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Abstract

The cancer stem cell hypothesis has gained currency in recent times but concerns

remain about its scientific foundations because of significant gaps that exist between

research findings and comprehensive knowledge about cancer stem cells (CSCs). In

this light, a mathematical model that considers hematopoietic dynamics in the dis-

eased state of the bone marrow and peripheral blood is proposed and used to address

findings about CSCs. The ensuing model, resulting from a modification and refine-

ment of a recent model, develops out of the position that mathematical models of

CSC development, that are few at this time, are needed to provide insightful under-

pinnings for biomedical findings about CSCs as the CSC idea gains traction. Ac-

cordingly, the mathematical challenges brought on by the model that mirror general

challenges in dealing with nonlinear phenomena are discussed and placed in context.

The proposed model describes the logical occurrence of discrete time delays, that by

themselves present mathematical challenges, in the evolving cell populations under
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consideration. Under the challenging circumstances, the steady state properties of

the model system of delay differential equations are obtained, analyzed, and the re-

sulting mathematical predictions arising therefrom are interpreted and placed within

the framework of findings regarding CSCs. Simulations of the model are carried out

by considering various parameter scenarios that reflect different experimental situa-

tions involving disease evolution in human hosts.

Model analyses and simulations suggest that the emergence of the cancer stem cell

population alongside other malignant cells engenders higher dimensions of complex-

ity in the evolution of malignancy in the bone marrow and peripheral blood at the

expense of healthy hematopoietic development. The model predicts the evolution of

an aberrant environment in which the malignant population particularly in the bone

marrow shows tendencies of reaching an uncontrollable equilibrium state. Essentially,

the model shows that a structural relationship exists between CSCs and non-stem

malignant cells that confers on CSCs the role of temporally enhancing and stimulat-

ing the expansion of non-stem malignant cells while also benefitting from increases

in their own population and these CSCs may be the main protagonists that drive the

ultimate evolution of the uncontrollable equilibrium state of such malignant cells and

these may have implications for treatment.

Keywords: healthy cells, cancer stem cells, mathematical models

1. Introduction

Against the backdrop of the cancer scorecard [1] that shows that more improve-

ments in cancer prevention, detection, treatment, and management may be needed

in the future, the cancer stem cell (CSC) hypothesis is gaining increasing attention.

However, as this paradigm gains traction, a number of controversies still exist that

need to be settled. There are concerns about the scientific foundations of the CSC

concept because of significant gaps that exist between research findings and compre-

hensive knowledge about cancer stem cells [2–5]. It is believed that CSCs may be

responsible for causing relapses and engineering the abortion of remissions due to

their resistant nature [5]. Apparently, achievement of therapeutic effectiveness takes
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place against non-stem cancer cells and not CSCs that are capable of remaining vi-

able after long periods of treatment. Recent evidence suggests that therapeutic stress

may also promote cellular plasticity, which mediates the conversion of normal cancer

cells to a CSC-like state [2].

In our recent article [6] on the above-stated subject matter, a model of bone mar-

row - peripheral blood dynamics in the disease state was introduced that sought to

present a unified picture of Clarkson’s [7] classical view of cancer development with

the relatively recent hypothesis on cancer stem cells (CSCs) as described in works

such as those in [8–48]. In concluding that article [6], we posed a question about

how the dynamics in the disease state could be affected in the presence of a distinct

population of CSCs, since the dynamics obeyed by such cells was not explicitly ad-

dressed and probed in that discourse. This article is dedicated to investigating this

and other questions and since the biomedical literature related to the CSC paradigm

was extensively discussed in [6], we will herein shift our attention to discussing recent

and relevant CSC-driven mathematical models that have appeared in the literature

before moving ahead to consider other modeling issues.

Mathematical modeling of cancer has been progressing steadily over the years as

is evidenced by works such as those in [52–60] that focus primarily on disseminated

cancers, on one hand, and those in [61–64] that involve investigations of solid tumor

cancers, on another hand. To date, we note that CSC-driven mathematical modeling

activity that forms the focal point of this discourse is not as yet as extensive as

general mathematical modeling of cancer because of the relatively recent nature of

the emerging CSC paradigm. However, it is obvious that more CSC-driven models

would be appearing in the future as the CSC hypothesis gains wider traction and

recognition within the entire community of biomedical research and practice. With

the spotlight on CSC-driven mathematical models we now proceed to consider a few

models of CSCs that have appeared in the literature in recent times.

A survey of the literature shows that most CSC-driven mathematical models have

in the main utilized ordinary differential equation (ODE) approaches. This may be

due to the fact that such approaches are more suited to capturing the hierarchically
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structured nature of CSC development that is amenable to compartmentalization.

The models have tended to focus more on studies of cell population dynamics and

the treatment implications they engender and less on the mutation pathways that

lead to the heterogeneous mixture of cells. Nonetheless, some of the ODE models

have yielded certain projections about mutation acquisition. In [65], Ganguly and

Puri introduced a system of ordinary differential equations (ODEs) detailing seven

cell types that make up the model compartments: normal stem, early progenitor,

late progenitor, and mature cells, and their abnormal counterparts, respectively. The

simulations showed that an oncogenic event in normal stem cells could lead to an

increase in abnormal progeny cells, compared to the case of mutations in normal

early progenitor cells. This led to the postulation that an increase in the growth

rate of abnormal early progenitor cells led to faster proliferation of such cells and

increased cancer risk. Calmelet and his coworkers [66] used a similar approach as in

[65] to obtain a system of eight nonlinear ODEs that arose from dividing respective

subgroups of cells into normal and abnormal stem cells and their early and late pro-

genitors. This model was used to study different disease stages as a tumor progressed

from benign to invasive stages and the effects of therapy were investigated through

simulations.

Focusing on the exponential growth phase of tumors, Johnston and his cowork-

ers [67] introduced an ODE model that described dynamics of stem cells, progenitor

transit-amplifying cells, and fully differentiated cell populations and showed that

stem cells could make up any proportion of the tumor. They postulated from model

investigations that higher stem cell proportions could yield more aggressive tumors

if a certain balance between tumor growth and differentiation rates existed. The

model of Molina-Peña and Álvarez [68] also focused on the exponential growth phase

of tumors and showed that if certain kinetic relationships were satisfied then the cal-

culated tumor growth and stem cell fractions could be consistent with experimental

observation. By basing their investigations on an agent-based model developed by

Enderling et. al. [69], Hillen et. al. [70] introduced an integro-differential equation

model of cancer stem and non-stem cell populations and showed that the two pop-
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ulations interacted with each other in such a way that higher rates of cell death in

the non-stem cell compartment led to an enrichment of cancer stem cells, and thus

accelerated overall growth. Unlike the works in [67] and [68], Hillen and his coworkers

considered tumor growth beyond the exponential growth phase by introducing a cell

carrying capacity. They showed that constant cell turnover and competition with

the carrying capacity was an indication that the cancer stem cell fraction may not

be constant but may be continuously increasing, with a pure cancer stem cell state

being the only resulting stable steady state.

