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Abstract

In this paper we consider a delayed exchange of stability for solutions
of a singularly perturbed nonautonomous equation in the case when a
backward bifurcation of its quasi-steady (critical) manifolds occurs. This
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singularly perturbed predator-prey models of Rosenzweig–MacArthur and
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1 Introduction

Singular perturbation theory describes the behaviour of solutions to systems of
differential equations of the form

εut = f(t, u, v, ε), u(t0) = u0

vt = g(t, u, v, ε), v(t0) = v0
, (1.1)

where (f, g) : U → Rn+m is a sufficiently regular function on an open set U ⊂
Rm+n+2, as the parameter ε tends to 0. Problems of this type arise in almost all
fields of science and engineering, where one attempts to model systems driven
by mechanisms operating at widely different scales (whose ratio is represented as
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the parameter ε), see e.g. [3, 17, 25, 31], and the interest is to use the solution of
the simplified equation obtained from (1.1) by putting ε = 0 to approximate true
solutions to (1.1) for small, but nonzero, ε. Numerous methods to approach such
problems have been developed, ranging from classical asymptotic expansions,
through the Tikhonov-Vasilieva theory, [30], the geometric singular perturbation
theory, [12], to the recent renormalization group approach, [8, 9, 20]. A typical,
and somehow expected, result is that, under some technical assumption, the
solutions to (1.1) can be approximated by the solutions on the quasi-stationary
manifold ; that is, the manifold Γ determined by

0 = f(t, u, v, 0); (1.2)

the solution ū(t, v) of (1.2) is then used to find the approximation of v given by
the solution v̄ to

vt = g(t, v, ū(t, v), ε), v(t0) = v0. (1.3)

Whether (ū, v̄) ≈ (u, v) for small ε depend on two fundamental assumptions:
the solution ū must be isolated and Γ must be attractive (hyperbolic) in the
sense that Γ must consist of uniformly asymptotically stable equilibria of the
layer equation

uτ = f(t, u, v, 0), (1.4)

where (t, v) are treated as parameters. In many cases, however, the solution
of (1.2) is a complicated self-intersecting geometrical structure with changes of
stability, as defined above, occurring at the bifurcation points. In such cases
an expectation is that the solutions to (1.1) will follow the part of Γ consisting
of its attracting parts. While this often happens, see e.g. [13, 14, 15, 17, 18,
19], there are cases when the solution, having passed close to the intersection,
follows the repelling part of Γ for some fixed time and only after that jumps
to the closest attracting part of Γ. Such a phenomenon often is termed the
delayed stability switch and the solutions having this property are referred to as
canards, e.g. [4, 6, 10, 11, 17, 16, 24, 27]. The existence of canards have been
investigated in those papers by various methods, such as nonstandard analysis,
see e.g. [6], matched asymptotic expansions, [11, 23], or singularity blow-ups,
[10]. An alternative method, based on upper and lower solutions, was proposed
in [7], where the authors considered one-dimensional non-autonomous problems
with Γ exhibiting transcritical and pitchfork bifurcations. The approach of [7]
was extended to a class higher dimensional monotone problems in [4, 5]. While
not as general, this method has the advantage of being quite elementary; it also
handles non-autonomous problems and provides an explicit formula for the time
of the stability switch, that is not available for most of other methods.

The aim of this note is to extend the method of [7] to backward bifurcations
of the quasi-steady manifold. The proof also covers the backward (or subcritical)
transcritical bifurcation that typically occurs alongside the forward transcritical
bifurcation, when two branches of Γ intersect in a transversal but not orthogonal
way. In this way are able to complete the proof of [7, Theorem 2.1] in the case
of negative initial values as the transcritical bifurcation considered there, is
backward in the fourth quadrant.
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As an application, we consider two predator-prey models: the Rosenzweig–
MacArthur model, [22, 28] and the Leslie–Gowers/Holling model, [2]. If the prey
dynamics is very fast, the existence of slow-fast cycles and canard solutions were
investigated in [26, 13] in the former case, while the latter was considered in
[1]. In both these cases the quasi-steady manifolds intersect and a backward
bifurcation occurs along their intersection. Applying the one dimensional the-
ory developed in this paper, combined with the approach of [4, 5], we give an
elementary proof of the existence of canards and provide an exact value of time
at which the stability switch occurs.

2 Formulation of the problem and assumptions

As in [7, Theorem 2.1], we consider the initial value problem for the singularly
perturbed differential equation

εut = f(t, u, ε), u(t0, ε) = u0, (2.1)

in D = D0 × Iε0 , where D0 = IT × IN , IN = (−N,N) with N > 0, Iε0 = {ε :
0 < ε < ε0} and t ∈ IT = {t : t0 < t < T} . We use the notation for the flows;
that is, if it is necessary to indicate the initial time or condition, the solution
u to (2.1) will be denoted by u(t, t0, u0, ε). This notation will be also extended
to indicate further dependence of u with respect to additional parameters that
may arise in the problem.

As discussed in Introduction, we are interested in solutions to (2.1) for small
ε and that strongly depends on the roots of the degenerate equation

f(t, u, 0) = 0; (2.2)

each solution to (2.2) is an equilibrium of the layer equation

uτ = f(t, u, 0), τ > 0,

where t and u are considered as a parameters (related by (2.2)). The following
assumptions will we needed throughout the paper:

(A1) f ∈ C3(D,R).

