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Abstract. At present particle swarm optimizers (PSO) designed for
multi-objective optimization have undergone no form of theoretical sta-
bility analysis. This paper derives the sufficient and necessary conditions
for order-1 and order-2 stability of the recently proposed multi-guided
PSO (MGPSO), which was designed specifically for multi-objective opti-
mization. The paper utilizes a recently published theorem for performing
stability analysis on PSO variants, which requires minimal modeling as-
sumptions. It is vital for PSO practitioners to know the actual criteria for
particle stability of the given PSO variant being used, as it been shown
that particle stability has a considerable impact on PSO’s performance.
This paper empirically validates its theoretical findings by comparing the
derived stability criteria against those of an assumption free MGPSO al-
gorithm. It was found that the derived criteria for order-1 and order-2
stability are an accurate predictor of the unsimplified MGPSO’s particle
behavior.

1 Introduction

Recently, a particle swarm optimizer (PSO) variant, the multi-guided PSO (MG-
PSO) was proposed for multi-objective optimization [14, 15]. It was found that
MGPSO was highly competitive to the current state of the art PSO based multi-
objective optimization algorithms, such as speed-constrained multi-objective
particle swarm optimization (SMPSO) [10], optimized multi-objective particle
swarm optimization (OMOPSO) [13], and the vector evaluated particle swarm
optimizer (VEPSO) [11, 12]. Furthermore, the MGPSO was also shown to be
highly competitive with the current state of the art evolutionary multiple objec-
tive optimizers, such as the non-dominated sorting genetic algorithm II (NSGA-
II) [8], strength Pareto evolutionary algorithm 2 (SPEA2) [18], pareto envelope-
based selection algorithm II (PESA-II) [7], and the multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [17].

With the introduction of any new optimization algorithm comes an array
of unknown algorithm characteristics to be understood. The characteristic that
this paper focuses on is particle stability. It has been empirically shown that
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order-1 and order-2 particle stability has a considerable impact on performance
[4]. Furthermore, it was shown that parameter configurations that resulted in
particle instability almost always caused PSO to perform worse than random
search [4]. The clear relationship between PSO particle stability and the algo-
rithm’s performance, implies that knowing the criteria for particle stability is
needed for effective use of a PSO variant.

Given that MGPSO has a similar structure to that of the original PSO [9]
with the presence of inertia as proposed by Shi [16], existing PSO theory can
be readily applied to the stability analysis of MGPSO. Specifically, Cleghorn
and Engelbrecht [6] recently proposed a general theorem for deriving stability
criteria for a class of PSO variants under minimal modeling assumptions. To the
authors’ knowledge this is the first paper to perform stability analysis of a multi-
objective PSO. The theoretically derived region for particle stability of MGPSO
is also empirically validated utilizing the assumption for free methodology for
stability region validation, as presented in [1, 3], and used in [2, 5].

A description of MGPSO is provided in section 2. The theoretical derivation
of the order-1 and order-2 stable regions of MGPSO are presented in section
3. The experimental setup and results empirically validating the derived stable
regions are presented in sections 4 and 5 respectively. A summary of the findings
of this paper are presented in section 6.

2 Multi-guided Particle Swarm Optimizer

The MGPSO algorithm was proposed by Scheepers and Engelbrecht [14, 15]
and is inspired by the vector evaluated particle swarm optimizer (VEPSO) as
proposed by Parsopoulos and Vrahatis [11, 12]. MGPSO is a multi-swarm multi-
objective PSO variant, where each objective is optimized by a sub-swarm. Similar
to VEPSO, the Pareto-optimal solutions are stored in an archive. Scheepers and
Engelbrecht proposed that a third attractor be added to the velocity update
equation, in addition to the usual social and cognitive attractors. The aim of
the new attractor is to pull particles towards the Pareto-optimal front (POF).
The third attractor is selected from the archive of non-dominated solutions. The
archive attractor is selected from the tournament pool as the one with the largest
crowding distance [8] to promote convergence to a diverse pareto-front.