Using motivations from the works of Marciniak-Czochra et. al. [72] and Werner

et. al. [73], Weeks and her coworkers [71] developed a system of linear ODEs to

study the development of a heterogeneous cancer cell population where each tumor

subpopulation was assumed to be grouped into multiple compartments comprised

of cells of comparable proliferation potential. An outcome of their model analysis

was that only low non-stem cancer cell proliferation capacities yielded optimum tu-

mor growth for cell cycle times that were within biologically observed ranges. This

indicated that tumors of stem or non-stem cancer cell dynamics either grew with

sub-optimal cell cycle times, or that non-stem cancer cells could be short-lived. A

slant that veers away from investigations of CSC dictated population dynamics is

taken in [74] where Gentry and Jackson study mutational dynamics by introduc-

ing a system of eight ODEs that described mutational transformation events in a

normal hierarchical tissue. They used their model to investigate how deregulation

of the mechanisms preserving tissue homeostasis contributed to cancer. The model

predicted that the order in which mutations were acquired significantly affected the

pace of tumorigenesis. Their model also predicted that certain types of mutations

were more significant than others in dictating cancer onset.

So far, our discussions have centered around CSC-driven mathematical modeling

in general. In the particular instance of CSC models within the context of the bone

marrow - peripheral blood system that forms the subject matter of this discourse,

the only models of relevance that we revisit again later in this discourse appear in the

works of Stiehl and Marciniak-Czochra [75] and Stiehl et. al. [76]. In [75] Stiehl and
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Marciniak-Czochra develop a model in which healthy or normal hematopoietic cells

exist side-by-side with leukemic cells in various respective cell compartments. For the

healthy hemopoietic cell line they assumed that the first compartment was made up of

healthy stem cells while the compartments that followed were made up of post-mitotic

mature cells. In similar fashion, the leukemic cell line had leukemic stem cells (LSC)

making up the first compartment. From analysis and simulations, they concluded

among other things that their model could engender different types of steady states

based on the model parameter space and posited the existence of a unique healthy and

a unique purely leukemic steady state, and showed conditions under which composite

steady states could arise. In [76], Stiehl and his coworkers employed the model

proposed in [75] to study cell division patterns in acute myeloid leukemia (AML)

stem-like cells and established that model-driven patient data analysis suggest that

proliferation and self-renewal rates of LSC have greater impact on clinical dynamics

of AML than self-renewal and proliferation rates of non-stem leukemic cells. Quite

practically, due to the limitations placed on us by considerations of brevity, it is not

possible for us to discuss all models. As such, we point here to other important works

of relevance that are worth reading: [77–88].

The discussions so far show attempts by various researchers to model CSCs as a

hierarchically defined structure with an apex. Some of the ensuing challenges involve

finding definitive data from in vivo and in vitro sources for the appropriate estimation

and measurement of model parameters. Because of the relatively ”nascent” nature

of biomedical work on CSCs, availability of kinetic information on cell types such as

stem, early progenitor, late progenitor, and differentiated cells may be lacking or may

be scanty at this time and this makes the employment of biomedical data in CSC-

oriented models a challenging enterprise. Ironically, however, it is due to the very

elusive nature of the search for kinetic information on stem cells that provides the

important underpinnings for the use of mathematical models in this area that could

provide insights and uncover ”hidden” information about such cells and their behavior

in order to guide experimentalists in their quest for the most appropriate and relevant

data sets, in the first place ([76], [89]) . A way to deal with the scarcity of data in
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this endeavor may be to start with models that utilize relatively small parameter

spaces and allow easy estimation of relevant parameters. Various techniques could

also be employed in identifying the few most important parameters within models

that decisively affect model behavior, for which strenuous efforts would have to be

made to measure them from experiments or from in vivo work. Such techniques could

also provide opportunities and underpinnings for assigning arbitrary values to less

crucial parameters.

Like was done in the CSC models described earlier, we will also adopt the approach

of cell compartmentalization but focus on cell behavior and activity in the bone

marrow (BM) and peripheral blood (PB), as was studied in [6]. We consider the

CSC population as one distinct subpopulation within the BM that is different from

non-stem cancer cells such as blasts. Accordingly, we consider the emergence of a CSC

population that exists side by side with non-stem cancer cells and healthy or normal

marrow cells in the BM. Consequently, we present a model system of five nonlinear

ODEs with two delay terms in the ensuing discourse. In a nutshell, our modeling

approaches here shed light and present notable insights into, (1) the occurrence and

propagation of delays in the cell development systems that are not considered in most

models because of the inherent complexities they present and (2) attempts to link

CSC-driven modeling to active investigations of cell dynamics in the bone marrow

and peripheral blood. Additionally, since the CSC paradigm remains an evolving

idea at this point in time, one of our main objectives in this discourse is to use our

model and its implications to affirm and confirm some of the main findings that have

so far been obtained about CSC behavior and present modeling scenarios that have

treatment implications with the aim of lending mathematical support to the quest

of strengthening the scientific foundations of the CSC concept and guaranteeing its

plausibility and viability as a new field of active investigation. Consequently in

the sequel, we employ our models in studying treatment strategies that are based

on the CSC concept as part of our over-arching objectives in this endeavor. With

cancer remaining as one of the most challenging and versatile diseases of all time, it

is our conviction that mathematical models of diverse kinds are needed in studying,
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analyzing, and simulating various strands of this disease and their multiple treatment

strategies as biomedicine takes on an increasingly quantitative posture. It is within

this context that this article is written. The subsequent sections are arranged as

follows: in section two we bring together model assumptions from [6] and the new

assumptions stemming from considerations of CSC emergence, section three deals

with model analyses, section four addresses model simulations, and discussions and

concluding remarks can be found in section five.