(A2) Let t0 ≤ ta < tb < T . In IT × IN the solution set of (2.2) consists of three
roots: φ0 = {(t, u) ∈ D0 : u = 0}, φ1 = {(t, u) ∈ D0 : u = ϕ1(t)}, φ2 =
{(t, u) ∈ D0 : u = ϕ2(t)} for t ∈ [ta, T ] and ϕ1, ϕ2 are twice differentiable
on [ta, T ]. Moreover, we have

ϕ1(ta) ≤ ϕ2(ta),

ϕ1(t) < ϕ2(t), t ∈ (ta, T ],

ϕ2(t) > 0, t ∈ [ta, T ],

ϕ1(t) > 0, t ∈ [ta, tb) and ϕ1(t) < 0, t ∈ (tb, T ].
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Remark 2.1. The geometry of the quasi-steady steady states introduced in
assumption (A2) depends on the mutual relations between the parameters. In
general, by a backward (transcritical) bifurcation we understand the configura-
tion, when there are solutions to (2.2) in the first quadrant before the time they
intersect; that is, for t0 ≤ t < tb in the current notation. However, recently
there has been an interest in more specific cases of backward bifurcation, such
as the one shown on Fig. 1, when the backward branch of the quasi-steady
state after some time folds again forward, creating the second attracting branch
that coexists for some time with the attracting trivial steady state. Such back-
ward bifurcations are of importance e.g. in epidemiology, see e.g. [21], as they
describe situations in which locally stable disease free and endemic equilibria
can coexist. In the notation of (A2), the latter case occurs if ta > t0 and
ϕ1(ta) = ϕ2(ta); that is, for t ∈ [t0, ta) there is only the trivial attractive quasi-
steady state and two new quasi-steady, one repelling and one attractive, branch
out at ta. The backward bifurcation occurs at tb > ta (Fig. 1). If, however,
ϕ1(ta) < ϕ2(ta), then ϕ2 is an isolated quasi-steady and φ1 and φ0 intersect at
tb forming a backward transcritical (sometimes called subcritical) bifurcation.
Such a case would occur if on Fig. 1 the turning point of the quasi-steady state
occurred at some t < t0 and we took ta = t0. As the main objective of the paper
is to analyse the behaviour of the solutions close to tb, distinguishing these cases
does not make any difference in the proof, apart from a technical condition that
u0 < φ1(t0) if ta = t0. Finally, if the turning point of the quasi-steady state
on Fig. 1 was in the fourth quadrant, then the upper branch of ϕ2 would be a
standard transcritical bifurcation and thus we will not consider this case here.

For the stability of the quasi-steady states we assume

(A3) fu(t, 0, 0) < 0, t ∈ (t0, tb) and fu(t, 0, 0) > 0, t ∈ (tb, T ],

fu(t, ϕ2(t), 0) < 0, t ∈ (ta, T ],

fu(t, ϕ1(t), 0) > 0, t ∈ (ta, tb) and fu(t, ϕ2(t), 0) > 0, t ∈ (tb, T ].

For u ≡ 0 we additionally assume

(A4) f(t, 0, ε) = 0 for (t, ε) ∈ Iε0 × IT .

Remark 2.2. Assumption (A4) ensures that u ≡ 0 is a solution to the problem
(2.1) for all ε ∈ Iε0 and IT . Therefore, if we let I+

N = {u ∈ IN : u ≥ 0} and
I−N = {u ∈ IN : u ≤ 0}, then I±N are invariant under the flow generated by (2.1).

Next, let us define the function

F (t, ε) =

∫ t

t0

fu(s, 0, ε)ds. (2.3)

By (A3), F (t, 0) = 0 has at most one root in (t0, T ). Further, we assume

(A5) The equation F (t, 0) = 0 has a root t∗ in (t0, T ).
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Figure 1: Backward bifurcation at the bifurcation time tb

We observe that F (t, 0) attains global minimum on [t0,∞) at t = ta, hence
tb < t∗ and F (t, 0) < 0 on (t0, t

∗) with dF
dt

∣∣
t=t∗

> 0.

The last assumption on f is:

(A6) There is a positive number c0 such that c0 ∈ I+
N and

f(t, u, ε) ≤ fu(t, 0, ε)u+
1

2
fuu(t, 0, ε)u2,

for t0 ≤ t ≤ t∗, ε ∈ Iε0 and 0 ≤ u ≤ c0.

Remark 2.3. Note that assumption (A6) holds if the third derivative of f with
respect to u at u = 0 is negative.

Remark 2.4. As will be clear from the proof, most of the assumptions above,
such as (A1) and (A6), must hold only in a neighbourhood of the bifurcation
point. A more exhaustive discussion of possible relaxations of the assumptions
for transcritical bifurcation can be found in [5, Appendix].

Remark 2.5. In this paper we restrict ourselves to positive solutions. The rea-
son for this is that the problem in I−N can be transformed, by replacing u by −u,
to a problem with forward transcritical bifurcation in I+

N , [29]. That problem,
under the assumption that u = ϕ1(t) is attractive for t > tb, has been studied
in [7, Theorem 2.1]. In the same theorem the authors also stated the result for
negative solutions. However, the proof of this part is not correct as they used
the same construction as for the positive solutions without recognizing that the
bifurcation they considered is backward in the negative half-plane and, under
the adopted assumption ([7, Theorem 2.1, assumption (A5)]) the exponential
function is an upper solution for both positive and negative initial conditions.
Thus our result can be considered as filling this gap.
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3 Delayed exchange stabilities in the backward
bifurcation

As in [7], our approach is based on the concept of upper and lower solutions.
We recall that functions α and β are, respectively, a lower and upper solution
to (2.1), if they are continuous, piecewise differentiable with respect to t and

α(t, ε) ≤ β(t, ε), α(t0, ε) ≤ u0 ≤ β(t0, ε) (3.1)

and

εαt(t, ε) ≤ f(t, α, ε), εβt(t, ε) ≥ f(t, β, ε), (3.2)

for t ∈ IT , ε ∈ Iε0 . If there exit lower and upper solutions to (2.1), then there
exists its unique solution that satisfies

α(t, ε) ≤ u(t, ε) ≤ β(t, ε), t ∈ IT , ε ∈ Iε0 .

We also recall that, for a sequence of function defined on a noncompact I, we
say that it converges almost uniformly if it converges uniformly on any compact
subset of I.

The following technical lemma is basic for the considerations.