The velocity and position update equations of MGPSO are defined as follows:

vi(t+ 1) = wvi(t) + c1r1 ⊗ (yi(t)− xi(t)) + λic2r2 ⊗ (ŷi(t)− xi(t))

+ (1− λi)c3r3 ⊗ (âi(t)− xi(t)) (1)

xi(t+ 1) = x(t) + vi(t+ 1), (2)

where r1, r2, r3 ∼ U(0, 1)d, and d is the dimension of the objective functions
PSO. The operator ⊗ is used to indicate component-wise multiplication of two
vectors. The positions yi and ŷi are respectively the “best” positions that parti-
cle i and particle i’s neighborhood of particles have visited. In this paper, “best”
is defined as the location where a particle has obtained the lowest objective
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function evaluation. The coefficients c1, c2, c3, and w are the cognitive, social,
archive, and inertia weights respectively. λi is the exploitation trade-off coeffi-
cient for particle i, is initialized as a random constant sampled uniformly from
(0, 1) (λi does not vary over iterations). The MGPSO algorithm is summarized
in algorithm 1.

Algorithm 1 Multi-guided Particle Swarm Optimization

1: for each objective m = 1, ..., nm do
2: Initialize Sm, of nsm particles uniformly in a hypercube of dimension nx

3: Let fm be the objective function;
4: Let Sm.yi be the personal best position of particle Sm.xi;
5: Let Sm.ŷi be the neighborhood best position of particle Sm.xi ;
6: Initialize Sm.vi(0) to 0; Sm.yi = Sm.xi(0); Sm.ŷi = Sm.xi(0); Sm.λi ∼ U(0, 1);
7: end for
8: Let t = 0;
9: repeat

10: for each objective m = 1, ..., nm do
11: for each particle i = 1, ..., Sm.ns do
12: if fm(Sm.xi) < fm(Sm.yi) then
13: Sm.yi = Sm.xi(t);
14: end if
15: for particles ı̂ with particle i in their neighborhood do
16: if fm(Sm.yi) < fm(Sm.ŷı̂) then
17: Sm.ŷı̂ = Sm.yi;
18: end if
19: end for
20: Update the archive with the solution Sm.xi;
21: end for
22: end for
23: for each objective m = 1, ..., nm do
24: for each particle i = 1, ..., Sm.ns do
25: Select a solution, Sm.âi(t), from the archive using tournament selection;
26: Sm.vi(t+ 1) = wSm.vi(t) + c1r1(Sm.yi(t)− Sm.xi(t))

+Sm.λic2r2(Sm.ŷi(t)− Sm.xi(t))
+(1− Sm.λi)c3r3(Sm.âi(t)− Sm.xi(t)));

27: Sm.xi(t+ 1) = Sm.xi(t) + Sm.vi(t+ 1);
28: end for
29: end for
30: t = t+ 1;
31: until stopping condition is true

3 Theoretical Derivation

This section presents a theoretical derivation of the order-1 and order-2 stable
regions for the MGPSO algorithm.
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To derive order-1 and order-2 stable regions for MGPSO, the following gen-
eral theorem of Cleghorn and Engelbrecht [6] is used:

Theorem 1. The following properties hold for all PSO variants of the form:

xk(t+ 1) = xk(t)α+ xk(t− 1)β + γt (3)

where k indicates the vector component, α and β are well defined random vari-
ables, and (γt) is a sequence of well defined random variables. In the context of
this work, a random variable is said to be well defined if it has an expectation
and a variance.

1. Assuming it converges, particle positions are order-1 stable for every initial
condition if and only if ρ(A) < 11, where

A =

[
E[α] E[β]

1 0

]
and it =

[
E[γt]

0

]
(4)

2. The particle positions are order-2 stable if ρ(B) < 1 and (jt) converges,
where

B =


E[α] E[β] 0 0 0

1 0 0 0 0
0 0 E[α2] E[β2] 2E[αβ]
0 0 1 0 0
0 0 E[α] 0 E[β]

 and jt =


E[γt]

0
E[γ2t ]

0
0

 (5)

under the assumption that the limits of (E[γtα]) and (E[γtβ]) exist.
3. Assuming that x(t) is order-1 stable, then the following is a necessary con-

dition for order-2 stability:

1− E [α]− E [β] 6= 0 (6)

1− E
[
α2
]
− E

[
β2
]
−
(

2E [αβ]E [α]

1− E [β]

)
> 0 (7)

4. The convergence of E[γt] is a necessary condition for order-1 stability, and
the convergence of both E[γt] and E[γ2t ] is a necessary condition for order-2
stability.

