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Abstract. This paper examines the position update equation of the
particle swarm optimization (PSO) algorithm, leading to the proposal
of a simplified position update based upon a Gaussian distribution.
The proposed algorithm, Gaussian-valued particle swarm optimization
(GVPSO), generates probabilistic positions by retaining key elements
of the the canonical update procedure while also removing the need to
specify values for the traditional PSO control parameters. Experimen-
tal results across a set of 60 benchmark problems indicate that GVPSO
outperforms both the standard PSO and the bare bones particle swarm
optimization (BBPSO) algorithm, which also employs a Gaussian distri-
bution to generate particle positions.

1 Introduction

The particle swarm optimization (PSO) algorithm [22] is a stochastic optimiza-
tion technique based upon the social dynamics of a flock of birds. The PSO
algorithm generates new positions stochastically based upon the position of two
key attractors in the search space, namely the personal and neighbourhood best
positions. The step sizes, and therefore the degree of exploration and exploita-
tion, are then controlled via the values of three control parameters [1, 4, 20, 28].
The values of the control parameters directly influence the particle movement
patterns [1, 3]. However, the best control parameter values are problem depen-
dent and effective tuning is needed to improve PSO performance [2, 4, 37].

While parameter tuning is clearly warranted in the PSO algorithm, it is typ-
ically a time-consuming process whereby a large number of candidate parameter
configurations must be analysed. Fortunately, there have been a number of stud-
ies that have suggested general-purpose PSO parameters based on empirical evi-
dence [3–5, 8, 18, 19, 28, 37, 41]. While these studies have made use of the implicit
assumption that a priori tuning of control parameters is sufficient to optimize
performance, recent evidence suggests that the best PSO parameters to employ
change over time [18]. Similar results have also been found for heterogeneous
PSOs [26, 29, 30, 38] and for dynamic PSOs [24].
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An alternative approach is to use PSO variants that do not rely on a priori
control parameter values. A prominent example of this approach lies in the de-
velopment of self-adaptive PSO (SAPSO) techniques, which continuously adapt
the values of their control parameters throughout the search process [25, 27, 31,
32, 34–36, 39, 40]. However, many of the SAPSO algorithms have been shown
to exhibit either premature convergence or rapid divergence, thereby leading to
poor performance [14, 15, 17, 42]. An additional example is the bare bones PSO
(BBPSO) [21], which updates particle positions probabilistically using a Gaus-
sian distribution. However, the manner in which particle positions are created
via BBPSO is strikingly dissimilar to how the conventional PSO determines
updated particle positions.

In this paper, a new PSO variant is proposed by formulating a new proba-
bilistic approach to generating particle positions. The new approach is inspired
by the BBPSO algorithm, but differs significantly in the manner by which par-
ticle positions are generated. Notably, the proposed algorithm generates particle
positions using a model that more closely resembles the canonical PSO, which
as this paper will demonstrate, provides a clear performance advantage over
BBPSO and other PSO configurations.

The remainder of this paper is structured as follows. Section 2 provides the
necessary background information about PSO and BBPSO. The proposed algo-
rithm is described in Section 3, while Section 4 details the empirical analysis and
results. Finally, concluding remarks and avenues of future work are provided in
Section 5.

2 Background

This section provides the necessary background information about the PSO and
BBPSO algorithms. The PSO algorithm is described in Section 2.1 while the
BBPSO algorithm is outlined in Section 2.2.

2.1 Particle Swarm Optimization

The PSO algorithm [22] consists of a collection of agents, referred to as particles,
which each represent a candidate solution to an optimization problem. Each
particle retains three pieces of information, namely its current position, velocity,
and its (personal) best position found within the search space. Particle positions
are updated each iteration via the calculation and subsequent addition of a
velocity to the particle’s current position. A particle’s velocity is based on its
attraction towards two (promising) locations in the search space, namely the best
position found by the particle itself and the best position found by any particle
within the particle’s immediate neighbourhood [23]. The neighbourhood of a
particle is defined as the other particles within the swarm from which it may
take influence, which is most commonly the entire swarm or, alternatively, the
immediate neighbours when arranged in a ring [23].
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To facilitate movement in the PSO algorithm, the velocity is calculated for
particle i according to the inertia weight model [34] as

vij(t+ 1) = ωvij(t) + c1r1ij(t)(yij(t)− xij(t)) + c2r2ij(t)(ŷij(t)− xij(t)), (1)

where vij(t) and xij(t) are the velocity and position in dimension j at time
t, respectively. The inertia weight is given by ω while c1 and c2 represent the
cognitive and social acceleration coefficients, respectively. The stochastic compo-
nent of the algorithm is provided by the random values r1ij(t), r2ij(t) ∼ U(0, 1),
which are independently sampled each iteration for all components of each par-
ticle’s velocity. Finally, yij(t) and ŷij(t) denote the personal and neighbourhood
best positions in dimension j, respectively. Particle positions are then updated
according to

xij(t+ 1) = xij(t) + vij(t+ 1). (2)