Lemma 3.1. Assume that G is a continuously differentiable function on [a, b]
satisfying G(a) = G(b) = 0, G(t) < 0 on (a, b) with Gt(a) < 0 and Gt(b) > 0.
Further, let {φ(·, ε)}ε>0 be a family of continuous functions on [a, b] such that
limε→0+ φ(t, ε) = φ(t) uniformly for t ∈ [a, b]. Then for any t ∈ (a, b), we have

lim
ε→0+

1
ε

t∫
a

e
G(s)
ε φ(s, ε)ds = − φ(a)

Gt(a) ,

lim
ε→0+

1
ε

b∫
t

e
G(s)
ε φ(s, ε)ds = φ(b)

Gt(b)

(3.3)

and the convergence is almost uniform on (a, b). Moreover, there is M < ∞
such that

sup
0<ε<ε0

1

ε

b∫
a

e
G(s)
ε |φ(s, ε)|ds ≤M. (3.4)

Proof. First observe that

lim
ε→0+

e
G(t)
ε =

{
1, t ∈ {a, b},
0, t ∈ (a, b),

(3.5)

hence

lim
ε→0+

∫ b1

a1

e
G(s)
ε φ(s, ε)ds = 0. (3.6)
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for any a1, b1 ∈ [a, b]. Moreover, for any a1, b1 ∈ (a, b) there is k > 0 such that

e
G(t)
ε ≤ e− kε and hence∣∣∣∣∣ lim
ε→0+

1

ε

∫ b1

a1

e
G(s)
ε φ(s, ε)ds

∣∣∣∣∣ ≤ lim
ε→0+

maxt∈[a,b] |φ(t, ε)|e− kε
ε

(b1 − a1) = 0. (3.7)

We begin with the first equality. Since Gt(a) < 0, there is a1 > a such
that Gt(t) < 0 on [a, a1]. Therefore, for any 0 < t < a1, G maps (a, t) onto
(G(t), 0) =: (w, 0) in a one-to-one way. Then we can set z = G(s) so that
dz = Gs(s)ds and s = G−1(z). Thus, for a < t < a1,

lim
ε→0+

∫ t

a

e
G(s)
ε

ε
φ(s, ε)ds = − lim

ε→0+

∫ 0

w

e
z
ε

ε

φ(G−1(z), ε)

Gs(G−1(z))
dz = − lim

ε→0+

∫ 0

w

e
z
ε

ε
ψ(z, ε)dz

= − lim
ε→0+

∫ 0

w

e
z
ε

ε
ψ(z)dz − lim

ε→0+

∫ 0

w

e
z
ε

ε
(ψ(ε, z)− ψ(z))dz,

where ψ(z) = φ(G−1(z))
Gs(G−1(z)) . Define

δε(z) =

{
1
εe

z
ε , w ≤ z ≤ 0,
0, z /∈ [w, 0].

Since ∫ +∞

−∞
δε(z)dz =

∫ 0

w

1

ε
e
z
ε dz = 1− ewε → 1 (3.8)

when ε→ 0+ and

lim
ε→0+

δε(z) =

{
+∞, z = 0

0, z 6= 0
,

δε is a delta sequence. Consequently, for any a < t < a1 we get

lim
ε→0+

1

ε

∫ 0

w

e
z
εψ(z)dz =

φ(G−1(0))

Gt(G−1(0))
=

φ(a)

Gt(a)
.

Further∣∣∣∣∫ 0

w

e
z
ε

ε
(ψ(z, ε)− ψ(z))dz

∣∣∣∣ ≤ sup
z∈[w,0]

|ψ(z, ε)− ψ(z)|
∫ +∞

−∞
δε(z)dz

≤ sup
s∈[a,a1]

|φ(s, ε)− φ(s)|
|Gs(s)|

(3.9)

and hence

lim
ε→0+

∫ 0

w

e
z
ε

ε
(ψ(z, ε)− ψ(z))dz = 0.

Thus, for any t ∈ (0, a1) we have

lim
ε→0+

∫ t

a

e
G(s)
ε

ε
φ(s, ε)ds = − φ(a)

Gt(a)
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and then the first equation of (3.3) for arbitrary t < b follows from (3.7).
To prove the almost uniform convergence, we observe that, by (3.7) and (3.9),

it suffices to prove that for any δ > 0 there is ε0 such that for any 0 < ε < ε0

and w ∈ [G(a1), w0], where w0 < 0 we have∣∣∣∣1ε
∫ 0

w

e
z
εψ(z)dz − ψ(0)

∣∣∣∣ < δ.

By (3.8), we have

1

ε

∫ 0

w

e
z
εψ(z)dz − ψ(0) =

1

ε

∫ 0

w

e
z
ε (ψ(z)− ψ(0))dz − ewε ψ(0)

and since it is clear that the last term converges to zero uniformly on any half-
line (−∞, w0], we only have to focus on the integral term. Then we split the
integral and, using again (3.8), we obtain the following estimates∣∣∣∣1ε

∫ 0

w

e
z
ε (ψ(z)− ψ(0))dz

∣∣∣∣
≤

∣∣∣∣∣
∫ −√ε
w

1

ε
e
z
ε (ψ(z)− ψ(0))dz

∣∣∣∣∣+

∣∣∣∣∫ 0

−
√
ε

1

ε
e
z
ε (ψ(z)− ψ(0))dz

∣∣∣∣
≤ 2 max

z∈[w,0]
|ψ(z)|

∣∣∣∣∣
∫ −√ε
w

1

ε
e
z
ε dz

∣∣∣∣∣+ max
z∈[−

√
ε,0]
|ψ(z)− ψ(0)|

∣∣∣∣∫ 0

w

1

ε
e
z
ε dz

∣∣∣∣
≤ 2 max

z∈[w,0]
|ψ(z)|

∣∣∣e− 1√
ε − ewε

∣∣∣+ max
z∈[−

√
ε,0]
|ψ(z)− ψ(0)|.

We see that the first term uniformly converges to zero as long as w ≤ w0 < 0 and
the second term also can be estimated independently of w du to the continuity
of ψ at 0.

The proof of the statements for the second equation in (3.3) follows in the
same way.