2. Model Assumptions and Set-up

Before proceeding with our model assumptions, we first present a compendium of

medical facts from the biomedical literature that come from various sources, including

[8–48], about CSCs that support and lead in a natural way to these assumptions:

� Many cancers are organized as hierarchies sustained by CSCs at their apex.

These CSCs possess self-renewal capabilities similar to their healthy or normal

counterparts ([5], [8–26]).

� CSCs are capable of self-renewal and differentiation into nontumorigenic cell

progeny ([10–13], [32–38]).

� CSCs are responsible for treatment failure [9–47].

� Tumors are caricatures of normal development with a hierarchical organization

([8–12], [47]).

� Hematopoiesis and leukemia are both hierarchically organized processes origi-

nating from hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs),

respectively ([9–12], [15, 16]).

� LSCs display many features of healthy HSCs, including quiescence and self-

renewal ([9], [15], [39], [49]).

� HSCs and LSCs crucially depend on signals from the BM microenvironment,

the so-called niche ([9], [32], [50, 51]).
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� For leukemia patients, studies have established that the vast majority of leukemic

blasts are postmitotic and are continuously replenished from a small prolifera-

tive fraction of cells. Only a small fraction of leukemic blasts (about 5 percent)

are actively cycling in vivo. Interestingly, the studies also reveal a rare cellular

fraction that remains dormant for weeks to months before beginning to cycle

[9].

� CSCs are inherently resistant to a variety of conventional treatments including

chemo- and radiation-therapies [9–43].

� Due to their functional similarities with normal stem cells, and the observation

that they often share specific surface markers, CSCs may derive from a mutated

stem cell. CSCs can be generated experimentally from normal stem cells ([9],

[32], [42], [46]).

� CSCs represent a small subpopulation of cells within a tumor that express cell

surface markers including CD24, CD44, and/or CD133 ([42], [49]).

� CSCs are tumorigenic and capable of regenerating a tumor when transplanted

into an animal host [9–13].

� miRNAs are involved in the regulation of CSCs properties [42, 43].

� CSCs play important roles in cancer relapse and metastasis [9–47].

Using the afore-stated medical facts and facts from the literature in general as a

background, we obtain and enumerate the following guiding assumptions:

a) Following their evolution, non-stem malignant cells, herein referred to as blasts,

exist side-by-side with healthy or normal cells but hinder healthy cell develop-

ment ([7], [53], [55], [58], [59]),

b) The blast cells with no self-renewal capabilities are derived from healthy or

normal cells that have undergone mutation ([20], [28–30], [32], [45]),
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c) The emergence of a small population of CSCs with self-renewal capabilities

occurs in the BM. These CSCs are also derived from healthy or normal cells

that have undergone mutation ([2], [9], [90]),

d) Healthy cells that include hematopoietic stem cells, non-stem malignant cells,

and CSCs, exist side-by-side in the bone marrow (BM). In the peripheral blood

(PB), healthy and non-stem malignant cells exist side-by-side ([7], [53], [55],

[58], [59]),

e) Healthy cell apoptosis takes place in the bone marrow [91–95],

f) The healthy and non-stem malignant (blasts) marrow cells follow a process

of sigmoidal growth while the CSCs obey combinations of exponential and

confined exponential growth ([52], [53], [59], [96]),

g) Cells in the BM respond to depletions or over-accumulation of cells in the PB

through feedback mechanisms ([59], [97], [98], [99]),

h) Self-renewing and proliferating CSCs get converted into non-stem malignant

cells in the BM, due to feedback. The reverse may be considered to be negligible

[8–10],

i) Blast and CSC loss from the BM is negligible [59],

j) Blast cell loss takes place in the PB ([53], [59], [100]).

It is important to note that all the above assumptions come from biological ex-

periments and observations except assumption (f) that comes from modeling works.

Proceeding from these assumptions, and based on the schematic description in Fig-

ure 1, we obtain the following model that captures significant features of the CSC
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hypothesis while utilizing the main ingredients of Clarkson’s classical view [7]:

dNm

dt
=

healthy BM cell renewal and growth︷ ︸︸ ︷
αNm ln

(
Am + Ab
κnm +Nm

)
−

mutation into blast︷ ︸︸ ︷
αmNm −

transition to PB︷ ︸︸ ︷
αmrNme

−sLb

κnb +Nb

−
mutation into CSC︷ ︸︸ ︷

αcNm −
inhibition in BM︷ ︸︸ ︷
αmdNmLm

dNb

dt
=

healthy BM cell arrival in PB after time lag︷ ︸︸ ︷
αmre

−µTm−sLb(t−Tm)Nm (t− Tm)

κnb +Nb (t− Tm)
−

inhibition in PB︷ ︸︸ ︷
αbdNbLb −

cell loss︷ ︸︸ ︷
αbNb

dLm
dt

=

BM blast cell growth︷ ︸︸ ︷
βmLm ln

(
Aw

κl + Lm

)
+

blast mutants︷ ︸︸ ︷
αmNm

−
BM blast transition to PB︷︸︸︷

βLm +

CSC conversion into BM blast after time lag︷ ︸︸ ︷
ηe−φTc−τLb(t−Tc)C(t− Tc)

dLb
dt

=

BM blast arrival in PB︷︸︸︷
βLm −

cell loss︷︸︸︷
δLb

dC

dt
=

CSC renewal and growth︷ ︸︸ ︷
βcC(1− C

κc
) −

CSC transition into BM blast︷ ︸︸ ︷
ηe−τLbC +

CSC mutants︷ ︸︸ ︷
αcNm

(1)

with initial and time-lag conditions given by

Nm(0) = Nm0, Nb(0) = Nb0, Lm(0) = Lm0, Lb(0) = Lb0, C(0) = C0

Nm(t) = Nmc,−Tm ≤ t < 0

C(t) = Cmc,−Tc ≤ t < 0.

(2)

The functions and quantities in model system (1) are all continuously differentiable

with respect to their arguments and are defined as follows:

� Nm = Nm(t) is the population of healthy marrow cells/liter at time t,

� Nb = Nb(t) is the population of healthy PB cells/liter at time t,

� Lm = Lm(t) represents the population of non-stem malignant BM cells (blasts)/liter

at time t,

� Lb = Lb(t) refers to population of malignant PB cells/liter at time t,
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� C =C (t) refers to population of cancer stem cells/liter at time t.

