0) is updated with this value and a new accumulated energy is found with, Ec,new (t = 

Start 
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t = 0 

t = t+1 

Calculate EPV(t) and N(t) 

N(t) > 0? 
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charging 

C(t) 
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D(t) 
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Calculate 
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Initial energy required= - min (Ec) 

Calculate Ec(max) 

Calculate Nbat, Converter 

FEE= Ec(T)-Ec(0) 
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No 

No 
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0) = - Ec (t = tpinch). The maximum value of the new accumulated energy is used to find the BESS size using (31) 

[24]. 

𝑁𝑁𝐵𝐵𝑎𝑎𝐵𝐵 =
𝐸𝐸𝑁𝑁,𝑖𝑖𝑛𝑛𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚)

𝐼𝐼𝑏𝑏𝑎𝑎𝐵𝐵 × 𝑉𝑉𝑏𝑏𝑎𝑎𝐵𝐵 × 𝐷𝐷𝑁𝑁𝐷𝐷
 (34) 

where Nbat is the number of batteries required, Ibat is nominal capacity of battery in Ah, Vbat is the voltage of BESS 

in Volts, DOD is the depth of discharge. The battery energy management strategy is shown in Fig. 3, where SOC 

is state of charge of BESS. 

 
Fig. 3 Battery energy management strategy 

6 ESCA methodology for time period of 8760 hours 

ESCA is implemented for a year to obtain more accurate result. The constraint used for the optimization is LPSP 

and the system cost. The steps involved are as follows: 

Step 1. Data extraction, set Nbat = 1, initial estimation of NPV. 

Step 2. Construct the cascade table for intermittent system. 

Step 3. Recalculate the size of PV generating unit with LPSP constraint, using (32) or (33) with FEE replaced 

with LPSP. 

Step 4. Tabulate Nbat, optimized NPV and the cost of the system for the current configuration. 

Step 5. Increment Nbat and repeat the steps (2-4) until the NPV obtained is recursive. 

Step 6. Obtain the configuration with minimum cost. 

Step 7. Calculate the size of the converter required for the system. 

6.1 Obtaining the system configuration with minimum cost 

 The different configurations obtained only satisfy the LPSP constraint. In order to obtain the configuration with 

minimum cost a graphical approach is preferred. The system cost can be estimated using (35) [45]. 

𝑁𝑁 = 𝛼𝛼𝑁𝑁𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑏𝑏𝑁𝑁𝑏𝑏𝑎𝑎𝐵𝐵 + 𝑁𝑁0 (35) 

 where, 𝛼𝛼 is the cost of each PV unit, βb is the cost of each battery and C0 is the total fixed cost which includes the 

cost of installation and designing of the system. The condition obtained for optimum solution with minimum cost 

for a given LPSP is shown in (36) [45]: 
𝜕𝜕𝑁𝑁𝑃𝑃𝑃𝑃
𝜕𝜕𝑁𝑁𝑏𝑏𝑎𝑎𝐵𝐵

= −
𝛽𝛽
𝛼𝛼

 (36) 

 This solution is explained by the theoretical graph shown in Fig. 4 [45] where the slope of the line is -𝛽𝛽/𝛼𝛼 and 

the point of intersection ‘Q’ signifies the solution. 

Start 
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No 
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Fig. 4 Theoretical plot of NPV and Nbat for a given LPSP 

7 Case study 

The improved ESCA methodology is implemented for a residential load with latitude and longitude as 400 N and 

700 W respectively. The monthly load profile of the location used is shown in Fig. 5 (a) [48]. The load profile for 

each month is obtained by averaging the loads of all the days of a month, hence obtaining singular hourly load 

profile of 24 hours for each month. The technical and cost information of the PV, batteries and converter used are 

shown in Table 1. ESCA is implemented twice, firstly for T = 288 hours with optimization constraint of FEE = 

100 Wh and no loss of power, secondly, for T = 8760 hours with multi constraint optimization of LPSP = 2% and 

minimum system cost. For the optimization of PV panels (33) is considered. The results are later compared with 

that obtained from HOMER to signify the credibility of the ESCA methodology. 