To prove (3.4), we split

1

ε

b∫
a

e
G(s)
ε |φ(s, ε)|ds

≤ sup
s∈[a,b],0<ε<ε0

|φ(s, ε)|

1

ε

a1∫
a

e
G(s)
ε ds+

1

ε

b1∫
a1

e
G(s)
ε ds+

1

ε

b∫
b1

e
G(s)
ε ds


= I1 + I2 + I3,

where b1 < b is such that Gt > 0 on [b1, b]. I2 is clearly bounded by (3.7).
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Further, as in the first part of the proof,

I2 =
1

ε

a1∫
a

e
G(s)
ε ds =

1

ε

0∫
w

e
z
ε

1

Gs(G−1(z))
dz ≤ 1

inft∈[a,a1] |Gt(t)|
(1− ewε )

≤ 1

inft∈[a,a1] |Gt(t)|
<∞ (3.10)

and an analogous calculation is valid for I3.

Theorem 3.1. Let assumptions (A1)–(A6) and the notations introduced therein
hold and let u0 ∈ I+

N . Then for sufficiently small ε there is a unique solution
u(t, ε) to the problem (2.1) which satisfies the following conditions

lim
ε→0+

u(t, ε) = 0, for t ∈ (t0, t
∗), (3.11)

lim
ε→0+

u(t, ε) = ϕ2(t), for t ∈ (t∗, T ], (3.12)

and the convergence is almost uniform on the respective intervals.

Proof. Since the proof of this theorem is long and rather technical, first we
provide a sketch of it. The idea of the proof is based on the observation that, by
the Tikhonov theorem, after the initial transition time the solution u of (2.1) is
close to zero and, as long as it stays there, the right hand side f of (2.1) can be
approximated by its Taylor expansion around u = 0. While for the transcritical
bifurcation, as in [7], the linearization works, here the quadratic approximation
turns out to be necessary. The resulting equation is the Bernoulli equation that
can be explicitly solved and its solution, under the adopted assumptions, is an
upper solution for (2.1). Using Lemma 3.3 we find that this upper solution
converges to zero on an interval (t0, t

∗) with t∗ > ta and that this is the largest
interval on which the convergence is almost uniform. Since the trivial solution
is an obvious lower solution to (2.1), we obtain (3.11). To prove (3.12), we
construct lower solutions to (2.1) that detach themselves from the trivial solution
soon after t∗ – it is sufficient to construct lower solutions that become positive
uniformly in ε for t > t∗ as then they enter into the domain of attraction of ϕ2

and, by a standard Lyapunov type argument, become attracted by it, dragging
with them the solution to (2.1).

Let us now make the above ideas mathematically rigorous. First, observe
that, by assumption (A1), applying the Mean Value Theorem and using e.g. the
Taylor theorem with the remainder in the integral form, there are (uniformly)
continuous functions Ψ and ψ on [t0, t

∗]× [0, ε0] such that

F (t, ε) = F (t, 0) + Ψ(t, ε)ε. (3.13)

In particular,

Ψ(t, ε) =
1

ε

∫ ε

0

Fs(t, s)ds =

∫ 1

0

D2F (t, εz)dz (3.14)
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where D2 denotes differentiation with respect to the second variable.
Observe that u ≡ 0 is a solution for any ε ∈ Iε0 and also it is an iso-

lated attracting quasi-steady state in the domain [t0, t]× [0, u], with t < tb and
sufficiently small u > 0. Hence, the solutions to (2.1) starting from positive
initial conditions are nonnegative and are attracted to the quasi-steady state
u ≡ 0 on (t0, t̄]. In other words, if we fix 0 < u0 < N , then for any η > 0
and any t̄ < tb there is ε0 such that 0 < u(t̄, t0, u0, ε) < η. Thus, using the
fact that the solutions cannot cross each other, we see that for t > t̄ we have
0 < u(t, t0, u0, ε) ≤ u(t, t̄, η, ε). Thus, without loosing generality, we can assume
that t0 = t̄ and u0 = η for the estimates from above of the solution close to tb.

Let us consider the quadratic approximation to (2.1),

εβt(t, ε) = fu(t, 0, ε)β(t, ε) +
1

2
fuu(t, 0, ε)β2(t, ε), β(t0, ε) = u0. (3.15)

Using (A6), we see that β is an upper solution to (2.1) as long as it remains
small. Since (3.15) is a Bernoulli type equation, it can be easily solved, giving

β(t, ε) =
u0e

F (t,ε)
ε

1− u0

2ε

∫ t
t0
e
F (t,ε)
ε fuu(s, 0, ε)ds

. (3.16)

Now, observe that, by (3.13), one gets

e
F (t,ε)
ε fuu(t, 0, ε) = e

F (t,0)
ε eΨ(t,ε)fuu(t, 0, ε) = e

F (t,0)
ε φ(t, ε) (3.17)

and, by (3.14),
lim
ε→0+

φ(t, ε) = eFε(t,0)fuu(t, 0, 0).

Thus, using Lemma 3.1,

lim
ε→0+

u0

2ε

∫ t

t0

e
F (t,ε)
ε fuu(s, 0, ε)ds = −u0e

Fε(t0,0)fuu(t0, 0, 0)

2fu(t0, 0, 0)
(3.18)

almost uniformly on (t0, t
∗). By the comments at the beginning of the proof,

we can select u0 small enough for
∣∣∣u0e

Fε(t0,0)fuu(t0,0,0)
2fu(t0,0,0)

∣∣∣ < 1/2 and hence

lim
ε→0+

β(t, ε) = 0

almost uniformly on (t0, t
∗). Moreover, again by Lemma 3.1,∣∣∣∣1ε
∫ t

t0

e
F (t,ε)
ε fuu(s, 0, ε)ds

∣∣∣∣ ≤M
for all ε ∈ Iε0 and t ∈ [t0, t

∗] and thus, by selecting sufficiently small u0 we can
make 0 < β(t, ε) < c0 (see assumption (A6)), hence β is an upper solution and
(3.11) holds.
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Let ν > 0 be such that t∗ − ν > tb. We can also estimate an upper bound
of u(t, ε) on [t∗ − ν, T ]. From assumption (A2), there exists ε1 such that for
ε < ε1 we have u(t∗ − ν, ε) < ϕ2(t∗ − ν). Since φ2 is an attracting quasi-steady
state on [tb, T ], we can fix sufficiently small ω and choose ε < ε2 such that, by
a classical Lyapunov type argument, e.g. [3, p. 90], if a solution u(t, ε) enters
the strip

{(t, u) : t ∈ [t∗ − ν, T ], ϕ2(t)− ω < u < ϕ2(t) + ω} ,

then it stays there. Consequently, one has

u(t, ε) ≤ ϕ2(t) + ω,

for every ε ≤ min{ε1, ε2}.