2.2 Barebones Particle Swarm Optimization

When examining particle movement patterns, Kennedy noted that particle po-
sitions formed a bell curve centred around the midpoint between the global and
personal best positions [21]. Based on this result, the BBPSO algorithm [21]
eliminates the velocity component of PSO and rather updates particle positions
probabilistically according to

xij(t+ 1) =

{
yij(t) if U(0, 1) < e

N
(
c1yij(t)+c2ŷij(t)

c1+c2
, |yij(t)− ŷij(t)|

)
otherwise

, (3)

where N (µ, σ) denotes a normal distribution with mean µ and standard devia-
tion σ and e is a parameter representing the per-dimension chance of selecting
the personal best position. In the original formulation of BBPSO, the control
parameters were set as c1 = c2 = 1 [21]. Later theoretical results supported the
observation of Kennedy by showing that, using the stagnation and deterministic
assumptions, each particle will converge to the point c1yi+c2ŷi

c1+c2
[2, 37].

3 Gaussian Valued Particle Swarm Optimization

To provide the motivation for the proposed algorithm, consider the PSO velocity
equation given in Eq. (1) when ω = 0. With no inertia, the velocity calculation
simplifies to

vij(t+ 1) = c1r1ij(t)(yij(t)− xij(t)) + c2r2ij(t)(ŷij(t)− xij(t)). (4)

Note that because r1ij(t), r2ij(t) ∼ U(0, 1), Eq. (4) can be reformulated as

vij(t+ 1) = v1ij(t) + v2ij(t) (5)
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where v1ij(t) ∼ U(0, c1(yij(t)−xij(t))) and v2ij(t) ∼ U(0, c2(ŷij(t)−xij(t)))3. It
can be easily observed that the position update becomes a sum of two uniform
distributions, thereby leading to a trapezoidal distribution. The shape of the
resulting trapezoidal distribution is then governed by the distance between the
current particle’s position and the position of the personal and neighbourhood
best, respectively. Even with the reintroduction of the inertia component, the
same general observation can be made; the particle position update depends
heavily upon not only the personal and neighbourhood best positions, but rather
the distance between the current particle and these two attractors.

The position update mechanism for GVPSO is formulated by employing a
Gaussian distribution centred at a random point taken from the aforementioned
trapezoidal distribution. The Gaussian distribution is used to modulate the par-
ticle step sizes based upon the distance between the current position and the
personal and neighbourhood best positions. Specifically, an ancillary position,
∆ij(t), is calculated for each particle in every dimension using Eqs. (1) and (2)
with ω = 0 and c1 = c2 = 1. This effectively retains the core movement pattern
of PSO without the reliance on control parameter values. The particle’s new
position is then determined using a Gaussian distribution centred between the
current position and ∆ij(t) with a standard deviation based on the magnitude
of the distance between the current position and ∆ij(t) according to

xij(t+ 1) =

{
yij(t) if U(0, 1) < e

N
(
xij(t)+∆ij(t)

2 , |∆ij(t)− xij(t)|
)

otherwise
, (6)

where e is the exploitation parameter, as seen in Eq. (3). Note that GVPSO,
in the same manner as BBPSO, eliminates the need for the conventional PSO
parameters ω, c1, and c2. However, the GVPSO algorithm differs from BBPSO by
creating particle positions that more closely mimic the canonical position update
of PSO through the use of distance information and thus the two attractors
remain to have a strong influence. Furthermore, the step sizes in the GVPSO
are implicitly controlled by the distances between the current particle and the
two attractors, thereby leading to diminishing step sizes as the positions and
attractors inevitably converge. Thus, the GVPSO is expected to exhibit both
initial exploration and exploitation in the later phase of the search process.

4 Experimental Results and Discussion

This section presents the experimental design regarding the empirical exami-
nation of GVPSO. Section 4.1 describes the parameterization, benchmark suite,
and statistical analysis. Section 4.2 presents a sensitivity analysis on the exploita-
tion parameter while Section 4.3 presents a comparison of GVPSO to other PSO
variants.

3 Without loss of generality, this assumes that c1(yij(t) − xij(t)) > 0 and c2(ŷij(t) −
xij(t)) > 0, otherwise the bounds must be flipped, i.e., 0 becomes the upper bound.
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4.1 Experimental Setup

To first examine the effect of the exploitation probability parameter e, 10 values
of e were examined for GVPSO and BBPSO, namely values between 0.0 and
0.9 in increments of 0.1. Linearly decreasing variants (GVPSO-LD and BBPSO-
LD), whereby the value of e was linearly decreased from 0.9 to 0.0, were also
examined. The performance of GVPSO was then compared against the following
PSO strategies:

– BBPSO
– Three static PSO parameter configurations: PSO-1 (ω = 0.7298, c1 = c2 =

1.49618) [7], PSO-2 (ω = 0.729, c1 = 2.0412, c2 = 0.9477) [4], and PSO-7
(ω = 0.785, c1 = c2 = 1.331) [41], which were found to be the best performing
of 14 commonly recommended PSO parametrizations [16]

– PSO with time-varying acceleration coefficients (PSO-TVAC) [32]
– PSO with improved random constants (PSO-iRC) [16]