Table 1 Parameters of components used in the system [26], [30], [38], [49] 

PV parameters Battery parameters 

Type Mono-crystalline Charge capacity 220 Ah 

Area of each panel 1.10 m2 Voltage  12 V 

Power of a single panel 120 Wp Rated charging efficiency 90 % 

Rated module efficiency 15 % Rated discharging efficiency 90 % 

Temp. coefficient of efficiency 0.0045 Depth of discharge 90 % 

NOCT 55 0C Cost of battery $ 700 

Temperature at rated efficiency 25 0C Life span 5 years 

Solar radiation at NOCT 800 W/m2 Converters parameters 

Cost of each panel $ 135 Rating of each converter 600 W 

Maintenance cost of each panel $ 15 Cost of each unit $ 150 

Installation cost $ 200 Life span 25 years 

Cost of balance of system $ 600 Time analysis characteristics 

Life span 25 years 
Time period interval 1 hour 

Time period T = 288 & T = 8760 

8 Results and discussion 

8.1 Obtaining the solar radiation profile 

The beam radiation for the case is obtained using (4-10). But the actual radiation that reaches the collector surface 
is diminished due to diffusion and reflection. The solar radiation profile for each month obtained after considering 
these factors is shown in Fig. 5 (b). The solar profile of the entire year for the site can be obtained using (4-16). 
As an example, the components of solar irradiance for the month of March is shown in Table 2, from which the 

For a given 
LPSP 

Q 

Slope = - 𝛽𝛽/𝛼𝛼 

NPV 

Nbat 
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different components of radiation profile and the difference between the beam solar radiation and the actual solar 
radiation reaching the collector surface can be assessed. The PV collector is considered tilted toward south with 
its tilt angle changing every month as showing Table 3.  
 

 

 
Fig. 5 (a) Hourly load profile in Wh (b) Hourly solar radiation profile reaching the collector in Wh/m2 

8.2 Implementation of ESCA for T = 288 hours. 

ESCA is initially implemented for time period of 288 hours with an initial assumption of NPV = 30 and zero initial 

charge in the BESS. The aim of the algorithm is to find the optimized size of NPV and Nbat for a FEE constraint of 

100 Wh and no loss of power. On successful implementation of ESCA, the algorithm converges after 79 iterations 

when FEE = 97 Wh is obtained, the optimized result of NPV = 42, Nbat = 14, minimum initial charge of 10990 Wh 

(SOC of ~ 30%) in BESS and FEE = 97 Wh is obtained. The pinch point of the analysis is obtained at t = 32, 

which represents the month of February, the cascade table for this month is presented in Table 4. The energy 

generated by PV panels along with the load demand is shown in Fig. 6. The variation of PV module and battery 

efficiency is also considered and is shown in Fig. 7. On power pinch point energy adjustment and considering the 

depth of discharge of 10% the battery bank size is obtained. The variation in cumulative energy of the BESS for 

the system with the optimum configuration obtained is shown in Fig. 8 and the state of charge of the BESS along 

with its histogram is presented in Fig. 9.  
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Table 2 Components of solar radiation profile for the month of March 

Time IB (W/m2) IBN (W/m2) ID (W/m2) IR (W/m2) 

Iactual  (IBN+ID+IR) 

(W/m2) 

Variation 

(IB -Iactual) 