Now, we shall construct a nontrivial lower solution to (2.1). Let us define

α(t, ε, γ) =
νe

F (t,ε)−γ(t−t0)
ε

1− ν
2ε

∫ t
t0
e
F (t,ε)−γ(t−t0)

ε fuu(s, 0, ε)ds
, (3.19)

where γ > 0 and ν > 0 are sufficiently small constants to be determined later.
Notice that α(t, ε, γ) satisfies the following initial value problem

εαt(t, ε, γ) = (fu(t, 0, ε)− γ)α(t, ε, γ) +
1

2
fuu(t, 0, ε)α2(t, ε, γ), α(t0, ε) = ν.

Moreover, observe that α(t, ε, γ) ≤ β(t, ε) for every γ, t ∈ IT and ε ∈ Iε0 . Set

G(t, γ) = F (t, 0)− γ(t− t0).

Using the Implicit Function Theorem and the properties of F , for sufficiently
small γ there is a unique t1(γ) for which G reaches its minimum and there
is a unique exists t2(γ) > t∗ such that G(t2(γ), γ) = 0 and Gt(t2(γ), γ) > 0.
Furthermore, t1(γ)→ tb and t2(γ)→ t∗ as γ → 0+. Now, we have as in (3.10)∣∣∣∣∣1ε

∫ t2(γ)

t0

e
F (s,ε)−γ(s−t0)

ε fuu(s, 0, ε)ds

∣∣∣∣∣ ≤ 1

ε

∫ t2(γ)

t0

e
G(s,γ)
ε eΨ(s,ε)|fuu(s, 0, ε)|ds

≤ max
s∈[0,T ],0<ε<ε0

eΨ(s,ε)|fuu(s, 0, ε)|

(
M1 +

1

ε

∫ t2(γ)

b1

e
G(s,γ)
ε ds

)

≤M2

(
M1 +

1

inft∈[b1,t2(γ)] |fu(t, 0, 0)− γ|

)
≤M3 <∞,

where b1 is an arbitrary number such that fu(t, 0, 0) − γ > 0 on [b1, t2(γ)] and
hence M3 can be made independent of γ for sufficiently small γ. Thus, we can
select ν small enough for νM3/2 < 1/2 and thus, for sufficiently small ε, ν and
t ∈ [t0, t2(γ)] we obtain

0 < α(t, ε, γ) ≤M4ν (3.20)
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where M4 is independent of γ. Further, let us define

α(t2(γ), ε, γ) =
νeΨ(t2(γ),ε)

H(γ, ε)
, (3.21)

where, as in (3.17),

H(γ, ε) := 1− ν

2ε

∫ t2(γ)

t0

e
Gγ (s)

ε eΨ(s,ε) fuu(s, 0, ε)ds. (3.22)

Using Lemma 3.1, we get

lim
ε→0+

α(t2(γ), ε, γ) =
νeFε(t2(γ),0)

H(γ, 0)
, (3.23)

where

H(γ, 0) = 1 +
ν

2
eFε(t0,0) fuu(t0, 0, 0)

fu(t0, 0, 0)
− ν

2
eFε(t2(γ),0) fuu(t2(γ), 0, 0)

fu(t2(γ), 0, 0)
,

where, by (A3), fu(t2(γ), 0, 0) > 0. Let us recall that t2(γ) > t∗ and t2(γ)→ t∗,
as γ → 0+. Hence

lim
γ→0+

H(γ, 0) = H(0, 0) = 1 +
ν

2
eFε(t0,0) fuu(t0, 0, 0)

fu(t0, 0, 0)
− ν

2
eFε(t

∗,0) fuu(t∗, 0, 0)

fu(t∗, 0, 0)
.

Next, by (3.20), for sufficiently small ε, ν, we have α(t, ε, γ) ≤ c0 for every
t ∈ [t0, t2(γ)]. By assumptions (A1) and (A4) we can write

f(t, u, ε) = fu(t, 0, ε)u+
1

2
fuu(t, 0, ε)u2 +

1

6
fuuu(t, ςu, ε)u

3,

where ςu ∈ IN , hence assumption (A6) yields

εαt(t, ε, γ) = (fu(t, 0, ε)− γ)αγ +
1

2
fuu(t, 0, ε)α2

γ

= f(t, αγ , ε)− γαγ −
1

6
fuuu(t, ςu, ε)α

3
γ

≤ f(t, αγ , ε)− γαγ + k4α
3
γ

≤ f(t, αγ , ε),

assuming additionally that ν ≤ 1
M4

√
γ
k4

, with k4 := maxD |
1
6fuuu(t, u, ε)|.

Hence, imposing a further restriction that ν ≤ u0, α(t, ε, γ) is a lower solution
to (2.1) for t ∈ [t0, t2(γ)]; that is,

u(t, ε) ≥ α(t, ε, γ).

Furthermore, by (3.23), there is 0 < θ < ϕ2(t2(γ)) such that for all sufficiently
small ε, θ ≤ α(t2(γ), ε, γ) ≤ u(t, ε). Since the point (t2(γ), θ) belongs to the
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domain of attraction of φ2, u(t, t2(γ), θ, ε) converges almost uniformly to ϕ2(t)
on (t2(γ, T ]. Since solutions cannot intersect, we have

lim
ε→0+

u(t, ε) = ϕ2(t)

almost uniformly on (t2(γ), T ]. Since t2(γ) → t∗ as γ → 0+, equation (3.12) is
satisfied.

Example 3.1. As an illustration we consider the

εut = −u((u− 1)2 + 1− t),

whose quasi-steady states and delay in the stability switches are presented in
Figure 2.

Figure 2: Delay in the stability switch in the case of backward bifurcation of
quasi-steady states in one dimension.

