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Abstract 

The total electron density (ED) along the 2-eigenvector is decomposed into contributions 

which either facilitate or hinder the presence of an electron density bridge (DB, often called 

an atomic interaction line or a bond path). Our FALDI-based approach explains a DB 

presence as a result of a dominating rate of change of facilitating factors relative to the rate of 

change of hindering factors; a novel and universal criterion for a DB presence is thus 

proposed. Importantly, facilitating factors show, in absolute terms, a concentration of ED in 

the internuclear region as commonly observed for most chemical bonds, whereas hindering 

factors show a depletion of ED in the internuclear region. We test our approach on four intra-

molecular interactions, namely (i) an attractive classical H-bond, (ii) a repulsive OO 

interaction, (iii) an attractive ClCl interaction and (iv) an attractive CHHC interaction. 

(Dis)appearance of a DB is (i) shown to be due to a „small‟ change in molecular environment 

and (ii) quali- and quantitatively linked with specific atoms and atom-pairs. The protocol 

described is equally applicable (a) to any internuclear region, (b) regardless of what kind of 

interaction (attractive/repulsive) atoms are involved in, (c) at any level of theory used to 

compute the molecular structure and corresponding wavefunction, and (d) equilibrium or 

non-equilibrium structures. Finally, we argue for a paradigm shift in the description of 

chemical interactions, from the ED perspective, in favour of a multicenter rather than 

diatomic approach in interpreting ED distributions in internuclear regions. 
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Introduction 

From a general chemist‟s perspective, conceptual understanding of a chemical bond is an 

amalgamation of various chemical bond theories, empirical observations and intuition. 

Existing chemical bond theories are, for the most part, deductive inferences on calculations 

and experiments performed on very small and simple systems. Even modern developments in 

the field will almost always develop from a bottom-up approach, and our conceptual 

understanding of a chemical bond is therefore always much clearer for di- or few-atomic 

molecules. As it stands, there is no general and universal theory of a chemical bond and terms 

such as „chemical bonding‟ rather than „a chemical bond‟ dominate titles of chapters in two 

dedicated
[1,2]

 published recently. 

Unfortunately, complexity in chemical systems scales exponentially with an increasing 

number of atoms and bonds, and so does the difficulty of interpreting chemical bond models. 

For instance, both molecular orbital (MO) and valence bond (VB) theories are simple to 

understand and interpret for diatomic molecules, but their interpretation becomes increasingly 

convoluted as the number of MOs or allowable states increase. The same problem applies to 

many modern theoretical and computational approaches, such as calculations of bond 

dissociation energy and deformation densities. One of the biggest hurdles facing chemical 

bond theory is that the current paradigm places immense focus on bonds as a diatomic 

property of a molecule, whereas the wavefunction and changes within the wavefunction 

occur on a molecular-wide, hence a polyatomic scale. The irreducible cornerstone of a bond – 

that a chemical bond requires energy to break – is usually exemplified through measurements 

of energy differences between an interacting and non-interacting states. Such experiments 

study the process assumed to be a single diatomic, intra- or intermolecular, bond formation 

and do not consider the intrinsic property of a molecule as a collection of atoms interacting 

simultaneously with each other. The usage and interpretation of binding energies particularly 

fails in the case of the interpretation of intramolecular interactions, as it always involves more 

than just two atoms and requires breaking multiple bonds.  

Quantum Chemical Topology (QCT)
[3]

 encompasses a range of approaches which, in 

principle, do not suffer from the above-mentioned complexity scaling. The most prominent 

QCT method is Bader‟s Quantum Theory of Atoms in Molecules (QTAIM).
[4]

 QTAIM‟s 

molecular graphs – a series of electron density bridges (DBs, but also commonly called 

atomic interaction lines, line paths
[5,6]

 or bond paths
[7]

) – are equally applicable to simple, 

small, large, hence complex molecules. Historically, the interpretation of a DB was 

associated, by induction, with a chemical bond: remarkably, a DB is observed wherever 
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chemists can unanimously agree that a chemical bond should exist. Since the first 

observations of the equivalence between a DB and a chemical bond,
[7,8] many questions 

regarding the validity and universality of a DB as an indicator of a chemical bond lead to a 

fierce scientific discourse,
[5,6,9–15] which will be discussed shortly. However, the large degree 

of correspondence between the presence of a DB and the general chemist‟s chemical bond is 

the impetus for continued research into the nature and interpretation of a DB. A range of 

properties of a DB, and specifically topological and energetic properties at the (3,–1) critical 

point (CP, commonly known as a bond critical point) associated with a DB, have been linked 

to and successfully applied in describing chemical phenomena, e.g., bond strengths,
[16,17]

 

open- and closed-shell natures of interactions,
[17]

 bond orders, degrees of -bonding,
[18]

 and 

many more.  

The critique that cautions the over-interpretation of DBs, critique that has been growing 

steadily over the last two decades, focuses on the two cases which places doubt on the 

universality of the interpretation of a DB as a bond path: (i) cases where a DB is observed but 

no chemical bond is expected,
[9–13] and (ii) cases where a chemical bond is expected but no 

DB is observed.
[19,20] The most prominent example of the former situation is of DBs which 

exist between H-atoms in a wide range of molecules and lead to a long series of debates 

regarding the chemical nature of CHHC interactions.
[11–13,15,21,22]

 The existence of a DB in 

these and other non-conventional types of interactions, many of which can be attractive or 

repulsive in nature, have placed considerable doubt on the conceptual homeomorphism 

between QTAIM molecular graphs and the lines which chemists draw to indicate bonds. For 

the inverse case – where a chemical bond is expected but no DB is observed – researchers 

have found evidence from other descriptors, such as the Non-covalent Interactions (NCI) 

technique,
[23,24]

 the source-function and delocalization indices that indicate the presence of 

some form of chemical interaction but it is not supported by a (3,–1) CP on a DB.
[19,20] These 

examples further illustrate that the relationship between various theoretical approaches and 

the topology of the electron density (ED) is not fully understood yet. In addition, the presence 

or absence of DBs is often seemingly inexplicable, which adds to the ambiguity regarding the 

interpretation of a DB. For instance, we have previously shown
[14]

 that the presence of a DB 

is strongly subjected to effects of the local environment, proving that the nature of an 

interaction might remain the same regardless of the presence or absence of a DB.  

The interpretation of a DB has evolved somewhat over time as well. Originally, Bader had 

all but suggested that a DB and a chemical bond are synonymous.
[7,8,25]

 Later on, he stressed 

that DBs are not chemical bonds, but rather represent „bonding interactions‟
[15,16]

 – a 
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mechanism of the molecular ED distribution that serves to lower the molecular energy. 

Pendás et al. presented an alternative interpretation by postulating that a DB represents a 

„privileged exchange channel‟.
[26]

 Their concept of a DB was further explored by Tognetti 

and Joubert
[27,28]

 (TJ). TJ studied a number of intramolecular interactions where a DB was 

present in some but not other molecules, and investigated whether the presence of a DB could 

be linked with „privileged exchange‟. Their approach involved calculating the IQA-

defined
[29]

 interatomic exchange correlation (XC) energies, 
X,Y

XCV , of the interaction between 

two atoms of interest (the „primary interaction‟) as well as neighbouring „secondary 

interactions‟. They found that if the ratio,  = 
primary

XCV /
secondary

XCV > 1.59 (where secondary 

refers to a pair of atoms for which the 
X,Y

XCV  term is largest among all secondary interactions) 

then a DB was always present whereas for  < 1.35 no DB was observed. -ratios between 

1.35 and 1.59 were found to be ambiguous – DBs might or might not be present in this range. 

TJ interpreted the presence of a DB as (i) evidence of privilege in support of Pendás et al’s 

ideas
[26]

 and (ii) the primary interaction being successful in competing against various 

exchange channels of the secondary interactions. Unfortunately, the ambiguity inherent in 

their -ratios suggests that either (i) not all DBs represent „privileged exchange channels‟, (ii) 

the exclusive use of the integrated 
X,Y

XCV  for just a diatomic interaction is not ideal for 

measuring privilege, or (iii) possibly, the concept of „privileged exchange channels‟ in 

predicting the presence/absence of a DB is incorrect. 

All previous interpretations of a DB step into the same „trap‟ as for the interpretation of 

chemical bonds – that the interaction between atoms in a molecule can be reduced to 

bicentric nature (i.e. line structures) that is subconsciously re-enforced by DBs linking two 

(and only two) nuclei at a time. However, the ED (as well as critical points in the ED) is a 

field influenced by all particles of a molecule, and therefore the notion that a DB is a 

diatomic property is false. In fact, we have previously shown
[30]

 that the ED at a (3,–1) CP is 

a result of contributions from delocalized electrons arising from multiple atoms, thereby 

concluding that a DB is inherently multicenter in nature even in the case of a classical 

covalent bond. A similar problem facing existing interpretations of a DB is the use of the 

second eigenvalue of the Hessian matrix as a measure of electron concentration for the 

fulfilment of Feynman‟s theorem
[31]

 (the basis for Bader‟s interpretation
[15,16]

 as well as the 

interpretation of other methods such as NCI
[23,24]

). This approach is flawed,
[14]

 as it only 

measures the local, relative electron concentration rather than the absolute, and resultantly 

shows a large dependence on the local environment. Our own Fragment, Atom, Localized, 
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Delocalized and Interatomic (FALDI) density decomposition scheme
[30,32–34]

 provides 

absolute measures of electron concentration for 1- and 2-centre ED distributions. Hence, 

FALDI provides a much more trustworthy measure
[30]

 with regards to a concentration (and its 

origin) of ED within an internuclear region. 