The MGPSO’s update equation (1), can be written in the form of equation
(3) by setting:

α = (1 + w)− c1r1 − λc2r2 − (1− λ)c3r3, β = −w
γt = c1r1y(t) + λc2r2ŷ(t) + (1− λ)c3r3â(t)

In order to utilize theorem 1, the following modeling assumption is used:

1 ρ(M) denotes the spectral radius of the matrix M
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Definition 1. Non-stagnant distribution assumption [6]:
It is assumed that ŷi (t), yi (t), and âi (t) are random variables sampled from
a time dependent distribution, such that ŷi (t), yi (t), and âi (t) have well de-
fined expectations and variances for each t and that lim

t→∞
E[ŷi(t)], lim

t→∞
E[yi(t)],

lim
t→∞

E[âi(t)], lim
t→∞

V [ŷi(t)], lim
t→∞

V [yi(t)] and lim
t→∞

V [âi(t)] exist.

It is clear from part 4 of theorem 1 that the non-stagnant distribution as-
sumption is a necessary condition for order-1 and order-2 stability. In order to
obtain the criteria for order-1 stability, part 1 of theorem 1 is used. Specifically,
the following expectations are required:

E[α] = (1 + w)− c1
2
− λc2

2
− (1− λ)c3

2
, E[β] = −w,

E[γt] =
1

2
(c1E[y(t)] + λc2E[ŷ(t)] + (1− λ)c3E[â(t)]) .

Given the non-stagnant distribution assumption, it follows by the sum of
convergent sequences that E[γt] converges, and therefore it converges. The cri-
teria for order-1 stability is determined by coefficients that satisfy ρ(A) < 1.
After some algebraic manipulation, the following criteria for order-1 stability is
obtained:

|w| < 1 and 0 < c1 + λc2 + (1− λ)c3 < 4(w + 1), (8)

or in the case of c = c1 = c2 = c3,

|w| < 1 and 0 < 2c < 4(w + 1). (9)

Part 3 of theorem 1 is used to derive the criteria necessary for order-2 stability.
The calculation of additional expected values is needed. In order to calculate
E[α2], α2 is first calculated as:

α2 = ((1 + w)− cr1 − λcr2 − (1− λ)cr3)2

= (1 + w)2 − c1r1(1 + w)− λc2r2(1 + w)− (1 + w)(1− λ)c3r3

− c1r1(1 + w) + c21r
2
1 + λc1c2r1r2 + (1− λ)c1c3r1r3

− λc2r2(1 + w) + λc1c2r1r2 + λ2c22r
2
2 + λ(1− λ)c2c3r2r3

− (1 + w)(1− λ)c3r3 + (1− λ)c1c3r1r3 + λ(1− λ)c2c3r2r3 + (1− λ)2c23r
2
3

(10)
Applying the expectation operator results in

E[α2] = (1 + w)2 − c1
2

(1 + w)− λc2
2

(1 + w)− (1 + w)(1− λ)
c3
2

− c1
2

(1 + w) +
c21
3

+ λ
c1c2

4
+ (1− λ)

c1c3
4

− λc2
2

(1 + w) + λ
c1c2

4
+ λ2

c22
3

+ λ(1− λ)
c2c3

4

− (1 + w)(1− λ)
c3
2

+ (1− λ)
c1c3

4
+ λ(1− λ)

c2c3
4

+ (1− λ)2
c23
3

(11)
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Let c = c1 = c2 = c3, then after some algebraic manipulation, equation (11)
becomes

E[α2] = (1 + w)2 − c(1 + w)− λc(1 + w)− (1 + w)(1− λ)c

+ c2
(

1

3
+
λ

2
+

1− λ
2

+
λ2

3
+
λ(1− λ)

2
+

(1− λ)2

3

)
= (1 + w)((1 + w)− 2c) +

c2

6

(
λ2 − λ+ 7

)
The following expectations are also needed:

E[αβ] = −wE[α] = −w((1 + w)− c) and E[β2] = w2 (12)

In order to derive the criteria necessary for order-2 stability, first consider
the condition of equation (6) in part 3 of theorem 1:

1 + E[α] + E[β] 6= 0 =⇒ c1 + λc2 + (1− λ)c3 6= 0 (13)

or if c = c1 = c2 = c3, simply c 6= 0.
Now consider the condition of equation (7) in part 3 of theorem 1:

1− E[α2]− E[β2]−
(

2E[αβ]E[α]

1− E[β]

)
> 0

=⇒ 2c− 2wc+

(
2wc2

(1 + w)

)
− c2

6

(
λ2 − λ+ 7

)
> 0 (14)

Solving equation (14) as a quadric form equal to 0 leads to

c <
12(1− w2)

(λ2 − λ+ 7)(w + 1)− 12w
(15)

Merging the conditions for order-2 stability in equations (15) and (13) with the
conditions for order-1 stability of equation (9) leads to the following criteria for
order-1 and order-2 stability:

0 < c <
12(1− w2)

(λ2 − λ+ 7)(w + 1)− 12w
, |w| < 1 (16)

This merger is possible because the region defined by equation (15) is a subset of
the region defined by equation (9). The conditions derived for order-2 stability
are only the necessary conditions. To verify that they are sufficient, part 2 of
theorem 1 is used: Given the complexity of symbolically solving ρ(B) < 1, an
empirical approach is utilized in line with that used by Cleghorn and Engelbrecht
[6]. The experimental procedure followed is: 109 random configurations of the
form {w, c, λ} were generated such that equations (13) and (15) were satisfied. It
was then tested if the condition, ρ(B) < 1, was satisfied or not. In all of the cases
it was found, that if equations (13) and (15) were satisfied, then the condition
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ρ(B) < 1 held. This finding is strong evidence that the criteria of equation (16)
are both sufficient and necessary for order-1 and order-2 stability.

The manner in which λ affects the stability region is illustrated in figure
1. The closer λ gets to 0.5, the more the apex of the stability region extends.
As λ approaches either 0 or 1 from 0.5 the stability region reduces in size in a
symmetric manner. Given that λ may be initialized to any value in the range
(0, 1), selecting coefficients such that equation (16) is satisfied for λ = 0 (or
λ = 1) will ensure that every particle will be both order-1 and order-2 regardless
of the particle specific λ.

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6  7  8

w

c
1
+c

2
+c

3

λ=0.0 and 1.0
λ=0.1 and 0.9
λ=0.2 and 0.8
λ=0.3 and 0.7
λ=0.4 and 0.6

λ=0.5

Fig. 1: MGPSO convergent regions for λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, and 1

While the modeling assumption utilized in the section is minimal, it is still
required to confirm whether or not the newly derived stability criteria are truly
representative of the unsimplified MGPSO’s behaviour. This is done in the next
section.

4 Empirical Setup

This section utilizes the method for empirically validating the stability region of
PSO variants as proposed by Cleghorn and Engelbrecht [1, 3].

A swarm size of 64 particles per objective, and 5000 iterations are used in the
experiment. Two objective functions where considered. Particle velocities were
initialized to 0 and positions were initialized within (−100, 100). The experiment
was performed in 50 dimensions. As a result the maximum possible distance
between particles in the initial search space is 1414.214. This maximum distance



8 C.W Cleghorn et al.

is referred to as ∆max from this point forward. Reported results were capped at
∆max to prevent highly unstable parameter configurations from hindering the
presentation of the results.

The measure of stability used in this paper is:

∆m (t+ 1) =
1

Sm.ns

Sm.ns∑
i=1

‖xi (t+ 1)− xi (t) ‖2. (17)

where Sm.ns is the swarm size for each sub-swarm m. The sum of all ∆Sm.ns
(t)’s

is reported as ∆(t). The objective function used for each objective is

CF (x) ∈ U (−1000, 1000) , (18)

which was shown to be an effective objective function for stability analysis in
[1].