Here, the units of measurement stated as ”cells/liter” are understood to be taken with

respect to blood, in line with the standard convention adopted in various studies ([15],

[38], [50], [92]).
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Figure 1: Schematic Description of Bone Marrow – Peripheral Blood – Cancer Stem Cell Dynamics

In addition to the quantities that have already been defined, the parameters in

model system (1) are defined as follows and their value ranges are summarized in

Table 1:

� α = intrinsic growth rate or renewal rate of healthy BM cells per unit time,

� αm = probabilistic rate at which healthy BM cells mutate into non-stem ma-

lignant ones,
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� αmr = maximal rate of release of mature BM cells to the PB based on feedback,

� αmd = degree of inhibition exercised by the malignant cells in the marrow over

the healthy BM cells,

� αbd = degree of inhibition exercised by the malignant cells in the blood over

the healthy PB cells,

� αb = death or disappearance rate of healthy PB cells per unit time,

� αc = probabilistic rate at which healthy BM cells mutate into CSCs,

� βm = intrinsic growth rate of marrow blasts per unit time,

� β = release rate of BM blasts into the PB,

� δ = death or disappearance rate of blasts in the PB,

� Tm = maturation transit time of healthy BM cells,

� Tc = length of time before which CSCs get converted into non-stem malignant

cells,

� βc = intrinsic growth or renewal rate of CSCs per unit time,

� s = volume growth rate of malignant PB cells after time lag of Tm,

� τ = volume growth rate of malignant PB cells after time lag of Tc,

� µ = arrival rate of healthy BM cells in the PB per unit time after their matu-

ration transit time elapses,

� φ = conversion rate of CSCs into non-stem malignant BM after time lag of Tc,

� η = transition or turnover rate of CSCs into the non-stem malignant BM based

on feedback,

� Am = healthy marrow carrying capacity or the maximum allowable number of

healthy cells/liter in the BM,
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� Ab = carrying capacity of healthy PB cells or the maximum allowable number

of healthy cells/liter in the PB,

� Aw = carrying capacity or the maximum allowable number of all cells in the

BM and PB/liter,

� κc = environmental carrying capacity of CSCs,

� κnm = constant threshold population level of healthy BM cells/liter that guar-

antees cell growth and renewal in the BM towards the healthy cell carrying

capacity Am + Ab and could be taken to be the same as quantity Nmc,

� κnb = constant threshold population level of healthy BM cells/liter at which

the rate of cell movement from the BM to the PB is one-half of the maximal

release rate of BM cells to the PB, and

� κl = constant threshold population level of malignant BM cells/liter that sup-

ports malignant cell growth in the BM towards the carrying capacity Aw.

2.1. Model Motivations

By drawing upon the peculiarities of model system (1) – (6) that was studied in

Afenya et. al. [6], some noteworthy things about model system (1–2) are:

i) Its equations bear many similarities to and carry the same characteristics as

model system (1) – (6) in Afenya et. al. [6]. The difference between this current

model system and the one in [6] is the appearance of a separate population of

CSCs.

ii) The Gompertz curve that features the logarithm as reflected in equation (1)3

was found in [56] to be the best-fitting curve to the leukemia data of Skipper

and Perry [101]. The logarithmic representation also received validation in [57]

and carries over to its use in equation (1)1 because of the similar functional and

phenotypic characteristics of these cells [9].
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iii) In [100], Clarkson and his coworkers state that instances for the promotion

of malignant development include, a) the competition for essential nutrients

between healthy and malignant cells that lead to competitive exclusion and ex-

tinction of the healthy cell population and b) contact inhibition and production

of growth inhibitors by malignant cells. Additionally, in [50, 51], it is pointed

out that malignant cells induce a change in the transcriptional programming of

healthy cells. The modified niche alters the expressions of cross-talk molecules

to provide a distinct, albeit, aberrant cross-talk between healthy and malig-

nant cells that leads to selective suppression of healthy cells and promotion of

malignancy [51]. Also, endosteal regions in the niche are remodeled into ac-

quiring reduced capacity to support healthy cells and this correlates with loss

of healthy hematopoiesis [50]. Essentially, these show that malignant cells act

to impede and replace healthy cells and the reverse does not happen. These

statements lend support to the phenomena of inhibition of the healthy cells by

the malignant cells in the BM and PB as is modeled by the fifth term on the

right hand side of equation (1)1 and the second term on the right hand side of

equation (1)2.

iv) The combinations of exponential and confined exponential growth that the

CSCs are assumed to obey essentially result in the behavior of sigmoidal growth.

Such sigmoidal growth phenomenon may be a direct consequence of the influ-

ences exerted by the niche. It is pointed out in [12] that cells may go through a

process of rapid exponential growth before lapsing into a resting state of main-

tenance. This is captured in the second expression on the right hand side of the

fifth equation of model system (1). Sigmoidal growth behavior of cell popula-

tions in a general sense ([12], [62]) account for the asymptotic bounds Am, Ab

and Aw since there are constraints on the sizes of healthy and malignant niches

[50, 51].

v) According to Borkowska et. al. [99], the mechanisms that regulate mobilization

of BM cells into the PB across the BM - PB barrier in healthy hematopoiesis

are still not well understood. In their quest to study and understand the pro-
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cesses, they show that hemopoietic BM cells are released from their niches and

circulate at detectable levels in the PB and their number increases in response

to systemic or local inflammation, strenuous exercise, stress, tissue/organ in-

jury, and pharmacological agents through the activation of various cascades

[99]. Additionally, studies of Zhu et. al. [102] indicate that normal functioning

feedback mechanisms dictated by healthy cells and mediated by cytokines and

growth factors guarantee recovery of cells in the BM and PB in stress related

and other normal malignant-free situations through various signaling pathways

[102]. Putting the statements from Item (iii) above together with works such

as those in ([47], [99], [102]), it may be reasonable to assume that cell signaling

pathways may be aberrant in the malignant niche in such a way that feed-

back mechanisms may be dictated by malignant PB cells in the transmission

of signals from the PB back to cells in the BM across the BM - PB barrier. In

quantifying this assumption, the aberrant nature of the feedback and signaling

mechanisms are partly captured through the expression e−sLb in Eqs. (1)1 and

(1)2. They are also captured by the expression e−τLb in Eqs. (1)3 and (1)5

and schematically shown in Figure 1, since mechanisms that affect the BM also

by implication affect CSCs that are resident in the BM and are said to share

similar characteristics with other cells in the BM [2]. It can be observed that

the expressions vanish as Lb approaches infinity, that is when the population

level of malignant cells in the PB becomes very large. We note that when Lb

is relatively small, an indication of no malignant cells, the third term on the

right of Eq. (1)1 and the first term on the right of Eq. (1)2 reduce to expres-

sions containing only healthy BM and PB cell populations, the normal state

that is discussed in [52]. This assumption also qualitatively highlights the al-

terations experienced by the hematopoietic system as a result of the emergence

of malignancy [50, 51].

vi) Healthy cells, starting from HSCs, that are produced in the BM are said to

go through various morphological changes until they reach maturation before

crossing the BM - PB barrier into the PB to perform their various functions
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[115]. This process of maturation naturally induces a maturation time lag

Tm that is modeled in Eq. (1)2. This indicates that BM cells traverse the

BM compartment and arrive in the PB Tm time units later. In the case of the

CSCs, Yoshida and Saya point out in [103] that such cells have slow cycle times.