This work presents a new theoretical methodology that provides meaningful explanation 

of the presence (or absence) of a DB. Although our approach appears as simple in its final 

implementation, it required a paradigm shift in searching for the origin and meaning of a DB. 

Our approach comes from a realization that the nature of a DB is inherently not chemical, 

only its interpretation. Hence, the main focus should be on the ED itself and the elementary 

conditions required for the presence of a DB, rather than a direct link to chemical concepts 

such as atoms and linking them bonds. We propose here a set of topological criteria; with the 

gradient of the ED (along the eigenvector associated with the 2 eigenvalue of the Hessian 

matrix) determining if a critical point is present and the second derivative of the ED 

determining which type of critical point is present. To link the mathematics of DB presence 

with chemical meaning, we decompose the gradient of the ED (which in itself is difficult to 

interpret from a chemist‟s point of view) into components with clear chemical and physical 

interpretations. In principle, this approach can be taken with a large number of established 

ED decompositions. However, we have chosen our recently developed FALDI density 

decomposition scheme,
[30,32–34]

 as FALDI is (i) inherently linked to QTAIM atomic basins 

and populations, and (ii) FALDI can provide visualisation and quantify electron exchange-

correlation channels in real 3D space.  

Our primary aim in this work is to derive and introduce the tools necessary to detect and 

explain the presence or absence of a DB. We will refrain from providing in depth and 

universal interpretations of a DB in terms of chemical bonding. This is because a sound 

interpretation of a DB should be extremely robust, general, predictive and physically and 

chemically meaningful – an endeavour which is not taken lightly. Rather, we will provide a 

general criterion for the presence of a DB in terms of the gradients of our FALDI 

decomposition components, culminating in an approach that we hope ourselves or others can 

use to understand the difficult relationship between the ED distribution and chemical 

bonding. We present our approach with four case studies focusing on intramolecular 

interactions, as possibly they represent the most difficult case for chemists to interpret. 

However, our approach is of general nature; it applies equally to inter- and intramolecular, 

weak and strong interactions. In three of the case studies, two similar molecules are 

investigated, and in each system a non-local perturbation results in the appearance of a DB 
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linking atoms involved in an interaction of interest. Our case studies include an attractive 

intramolecular H-bond, a repulsive OO interaction, an attractive ClCl interaction and 

lastly, an attractive CHHC interaction. 

Theoretical Background 

A critical point (CP) in the ED at a coordinate rc is a local maximum, minimum or a saddle 

point where the first derivative, and each of its three components, vanish:
[4] 

0)( c 















zxx


 kjir  (1) 

The unit vectors in Eq. 1 are the principle axes at rc, and are determined by the eigenvectors 

of the matrix of partial second derivatives (the Hessian matrix) of the ED at rc. The type of 

CP can be determined by evaluating the eigenvalues (1, 2 and 3) of the Hessian matrix. A 

CP found wherever a DB is present is a local minimum along one of the axes and local 

maxima along the other two axes, labeled as (+3,–1), where the rank (+3) denotes the number 

of non-zero eigenvalues at rc and the signature (–1) is the algebraic sum of the signs of the 

eigenvalues. A (+3,–1) CP has historically been called a number of names, from Bader‟s 

original bond critical point
[4]

 to more recent line or edge critical point.
[5,6]

 In this work, we 

will only refer to this CP as (3,–1) CP in order to reduce as much secondary and implied 

meanings as possible. For the case of a (3,–1) CP, 1 and 2 are negative (local maxima) 

whereas 3 is positive (local minimum) and, by convention, 1 ≤ 2 ≤ 3. A CP close to a 

nucleus is a (+3,–3) CP (a local maximum along all three axes) where all eigenvalues are 

negative. Therefore, in an interatomic region between two nuclei, 3 will always be positive, 

corresponding to a region of local minimum ED along the internuclear vector. Furthermore, 

unless the two nuclei are part of a cage, 1 will always be negative, corresponding to a local 

maximum along one of the axes perpendicular to the internuclear vector. The sign of the 

remaining eigenvalue, 2, corresponding to the other perpendicular axis, determines whether 

the CP is of (3,–1) (2 < 0, a local maximum) or a (3,+1) (2 > 0, a local minimum), also 

called a ring critical point. The sign of 2 therefore contains very valuable information 

regarding the nature of the CP at rc. In addition, the second derivative of the ED is a measure 

of density concentration (
2(r) < 0) or depletion (

2(r) > 0). At any coordinate of a DB 

the ED is therefore depleted along the internuclear vector (3 > 0) but concentrated along all 

perpendicular vectors (1 < 0, 2 < 0). It is for this reason that a DB is often called a „bridge 

of density‟.
[15]
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A DB will always exist if an associated (3,–1) CP is present, and therefore it is enough to 

investigate when such a CP may (or may not) be present. Since the presence of a CP depends 

on the gradient of the ED rather than the ED itself or components of its second derivative, it 

is important to understand the directional first derivatives of the ED along principle axes in 

an internuclear region in both the presence and absence of a (3,–1) CP. Note that all 

derivatives – including components of the Hessian matrix as well as its eigenvalues and 

eigenvectors – can be calculated at any coordinate r regardless of whether a critical point is 

present at r or not. A local minimum in the ED along the internuclear vector is always present 

between two (3,–3) CPs of atomic basins that share an interatomic surface. Hence, the 

directional derivative of the ED along the internuclear vector will always vanish at some 

coordinate (corresponding to a local minimum in the ED) regardless of the presence or 

absence of a (3,–1) CP. Generally, the principle axis along which this derivative vanishes is 

the direction of the eigenvector associated with 3. We label such a local minimum on the 

internuclear vector as a geometric minimum density point (MDP, previously also called a 

geometric interaction point
[14]

). The internuclear vector, an MDP and the directions of all 

three eigenvectors of the Hessian matrix at the MDP are shown, as an illustrative example, 

for the internuclear region between two H-atoms in close contact (i.e. H1 and H6) in cis-2-

butene in Figure 1. Cis-2-butene was selected because three topological points (MDP, (3,–1) 

CP and (3, +1) CP) are well-separated on the molecular graph – Figure 1(a). Figure 1(b) 

shows the ED along the internuclear vector, clearly illustrating the local minimum and 

demonstrates how an MDP can easily be found. The perpendicular principle axes at the MDP 

correspond to the directions of the eigenvectors associated with 1 and 2. As mentioned 

above, 1 is usually negative unless the internuclear region is part of a cage and, in most 

cases, the local maximum is observed as shown in Figure 1(c); hence, directional derivative 

along the 1-eigenvector at MDP will vanish. That leaves the directional derivative along the 

2
nd

 eigenvector of the Hessian matrix as the deciding factor for the presence or absence of 

most (3,–1) CPs. If this derivative vanishes, due to a local maximum in the ED along the 2
nd

 

eigenvector – Figure 1(d), then the slope of the ED will be zero and a (3,–1) CP will be 

present. If this derivative does not vanish, then a (3,–1) CP will be absent regardless of the 

fact that the ED at the MDP is a local maximum and minimum along the directions of the 1
st
 

and 3
rd

 eigenvectors of the Hessian matrix, respectively. Hence, in order to understand when 

a DB may be present between two atoms that share an interatomic surface, the components of 

the slope of the ED along the principle axis 2 in the interatomic region should be 

investigated.  
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Figure 1. Part (a) - a molecular graph of cis-2-butene showing a (3,–1) CP as a small green sphere on 

a density bridge between H1 and H6 atoms, RCP = (3,+1) CP as a small red sphere, and a minimum 

density point (MDP) on line geometrically linking 3D-coordinates of H1 and H6 nuclei. Part (b) - the 

total ED computed along the 3-eigenvector (a line geometrically linking 3D-coordinates of H1 and 

H6 nuclei) with the MDP located at the minimum. Part (c) – variation in the total ED along the 1-

eigenvector. Part (d) – variation in the total ED along the 2-eigenvector also showing locations of the 

(3,–1) CP (at the maximum of ED) and MDP. 

 

In a diatomic molecule, the slope of the ED along the eigenvector associated with 2 

(henceforth referred to as the 2–eigenvector) will always vanish at some r on the 

internuclear vector, hence a DB and (3,–1) CP will always be present. However, in the 

presence of other (3,–1) CPs (in any polyatomic molecule), the slope of the ED along the 2–

eigenvector is not guaranteed to vanish, and thus a (3,–1) CP will not be present between 

every nuclear pair. The presence of such CPs in polyatomic molecules depends on the 

environment. Typically, a strong interaction (such as a covalent bond) contains highly 

concentrated ED perpendicular to the internuclear vector, and a (3,–1) CP exists despite the 

presence of factors that hinder its presence. On the other hand, weak interactions (such as an 

intramolecular H-bond) have significantly less concentrated ED perpendicular to the 
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internuclear vector, and a (3,–1) CP will only appear if the environment is favorable (i.e. in 

the absence of dominating factors which topologically hinder the presence of a (3,–1) CP). 