4 Applications

The Rosenzweig–MacArthur model. Let us consider the following predator-
prey model, [13, 26],

εut = u
(
r
(
1− u

k

)
− av

b+u

)
, u(0, ε) = u0

vt = v
(
cu
b+u − d

)
, v(0, ε) = v0

, (4.1)

13



which is a scaled version of the Rosenzweig–MacArthur model, see [22, 28]. In
the model the prey u has logistic, while the predators v have Holling type II,
functional responses. The coefficients are assumed to be positive and the small
parameter ε accounts for fast demography of the prey and a high aggressiveness
of the predator.

It is easy to observe that the set {(u, v) : u, v ≥ 0} is invariant. Consequently,
for any positive initial conditions the are unique local solutions to (4.1) that are
positive on the interval of their existence. Furthermore, as long as the solution
is positive, (4.1) implies that u is bounded by a solution of the logistic equation,
while v is bounded by a solution to a linear equation (as u/(b + u) ≤ 1) and
hence the solutions are global.

Let us consider the geometry of the quasi-steady states. By Φ0 we denote
the trivial quasi-steady state {u = 0}. The nontrivial quasi-steady state Φ of
(4.1) is given by

v =
r(bk + u(k − b)− u2)

ak

that is a paraboloid in the (t, v, u) coordinate system. The maximum value of
v, that is

vmax =
r(b+ k)2

4ak
, (4.2)

is attained at u = k−b
2 . Moreover, the Φ intersects Φ0 at v = br

a and Φ0 is

attracting for v > br
a and repelling for 0 < v < br

a . The turning point of the

quasi-steady state is in the positive octant provided k − b > 0 and if br
a <

v0 ≤ r(b+k)2

4ak ; that is, when v0 is situated under the overhang of Φ (which places
addition restriction on u0 if we want (u0, v0) to be in the basin of attraction of

Φ0). On the other hand, if v0 >
r(b+k)2

4ak , then any (u0, v0) is in the basin of
attraction of u ≡ 0.

Our aim is to prove that, for small ε, the solution (u(t, ε), v(t, ε)) stays close
to Φ0 for some time that is independent of ε even after v(t, ε) crosses v = br/a
or, in other words, that (u(t, ε), v(t, ε)) stays close to the repelling branch of Φ0.
Precisely, we prove

Proposition 4.1. Let
k − b > 0 (4.3)

and

v0 >
r(k + b)2

4ak
, u0 ≥ 0. (4.4)

Then there exists tβ,∗, a unique positive solution to

rt+
av0

bd
e−dt − av0

bd
= 0, (4.5)

such that v(tβ,∗, ε) < br/a uniformly for sufficiently small ε,

lim
ε→0

u(t, ε) = 0 for t ∈ (0, tβ,∗) (4.6)
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and (0, tβ,∗) is the largest time interval on which the convergence is almost
uniform. Moreover

lim
ε→0

v(t, ε) = v0e
−dt for t ∈ [0, tβ,∗), (4.7)

also in an almost uniform way.

Proof. The proof is an application of Theorem 3.1. First we construct an appro-
priate upper solution so that its one-dimensional theory can be applied. From
(4.1) we see that

vt = v

(
cu

b+ u
− d
)
≥ −dv,

hence α(t) := v0e
−dt ≤ v(t, ε) and thus

ut =
1

ε
u

(
r
(

1− u

k

)
− av

b+ u

)
≤ 1

ε
u

(
r
(

1− u

k

)
− av0e

−dt

b+ u

)
.

Hence, the solution β(t, ε) to

εβt = β

[
r

(
1− β

k

)
− av0e

−dt

b+ β

]
. (4.8)

is an upper solution to u, i.e., β(t, ε) ≥ u(t, ε) for t ≥ 0.
Let

f(t, u) := u

(
r
(

1− u

k

)
− av0e

−dt

b+ u

)
(4.9)

and, as in (2.3),

F (t) =

∫ t

0

fu(s, 0)ds = rt+
av0

bd
e−dt − av0

bd
,

so that (4.5) is the equation F (t) = 0. The zeroes of f are given by φ0 = {u = 0}
and the curve φ determined by the equations

ϕβ±(t) =
1

2

(
(k − b)±

√
(k − b)2 + 4kb− 4av0ke−dt

r

)
.

We observe that the square root is real; that is, we have two real branches of φ,
if t > tβa , where

tβa := −1

d
ln
r(k + b)2

4akv0
> 0,

where the positivity is ensured by the first condition of (4.4). The position of
the quasi-steady manifold determined by ϕ± depends on the parameters of the
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problem. By (4.3), the turning point of φ is in the upper half plane (otherwise
only one branch would be there and we would have at most a transcritical
bifurcation that has been comprehensively analysed in [5]). The other important
parameter is the time, when the lower branch cuts the t-axis, given by

tβb := −1

d
ln

br

av0
. (4.10)

It is clear that tβb > tβa > 0 and hence we have a bona fide backward bifurcation
satisfying (A2) with the turning point of φ occurring at tβa > 0 and thus any u0

is in the basin of attraction of φ0, see Fig. 3.

v

u

t

v0

tb

ϕβ+

ϕβ−

ta

v = v0e
−dt

Φ

br
a

r(b+k)2

4ak

Figure 3: Interplay of one and two dimensional structures in the model.

Next, we observe that fu(t, 0) < 0 for t < tβb and fu(t, 0) > 0 for t > tβb .

Then a continuity argument shows that fu(t, φβ−(t)) > 0 for tβa < t < tβb (with

fu(t, φβ−(t)) < 0 for t > tβb ) and fu(t, φβ+(t)) > 0 for tβa < t.
Let us consider now equation (4.5). Since F (0) = 0, F (+∞) = +∞ and

Ft(t) = r − av0
b e
−dt, by (A3) F (t) reaches a single absolute minimum at tβb .