This suggests that a time lag exists between when CSCs emerge and when they

get converted into non-stem BM malignant cells and this is quantified by the

quantity Tc that is modeled in Eq. (1)3. Accordingly, following the approach of

Mackey in [113], the quantity e−µTm corrects for the probability of cellular loss

in the movement of cells from the BM to the PB in Eq. (1)2 and the quantity

e−φTc corrects for the probability of cellular loss in the conversion of CSCs into

BM non-stem malignant cells in Eq. (1)3.

3. Analytical Results: Model Equilibria and Stability

Since the nonlinear nature of model system (1) cannot admit closed-form solu-

tions, we appropriately consider the long range behavior of the model that affords us

the opportunity to glean relevant information about stability properties exhibited by

the model. In order to effectively find the model equilibria and efficiently perform

stability analyses of model system (1), we define the following threshold variables

that play important roles in the ensuing investigations: R (L) := βm
β

(
ln
(

Aw
κL+L

)
− L

κL+L

)
r (L) := α ln

(
Am+Ab
κnm

)
− αm − αmre

− sβ
δ
L

κnb
− αmdL

where

� R (0) (denoted by RLm in Afenya et. al. [6]) is the basic reproductive ratio of

malignant cells in the BM in the absence of mutation from BM healthy cells,

this does not include influx of malignant BM cells from the CSC population.

We note here that our choice of defining the function R(L) as such has been

done for the sake of notational convenience and provides the basis for using the

notations R(0) and R (L0
m) instead of their long forms in the ensuing discourse.

17



� r (0) := α ln
(
Am+Ab
κnm

)
− αm − αmr

κnb
(denoted by r0

Nm
in Afenya et. al. [6]) is

the net growth rate, at the malignant cell free equilibrium, of BM healthy cells.

The first term on the right hand side of this expression represents the basic

growth rate, the second term describes the mutation rate, while the third is the

rate of transformation of healthy BM cells into healthy PB cells.

� r (L0
m) (denoted by rLNm in [6]) is the net growth rate of BM healthy cells,

evaluated at the CSC free and malignant cell equilibrium

L0
m = Awe

− β
βm − κl (see the analysis below).

Now, by setting the right hand sides of model system (1) equal to zero and letting,

1) N̄m and N̄b represent the respective healthy cell steady states in the BM and PB,

2) L̄m and L̄b be the respective malignant cell steady states in the BM and PB, and

3) C̄ represent the CSC steady state, we obtain the following system:



N̄m

[
α ln

(
Am+Ab
κnm+N̄m

)
− αmre−sL̄b

κnb+N̄b
− αmdL̄m − αm − αc

]
= 0

αmre−µTm−sL̄bNm
κnb+N̄b

−
(
αbdL̄b + αb

)
N̄b = 0

L̄m

(
βm ln

(
Aw
κl+L̄m

)
− β

)
+ αmN̄m + ηe−φTc−τL̄bC̄ = 0

L̄b = β
δ
L̄m

βcC̄
(

1− C̄
κc

)
− ηe−τL̄bC̄ + αcN̄m = 0

(3)

In solving system (3), we first of all note from equation (3)3 that L̄m 6= 0 unless

N̄m = C̄ = 0. Moreover, using equation (3)1 we obtain N̄m = 0 or α ln
(

Am+Ab
κnm+N̄m

)
−

αmre−sL̄b
κnb+N̄b

−αmdL̄m−αm−αc = 0. These consequently lead to the following cases and

subcases:
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3.1. Case I: N̄m = 0 :

In this case, we obtain from equation (3)2 that N̄b = 0 reducing equations

(3)3−(3)5 to L̄b = β
δ
L̄m and


L̄m

(
βm ln

(
Aw
κl+L̄m

)
− β

)
+ ηe−φTc−

τβ
δ
L̄mC̄ = 0

C̄

(
βc

(
1− C̄

κc

)
− ηe−

τβ
δ
L̄m

)
= 0

(4)

with equation (4)2 implying that C̄ = 0 or C̄ = κc

(
1− ηe−τL̄b

βc

)
, leading to,

3.1.1. Subcase I.1: C̄ = 0 :

From (4)1 we obtain L̄m

(
βm ln

(
Aw

κl+L̄m

)
− β

)
= 0. Therefore,

1. If R (0) ≤ 1, then
(
βm ln

(
Aw

κl+L̄m

)
− β

)
< 0 for all L̄m ≥ 0. Then, we necessarily

have L̄m = 0 leading to the trivial equilibrium point

E0 = (0, 0, 0, 0, 0)

as the only equilibrium point with no CSC. The stability properties of E0 are

determined by the roots of its characteristic equation given by

(z + δ) (z + αb) (z + η − βc) (z + αc − r (0)) (z − β (R (0)− 1)) = 0.

Hence, E0 is locally asymptotically stable if and only if η > βc, r (0) < αc and

R (0) < 1. The first condition here means that over a very large time horizon

the turnover rate of CSC into the non-stem malignant BM becomes greater

than its rate of proliferation and renewal which may induce CSC elimination.

The second condition says that the net growth rate, at the malignant cell free

equilibrium, of BM healthy cells is less than zero causing elimination of healthy

cells. The third condition means that the reproductive rate of malignant cells

is less than one inducing elimination of the malignant population. This is

similar to the case where eradication of malignancy goes along with eradication

of healthy tissues as was found in Afenya et. al. [6]. The implications for

treatment here is that if malignant cells are to be completely destroyed then

this may have to go hand in hand with complete obliteration of healthy cells

and this may not be a feasible option.
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2. If R (0) > 1, then L0
m := Awe

− β
βm − κl > 0 implying that, in addition to E0,

model system (1) has another CSC free equilibrium point, namely, the biaxial

equilibrium point

EL :=

(
0, 0, L0

m,
β

δ
L0
m, 0

)
.