Regrettably, the precise chemical conditions required to foretell the presence of a (3,–1) CP 

(particularly for weak interactions) are not yet known exactly, despite previous attempts,
[27,28]

 

and therefore the chemical significance of a DB is difficult to determine. 

The slope of the ED along the 2–eigenvector is an exact predictor for the existence of a 

(3,–1) CP and is easy to measure in most systems. In order to determine when a (3,–1) CP 

may form from a chemical point of view, however, one must understand first the physical 

factors which lead to a given ED distribution. To achieve that, the ED must be decomposed 

along the 2–eigenvector into chemically and physically meaningful components in order to 

understand the ED distribution on a fundamental level. Specifically, provided that the 

contribution made to the total ED (tot-ED) by a primary interaction as well as by all other 

ones can be quantified, then it should be possible to determine whether a (3,–1) CP will exist 

in a given environment based on criteria other than the topology of the tot-ED. Subsequently, 

the components giving rise to a (3,–1) CP could then be scrutinized analytically in order to 

understand why the CP exists. Finally, if and only when the components themselves carry 

chemical significance, such information could be useful in determining the chemical 

conditions necessary for the existence of a (3,–1) CP and, therefore, a presence of a DB could 

be meaningfully interpreted in terms of chemical bonding. 

We present in this work a scheme that determines components of the molecular system 

tot-ED that either facilitate or hinder the presence of a (3,–1) CP in the interatomic region of 

an interaction of interest. We also measure the exact contribution made by each component to 

arrive at a criterion which explains the presence or absence of a (3,–1) CP. We first describe a 

suitable tot-ED decomposition technique, followed by a classification scheme which 

determines whether a decomposition component facilitates or hinders the presence of a DB, 

and finally we introduce an index to condense the information. 

The FALDI density decomposition scheme 

We recently introduced the Fragment, Atomic, Localized, Delocalized and Interatomic 

(FALDI) ED decomposition scheme.
[30,32,34]

 FALDI uses concepts from the Domain 

Averaged Fermi Hole (DAFH)
[35,36]

 approach in order to calculate pseudo-2
nd

 order 

contributions arising from electrons within QTAIM-defined atomic basins. FALDI 

decomposes the tot-ED at any coordinate r into 1- and 2-centre contributions: 
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1

A A,B

A A B=A+1

( ) ( ) ( )
M M M




   r r rL D  (2) 

where M is the number of QTAIM-defined atomic basins. LA(r) is known as a 1-centre 

localized ED (loc–ED) distribution, and describes the ED that is localized exclusively within 

an atomic basin A, as shown in Eq. 3, 

2
AA AA

A ( ) n ( )
N

i i

i

    r rL  (3) 

where N is the number of MOs, AA ( )i r  is a natural density function (NDF) obtained by 

diagonalizing the product of the atomic overlap matrices, S
A
S

A
, and AAni

  is the occupation of 

the associated NDF; it is double-primed to indicate that it is free of any localized-delocalized 

overlap, as previously described.
[34]

 DA,B(r) is a 2-centre delocalized ED (deloc–ED) 

distribution, and describes the ED that is delocalized between the atomic basins A and B:

 
2 2 2

AB AB AA BB

A,B A A,B B A,B( ) n ( ) ( ) ( ) ( ) ( )
N N N

i j i j

j j i i

j j i

n n                   r r r rD L D L D  

 (4) 

where 
AB( )j r  is an NDF obtained by diagonalizing the product of atomic overlap matrices, 

S
A
S

B
, and DA,B(r) is corrected in the second term of Eq. 4 by any overlap that it has with 

NDFs of associated loc–ED (Eq. 3). Specifically, the degree of overlap the ith NDF of a loc–

ED distribution ( A

iL ) has with the jth NDF of a deloc–ED distribution ( A,B

jD ) is calculated by 

the function A A,B( )i jn L D , which relates the relative overlap between A

iL  and A,B

jD  to the 

total overlap of A

iL  with the remainder of the molecule‟s NDFs, as detailed in our previous 

work.
[34]

 

From the particular ED decomposition expressed by Eq. 2 it follows that the loc–ED 

distributions describe the core (not shared) electrons of each atomic basin while the deloc–

ED distributions then describe the electrons shared between two atoms (corresponding to 

valence electrons of the two atomic basins). Integrating loc–ED and deloc–ED distributions 

over all molecular space yields the associated exclusive localization and delocalization 

indices (LIexcl and DIexcl); these distributions are similar to orthodox QTAIM (de)localization 

indices but intentionally designed to be free of any mutual overlap between loc–ED and 

deloc–ED distributions. To this effect, e.g., in ethane (i) the loc–ED for each carbon atom 

describes the core 1s ED; it yields exactly 2 electrons when integrated over entire molecular 
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space, and (2) the deloc–ED for the two carbon atoms describes the -bond ED shared 

between them (yielding exactly 2 electrons when integrated over molecular space).  

We have previously used FALDI loc–ED and deloc–ED distributions for calculating 

deformation densities,
[32,33]

 multicenter interactions
[30]

 as well as re-evaluating QTAIM-based 

localization and delocalization indices.
[34]

 Eq. 2 therefore provides a complete decomposition, 

at any coordinate, of the 1-centre contributions from each atom as well as the 2-centre 

contributions from each atom-pair.  

Classification scheme for ED components 

We previously described a classification scheme for each deloc–ED contribution relative to 

r.
[30]

 We have expanded the scheme for the purposes of this study as it was necessary to also 

account for loc–ED contributions.  

Firstly, let us define a specific coordinate of interest, r*: (i) if a (3,–1) CP is present with 

associated a DB linking the nuclei of the interaction under investigation, then r* = rc, and (ii) 

when a (3,–1) CP, hence also a DB, are absent, then we set r* to be the position of the MDP. 

The MDP is used as it is at specific coordinates that are well-defined for any atom-pair 

sharing an interatomic surface, regardless of the presence or absence of a (3,–1) CP. We 

would also like to make it clear and stress that these two points, MDP and (3,–1) CP, belong 

to distinctively different paths: (i) MDP is located at a density minimum along a geometric 

straight (hence shortest) line linking two nuclei and (ii) (3,–1) CP is located on a real and 

physical DB (experimental observable) that links two nuclei. It is for this reason why we also 

would rather not use the term „line critical point‟ to describe (3,–1) CPs, as it intuitively 

indicates the MDP rather than the CP. We also recommend to exclusively use the MDP at r* 

in experiments where the geometry is continuously perturbed in order to avoid discontinuities 

when a (3,–1) CP (dis)appears.  

Each FALDI component (any particular loc–ED or deloc–ED distribution) can then be 

classified at r* according to its sign as well as the sign of its partial second derivative along 

the 2–eigenvector. Specifically, if a FALDI component concentrates ED along the 2–

eigenvector in the vicinity of r* (implying negative partial second derivative), it facilitates 

the presence of a (3,–1) CP and can be said to be of a bonding nature (bonding-ED). On the 

other hand, if a FALDI component depletes ED along the 2–eigenvector in the vicinity of r* 

(positive partial second derivative applies), it hinders the presence of a (3,–1) CP and can be 

said to be of a nonbonding nature (nonbonding-ED). Note that the sign of the component 

itself is positive, regardless of a bonding or nonbonding nature. It is important to note, 
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however, that FALDI components can also be negative due to deconstructive interference of 

molecular orbitals. Accordingly, these components are labeled as antibonding regardless of 

the sign of the partial second derivative (antibonding-ED). Antibonding components can 

either facilitate or hinder the presence of a (3,–1) CP (in terms of topology), but regardless, 

these distributions decrease the amount of ED in the region of interest. 

From the above it follows that each FALDI component can be classified as bonding, 

nonbonding or antibonding at any coordinate r. Therefore, a FALDI component can be 

bonding in one region (such as the deloc–ED of two covalently bonded carbon atoms within 

their internuclear space) but nonbonding in another (such as in the internuclear space of a 

different nearby interaction, or a pair of atoms). For the purpose of the present work, we 

classify each FALDI component in terms of their topologies relative to r*, i.e., at the (3,–1) 

CP or MDP of interest. Hence, the decomposition of the tot-ED (Eq. 2) at a (3,–1) CP or 

MDP can therefore be rewritten as: 

)()()()( gantibondinnonbondingbonding r*r*r*r*    (5) 

The decomposition of the gradient in bonding, nonbonding and antibonding 

terms 

While the above classification pertains to the sign of the second derivative of a FALDI 

component at r*, it is obvious that the presence or absence of a (3,–1) CP is solely related to 

the gradient of the tot-ED at the vicinity of r*. As mentioned above, the gradient of the tot-

ED along the 2–eigenvector vanishes at r* when a (3,–1) CP is present. To achieve our goal 

and understand the chemical (physical) conditions necessary for the existence of a (3,–1) CP, 

one must re-write the gradient (Eq. 1) in terms of the bonding, nonbonding and antibonding 

classification discussed in details above (Eq. 5): 

)()()()( gantibondinnonbondingbonding r*r*r*r*    (6) 

Although it is obvious, we want to make it absolutely clear that for a (3,–1) CP to be present, 

the sum of the terms in Eq. 6 must be zero.  