1 0 0 0.00 0.00 0.00 0.00 

2 0 0 0.00 0.00 0.00 0.00 

3 0 0 0.00 0.00 0.00 0.00 

4 0 0 0.00 0.00 0.00 0.00 

5 0 0 0.00 0.00 0.00 0.00 

6 0 0 0.00 0.00 0.00 0.00 

7 168 129.78 16.92 2.75 149.45 18.55 

8 438 338.35 44.10 11.23 393.69 44.31 

9 677 522.98 68.17 22.73 613.88 63.12 

10 862 665.89 86.79 34.18 786.87 75.13 

11 979 756.27 98.57 42.57 897.42 81.58 

12 1019 787.17 102.60 45.64 935.42 83.58 

13 979 756.27 98.57 42.57 897.42 81.58 

14 862 665.89 86.79 34.18 786.87 75.13 

15 677 522.98 68.17 22.73 613.88 63.12 

16 438 338.35 44.10 11.23 393.69 44.31 

17 168 129.78 16.92 2.75 149.45 18.55 

18 0 0 0.00 0.00 0.00 0.00 

19 0 0 0.00 0.00 0.00 0.00 

20 0 0 0.00 0.00 0.00 0.00 

21 0 0 0.00 0.00 0.00 0.00 

22 0 0 0.00 0.00 0.00 0.00 

23 0 0 0.00 0.00 0.00 0.00 

24 0 0 0.00 0.00 0.00 0.00 

 

Table 3 Tilt angle for south facing PV collector 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Angle 600 500 400 300 200 00 00 200 400 500 600 600 

 

 
Fig. 6 Power generation of PV and load demand 

EL(178) =  3318 Wh; Loadmax

EPV(61) = 5445 Wh; PVmax
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Fig. 7 Variation of PV and battery efficiencies 

Table 4 Cascade table obtained for the month of February with NPV = 42 and Nbat = 14 

Time 

(Hr) 

EL 

(Wh) 

Temperature  

(0C) I (W/m2) EPV (Wh) N (Wh) Cbat (Wh) Dbat (Wh) EC (Wh) 

EC,new 

(Wh) 

25 678 27 0 0 -678 0 -846 -3536 3758 

26 540 27 0 0 -540 0 -673 -4209 3085 

27 270 26 0 0 -270 0 -336 -4545 2749 

28 540 26 0 0 -540 0 -672 -5217 2076 

29 540 26 0 0 -540 0 -672 -5889 1405 

30 270 26 0 0 -270 0 -336 -6224 1069 

31 948 25 42 288 -703 0 -873 -7098 196 

32 2031 25 338 2204 -158 0 -196 -7294 0 

33 2709 25 577 3601 352 284 0 -7010 284 

34 1083 30 758 4565 2797 2253 0 -4757 2537 

35 1083 31 870 5147 3292 2645 0 -2112 5182 

36 1083 30 909 5341 3457 2769 0 658 7951 

37 1083 30 870 5145 3290 2628 0 3285 10579 

38 486 30 758 4565 3394 2703 0 5989 13282 

39 540 30 577 3576 2500 1986 0 7975 15268 

40 489 30 338 2174 1359 1077 0 9051 16345 

41 489 29 39 263 -265 0 -335 8716 16010 

42 489 29 0 0 -489 0 -617 8099 15393 

43 489 28 0 0 -489 0 -617 7482 14775 

44 540 27 0 0 -540 0 -681 6801 14095 

45 810 27 0 0 -810 0 -1021 5780 13074 

46 2439 27 0 0 -2439 0 -3070 2710 10004 

47 1896 26 0 0 -1896 0 -2379 331 7625 

48 1353 26 0 0 -1353 0 -1693 -1362 5931 

PVmin =  12.72

PVmax =  15.07

Batmax = 89.51

Batmin = 86.35
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Fig. 8 Variation in charge accumulated in BESS 

 
Fig. 9 (a) Variation in state of charge of BESS (b) Histogram for the charge percentage of BESS for T=288 hrs. 

As seen from Fig. 7, as the temperature varies the efficiency of the PV panels varies from 12.72% to 15.07%. 

Also as the SOC of BESS varies, variation in charging and discharging efficiency is observed, which varies from 

86.35% to 89.51%. As seen from Fig. 9, due to depth of discharge adjustment the SOC of BESS is never below 

10%. When the charge of battery becomes 100% the dummy load is switched on to prevent overcharging of the 

batteries. 