The stability properties of EL are determined by the roots of its characteristic

equation given by

(z + δ)
(
z + αb + αbdβL

0
m

δ

)(
z + ηe−

τβ
δ
L0
m − βc

)
× (z + αc − r (L0

m)) (z + β (1−R (L0
m))) = 0

Since β (1−R (L0
m)) = βmL0

m

κL+L0
m
> 0, then EL is locally asymptotically stable if

and only if η > βce
τβ
δ
L0
m , r (L0

m) < αc, (and R (0) > 1 for the biological feasi-

bility of EL). Here, these two conditions supporting the biological feasibility of

EL show that there is an evolution of the system towards a state in which ma-

lignancy takes hold in the BM and PB, driven mostly by non-stem malignant

cells with no participation from CSCs. This occurs when mutation of healthy

BM cells into CSCs increases beyond a certain threshold but the turnover rate

of CSCs into the non-stem malignant BM is higher than CSC proliferation and

renewal leading to non-stem malignant BM cells and not CSCs being the main

contributors to the malignant state. This means in an asymptotic sense that

the CSC population may remain at a very low level for all time and may not

necessarily contribute to complicating the malignant situation implying that

treatment in this case may be a ”good” option since the focus would only be

on non-stem malignant cells that lack self-renewal capabilities.

3.1.2. Subcase I.2: C̄ = κc

(
1− η

βc
e
−τβ
δ

L̄m

)
In this subcase we necessarily have L̄m > L̃m := δ

τβ
ln
(
η
βc

)
for C̄ to be positive.

Substituting the expression C̄ = κc

(
1− η

βc
e
−τβ
δ

L̄m

)
into equation (4)1 leads to the

following tri-axial equilibrium point:

ELC :=

(
0, 0, L#

m,
β

δ
L#
m, C

#

)
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where C# := κc

(
1− η

βc
e
−τβ
δ

L#
m

)
and L#

m is any root of

G
(
L̄m
)

= L̄m

(
βm ln

(
Aw

κL+L̄m

)
− β

)
+ηκce

−φTc−
τβL̄m
δ

(
1− η

βc
e

−τβ
δ
L̄m
) (5)

in the interval
[
max

(
0, L̃m

)
,+∞

)
.

Moreover, for any L#
m > max

(
0, L̃m

)
to be a positive root of G, it must satisfy

βm ln
(

Aw
κl+L

#
m

)
< β implying that L#

m must also be greater than L0
m. Therefore, we

restrict the investigation of the roots of G to the interval [L•m,+∞) where L•m =

max
(

0, L̃m, L
0
m

)
.

Given that lim
L̄m→+∞

G
(
L̄m
)

= −∞, we discuss the following cases:

1. If G (L•m) > 0, then G has at least one positive root on [L•m,+∞) .

2. If G (L•m) < 0, then due to G′
(
L̄m
)

= β

(
H
(
L̄m
)
− τηκc

δ
e−φTc−

τβL̄m
δ

)
where

H
(
L̄m
)

:= R
(
L̄m
)
− 1 + 2τκcη2

βcδ
e−φTc−

2τβL̄m
δ is a decreasing function satisfying

lim
L̄m→+∞

H
(
L̄m
)

= −∞, we discuss the following cases:

i. If H (L•m) < 0, then for all L̄m > L•m we have H
(
L̄m
)
< 0, implying that

G′
(
L̄m
)
< 0. Therefore, G has no positive root on [L•m,+∞) .

ii. If H (L•m) > 0, then there exists L̊m > L•m such that H
(
L̊m

)
= 0 and

H
(
L̄m
)
< 0 for all L̄m > L̊m. Hence, G′

(
L̄m
)
< 0 for all L̄m > L̊m. This

leads to the following subcases:

a. If G
(
L̊m

)
< 0 then G has no positive root on

[
L̊m,+∞

)
.

b. If G
(
L̊m

)
> 0 then G has a unique positive root on

[
L̊m,+∞

)
.

From the above investigation, we deduce the following:

1. If R (0) < 1 then L0
m < 0 implying that EL is not biologically feasible and

L•m = max
(

0, L̃m

)
. Accordingly,

i. If η ≤ βc then L̃m ≤ 0, implying that L•m = 0 and G (L•m) = G (0) =

ηe−φTcκc

(
1− η

βc

)
> 0. In this case G has at least one positive root L#

m
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leading to at least one equilibrium point ELC .

This condition means that if the turnover rate of CSC into the malignant

BM, η, is less than the intrinsic growth and renewal rate of CSCs, βc, then

the CSC population can sustain its existence at a positive equilibrium

level.

ii. If η > βc then L̃m > 0, implying that L•m = L̃m and G (L•m) = G
(
L̃m

)
=

L̃m

(
βm ln

(
Aw

κL+L̃m

)
− β

)
which is negative because L̃m > L0

m.

In this case, G has no positive root if H
(
L̃m

)
< 0, and has at least one

positive root if H
(
L̃m

)
> 0 and G

(
L̊m

)
> 0.

We note here that the condition H
(
L̃m

)
> 0, expressed in terms of the

carrying capacity of CSCs, is equivalent to the following condition:

κc>
δeφTc

2τβc

(
1−R

(
L̃m

))
.

This means that even if the turnover rate of CSCs into the non-stem

malignant BM, η, exceeds the intrinsic growth and renewal rate of CSCs,

βc, CSCs are still able to establish their existence at a positive equilibrium

as long as the threshold condition expressed by the inequality obtained

above is satisfied.

2. If R (0) > 1 then L0
m > 0, implying that L•m = max

(
L0
m, L̃m

)
. Since L̃m ≥ L0

m

if and only if η ≥ βce
τβ
δ
L0
m , we discuss the following cases:

i. If η < βce
τβ
δ
L0
m then G (L•m) = G (L0

m) = ηκce
−φTc−

τβ
δ
L0
m

(
1− η

βc
e

−τβ
δ
L0
m

)
>

0, which implies that G has a unique positive root L#
m.

