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Abstract.  The problem of determining an optimal trajectory for an autonomous 

mobile robot in an environment with obstacles is considered. The Leapfrog ap-

proach is used to solve the ensuing system of equations derived from the first 

order optimality conditions of the Pontryagin Minimum principle. A compari-

son is made between a case in which the classical Newton Method and the 

Modified Newton method is used in the shooting method for solving the two 

point boundary value problem in the inner loop of the Leapfrog algorithm. It 

can be observed that with this modification of one observes gains in conver-

gence rates of the Leap-frog algorithm in general. 

Keywords: Trajectory planning, Obstacle avoidance, Leapfrog algorithm, 

Pontryagin Minimum Principle, Modified Newton algorithm 

1 Introduction  

Advances in optimal control provide the necessary tools to determine optimal trajec-

tories for problems such as those arising from applications in robotics. An amount of 

research is done on optimal control with application to mobile robot path planning 

[1], [2] and [3].  Most of these problems are nonlinear and can today be solved using 

numerical methods. The general numerical approaches for solving optimal control 

problems can be classed into direct and indirect methods [4]. In the direct method the 

differential equations and their integrals are discretized. The drawback of direct 

methods is that they suffer from lower accuracy. Indirect methods on the other hand 

have outstanding precision and have a possibly of verifying necessary conditions. The 

necessary conditions of optimality are formulated through Pontryagin Minimum Prin-

ciple (PMP) resulting to a system of boundary value problem. The disadvantage of 

using the indirect methods is that a good approximation of the initial guess for the 

costates is required.  

 

The Leapfrog method proposed in [5] can be viewed as an indirect method for solving 

TPBVP. In the method, a feasible path given from the starting and the final states is 

subdivided into segments where local optimal paths are computed. Application of the 

Leapfrog algorithm to path planning of a two-wheeled mobile robot was introduced in 

[6] to determine optimal paths for kinematic model.  Later on the work was extended 

to finding optimal trajectories for a mobile robot while avoiding obstacles [7]- [8]. 

The algorithm gave promising results for path planning in both obstructed and unob-

structed workspace.  

 

With the Leapfrog method one does not need a good approximation for initial guesses 

for the costates along a trajectory. To initialize the costates values affine approxima-

tion of the local problem in a segment is used to provide initial guesses needed in 

simple shooting. In [9] it was shown that the approximation approach provides a good 

guesses for at least some of the costates. The focus of their work was finding a way to 

choose initial guesses for the costates. Numerical and experimental solutions were 

done to validate the proposed approach.  
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Even though initial guess of the costates is not crucial in the Leapfrog method, the 

guesses are needed for the success of local shooting method. In addition, the algo-

rithm is convergent to a critical trajectory provided that these local shooting methods 

produce optimal trajectories. As mentioned in [5], improvements to the simple shoot-

ing method may be necessary for more difficult optimal control problems. This may 

reduce the computation time that the Leapfrog takes to execute, especially in the first 

and last iterations. Moreover, improve the stability of the Leapfrog numerical solu-

tions.   

 

In this paper, the Modified Newton Method (MNM) implemented in [10] is incorpo-

rated in simple shooting [5] in an attempt to improve the convergence of the Leapfrog 

method for solving mobile robot path planning problem.  A general discussion on the 

convergence of the MNM is given in [11]. For simulation purposes, the work done in 

[6] - [8] is revisited to evaluate the MNM with simple shooting. A comparison is 

made between a case in which the classical Newton Method used in our previous 

work and the Modified Newton method is used in the shooting method. The computa-

tional time along the path and cost for each example are tabled. 

 

The paper organization is as follows: In Section 2 the Leapfrog algorithm is de-

scribed. Section 3 presents the simulations with Modified Newton's Method and Sec-

tion 4 provide discussion and conclusions, respectively. 

2 Optimal Control 

A general optimal control system can be modelled by 

 minu∈U   ∫ L(x(t), u(t)) dt
tf

t0
 (1) 

subject to state equation 

ẋ = f(x(t), u(t)),        (2) 

x(t0) =  x0 , x(tf) =  xf  ,  

In the equations above, 𝑥 is the state variable, 𝑢 is a control input, 𝑡0 and 𝑥0 are initial 

time and state.  

 

Following the Pontryagin Minimum Principle (PMP) necessary conditions of optimal-

ity are formulated as  

 ẋ  =  ∂H
∂λ⁄    (3) 

  λ ̇ =  − ∂H
∂x⁄   (4) 

  0 = ∂H
∂u⁄     (5) 

with the Hamiltonian function  

H(t, λ, x, u) = L +  λT f(t, x, u)  (6) 

where 𝜆 is for the costates variable. Solving for 𝑢(𝑡) in Equation (5) and substituting 

it to (3) and (4) reduces to a TPBVP which is solved using indirect numerical method. 