8.3 Implementation of ESCA for T = 8760 hours 

The optimized result obtained for T = 288 hours analysis are extrapolated for T = 8760 hours. The load and solar 

profile for entire year is considered, with assumption that the profiles remain identical through the month. When 

system is run with NPV = 42 and Nbat = 14, LPSP of 6.59% is obtained which is inadmissible, this also shows that 

time period of analysis strongly affects the optimized result obtained. Therefore, a new approach is considered 

where the NPV is found using ESCA methodology for a range of BESS capacities with LPSP constraint. The initial 

size of the BESS is fixed for each iteration and the initial charge is assumed to be 30% SOC as obtained in the 

previous analysis. The tolerance limit for the LPSP constraint is set at 2%. The variation in LPSP with increase in 

NPV for a fixed value of Nbat is shown in Fig. 10. 
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Fig. 10 LPSP and NPV variation for given Nbat 

It is seen from the Fig. 10, as the size of BESS increases the convergence rate of LPSP increases. For example, 

for Nbat equal to 14, 20, 25 and 30, LPSP constraint is satisfied for NPV equal to 71, 55, 54, and 54 respectively 

and iterations required for convergence are 31, 14, 14 and 13 respectively, signifying the reduction in number of 

PV panels required for achieving the LPSP constraint as the BESS capacity is increased. The configuration with 

minimum cost is obtained using the graphical method as explained in section 6.1. The plot of variation of NPV and 

Nbat for fixed value of LPSP < 2% is shown in Fig. 11, which is obtained by varying the Nbat from 1 to 35 while 

obtaining the optimized NPV satisfying the LPSP constraint. 

 
Fig. 11 Plot of Nbat and NPV for LPSP < 2% 

The most optimal solution obtained is, NPV = 55 and Nbat = 20 for a permissible LPSP of 1.85%. The monthly PV 

generation for the optimized system is presented in Fig. 12, the SOC of the BESS is shown in Fig. 13 (a) and the 

histogram of the charge percentage of the BESS is shown in Fig. 13 (b). 
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Fig. 12 Monthly and daily average generation from PV 

 

 
Fig. 13 (a) State of charge of BESS (b) Histogram for the charge percentage of BESS for T = 8760 hrs. 

8.3.1 Comparison of obtained results with HOMER software 

The case study is also implemented on HOMER software, for a time period of 8760 hours with system lifetime 

set at 25 years. An optimal configuration of NPV = 57 and Nbat = 21 for an LPSP of 1.62 % is obtained. These 

results are compared with the optimized results of ESCA methodology and presented in Table 5. 
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Table 5 Comparison of results obtained from ESCA and HOMER  

Factor ESCA (T = 8760 hrs) HOMER Variation w.r.t ESCA (%) 
NPV/Nbat 42/14 55/20 57/21 - 

PV initial cost ($) 14112 17152 17776 -3.63 

Battery initial cost ($) 1820 2600 2730 -5.00 

Converter initial cost ($) 900 900 900 0.00 

PV annualized cost ($) 1230 1611 1670 -3.66 

Battery annualized cost ($) 159 227 238 -4.85 

Converter annualized cost ($) 103 103 103 0.00 

Initial cost ($) 16823 21980 22782 -3.65 

Net present cost ($) 23054 29248 30043 -2.72 

LCE ($/kWh) 0.1660 0.2160 0.2238 -3.61 

EPV (kWh/yr.) 13822 18101 18759 -3.64 

Battery energy in (kWh/yr.) 5965 8305 8707 -4.84 

Battery energy out (kWh/yr.) 5569 5788 5786 0.03 

Excess energy (kWh/yr.) 396 2517 2921 -16.05 

LPSP (%) 6.59 1.85 1.62 12.43 

Unmet load (kWh/yr.) 1456 166 146 12.43 

 

As seen from the optimized results obtained, both the methods satisfy the predefined LPSP constraint with values 

of 1.85% and 1.62% for ESCA and HOMER respectively. Optimized configuration obtained from ESCA is two 

PV panels and one battery less in comparison to the result obtained from HOMER. Thereby making the system 

obtained from ESCA cheaper in comparison to that obtained from HOMER. The net present cost for system 

configuration obtained from ESCA is $29248 and that of HOMER is $30043 which is 2.72% less. The levelized 

cost of energy obtained from ESCA is 0.2160 $/kWh and from HOMER is 0.2238 $/kWh which is 3.61% less. 