From our experience it follows that antibonding distributions and their slopes at a MDP or 

(3,–1) CP are generally very small; hence, we will ignore the effects of their contributions for 

the moment. Eq. 4 then reduces to the sum of the rates of changes in just the bonding- and 

nonbonding-EDs along the 2–eigenvector. In such a case, for a (3,–1) CP to be present, these 

two terms must be equal but have opposite sign at r* to meet the 0)r*(  requirement. 

However, the partial second derivatives of the bonding- and nonbonding-EDs are always 
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negative and positive, respectively. Therefore, due to the partial second derivative of the tot-

ED being negative (2 < 0) the following must hold: (i) the absolute slope of the sum (total) 

of all bonding-ED contributions must be greater than the absolute slope of the sum (total) of 

nonbonding-ED contributions in the vicinity of a (3,–1) CP (
nonbondingbonding   ) and (ii) 

exactly at the (3,–1) CP, 0nonbondingbonding   . As such, a complex interplay takes place 

between the two components in the inward and outward directions making an interpretation a 

bit awkward. To ease and aid the interpretation of bonding- and nonbonding-ED we propose 

the following CP(r) function for detecting DBs when measured along the 2-eigenvector:    

nonbonding bonding nonbonding antibonding( ) ( ( )) ( ) ( ) ( )CP sign           r r r r r  (7) 

The CP(r) function returns the slope of the tot-ED, but with an adjusted sign depending on 

the sign of the slope of the nonbonding-ED contribution. Since the sign of the directional 

derivative depends on the direction in which it is measured, the 
nonbonding( ( ))sign   r  factor is 

used in order to enforce the CP(r) function to be negative throughout except for regions 

where the sum of the gradients 
bonding ( ) r  and 

antibonding ( ) r  is (i) greater, in absolute value, 

than 
nonbonding ( ) r  and (ii) has an opposite sign than 

nonbonding ( ) r . Furthermore, like the 

slope of the tot-ED, the CP(r*) function is equal to zero at a (3,–1) CP. However, there will 

always be a region along the 2–eigenvector close to a (3,–1) CP where CP(r) is positive, in 

one or both directions. By contrast, in the absence of a (3,–1) CP, CP(r) will be negative 

throughout.  

As an example, consider two hypothetical distributions in Figure 2, displaying bonding-

and nonbonding-ED distributions in a system with a (3,–1) CP either present (part a) or 

absent (part b). In both Figures 2(a) and 2(b) a region exists where the gradient of bonding-

ED is opposite in sign than the gradient of nonbonding-ED. Figure 1(a) illustrates a region 

where the CP(r) function is positive, however, due to a larger magnitude of bonding-ED than 

nonbonding-ED gradient. When a (3,–1) CP is absent (Figure 2(b)), the CP(r) function is 

negative throughout because the bonding-ED gradient is smaller in magnitude than the 

nonbonding-ED gradient.  

Note that in this hypothetical example, the total gradient (not shown in Figure 2) and the 

CP(r) function (dotted line in Figure 2) are identical; however, more complex systems can be 

found where this is not the case. In addition, the CP(r) function remains the same regardless 

of the direction in which the gradient is measured. The CP(r) function therefore provides an 

additional criterion for the existence of a DB: if CP(r) is positive anywhere on the 2-
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eigenvector for a given internuclear region, then a (3,–1) CP as well as a DB will be present. 

Note that in the case of an intramolecular interaction, the presence of (3,–1) CP must be 

accompanied by a (3,+1) CP (commonly called a ring CP) and CP(r) > 0 will be observed 

between these two CPs as shown in Figure 1(a). Furthermore, the CP(r) function is only 

well-defined in a region along the 2–eigenvector where the directional first derivative of the 

total nonbonding–ED does not change sign, which would indicate a different nature of some 

of the components of the nonbonding–ED distribution relative to an internuclear region other 

than the region of interest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Hypothetical ED distributions showing bonding- and nonbonding-ED distributions as well 

as their gradients resulting in the presence (part a) or absence (part b) of the (3,–1) CP. 

 

Clearly, the presence of a DB, and the associated (3,–1) CP, is an interplay between 

facilitating and hindering factors; to gain an insight on the origin of these factors, each term 

in Eq. 7 can be decomposed into individual FALDI components, such as the valence ED 

delocalized across two atomic basins or the core ED localized to a particular atomic basin. 

Doing so reveals exactly which atoms or atom-pair interactions are important towards the 
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presence of a DB, or which atoms and interactions hinder the presence of a DB. To this end 

the often-times strange presence of a DB can be investigated at a fundamental level, and the 

physical and chemical significance of a DB can be studied much more efficiently than in the 

past.  

Physical and chemical interpretations of FALDI components 

While the CP(r) function (as well as further decomposition) can be used to understand the 

interplay of various 1- and 2-centre contributions towards the presence of a DB, it will gain 

significantly more value when various decomposition terms are interpreted in a meaningful 

manner. The decomposition of ED at any coordinate r into bonding-, nonbonding- and 

antibonding-ED contributions (Eq. 5) can be interpreted from both physical and chemical 

points of view. Below, we present interpretations that can be inferred from the mathematical 

derivation of FALDI; however, like all interpretations of mathematical formulae, these can 

(and should be) thoroughly tested, refined and generalized before they can be accepted as 

universal interpretations of FALDI fields. We nevertheless present these interpretations as 

suggestions towards a better understanding of ED distributions pertaining to chemical 

interactions. 

Physically, each term of Eq. 5 represents a measure of the absolute concentration, 

depletion or reduction of various FALDI components (1- and 2-centre) along the 2–

eigenvector. Bonding-ED distributions contain all the FALDI components that (i) increase 

and (ii) concentrate the tot-ED at r. Concentration of ED can be viewed in terms of 

Feynman‟s theorem,
[31]

 as explored by Bader:
[15,16]

 a concentration of ED can maximize the 

attractive forces acting on a nuclei, thereby facilitating a “bonding interaction”. The use of 

the FALDI decomposition removes the dependency of the second partial derivative of the 

Hessian matrix on its local environment – each FALDI component is measured absolutely 

relative only to itself. In contrast, nonbonding-ED distributions contain all the FALDI 

components that (i) increase, but (ii) deplete the tot-ED at r, thereby hindering the attractive 

forces acting on nuclei. Finally, antibonding-ED distributions always reduce the tot-ED at r.  

Chemically, each term of Eq. 5 can be interpreted in terms of MO overlap. The FALDI 

components are derived from the overlap of all MOs and MO pairs simultaneously across 

atomic basins at any coordinate r. Bonding-ED distributions arise from MOs or MO pairs 

overlapping a single basin (in the case of loc–ED distributions) or simultaneously 

overlapping two basins (in the case of deloc–ED distributions) in a constructive fashion, 

thereby increasing and concentrating ED at r. In orthodox MO bond theory, such phenomena 
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can be linked with chemical bonding in model systems. Nonbonding-ED distributions, on the 

other hand, describe MOs or MO-pairs overlapping in a non-constructive fashion, thereby 

reducing the concentration of ED at r. Finally, antibonding-ED distributions describe MOs or 

MO-pairs that interfere deconstructively at r, thereby reducing the tot-ED. 

Clearly, each FALDI component can therefore be interpreted from both physical and 

chemical points of view. From a physical point of view, a DB can be linked to a larger rate of 

change of 1- and 2-centre components that concentrate ED (and therefore maximize the 

forces acting on nuclei) in the internuclear region. From a chemical point of view, a DB can 

be linked to a larger rate of change of MOs that simultaneously overlap one and two atomic 

basins in a constructive fashion. While these interpretations are only aspects of chemical 

bonding, they can be used to investigate the properties of ED distributions in multicenter 

chemical interactions in a descriptive manner. We will explore the utility of these 

interpretations for the four case studies throughout the results section. 

Computational Details 

All structures were optimized in Gaussian 09, Rev. D.,
[37]

 using B3LYP with Grimme‟s D3 

empirical dispersion
[38]

 with 6-311++G(d,p) in the gas phase. QTAIM molecular graphs, as 

well as atomic overlap matrices, were calculated using AIMAll v. 16.10.31.
[39]

 FALDI data 

was calculated using in-house software, and FALDI isosurfaces were visualized using 

VMD.
[40] 

Tables of cartesian coordinates for all optimized structures are given in Section 1 of 

the supplementary information (SI). 

Results and discussion 

To link our study with work by TJ,
[27,28]

 we will use their term of „primary interaction‟ that 

refers to an interaction of an atom-pair of interest. TJ defined a „secondary interaction‟ as a 

neighbouring interaction between one of the atoms involved in the primary interaction and an 

atom that is linked by a DB to the second atom involved in the primary interaction. 