The experiment was conducted over the following parameter region:

w ∈ [−1.1, 1.1] , c1 + c2 + c3 ∈ (0, 8] , and λ ∈ [0, 1] , (19)

where c1 = c2 = c3, with a sample point every 0.1 along w, c1 +c2 +c3, and λ. A
total of 1840 sample points from the region defined in equation (19) were used for
each fixed λ. The results reported in section 5 are derived from 50 independent
runs for each sample point.

5 Experimental Results and Discussion

This section presents the results of the experiments described in section 4.
A snapshot of all parameter configurations’ resulting stability measure values

are presented in figures 2(a) to 3(e) for the last iteration of MGPSO with λ set
to, 0.0, 0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The reported stability
measures are the mean derived from the 50 independent runs.

The number of parameter configurations that empirically agree or disagree
with the stable/unstable behavior predicted by the theoretically derived stabil-
ity region of equation (16) is presented in table 1. Eight ∆m based measure-
ments are presented in table 1: the number of parameter configurations that are
theoretically stable (TS) and unstable (TUS), the number of parameter config-
urations that where empirically stable (ES) and unstable (EUS), the number of
parameter configurations that were found to be empirically stable despite the
theory predicting unstable behavior (ES despite TUS), the number of parame-
ter configurations that were found to be empirically unstable despite the theory
predicting stable behavior (EUS despite TS), and lastly the percentage error
and agreement between the theoretical derivation and the empirical findings. A
parameter configuration is classified to be stable if the value of the recorded con-
vergence measure of equation (17) is less than ∆max(d), and unstable if greater
than or equal to ∆max(d), in accordance with the approach of Cleghorn and
Engelbrecht [3].
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Table 1: Empirical findings versus theoretical prediction

λ TS TUS ES EUS ES despite TUS EUS despite TS Error Agreement

0 764 1076 759 1081 8 13 1.14% 98.86%

0.1 781 1059 784 1056 12 9 1.14% 98.86%

0.2 796 1044 798 1042 11 9 1.09% 98.91%

0.3 809 1031 809 1031 12 12 1.3% 98.7%

0.4 816 1024 819 1021 11 8 1.03% 98.97%

0.5 817 1023 823 1017 14 8 1.2% 98.8%

0.6 816 1024 816 1024 10 10 1.09% 98.91%

0.7 809 1031 810 1030 9 8 0.92% 99.08%

0.8 796 1044 798 1042 12 10 1.2% 98.8%

0.9 781 1059 781 1059 10 10 1.09% 98.91%

1 764 1076 760 1080 9 13 1.2% 98.8%

As shown in figures 2(a) to 3(e) the shape and size of the regions empirically
classified as stable is in-line with the theoretical prediction of equation (16).
However, the effect of varying λ is harder to see, which is not surprising given
how similar the regions that the theoretical derivations predicts are, as illustrated
in figure 1. The accuracy of the theoretical derivation can be more clearly seen
in table 1. For all the tested λ values, the theoretical prediction had an above
98.7% accuracy. The accuracy reported was also stable across differing λ values
with the largest difference in accuracy reported being only 0.38%.

It is evident from the presented results that the theoretically derived region
for particle stability, as defined in equations (16) accurately reflect the parameter
configurations needed for order-1 and order-2 stability of MGPSO.

6 Conclusion

This paper provided the first theoretical stability analysis of a multi-objective
particle swarm optimization (PSO) variant. Specifically, this paper theoretically
derived the order-1 and order-2 stable regions for multi-guided PSO (MGPSO)
using the minimal required modeling assumptions. The provided order-1 and
order-2 stable regions can be utilized by PSO practitioners to make an informed
choice when selecting control parameters values for the MGPSO algorithm. Fur-
thermore, the derived criteria for stability were validated, using the empirical
method verified by Cleghorn and Engelbrecht [1], under which no simplifying
modelling assumptions were placed on the MGPSO algorithm. Given the empiri-
cal validation, the theoretical derivation is an accurate representation of MGPSO
stability criteria.
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Fig. 2: MGPSO convergence results for λ = 0, 0.1, . . . , 0.5
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Fig. 3: MGPSO convergence results for λ = 0.6, 0.7, . . . , 1.0
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