This result shows that when malignancy is established, the population of

CSCs may be sustained at a positive equilibrium level if the transition rate

of CSCs into the non-stem malignant BM is large enough. Furthermore,

the threshold value increases exponentially with the values of malignant

cells in BM at the equilibrium, L0
m.

ii. If η ≥ βce
τβ
δ
L0
m then L•m = L̃m which, as in the case (i.) above, implies that

G has no positive root if H
(
L̃m

)
< 0, and has at least one positive root
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if G
(
L̊m

)
> 0.

This condition means that if the transition rate of CSCs into the non-stem

malignant BM is too large, (η ≥ βce
τβ
δ
L0
m), then CSCs can sustain their

existence if their carrying capacity, κc, is large enough; and this comes

from the relation,

κc > βcL̊m

(
β − βm ln

(
Aw

κL+L̊m

))
eφTc+

τβL̊m
δ /

(
ηβc − η2e

−τβ
δ
L̊m
)
.

The stability properties of ELC are determined by the roots of its characteristic

equation given by(
z + αb + αbd

β

δ
L#
m

)(
z + αc − r

(
L#
m

)) (
P +Qe−zTc

)
= 0

where

P = (z + δ)
(
z + β

(
1−R

(
L#
m

))) (
z + βcC#

κc

)
Q = βητC#e−φTc−

τβ
δ
L#
m

(
z + 2βc

C#

κc
− βc

)
.

Therefore, ELC is unstable if r
(
L#
m

)
> αc. When r

(
L#
m

)
< αc, the stability of ELC

is determined by the following equation:

P +Qe−zTc = 0. (6)

We note that equation (6) has a delay dependent parameter, we thus examine the

distribution of its roots by following the methods adopted in [104].

If Tc = 0, then the function H is given by H
(
L̄m
)

= R
(
L̄m
)
−1 + 2τκcη2

βcδ
e−

2τβL̄m
δ and

equation (6) reduces to

p0 + p1z + p2z
2 + z3 = 0, (7)

where 
p0 = δββcC#

κc

(
1−R

(
L#
m

))
+ βτηβcC

#e−
τβL

#
m

δ

(
2C#

κc
− 1
)

p1 = β
(
βcC#

κc
+ δ
) (

1−R
(
L#
m

))
+ δβcC#

κc
+ βητC#e−

τβL
#
m

δ

p2 = β
(
1−R

(
L#
m

))
+ δ + βcC#

κc

We now proceed to investigate the distribution of the roots of equation (7) in the

cases where ELC is biologically feasible; that is when,
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i. R (0) < 1, η > βc and G
(
L̊m

)
> 0, where L̊m > L0

m satisfies H
(
L̊m

)
= 0 and

H
(
L̄m
)
< 0 for all L̄m > L̊m.

ii. R (0) > 1, η ≥ βce
τβ
δ
L0
m , where L̊m > 0 is defined as above.

iii. R (0) > 1 and η < βce
τβ
δ
L0
m , with L0

m satisfying H (L0
m) < 0.

By the Routh-Hurwitz criterion [105], [106], equation (7) has no roots with positive

real parts if and only if p0 > 0, p1 > 0, p2 > 0 and p1p2 − p0 > 0.

It is easy to see that p0 > δββcC#

κc

(
1−R

(
L#
m

))
+ 2βτηβcC

#e−
τβL

#
m

δ

(
C#

κc
− 1
)

=

− δββcC#

κc
H
(
L#
m

)
. Moreover, cases (i.) and (ii.) imply that H

(
L#
m

)
< H

(
L̊m

)
= 0,

while case (iii.) implies that H
(
L#
m

)
< H (L0

m) < 0. Therefore, each of the three

cases ensures that p0 > 0 and 1−R
(
L#
m

)
> 2τη2κc

βcδ
e−

2τβL#
m

δ with the latter inequality

implying that p1 and p2 are positive.

Further, we have

p1p2 > δββcC#

κc

(
1−R

(
L#
m

))
+ βητC#e−

τβL
#
m

δ
βcC#

κc

> δββcC#

κc

(
1−R

(
L#
m

))
+ βητβcC

#e−
τβL

#
m

δ

(
2C#

κc
− 1
)

= p0.

The latter inequality is due to C#

κc
−
(

2C#

κc
− 1
)

= 1− C#

κc
= η

βc
e
−τβ
δ

L#
m > 0.

Thus ELC is locally asymptotically stable when Tc = 0.

As Tc increases, the number of roots of equation (6) with positive real parts may

change only if one or multiple roots cross the imaginary axis. Clearly, the number

0 is not a solution of equation (6) (otherwise p0 = 0), as such, any crossing may

only occur at pure imaginary roots. Without loss of generality, we can consider the

possibility that z = iω, ω > 0, is a solution of equation (6). Separating the real and

imaginary parts in equation (6) for z = iω, we obtain

q0 + q1ω + q2ω
4 + ω6 = 0, (8)
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where 

q0 = δ2β2
(
βcC#

κc

)2 (
R
(
L#
m

)
− 1
)2

−β2τ 2η2β2
cC

#2

(
e−

τβL
#
m

δ
−φTc

)2 (
1− 2C#

κc

)2

q1 =
(
βcC#

κc

)2 (
δ2 + β2

(
R
(
L#
m

)
− 1
)2
)

+δ2β2
(
R
(
L#
m

)
− 1
)2 − β2η2τ 2C#2

(
e−

τβL
#
m

δ
−φTc

)2

q2 = β2
(
R
(
L#
m

)
− 1
)2

+ δ2 +
(
βcC#

κc

)2

.

It can be shown in a similar way to the pj’s that qj > 0, for j = 0, · · · , 3, implying

that equation (8) has no positive roots. Therefore, no stability switch occurs as Tc

increases, implying that ELC remains locally asymptotically stable for all Tc.

Additionally, using the following parameter values,

Am=1e12, Ab=1e13, Aw=1.595e14, Tm=120, φ=0.01, s=1e-12,

α=2.88e-3, αm=0.005, αmd = 1e-14, αbd=5e-12, αb=1e-5, αmr=116713, µ=0.065,

β=0.03, βm=0.00396, κnb = 1.1e11, κl=8.178e10, κnm=1.1e11, δ=0.1925,

βc=0.02, κc=5e6, η=0.001, αc=2e-9, Tc=100, τ=1e-5

(9)

which are chosen from Table 1 so that R (0) > 1, η < βce
τβ
δ
L0
m and H (L0

m) > 0, we

can see from Figure 2 that the function H(Lm) is decreasing, which implies that ELC

is locally asymptotically stable for all Tc ≥ 0. This suggests that a very large time lag

may exist between when CSCs evolve and when they get transformed into non-stem

malignant cells and this supports the notion that such cells are slowly cycling [103]

but they ultimately aid in promoting and enhancing malignancy.