Secondary interactions in TJ‟s approach are seen as „competing‟ against the presence of a DB 

between the nuclei of the primary interaction. The secondary interaction with the largest 

absolute interatomic XC energy is then used for calculating TJ‟s -ratio. Due to the holistic 

nature of our approach, we consider all interactions in our analysis, including the primary, 

secondary and all other atom-pairs. In addition, unlike TJ, we consider the possibility that any 

of the primary, secondary and other interactions can facilitate or hinder the presence of a DB. 

Furthermore, all molecular structures are presented as molecular graphs to illustrate the 

presence or absence of a DB between atoms of the primary interaction.    
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H-bonding interaction in neutral and protonated ethylenediamine 

Figure 3 shows that a DB between atoms N7 and H11 (primary interaction investigated) is 

present only in the protonated ethylenediamine (2) even though d(N7,H11) < {sum of van der 

Waals (vdW) radii, N = 1.55 Å, H = 1.20 Å}
41

 in both equilibrium structures with d(N7,H11) 

= 2.5893 and 1.9912 Å in structure (1) and (2), respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Molecular graphs of equilibrium structures of a neutral (1) and a protonated (2) 

ethylenediamine also showing the directions of 2–eigenvectors crossing either the minimum density 

point (black small sphere in (1)) or (3,–1) CP on density bridge (green small sphere in (2)). 

Percentage-slope contributions made by atom-pairs that facilitate and hinder the presence of a 

DB(N7,H11) are shown as of bonding (b) and non-bonding (nb) nature, respectively.   

 

From the IQA perspective, there is no qualitative difference in the nature of the primary 

interaction in both structures; atoms H11 and N7 are involved in highly attractive interactions 

( H11N7,

intE  = –46.6 and –104.3 kcal/mol in (1) and (2), respectively) that are predominantly of 

an ionic nature.  

The computed TJ‟s -ratios,
[27,28]

 N7,H11 N7,N10

XC XCV V  of (–3.16)/(–3.62) = 0.87 for (1) and (–

16.7)/(–9.1) = 1.84 for (2), not only predict the absence of a DB in (1) correctly, but also are 

within the respective ranges, namely: no DB for  < 1.35 and DB present for  > 1.59. The 

FALDI-based decomposition of the tot-ED along the 2–eigenvectors passing through the 

MDP(N7,H11) in (1) and (3,–1) CP(N7,H11) in (2) (Figure 3) yields the distributions of total 

bonding- and nonbonding-EDs shown in Figure 4. We note that (i) qualitatively trends are 

similar in both structures and, focusing on values at MDP(N7,H11) in (1) and (3,–1) 

CP(N7,H11) in (2), (ii) the amount of tot-ED, bonding-ED as well as the ratio of bonding-

ED/nonbonding-ED are always larger in (2) where a DB(N7,H11) is observed.  

It is quite clear from the shapes of the tot-ED distributions in Figure 4 that a (3,–1) CP 

(and therefore a DB) is present in (2) but absent in (1), providing a good opportunity to 

explore the use of our CP(r) function. We note again that there are no antibonding-ED 
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contributions present anywhere on the 2-eigenvectors of (1) and (2), as for all structures 

studied in this work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. The tot-ED as well as the total bonding- and nonbonding-ED components computed along 

the 2–eigenvector passing through the MDP(N7,H11) in (1) and (3,–1) CP(N7,H11) in (2). 

 

It is immediately seen in Figure 5 that the CP(r) function (dotted line) is negative in the 

entire region in (1), hence no DB is present, whereas it is positive in the inward region and 

zero at r* – the position of the (3,–1) CP(N7,H11) where the change in bonding- and 

nonbonding-ED is opposite but equal in value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. 1

st
 derivative curves of the total bonding- and total nonbonding-ED as well as the CP(r) 

function computed along the 2–eigenvector passing through the MDP(N7,H11) in (1) and the (3,–1) 

CP(N7,H11) in (2).  

 

As a matter of fact, the curves in Figure 5 serve as a nice and convenient pictorial 

representation of our CP(r) function computed along relevant 2–eigenvectors. Just as an 

example, see how slope of bonding-ED dominates that of nonbonding-ED in (2), thereby 
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meeting the criteria for the (3,–1) CP(N7,H11) and explaining the presence of the 

DB(N7,H11) in the protonated form of ethylenediamine.  

 
Table 1. Selected contributions made to the MDP(N7,H11) in ethylenediamine. Percentages refer to 

contributions towards the tot-ED and its slope. 

Component bonding(r*) bonding(r*) nonbonding(r*) nonbonding(r*) 

N10,H11 0.00229 (20.7%) 0.00006 (1.0%)  -   -  

N7,H9 0.00081 (7.3%) 0.00011 (1.8%)   

N7,H8 0.00060 (5.5%) 0.00002 (0.3%)   

N10,H12 0.00054 (4.9%)  -0.00027 (4.6%)  -   -  

N7,H11 0.00053 (4.8%) 0.00003 (0.5%)  -   -  

N7,N10 0.00030 (2.7%)  -0.00010 (1.6%)  -   -  

C4,N7  -   -  0.00097 (8.8%)  -0.00090 (15.2%) 

C1,N10  -   -  0.00079 (7.1%)  -0.00165 (27.9%) 

C1,C4  -   -  0.00021 (1.9%)  -0.00081 (13.7%) 

Total 0.00826 -0.00042 0.00278 -0.00444 

 

Table 2. Selected contributions made to the (3,–1) CP(N7,H11) in protonated ethylenediamine. 

Percentages refer to contributions towards the tot-ED and its slope. 

Component bonding(r*) bonding(r*) nonbonding(r*) nonbonding(r*) 

N10,H11 0.00628 (16.5%)  -0.00156 (13.5%)  -   -  

N7,H11 0.00537 (14.1%) 0.00122 (10.5%)   

N7,N10 0.00135 (3.6%) 0.00043 (3.7%)   

N10,H13 0.00096 (2.5%) -0.00072 (6.2%)   

N10,H12 0.00085 (2.2%)  -0.00042 (3.6%)  -   -  

N7,H9 0.00257 (6.8%) 0.00044 (3.8%)  -   -  

N7,H8 0.00243 (6.4%) 0.00064 (5.5%)  -   -  

C4,N7 0.00316 (8.3%)  -0.00093 (8.1%)  -   -  

C1,N10 0.00115 (3.0%)  -0.00117 (10.1%)  -   -  

C1,C4  -   -  0.00041 (1.1%)  -0.00003 (0.2%) 

Total 0.03743 0.00063 0.00056 0.00006 

 

Atom-pairs that made most significant contributions towards tot-ED at r* are included in 

Tables 1 and 2; a full set of data is included in Tables S7 and S8 in the SI. There are several 

important observations we would like to make: 

(1) The atom-pair N7,H11 (H-bond acceptor and H-atom) involved in the primary 

interaction has not made the largest contribution to the ED at r* in both structures, (1) and 

(2), just 4.8 and 14.1% of the tot-ED, respectively. This is not entirely surprising, as we have 

noted similar observation in another case of a classical intramolecular H-bond.
[27]
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(2) The N10,H11 (H-bond donor and H-atom) atom-pair is the largest contributor to the 

tot-ED at r* in both structures, namely 20.7% and 16.5% in (1) and (2), respectively.  

(3) The functional groups that essentially serve as a proton donor, N10H2 in (1) and 

N10H3
+
 in (2), contributed most to the tot-ED in a bonding fashion, 25.6 and 21.2%, 

respectively.  

(4) The N7H2 functional groups that essentially serve as a proton acceptor in (1) and (2), 

made second largest bonding-ED contributions to the tot-ED, 12.8 and 9.4%, respectively. 

(5) The nature of the contribution made by atom-pairs C1,N10 and C4,N7 changed from 

the largest nonbonding-ED component in (1) to a bonding-ED component in (2).  

(6) In both structures, the strongest „competing‟ secondary interaction involving N7,N10 

atom-pair has made constructive, hence a bonding-ED contribution of 2.7 and 3.6% in (1) 

and (2), respectively, to the tot-ED. 

(7) There are numerous secondary interactions that contributed in a constructive manner to 

the tot-ED at r*, i.e., MDP(N7,H11) in (1) and (3,–1) CP(N7,H11) in (2); hence, they must 

not be seen as competing interactions. 

The FALDI-based investigation reveals that a DB is a holistic, multicenter phenomenon
[30]

 

that, in the case of structures (1) and (2), involves the entire skeleton and both terminal 

functional groups (nearly entire molecules) in contributing to the ED in the internuclear 

region of the primary interaction. Furthermore, upon protonating (1), multiple atom-pairs 

either concentrated ED in a much stronger fashion, or concentrated ED in (2) even though 

they were depleting ED in the neutral structure. In this regard, the intramolecular interactions 

in (1) and (2) differ qualitatively: (i) physically, in that we expect stronger attractive forces to 

act on the N7, N10 and H11 nuclei due to increased ED concentration from multiple sources, 

and (ii) chemically, in that we expect greater constructive interference in the N7, N10 and 

H11 internuclear regions due to simultaneous MO overlap over a number of atomic basins. 

The MO overlap pattern is significantly different in (1) and (2) as well.  