All examined variants consisted of 30 particles arranged in a star neighbour-
hood and used a synchronous update strategy. To prevent invalid attractors, a
particle’s personal best position was only updated if a new position had a bet-
ter objective function value and was within the feasible bounds of the search
space. For the BBPSO algorithm, the original parametrization of c1 = c2 = 1
was used. Where applicable, particle velocities were initialized to zero [9]. For
PSO-TVAC, the social acceleration coefficient was linearly increased from 0.5 to
2.5 while the values of the cognitive and inertia control parameters were linearly
decreased from 2.5 to 0.5 and 0.9 to 0.4, respectively. For PSO-iRC, parameter
configurations were re-sampled every 5 iterations (i.e., according to PSO-iRC-
p5 [16]). The value of the objective function (i.e., the fitness), averaged over 50
independent runs each consisting of 5000 iterations, was taken as the measure
of performance for each algorithm.

Benchmark Problems A suite of 60 minimization problems, originally used
by [10], were used in this study. The suite has been demonstrated to include a
range of different landscape characteristics [13]. All functions were optimized in
30 dimensions. Further information about the benchmark suite can be found in
[10] and [14].

Statistical Analysis Statistical analysis of results was done by way of Fried-
man’s test for multiple comparisons among all methods [11, 12], as recommended
by Derrac et al. [6]. Furthermore, Shaffer’s post-hoc procedure [33] was per-
formed as a means to identify the pairwise comparisons that produced signif-
icant differences. Finally, the statistical results are visualized via critical dif-
ference plots, whereby algorithms to the left of the plot (i.e., those with lower
average ranks) demonstrated superior performance. The critical difference (CD)
denotes the difference in average rank that was found to be statistically sig-
nificant. Therefore, algorithms that are grouped by a line (i.e., those with a
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difference in rank less than CD) were found to have statistically insignificant
differences in performance.

4.2 Examining the Exploitation Probability

Figures 1 and 2 show the critical difference plots for the examined values of e for
both the GVPSO and BBPSO algorithms over the entire set of problems. While
the exact values that lead to the best performance were different among the two
algorithms, the general trends were the same. In general, mid-range values of
e (i.e., 0.4–0.7) tended to perform the best, showing that both exploration and
exploitation were beneficial to the GVPSO algorithm. Based upon these results,
GVPSO and BBPSO with values of e set to 0.5, 0.6, and 0.7 were compared
against other PSO techniques in the next section.

5 6 7 8

CD

gvpso.0.5
gvpso.0.7
gvpso.0.6

gvpso.ld
gvpso.0.8
gvpso.0.4

gvpso.0.3
gvpso.0.9
gvpso.0.2
gvpso.0.1
gvpso.0.0

Fig. 1: Comparison of GVPSO exploit probabilities over all 60 benchmark prob-
lems.
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bbpso.0.7
bbpso.0.5
bbpso.0.4
bbpso.0.8

bbpso.ld

bbpso.0.3
bbpso.0.2
bbpso.0.9
bbpso.0.1
bbpso.0.0

Fig. 2: Comparison of BBPSO exploit probabilities over all 60 benchmark prob-
lems.

4.3 Comparison with Other Particle Swarm Optimization
Techniques

This section presents the results from comparing GVPSO (with e = {0.5, 0.6, 0.7})
against the other PSO variants. Fig. 3 shows the results across all benchmark
problems. It was first observed that the best average ranks across all bench-
mark problems were attained by the three configurations of GVPSO, clearly
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indicating the merit of this approach. Despite the better average rank attained
by GVPSO, the critical difference plot indicates there was no significant differ-
ence in performance between the different GVPSO and BBPSO configurations
as well as PSO-2. However, it was also observed from Fig. 3 that PSO-2 attained
a notably worse average rank than each of the GVPSO and BBPSO configura-
tions. The remaining PSO variants, namely PSO-1, PSO-7, PSO-TVAC, and
PSO-iRC-p5 all performed significantly worse than GVPSO.

4 5 6 7 8

CD

gvpso.0.7
gvpso.0.6
gvpso.0.5
bbpso.0.6
bbpso.0.7
bbpso.0.5

PSO.2
PSO.1
PSO.iRC.p5
PSO.7
PSO.TVAC

Fig. 3: Comparison of GVPSO with other PSO variants over all 60 benchmark
problems.

5 Conclusions and Future Work

This paper proposed a new particle swarm optimization (PSO) variant, entitled
Gaussian-valued PSO (GVPSO), which generates particle positions probabilis-
tically according a Gaussian distribution. The GVPSO algorithm is loosely in-
spired by the bare bones PSO (BBPSO) but differs significantly from the BBPSO
algorithm by generating particles according to a distribution that more closely
resembles the conventional PSO position update. An analysis of the single pa-
rameter of GVPSO was first performed, followed by a comparison of GVPSO to
BBPSO and five additional PSO configurations. Results indicate that GVPSO
generally outperforms the other strategies.

An immediate avenue of future work lies in the self-adaptation of the single
GVPSO parameter, resulting in a parameter-free algorithm. Further work will
also examine the proposed algorithm in different dimensionalities and compare
its performance against additional PSO variants, including improved implemen-
tations of BBPSO.
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