2.1 Leapfrog Method 

Given a feasible path 𝜇𝑧
𝑘, from the initial state 𝑥0 and the final state 𝑥𝑓 , the Leapfrog 

method starts by dividing the path into 𝑞 partitions with 

z0
(k)

, z1
(k)

, … , zq−1
(k)

, zq
(k)

 

as partition points. On each iteration, 𝑘 a sub-problem:  

 

minu∈U ∫ f(x(t), u(t))
ti+1

ti−1
dt

 
 x ̇ (t) = f(x(t), u(t))

 
 x(ti−1) =  zi−1 , x(ti+1) =  zi+1

  (7) 
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is solved updating the initial feasible path towards the optimal path. This is achieved 

by midpoint mapping scheme where a point 𝑧𝑖
𝑘+1 is selected as the point which is 

reached roughly half the time along the optimal trajectory between 𝑧𝑖−1
𝑘  and 𝑧𝑖+1

𝑘 . This 

continues for all the partitions until the maximum number of iterations is attained. It is 

noted that for every update on  𝑧𝑖
𝑘+1 and 𝑡𝑖

𝑘+1 the states and costates are also updated. 

On each iteration of the Leapfrog algorithm the cost decreases. Hence the number of 

partition points decreased as the algorithm is executing. If the partitions are reduced 

accordingly, the convergence towards optimal trajectory proceeds efficiently. Howev-

er, when 𝑞 = 2, a simple shooting method is used to determine the optimal solution 

between the starting and final states 𝑧0 and 𝑧𝑓. This causes a slow convergence for the 

algorithm on the final iteration.  

2.2 Modified Newton’s Method 

The Newton’s Method (NM) is a standard root-finding method which uses the first 

few terms of Taylor series of a function 𝑓(𝑥).  With the assumption that  𝑓(𝑥) is con-

tinuous and is a real valued, the method finds numerical solution of 𝑓(𝑥) = 0.  

An iterative NM is given by  

 xj+1 =  xj −
f(xj)

f′(xj)
 (8)  

Given the initial guess 𝑥𝑗, one can find the next approximation of 𝑥𝑗+1. In [11] it is 

shown that the NM converges provided the initial guess is close enough to the esti-

mated point. It is stated that the Newton's method may however diverge. Hence the 

Modified Newton’s Method was introduced to solve a large class of function 𝑓 in 

which global convergence can be proven. The Modified Newton’s Method (MNM) 

introduces an extra term, 𝜆, and Equation (8) becomes  

 xj+1 =  xj − λjsj (9) 

where sj = dj ≡
f(xj)

f′(xj)
  is a search direction.  

 

The steps for the MNM [11] are as follows: 

1. Choose a starting point 𝑥0 

2. For each 𝑗 = 0,1, … define 𝑥𝑗+1 from 𝑥𝑗 as follows 

a) Set 

 dj = DF(xj )
−1F(xj), 

 γj =  
1

cond(DF(xj))
 ,   

                    and let  hj(τ) = h(xj −  τ dj), where h(s) = F(s)TF(s).  

Determine the smallest integer 𝑚 ≥ 0 satisfying 

 hj(2−m) ≤ hj(0) −  2−m γj

4
 ‖dj‖ ‖Dh(xj)‖ . 

 

b) Determine 𝜆𝑗 so that h(xj+1) =  min0≤κ≤m hj(2−κ) and let   

xj+1 =  xj − λjdj .   

 

A theoretical analysis for Modified Newton’s Method can be found in [11]. The 

method was used in [12] and [13], and the implementation can be found in [14].    

3 Simulation Results  

In this section a comparison is made between the case in which the classical Newton’s 

Method (NM) and Modified Newton’s Method (MNM) is used in Leapfrog algorithm 

to find optimal solutions of mobile robot path planning. The simulations presented 

utilize the set of examples adapted from our previous work.  The arrows in the figures 

indicate the orientations of the robot at key positions.  
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Fig. 1. Optimal path produced by Leapfrog where the robot is considered to be moving from 

the initial state [−1 2 π
2⁄ ] to the final state [1 2 − π

2⁄ ]. 

Fig. 2. Optimal path returned by Leapfrog in the presence of two obstacles. The initial and final 

states of the robot are [0 0 0]  and [3.5 3.5 0], respectively.  
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Fig. 3. Shows the optimal path obtained from Leapfrog in the presence of three obstacles with 

the robot initial state [0 0 π
4⁄ ] and final state [1  1 π

4⁄ ]. 

 

Fig. 4. Optimal path generated by Leapfrog in the presence of seven obstacles. The robot is 

considered to move from the initial state [0 0 0] to the final state  [2 0 0] .  

From the simulations shown above, the computational time and cost for the optimal 

solutions is recorded, see Table 1. 

Table 1. Simulation Results for Simple Shooting and Modified Newton’s Method 

Case No.of 

Obstacles 

Cost  Computational Time 

NM (s)  MNM (s) 

1 0 8.64 34.07 32.61 

2 2 5.98 78.91 77.80 

3 3 3.15 95.66 86.49 

4 7 2.79 113.36 106.75 

 

5



4 Conclusion and Future Work 

The numerical simulations showed that the Leapfrog method with MNM is capable of 

finding optimal paths. It was also noted that the final cost was the same for both im-

plementation of the classical NM and MNM.  On the last iteration of the Leapfrog 

algorithm the convergence is normally slower due to the simple shooting method, but 

after implementing the MNM, a faster convergence was noted. In the majority of the 

test cases in this study, the MNM took less time to compute the optimal path, as com-

pared to the time required when simple shooting with NM was used. This indicates 

that an advantage is gained when using the MNM with the simple shooting. For future 

work, a more sophisticated simple shooting method with the MNM incorporated will 

be considered to improve the Leapfrog algorithm.  
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