The added advantage of FALDI is in that makes it possible to extract contributions to the 

slope of the total bonding- and nonbonding-EDs in any structure. Analysis of data in Tables 1 

and 2 reveals some surprising observations:  

(a) There is no direct correlation between the ED contributed by an atom-pair to the 

primary interaction and this contribution‟s slope at r*; this observation equally applies to 

bonding- and nonbonding-ED contributions. Just as an example: (i) the largest bonding-ED 

contribution in (1) was made by N10,H11 (20.7% of the tot-ED), but this ED did not vary 

significantly in the proximity of MDP resulting in just 1% of the total slope at the 
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MDP(N7,H11); (ii) the largest nonbonding-ED contribution in (1) was made by C4,N7 but its 

slope at MDP(N7,H11) of 15.2% was largely „outperformed‟ by the second largest 

nonbonding-ED contribution (C1,N10) that contributed 27.9 % to the slope of the total 

nonbonding-ED at MDP(N7,H11).  

(b) The change (or slope) of bonding-ED contributions made by primary interactions in 

both structures at r* is not the most significant in terms of their contribution to the final 

slopes of the tot-ED. Hence, the primary interactions have no control over the presence or 

absence of a (3,–1) CP or DB in these two molecules.  

(c) Finally, we note that the most significant in value secondary interaction between N7 

and N10, constructively contributed to the internuclear region of the primary interaction in 

both structures, by adding ED and increasing the slope of bonding-ED. Clearly, this is not a 

competing interaction and this finding is in direct contrast to TJ‟s interpretation.
[27,28]

  

Highly repulsive oxygen-oxygen interaction in similar organic molecules 

The molecular graphs of two structurally similar organic structures, (3) and (4), are shown in 

Figure 6. The atom neighbouring C1 is different in these two equilibrium structures: element 

2 in (3) is a F-atom and in (4), a H-atom. Atoms O6 and O8 of primary interaction (vdW 

radius of O = 1.52 Å) are not linked with a DB in (3), (d(O6,O8) = 2.8892 Å), but a DB is 

present in (4) (d(O6,O8) = 2.8838 Å).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Molecular graphs of equilibrium structures of (3) and (4) in the gas phase also showing the 

directions of 2–eigenvectors crossing either the MDP(O6,O8) (black small sphere in (3)) or (3,–1) 

CP(O6,O8) on density bridge (green small sphere in (4)). Percentage-slope contributions made by 

atom-pairs that facilitate and hinder the presence of a DB(O6,O8) are shown as of bonding (b) and 

non-bonding (nb) nature, respectively.   

There is no qualitative difference in the nature of the primary interaction from the IQA 

perspective as atoms O6 and O8 are involved in a highly repulsive and comparable in value 

interactions with 
O6,O8

intE  in (3) and (4) of +125.8 and +120.4 kcal mol
–1

, respectively. The 
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computed TJ‟s -ratios,
[27,28]

 
O6,O8 O6,C4

XC XCV V  of (–5.56)/(–3.42) = 1.63 for (3) and (–6.07)/(–

4.29) = 1.41 for (4), yield very inconclusive results: 

(a) Structure (3) has a -ratio in the specified range in which a primary (3,–1) CP is 

predicted to be due to  > 1.59, but no DB is present.  

(b) The trend of the -ratio criterion does not hold for these molecules as, relative to (3), 

the smaller -ratio in structure (4) does yield a DB. 

This implies that either the DB(O6,O8) in (4) is of a different nature (i.e. not a “privileged 

exchange channel”) or that the -ratio does not represent an accurate criterion for the 

presence of a DB.  

Figures 7(a) and 7(b) show the values and trends (along the 2–eigenvectors) computed for 

structures (3) and (4), respectively, shown in Figure 6. The bonding- and nonbonding-ED 

trends of the two structures are nearly identical, suggesting that the nature of the multicenter 

O6O8 interaction in the two structures is highly comparable from an ED perspective. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. The tot-ED as well as the total bonding- and nonbonding-ED components computed along 

the 2–eigenvector passing through the MDP(O6,O8) in (3) and (3,–1) CP(O6,O8) in (4).  

 

Figures 8(a) and 8(b) depict the gradients of the total bonding- and total nonbonding-ED 

values along the 2–eigenvectors in (3) and (4), respectively, as well as the CP(r) functions 

computed for both structures. CP(r) exhibits an almost identical shape for both structures, but 

is positive in a small region only in (4), where the slope of the bonding-ED is greater in 

magnitude than the slope of the nonbonding-ED. The rate of change of the nonbonding-ED is 

slightly smaller in magnitude in (4) than in (3), whereas the rate of change of bonding-ED is 

almost identical in both structures. However, this small difference results in a positive CP(r) 

in (4) and, hence, the presence of a DB. 
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We have also tested the CP(r) function‟s reliability at larger basis sets (aug-cc-pvqz), as 

shown in Section 3 of the SI. It is important to note that a DB between O atoms is absent in 

both (3) and (4) at this basis set and, correspondingly, our CP(r) function is negative 

throughout in both structures. This nicely illustrates sensitivity of the CP(r) function that was 

able to explain the presence/absence of a DB regardless of extremely small variations in 

topological differences generated by basis sets used in the calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. 1

st
 derivative curves of the total bonding- and total nonbonding-ED as well as the CP(r) 

function computed along the 2–eigenvector passing through the MDP(O6,O8) in (3) and the (3,–1) 

CP(O6,O8) in (4). 

 

Tables 3 and 4 show selected contributions in (3) and (4), respectively, to the tot-ED and 

its gradient at the MDP(O6,O8) and (3,–1) CP(O6,O8); a full set of data is included in Tables 

S9 and S10 in the SI. The most pertinent results from this comparison are: 

(1) The ED delocalized between the atoms of the primary interaction (O6O8, a 

repulsive, closed-shell interaction) is predominantly of a bonding nature in both (3) and (4), 

regardless of the presence or absence of a DB. 

(2) Interestingly, there is no specific atom or atom-pair which is decisively responsible for 

the presence of a DB in (4) or absence of one in (3). 

(3) Components that facilitate the presence of a DB between O6 and O8 are generally 

from the neighbouring atoms, whereas the carbon backbone generally hinders DB presence. 

(4) The atom-pair O6,O8 involved in the primary interaction has not made the largest 

contribution to the ED at r* in both (3) and (4), just 7.1 and 7.7% of the tot-ED, respectively. 

(5) Interactions that might be interpreted as „competing‟ (such as C4O6) in fact facilitate 

the presence of a DB between O6 and O8. 

(6) The C1,O6 atom-pair is the largest contributor to the tot-ED at r* in both structures, 

namely 15.2 and 13.4% in (3) and (4), respectively. 
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(7) The factors that hinder or facilitate the presence of a DB(O6,O8) in (4) are the same as 

in (3). 

(8) Numerous small differences in the magnitudes of the various factors‟ contributions are 

such that the slope of the nonbonding-ED in (3) is slightly greater than in (4), and as a result, 

a DB doesn‟t appear in (3). 

Table 3. Selected contributions made to the MDP(O6,O8) in (3). Percentages refer to contributions 

towards the tot-ED and its slope. 

Component bonding(r*) bonding(r*) nonbonding(r*) nonbonding(r*) 

C1,O6 0.00138 (15.2%)  -0.00048 (9.8%)  -  - 

O6,O8 0.00065 (7.1%) 0.00020 (4.1%)  -  - 

C4,O6 0.00024 (2.7%) 0.00012 (2.4%)  -  - 

O6 loc 0.00021 (2.3%) 0.00046 (9.4%)  -  - 

C1,C3  -  - 0.00023 (2.5%)  -0.00072 (14.7%) 

C3,C4  -  - 0.00022 (2.4%)  -0.00064 (12.9%) 

Total 0.00818 0.00114 0.00094 -0.00189 

 

Table 4. Selected contributions made to the (3,–1) CP(O6,O8) in (4). Percentages refer to 

contributions towards the tot-ED and its slope. 

Component bonding(r*) bonding(r*) nonbonding(r*) nonbonding(r*) 

C1,O6 0.00123 (13.4%)  -0.00041 (8.8%)  -  - 

O6,O8 0.00071 (7.7%) 0.00024 (5.2%)  -  - 

C4,O6 0.00027 (3.0%) 0.00010 (2.2%)  -  - 

O6 loc 0.00021 (2.3%) 0.00039 (8.5%)  -  - 

C1,C3  -  - 0.00022 (2.4%)  -0.00060 (12.8%) 

C3,C4  -  - 0.00022 (2.4%)  -0.00056 (12.0%) 

Total 0.00828 0.00173 0.00087 -0.00168 

 

The above analyses of bonding- and nonbonding-ED distributions (Figure 7) and their 

slopes (Figure 8) as well as the IQA-defined interaction energies show that the physical 

nature of the two multicentre O6O8 interactions is fundamentally the same. However, the 

bonding-ED contribution at the (3,–1) CP(O6,O8) in (4) is slightly larger than at 

MDP(O6,O8) in (3) (0.00071 and 0.00065 a.u., respectively) as well as its rate of change 

along the 2-eigenvector. Therefore, we expect that the attractive forces acting on the nuclei 

to be greater in (4) than in (3) – a statement corroborated by a slightly less repulsive IQA 

interaction energy, by 5.4 kcalmol
–1

 in (4). From a chemical point of view, we expect 

increased constructive interference from MO overlap across both O6 and O8 atomic basins – 

again, corroborated by slightly greater 
O6,O8

XCV  term of the interaction energy, by 0.5 

kcalmol
–1

) in (4). Furthermore and importantly, our analysis shows that the ED in the 

internuclear region is of multicenter nature; hence, all contributions need to be taken into 
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account in order to fully understand this interaction in both molecules. This is possibly why 

TJ‟s -ratio fails to correctly predict the DB(O6,O8) in (4).   