The total energy generated by the PV system is 18101 kWh from ESCA and 18759 kWh from HOMER, which is 

3.64% less due to the larger rating of the system configuration thereby also making the annual unmet load 12.43% 

more in ESCA. Though there is minor difference in the results obtained from both the methods, ESCA due to its 

simplicity provides better insight into the designing and sizing of the HRES system.  

8.3.2 Comparison of proposed ESCA with other optimization methodology 

The merits of the ESCA methodology over other optimization methodologies are shown in Table 6. The 

improvements performed to the proposed by Ho et al. [23], [24] methodology are as follows: 

i. More realistic results are obtained by performing analysis for time period of 288 hours and 8760 hours 

(1 year) considering monthly variations in load and climatic conditions. 

ii. Variations in PV efficiency with temperature and BESS charging/discharging efficiency is considered, 

unlike Ho et al. [23], 24] which considers PV efficiency constant. 

iii. Modelling of solar irradiance is also performed to achieve accurate solar radiation reaching the PV 

module which adds credibility to the obtained results. 

iv. Multi-constraint optimization is performed with reliability constraints (FEE and LPSP) and economic 

constraints to obtain the final results which in case of Ho et al. [23], 24] was only performed formed for 

reliability. 
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v. The system size is updated differently using (33), which guarantees the convergence of the optimization 

algorithm. In case of Ho et al. [23], [24], (32) is used for updating system size which may not converge 

if FEE is set to low or high. 

Table 6 Improvements over other optimization methodologies  

Methodology Demerits ESCA Improvement 
HOMER [50] It only considers a single objective function to minimize 

net present cost. 
It considered both cost and reliability analysis. 

 HOMER does not consider DOD of BESS. It is considered here. 
 It does not consider intra hour variability. It is considered here. 
 The time step cannot be reduced below one hour. It can be considered less than one hour provided 

data is available. 
 The code used for optimization is a “black box” The user can see and understand why and how a 

particular result is obtained. 
RETScreen [50] Does not take into account the effect of PV output 

variation with temperature. 
It is considered here. 

 Time series data cannot be extracted. It can be extracted.  
 Limited option of visualization of obtained data. The optimized data can be easily represented in 

graphs and table. 
iHOGA [50] Can simulate system with maximum daily average load 

of 10 kWh 
No restriction is imposed here. 

Software (generalized) The optimized result obtained is restricted to the 
predefined user input, the most optimal solution may lie 
outside the predefined range. 

The universal optimal solution is obtained 
irrespective of the initial assumption made. 

Genetic algorithm [51] No guarantee to find best solution and it might be 
difficult to obtain the global optimum solution. 

Optimal solution is independent of the initial 
assumption and the convergence of ESCA is 
improved in the proposed method. 

Fuzzy logics [52] Difficult to formulate membership function. No such difficulty here. 
 System modelling is difficult, as analogues system needs 

to be created. 
Inherently built for renewable energy system, so no 
analogues comparison required. 

Neural network [51] Needs high processing time for training and system 
modelling and training is complex for larger system. 

Processing power required is less and is 
independent of the system component modelling. 

9 Conclusion 

This paper discusses the implementation of the improved ESCA methodology for optimization of a PV-BESS 

system based on the historical data, final excess energy, loss of system probability and economic constraints. The 

ESCA methodology is improved by incorporation of variation of PV and charge/discharge efficiency of the 

battery, consideration of attenuation in solar radiation reaching the PV collector surface and implementation of 

the method for a more realistic time period of a year. The ESCA methodology is implemented initially for time 

period of 288 hours and then for 8760 hours to improve upon the optimized results obtained from the first 

algorithm. It also shows that the time period of analysis greatly affects the optimum size of the system. The results 

thus obtained are compared and validated from HOMER software. There are certain improvements which can be 

incorporated into ESCA like, considering multi generation system, on/off grid mode of operation, addition of 

other reliability and optimization constraint, addition of parameters to make the system component modelling 

more realistic. These improvements will be communicated in future research work.  
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