Consequently, there is a unique tβ,∗ > tb such that F (tβ,∗) = 0. Moreover, since
fuuu(t, 0) = −6av0e

−dt/b3 < 0, assumption (A6) holds as well. Hence, Theorem
3.1 implies that the solution to (4.8) satisfies

lim
ε→0

β(t, ε) = 0 for t ∈ (0, tβ,∗)
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and the convergence is almost uniform which yields the convergence part of
(4.6). To prove that this is the maximal interval of convergence, we assume, to
the contrary, that there is t1 > tβ,∗ such that

lim
ε→0

u(t, ε) = 0 for t ∈ (0, t1) (4.11)

almost uniformly. This means that for any η > 0 and δ > 0 there is ε0 > 0 such
that for every 0 < ε < ε0 we have

0 ≤ u(t, ε) ≤ δ for t ∈ [η, t1 − η]. (4.12)

We can choose δ < φ+(t) in the neighbourhood of tβ,∗. From (4.1), one gets

vt = v

(
cu

b+ u
− d
)
≤ v

(
cδ

b+ δ
− d
)
.

Let us choose δ small enough such that d(δ) := d− cδ
b+δ > 0. Then

0 ≤ v(t, ε) ≤ β(t, δ, η) := v(δ, η)e−d(δ)t, t ∈ [η, t1 − η], (4.13)

as long as v(δ, η)e−d(δ)η ≥ v(η, ε). Moreover, from (4.1), we obtain

vt = v

(
cu

b+ u
− d
)
≤ v(c− d), t ≥ 0.

Therefore, β(t) = v0e
(c−d)t satisfies

0 ≤ v(t, ε) ≤ β(t), [0, η],

hence (4.13) will be satisfied if we select v(δ, η) = v0e
cηb
b+δ . Since cδ

b+δ −d < c−d,
we see that β(t, δ, η) is also an upper solution to v(t, ε). Therefore

ut =
1

ε
u

(
r
(

1− u

k

)
− av

b+ u

)
≥ 1

ε
u

(
r
(

1− u

k

)
− aβ

b+ u

)
and thus u(t, ε) ≥ α(t, ε, δ, η), t ∈ [t0, t1 − η], where α is the solution to

εαt =
1

ε
α

(
r
(

1− u

k

)
− aβ

b+ α

)
, u(0, ε) = u0. (4.14)

As before, for (4.14) we obtain three potential quasi-steady states: u ≡ 0 and

ϕα±(t) =
1

2

[
(k − b)±

√
(k + b)2 − 4akβ(t)

r

]
,

where

tαa (δ, η) := − 1

d(δ)
ln

r(k + b)2

4akv(δ, η)
and tαb (δ, η) := − 1

d(δ)
ln

br

av(δ, η)
.
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Observe that tαa (δ, η)→ tβa and tαb (δ, η)→ tβb when δ, η → 0.
Also, in the same way,

F (t, ε, δ, η) = rt− av(δ, η)

bd(δ)
e−d(δ)t − av(δ, η)

bd(δ)

Proceeding in the same way as before, we get that there is tα,∗(δ, η) > tαb (δ, η)
such that F (tα,∗(δ, η), 0, δ, η) = 0. Moreover

lim
δ,η→0

tα,∗(δ, η) = tβ,∗. (4.15)

Observe that assumptions (A1)–(A6) are satisfied for (4.14) and hence, from
Theorem 3.1,

lim
ε→0+

α(t, ε, δ, η) = 0, for t ∈ (0, tα,∗(δ, η))

and

lim
ε→0+

α(t, ε, δ, η) = ϕα+(t), for t > tα,∗(δ, η).

Since α(t, ε, δ, η) is a lower solution for u, by (4.12) and (4.15), u(t, ε) cannot
be bounded from above by δ on any interval (tβ,∗, t1]. This contradiction shows
that (0, tβ,∗) is the largest interval on which u(t, ε) almost uniformly converges
to 0 as ε→ 0.

As far as the convergence of v(t, ε) is concerned, on [0, t̄], 0 < t̄ < tβb , the
convergence to α(t) = v0e

−dt is ensured by the Tikhonov theorem, whereas on
[t̄, tβ,∗] it follows by writing

vt = v

(
cu(t, ε)

b+ u(t, ε)
− d
)
,

with the initial condition at t̄ taken as v(t̄, ε), using the fact that u(t, ε) → 0
uniformly on [t̄, t2] for any t2 < tβ,∗ and the regular perturbation theory.

Remark 4.1. As pointed out in [26], the importance of recognizing possible
canard solutions is that a ‘naive’ asymptotic analysis can lead to a serious over
(or under) estimate of the minimum/maximum of the population. For instance,
in (4.1) an expectation is that the minimum population vmin is attained at the
intersection of quasi-steady manifolds; that is, it should be br/a and henceforth
it should increase as the prey population should have jumped from u ≡ 0 to the
upper branch of the other quasi-steady manifold. However, as the prey solution
continues close to u ≡ 0 for some time after v reached v̄ = br/a, the predator
population will still decrease. The formula derived in [26, Eq. (11)] for vmin is

vmin

v̄
− ln

vmin

v̄
=
vmax

v̄
− ln

vmax

v̄
, (4.16)

where vmax is given by (4.2) and is just a reference value used in [26] as the only
explicitly calculable value attained by v in the oscillatory dynamics considered
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there. Our method not only allows for a precise estimate of vmin but also
of the time at which it is attained and explicitly gives its dependence on the
initial condition. Indeed, from the previous considerations, for small ε, vmin is

approximately attained at tβ,∗ and vmin ≈ v0e
−dtβ,∗ . By (4.5), tβ,∗ is the unique

positive solution to

rtβ,∗ +
av0

bd
exp(−dtβ,∗)− av0

bd
= 0 (4.17)

that can be re-written as

− ln
vmin

v0
+
vmin

v̄
− v0

v̄
= 0.

This equation is the same as (4.16) if we take vmax as the initial condition for v
in (4.1).

The above considerations are illustrated on Fig. 4. We observe the qualita-
tive change of the behaviour of the solutions that depends on the parameters c
and d. In the top row c− d < 0 and the field in the first quadrant is directed to
the left, resulting in the trajectories converging to the equilibrium (k, 0) = (3, 0).
On the other hand, in the bottom row c − d > 0 and the field changes the di-
rection from the left to the right at the isocline u = bd/(c − d) > 0. Then
the trajectories take the more familiar form, known from [13, 26], leading to a
slow-fast cycle.