In summary and to conclude, the total bonding-ED (as well as its rate of change) increases 

from (3) to (4), whilst the total nonbonding-ED (as well as its rate of change) decreases in 

magnitude from (3) to (4). Therefore, it seems likely that the multicenter intramolecular 

O6O8 interaction is slightly less repulsive in (4) than in (3) (from both physical and 

chemical points of view), due to manner in which ED is distributed. The consequence of 

these changes is the presence of a DB in (4). However, the changes between (3) and (4) are 

extremely small, and this case study clearly demonstrates that a DB can appear due to almost 

insignificant changes that have no bearing on the overall interpretation of an interaction on a 

fundamental level.  

Attractive chlorine-chlorine interaction in di- and hexa-chloroethane 

The third case study involves the comparison of a ClCl interaction in eclipsed 

conformations (non-equilibrium structures) of chlorine-substituted ethane. The molecular 

graphs of di- and hexachloroethane (C2H4Cl2 (5) and C2Cl6 (6)) in Figure 9 show that a DB is 

present between each pair of eclipsed chlorine atoms only in (6).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Molecular graphs of eclipsed C2H4Cl2 (5) and C2Cl6 (6) structures in the gas phase also 

showing the directions of 2–eigenvectors crossing either the MDP(Cl4,Cl6) (black small sphere in 

(5)) or (3,–1) CP(Cl4,Cl6) on a density bridge (green small sphere in (6)). Percentage-slope 

contributions made by atom-pairs that facilitate and hinder the presence of a DB(Cl4,Cl6) are shown 

as of bonding (b) and non-bonding (nb) nature, respectively.   

 

The interaction between Cl4 and Cl6 atoms in both structures is characterised by rather small 

in value, repulsive in nature classical term that is compensated over by the 
Cl4,Cl6

XCV  term. As 

a result, these atoms are involved in an overall attractive interactions, with 
Cl4,Cl6

intE = –5.29 

kcal mol
–1

 (
Cl4,Cl6

XCV  = –9.87 kcal mol
–1

) in (5) and 
Cl4,Cl6

intE  = –12.34 kcal mol
–1

 (
Cl4,Cl6

XCV = 
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–13.70 kcal mol
–1

) in (6) even though one can see them as being involved in a steric clash as 

d(Cl4,Cl6) = 3.2142 and 3.0196 Å, respectively, in (5) and (6) (vdW radius of Cl = 1.75 Å). 

The computed TJ‟s -ratios,
[27,28]

 
Cl4,Cl6 Cl4,C1

XC XCV V  of (–9.87)/(–5.06) = 1.95 for (5) and (–

13.70)/(–4.79) = 2.86 for (6), are both larger than the specified upper limit value of 1.59; 

hence the -ratio incorrectly predicts a DB linking Cl4 with Cl6 in both structures.  

Furthermore, 
Cl4,Cl6

XCV  in (5) is almost twice as large as that of the largest secondary 

interaction, and therefore this interaction is considered privileged in such a context, yet no 

DB is present. This must raise some questions regarding the arbitrariness of TJ‟s 

interpretation of Pendás et al.‟s concept of privileged exchange channels.
[26]

  

Figures 10(a) and 10(b) show the FALDI-based ED decomposition of the total bonding- 

and nonbonding-ED along the 2–eigenvectors indicated in Figure 9. In this case study we 

see some very large differences in the ED distributions. While the tot-ED distributions in the 

vicinity of the MDP(Cl4,Cl6) in (5) and (3,–1) CP(Cl4,Cl6) in (6) are comparable in 

magnitude, the ratio of bonding- to nonbonding-ED in (6) is much larger. Furthermore, we 

note in (5) that nonbonding-ED dominates the negative range of the eigenvector (a direction 

„towards‟ the carbon backbone) whereas in (6) it makes rather small (nearly negligible) 

contribution throughout entire region.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. The tot-ED as well as the total bonding- and nonbonding-ED components computed along 

the 2–eigenvector passing through the MDP(Cl4,Cl6) in (5) and (3,–1) CP(Cl4,Cl6) in (6). 

 

Slopes of the total bonding- and total nonbonding-ED distributions, as well as the CP(r) 

function, with respect to the 2–eigenvector, are plotted in Figures 11(a) and 11(b). The 

criterion and mechanism leading to a DB existence using the CP(r) function once again 

holds, in that CP(r) is always negative between Cl4 and Cl6 atoms in (5) but displays a 
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positive region in (6). This provides an evidence that the CP(r) function is equally applicable 

and successful in its predictive ability for either equilibrium or non-equilibrium structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. 1

st
 derivative curves of the total bonding- and total nonbonding-ED as well as the CP(r) 

function computed along the 2–eigenvector passing through the MDP(Cl4,Cl6) in (5) and the (3,–1) 

CP(Cl4,Cl6) in (6). 

 

The substitution of H-atoms in (5) for Cl atoms in (6) has a very significant influence on 

the bonding- and nonbonding-ED distributions, as well as their slopes, between Cl-atoms. 

The largest contributions are shown in Tables 5 and 6; a full set of data is included in Tables 

S11 and S12 in the SI. There are several important observations we would like to make: 

(1) In contrast to previous molecules, the atom-pair Cl4,Cl6 involved in the primary 

interaction made the largest contribution to the ED at r* in both structures (5) and (6), 14.9 

and 12.3% of the tot-ED, respectively. 

(2) Atom-pairs C1,C2 and C2,Cl4 hinder DB(Cl4,Cl6) presence in (5) (on average by 

~16% of the total slope, nonbonding) but C2,Cl4 facilitates DB(Cl4,Cl6) presence in (6) 

(~18% of total slope, bonding) whereas C1,C2 atom-pair‟s nonbonding-ED contribution 

decreased by about 50%. 

(3) Long-range ClCl interactions present in (6), such as from the atom-pair Cl3,Cl4, 

facilitate the presence of DBs between eclipsed Cl-atoms. Each of the long-range ClCl 

interaction contributes ~3.7% to the total slope at the (3,–1) CPs in a bonding fashion; in 

total, they contribute ~24% to the total slope and ~35% to the tot-ED at, e.g. the (3,–1) 

CP(Cl4,Cl6). 

(4) The ED delocalized amongst various Cl atom-pairs (both eclipsed and non-eclipsed) is 

therefore distributed in a manner that concentrates ED between all eclipsed ClCl contacts, 

as a result of molecular-wide MOs that show constructive interference between neighbouring 

Cl atoms.  
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Table 5. Selected contributions made to the MDP(Cl4,Cl6) in (5). Percentages refer to contributions 

towards the tot-ED and its slope. 

Component bonding(r*) bonding(r*) nonbonding(r*) nonbonding(r*) 

Cl4,Cl6 0.00182 (14.9%) 0.00122 (10.9%)  -  - 

C1,Cl4 0.00085 (6.9%) 0.00078 (6.9%)  -  - 

C2,Cl4  -  - 0.00176 (14.4%)  -0.00169 (15.1%) 

C1,C2  -  - 0.00053 (4.3%)  -0.00197 (17.6%) 

Total 0.00658 0.00465 0.00563 -0.00653 

 

Table 6. Selected contributions made to the (3,–1) CP(Cl4,Cl6) in structure (6). Percentages refer to 

contributions towards the tot-ED and its slope. 

Component bonding(r*) bonding(r*) nonbonding(r*) nonbonding(r*) 

Cl4,Cl6 0.00218 (12.3%) 0.00066 (7.4%)  -  - 

C1,Cl4 0.00095 (5.4%) 0.00058 (6.6%)  -  - 

C2,Cl4 0.00193 (10.9%)  -0.00163 (18.4%)  -  - 

Cl3,Cl4 0.000991 (5.6%) 0.000328 (3.7%)   

C1,C2  -  - 0.00041 (2.3%)  -0.00058 (6.6%) 

Total 0.01611 0.00153 0.00129 -0.00115 

 

Clearly, from the MOs perspective, interactions between eclipsed Cl-atoms in (5) and (6) 

might be seen as distinctively different even though, from the IQA perspective, they are 

nearly identical. It is therefore not the ClCl interaction itself which is different between the 

two structures, but rather a remarkably different environment in (6) which leads to a 

predominantly multicenter interaction involving considerable bonding-ED contributions. 

These additional bonding-ED contributions in (6) result in a relative increase in the slope of 

the factors that concentrate ED in the Cl4,Cl6 internuclear region, and as a result, a 

DB(Cl4,Cl6) is observed. 

Although this work is focused on intramolecular interactions, following the reviewer‟s 

suggestion, we have also applied our protocol to the „classical‟ C–C bond in (6). As one 

would expect, the CP(r) function worked perfectly well also in this case and was (i) positive 

in the vicinity of the (3,–1) CP(C1,C2) and (ii) equal to zero at this CP. Interestingly, the tot-

ED was made-up entirely of bonding-ED component in this case. Furthermore, as reported 

recently for “linear” n-butane,
[30]

 the largest but not exclusive contributor to the tot-ED is the 

ED delocalized between the atoms of the primary contribution – atom-pair C1,C2 contributed 

47.6% to the total ED at the (3,–1) CP(C1,C2); note that ~52 % (majority) of the ED at the 

(3,–1) CP(C1,C2) comes from numerous contributions made by other atom-pairs in the C2Cl6 

molecule. This confirmed again that even „classical‟ covalent bonds show large degree of 

multicentre nature of bonding; interested readers are referred to Section 4 in the SI for more 

details.  
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H--H steric contact in cis-2-butene 

Finally, as requested by another reviewer, analysis of the H--H steric contact, with d(H1,H6) 

= 2.1150 Å < sum of vdW radii, in cis-2-butene was performed using exactly the same 

approach as discussed for the remaining molecular systems – the molecular graph and 2–

eigenvector are shown in Figure 1(a). The reviewer‟s suggestion clearly stemmed from the 

fact that the so-called hydrogen–hydrogen bonds, citing the reviewer, „have been plaguing the 

QTAIM paradigm for a while‟. Furthermore, from NBO-based analysis it was concluded
[42]

 

recently that the HH interaction in the cis-isomer of 2-butene is repulsive and responsible 

for this conformer higher energy relative to the trans-conformer (the equilibrium structure).  

Looking at trends shown in Figure 12, however, it is apparent that the presence of a DB  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Part (a) - the tot-ED and its components, the total bonding- and nonbonding-ED, and part 

(b) - the 1
st
 derivative curves of the total bonding- and nonbonding-ED components and the CP(r) 

function computed for both parts along the 2–eigenvector passing through the (3,–1) CP(H1,H6) in 

cis-2-butene. RCP ((3,+1) CP) and (3,–1) CP occur when CP(r) = 0.  

 

and the associated (3,–1) CP(H1,H6) is the result of the same fundamental processes that lead 

to DBs in molecules discussed above:  

a) The tot-ED peaks at the (3,–1) CP and, most importantly, is largely dominated by 

bonding contributions as depicted in Figure 12(a). Notably, the H1 and H6 atoms (as well as 

the CH1H6C fragment) are involved, relative to the equilibrium structure, i.e., trans-2-

butene, in more attractive IQA-defined intrafragment interactions.
[43]

 

b) The CP(r) function is positive in the region between RCP and (3,–1) CP(H1,H6) 

(Figure 12(b)) and this is a result of the larger slope computed for the bonding-ED relative to 

nonbonding-ED – see data in Table 7 where major %-contributions towards the tot-ED and its 

slope are presented. Clearly, CP(r) > 0 is always observed between the two topological points 
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for intramolecular interactions characterised by the presence of a DB regardless whether 

atoms are involved in attractive or repulsive interaction. 

c) The MDP is located in Figure 12(b) in the region where the CP(r) function is negative 

and this is also observed for other molecules investigated regardless whether without or with 

the (3,–1) CP, hence a DB.  

 

Table 7. Selected contributions made to the (3,–1) CP(H1,H6) in cis–2–butene. Percentages refer to 

contributions towards the tot-ED and its slope. 

Component bonding(r*) bonding(r*) nonbonding(r*) nonbonding(r*) 

C2,H1 0.00268 (26.1%) 0.00066 (16.3%)  -   -  

C5,H6 0.00268 (26.1%) 0.00066 (16.3%)   

H1,H6 0.00030 (2.9%) 0.00007 (1.7%)   

C2,H7 0.00031 (3.1%)  -0.00004 (0.9%)  -   -  

C2,C3  -   -  0.00032 (3.1%)  -0.00061 (14.9%) 

C4,C5  -   -  0.00032 (3.1%)  -0.00061 (14.9%) 

C3,C4  -   -  0.00010 (1.0%)  -0.00029 (7.1%) 

C3,H12  -   -  0.00003 (0.3%)  -0.00007 (1.8%) 

Total 0.00925 0.00178 0.00103 -0.00178 

 

Data in Table 7 provides further and important insight when atom-pairs‟ main 

contributions are considered: 

1) The largest contributions of a bonding nature came from C2,H1 (C5,H6) atom pairs 

(0.00268 a.u. each and when combined it constitutes 52.2 % of the tot-ED) that is an order of 

magnitude larger when compared with contribution (also of bonding nature) made by the 

H1,H6 atom-pair involved in steric „clash‟. This (i) correlates perfectly well with these two 

fragments being stabilized in cis-2-butene relative to the trans-conformer
[43]

 as loc-FAMSEC 

< 0 (FAMSEC = Fragment Attributed Molecular System Energy Change
[44]

) and (ii) strongly 

suggests that a four-atom notation, CHHC, for this kind of interaction is most 

representative. 

2) Major contributions of nonbonding nature came from atom-pairs of the molecular 

backbone, among them the middle C3,C4 atom pair that became somewhat strained when in 

cis-conformer.
[43]

 

Conclusions 

A set of analytical quantum chemical tools was developed in order to study and understand 

the presence or absence of a density bridge (DB) linking two atoms on a molecular graph. 

Applicability and usefulness of the tools was successfully tested on four very different case 
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studies involving intramolecular interactions: (1) a classical H-bond, (2) a highly repulsive 

OO interaction, (3) an attractive ClCl interaction and (4) DB-linked an attractive CHHC 

interaction. The first three case studies involved two similar molecules showing either an 

absence or presence of a DB.  

We have consistently shown that the presence or absence of a DB cannot be linked to the 

-ratio of IQA-defined 
X,Y

XCV  terms of the interaction of interest (the so-called „primary 

interaction‟) and the „competing‟ neighbouring interactions („secondary interactions‟).
[27,28]

 

Rather, we showed that all of the DBs studied in this work displayed very large degree of 

multicenter character, illustrating that a simple bicentric approach for introducing a criterion 

for the presence of a DB represents a grossly misleading picture of the topology of the ED. In 

fact, in all four systems studied in this work, the atom-pair of the intramolecular interactions 

that display a DB only contributed a relatively small fraction of the tot-ED as well as its slope 

at the (3,–1) CP. While Pendás et al‟s concept of DBs as “privileged exchange channels”
[26]

 

might still hold, it must be redefined within a framework of multiple exchange channels 

resulting in a single density bridge. 

Using the FALDI-based ED decomposition scheme, we have shown that for a specific 

internuclear region, multiple atoms and atom-pairs can either facilitate or hinder the presence 

of a DB due to the manner in which (de)localized ED is distributed across the molecule. We 

have labelled each component as bonding, nonbonding or antibonding, related to each 

components‟ partial second derivative along the 2-eigenvector. In all of our model systems 

we noticed multiple, often unexpected bonding or nonbonding contributions to an 

internuclear region of interest. For instance, (i) multiple Cl,Cl atom-pairs facilitate the 

presence of DBs between eclipsed Cl,Cl contacts in hexachloroethane (6), a factor which is 

missing in dichloroethane (5) or (ii) the two CH fragments of the bay in cis-2-butene 

contributed in bonding fashion to the interatomic region between H-atoms involved in the 

steric contact most and an order of magnitude more than clashing H-atoms that also 

contributed to the total bonding-ED. Ultimately, we showed that the relative slopes (rates of 

change) of bonding-, nonbonding- and antibonding-ED determines the presence of a DB, and 

in the absence of antibonding-ED, a DB will always exist if the slope of the bonding-ED is 

greater in magnitude than the slope of the nonbonding-ED in a given internuclear region. 

Since each FALDI component can be interpreted from a physical (i.e. in terms of the forces 

acting on nuclei) and chemical (i.e. in terms of interference patterns of MOs overlapping 

multiple atoms) points of view, we present a criterion that provides a very useful and 

descriptive language for interpreting QTAIM‟s molecular graphs.  
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Analysis of the ED distributions of our model systems revealed that many contributions of 

a bonding nature are present regardless of whether a primary interaction is (i) linked by a DB 

(ii) repulsive or attractive, and/or (iii) considered as chemically bonded. As such, we cannot 

suggest using the presence of a DB as a condition for any chemical phenomenon. That said, 

the presence of a DB proves that some ED contributions in an internuclear region are of a 

bonding nature; hence any (multicenter) interaction with a DB present displays a degree of 

bonding character, thereby strengthening or weakening attractive or repulsive interatomic 

forces, respectively. 

Our observations point towards a necessary paradigm shift in the relationship between ED 

distributions in internuclear regions and chemical bonding, especially for the description of 

intramolecular interactions. While we hope, as many chemical theoreticians do, for the 

discovery of a universal, general theory of the chemical bond, we suggest that, perhaps, it is 

necessary to fully understand the inherently multicenter characteristics of bonding, 

nonbonding and antibonding in terms of ED distributions first, regardless of whether a 

chemical interaction can ultimately be considered as bonded or not. 
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