The Leslie-Gowers/Holling II model. In a recent paper, [1], the authors
considered the following predator-prey

εut = u
(

1− u− av
b+u

)
, u(0, ε) = u0,

vt = v
(

1− v
c+u

)
, v(0, ε) = v0,

, (4.18)

which is a scaled version of the model introduced in [2]. In [1] the authors
proved the existence of a unique attractive limit cycle showing also that near
one of the fold points there is a delayed exchange of stabilities and hence there
exists a canard solution. Here we shall show that our approach also shows the
existence of a canard solution and, as in the previous paragraph, we will be able
to explicitly estimate the time of the exchange of stabilities.

Most of the calculations for (4.18) are similar to that for (4.1) and thus we
shall not go into details. First, it is clear that positive initial conditions produce
globally defined positive solutions and hence in future we only will deal with
such solutions. Since the first equation is the same as in (4.1), the structure of
the quasi-steady manifolds is the same. Thus, the nontrivial one, say Φ, is the
paraboloid v(u) with the maximum of v attained at u = (1 − b)/2 and equal
to vmax = (b + 1)2/4a, while the trivial is given by Φ0 = {u = 0}. If we are
interested in the backward bifurcation occurring in the positive octant, we must
assume

1− b > 0. (4.19)
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Figure 4: The phase portraits of solutions to (4.1) (left) and the solutions u(t, ε)
(right) for the parameters k = 3, b = 1, r = 1.5, a = 0.18, d = 0.1, c = 0.01 (top)
and c = 0.2 (bottom), initial conditions u(0) = 0.1, v(0) = 12 and ε = 1, 0.5, 0.1.

Then the lower branch of the paraboloid intersects the plane u = 0 at v = b/a.
Further, by

vt = v

(
1− v

c+ u

)
≥ v

(
1− v

c

)
,

the function

α(t) :=
cv0e

t

c− v0 + v0et
(4.20)

is an upper solution for v. Thus, from the first equation of (4.18), the solution
β to

εβt = f(t, β) := β

(
1− β − aα(t)

b+ β

)
, β(0, ε) = u0 (4.21)

is an upper solution for u. As before, potentially there are three quasi-steady
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states, u ≡ 0 and

ϕβ∓(t) =
b− 1∓

√
(b+ 1)2 − 4aα(t)

2
.

Here the situation differs from that of the previous paragraph as α is a logistic
function with a unique attractive equilibrium at c. Furthermore, α is increasing
if 0 < v0 < c and decreasing if v0 > c. Hence, according to the geometry
describe above, for the solution to pass close to the intersection of Φ and Φ0 we
have to assume that

v0 >
b

a
> c. (4.22)

We observe that (4.22) is consistent with the assumptions in Section 2 of [1].

Under these assumptions there is exactly one tβb such that

α(tβb ) =
b

a
,

given by

tβb = ln
b(v0 − c)
v0(b− ac)

. (4.23)

This shows that assumption (A2) is satisfied and, as in the previous paragraph,
clearly (A3) is also satisfied. Observe that

F (t) = t− ac

b
ln
c− v0 + v0e

t

c
. (4.24)

We have F (0) = 0 and, thanks to (4.22), F (+∞, 0) = +∞. Further, Ft(t) =

fu(t, 0, 0) implies that F (t) is strictly increasing for t > tβb . Hence, there
is a unique tβ,∗ > tb such that F (t∗β) = 0. Moreover, since fuuu(t, 0) =

− 6cav0 exp(t)
b3(c−v0+v0 exp(t)) < 0, assumption (A6) holds as well. Thus we can state

that u(t, ε) is attracted to u = 0 up to t = tβ,∗ and we have a canard solution.
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[6] E. Benôıt, J. Callot, F. Diener, and M. Diener. Chasse au canards. Col-
lectanea Mathematica, 32:37–119, 1981.

[7] V. Butuzov, N. Nefedov, and K. Schneider. Singularly perturbed reaction-
diffusion systems in cases of exchange of stabilities. Natural Resource Mod-
elling, 13:247–269, 2000.

[8] L.-Y. Chen, N. Goldenfeld, and Y. Oono. Renormalization group and sin-
gular perturbations: Multiple scales, boundary layers, and reductive per-
turbation theory. Physical Review E, 54(1):376, 1996.

[9] H. Chiba. Extension and unification of singular perturbation methods for
ODEs based on the renormalization group method. SIAM Journal on Ap-
plied Dynamical Systems, 8(3):1066–1115, 2009.

[10] F. Dumortier and R. Roussarie. Canard cycles and center manifolds. Amer-
ican Mathematical Society, Providence, 1996.

[11] W. Eckhaus. Relaxation oscillations including a standard chase on French
ducks. In Asymptotic analysis, II, volume 985 of Lecture Notes in Math.,
pages 449–494. Springer, Berlin, 1983.

[12] N. Fenichel. Geometric singular perturbation theory for ordinary differen-
tial equations. Journal of Differential Equations, 31:53–98, 1979.

22



[13] G. Hek. Geometric singular perturbation theory in biological practice.
Mathematical Biology, 60:347–386, 2010.

[14] C. K. R. T. Jones. Geometric singular perturbation theory. In Dynami-
cal systems (Montecatini Terme, 1994), volume 1609 of Lecture Notes in
Math., pages 44–118. Springer, Berlin, 1995.

[15] M. Krupa and P. Szmolyan. Extending slow manifolds near transcritical
and pitchfork singularities. Nonlinearity, 14(6):1473–1491, 2000.

[16] M. Krupa and P. Szmolyan. Extending geometric singular perturbation
theory to nonhyperbolic points—fold and canard points in two dimensions.
SIAM journal on mathematical analysis, 33(2):286–314, 2001.

[17] C. Kuehn. Multiple time scale dynamics, volume 191 of Applied Mathemat-
ical Sciences. Springer, Cham, 2015.

[18] N. Lebovitz and R. Schaar. Exchange of stabilities in autonomous systems.
Studies in Applied Mathematics, 54:229–260, 1975.

[19] N. Lebovitz and R. Schaar. Exchange of stabilities in autonomous systems
II., vertical bifurcation. Studies in Applied Mathematics, 56:1–50, 1977.
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