3.2. Case II: N̄m 6= 0 :

In this case,

α ln
(

Am+Ab
κnm+N̄m

)
− αmre

−sL̄b

κnb + N̄b

− αmdL̄m − αm − αc = 0. (10)

From equation (3)3 we obtain,

N̄m = L̄m
αm

(
β − βm ln

(
Aw

κl+L̄m

))
− η

αm
e−φTc−

τβL̄m
δ C̄. (11)
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Figure 2: Profile of the functions G(Lm) and H(Lm) using parameters from Table 1. The monoton-

ically decreasing nature of function H(Lm) implies that steady state ELC is locally asymptotically

stable for all Tc ≥ 0. The abscissa represents the increasing population of non-stem malignant cells

in the BM and the ordinate represents functions G(Lm) and H(Lm).

Then we necessarily have
L̄m
αm

(
β − βm ln

(
Aw

κl+L̄m

))
> 0 which implies that L̄m > L0

m

thus restricting the investigation of steady states to the interval [max (0, L0
m) ,+∞) .

Substituting equation (11) and L̄b =
β

δ
L̄m into equation (3)5 leads to,

ā2C̄
2 + ā1

(
L̄m
)
C̄ + ā0

(
L̄m
)

= 0 (12)

where

ā0

(
L̄m
)

=
αcL̄m
αm

(
βm ln

(
Aw

κl+L̄m

)
− β

)
ā1

(
L̄m
)

= η
(

1 + αce−φTc

αm

)
e−

τβL̄m
δ − βc

ā2 =
βc
κc
.

One can see that ā0

(
L̄m
)
< 0, implying that equation (12) has a unique positive

solution given by

C̄ =
−ā1

(
L̄m
)

+
√
ā2

1

(
L̄m
)
− 4ā0

(
L̄m
)
ā2

2ā2

:= C̄
(
L̄m
)

(13)
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We note here that by an implicit differentiation of equation (12) with respect to Lm,

we obtain

C̄ ′
(
L̄m
)

= −
ā′1
(
L̄m
)
C̄
(
L̄m
)

+ ā′0
(
L̄m
)(

2ā2C̄ + ā1

(
L̄m
)) = −

ā′1
(
L̄m
)
C̄2
(
L̄m
)

+ ā′0
(
L̄m
)
C
(
L̄m
)

ā2C̄2
(
L̄m
)
− a0

(
L̄m
)

Since ā0

(
L̄m
)
< 0, ā2 > 0, ā′1

(
L̄m
)

= − τβη
δ

(
1 + αce−φTc

αm

)
e−

τβL̄m
δ < 0 and ā′0

(
L̄m
)

=

αcβ

αm

(
R
(
L̄m
)
− 1
)
<

αcβ

αm
(R (L0

m)− 1) < 0, then C̄ ′
(
L̄m
)
> 0 and the function

L̄m → C̄
(
L̄m
)

is increasing on [L0
m,+∞).

These results suggest that there is a direct functional relationship that exists between

CSCs and non-stem malignant cells. We observe from the expression L̄m → C̄
(
L̄m
)

that an increasing population of non-stem malignant BM cells leads to an increase in

the CSC population. The calculations show that non-stem malignant cells increase

exponentially the threshold values that support and enhance CSC population levels.

We must ask at this juncture whether this functional relationship described above

works in converse fashion. That is, do increases in CSC population levels lead to

increases in the population levels of non-stem malignant cells? Indeed, to satisfy our

curiosity in trying to answer this question, we most importantly find out that by

means of the inverse function theorem [107] it is easy to obtain from the above result

that the function C̄ → L̄m
(
C̄
)

is increasing. This demonstrates that increases in

CSC population levels lead to increases in non-stem malignant BM cell population

levels with the calculations showing that an expanded equilibrium state for BM blast

cells is possible. Model calculations thus suggest that the emergence of the CSC pop-

ulation in the BM, no matter how small, confers a mutual relationship on the CSCs

and the non-stem malignant cells and this may complicate the existing malignant

situation that may pose challenges to treatment. Therefore, predictions from the

model confirm observations that have been made about the maintenance of cancer

by the CSC population [9].

Proceeding further, we see that substituting equation (13) once more into equation
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(3)3, implies that

N̄m = L̄m
αm

(
β − βm ln

(
Aw

κl+L̄m

))
− η

αm
e−φTc−

τβL̄m
δ C̄

(
L̄m
)

:= N̄m

(
L̄m
)

(14)

Equations (14) and (3)2 imply that

N̄b = 1
2

−κnb +

√
κ2
nb + 4δαmre

−µTm−
sβL̄m
δ

δαb+αbdβL̄m
N̄m

(
L̄m
) := N̄b

(
L̄m
)
. (15)

Finally, substituting equations (13)-(15) into equation (10) implies that,

χ
(
L̄m
)

:= α ln

(
Am+Ab

κnm+N̄m(L̄m)

)
− αm − αc − αmre

−
sβL̄m
δ

κnb+N̄b(L̄m)
− αmdL̄m = 0.

Moreover, lim
L̄m→+∞

ηe
−φTc−

τβL̄m
δ

αm
C̄
(
L̄m
)

= lim
L̄m→+∞

η

√
−4ā0(L̄m)ā2e

−2φTc−2
τβL̄m
δ

2ā2αm
= 0 and

lim
L̄m→∞

N̄m

(
L̄m
)

= +∞. Hence, lim
L̄m→∞

N̄b

(
L̄m
)

= +∞ and lim
L̄m→∞

χ
(
L̄m
)

= −∞.

Also, equation (3)3 implies that N̄m (0) = N̄m (L0
m) = 0 and C̄ (0) = C̄ (L0

m) = 0.

Therefore, N̄b (0) = N̄b (L0
m) = 0 implying that χ(0) = r (0) − αc and χ (L0

m) =

r (L0
m)− αc. Hence, we discuss the following cases:

1. If r (0) > αc, then E0 is unstable. Moreover,

i. If R (0) < 1 then L0
m < 0, which implies that max (0, L0

m) = 0. Since χ(0) =

r (0)− αc > 0, then χ
(
L̄m
)

has at least one root L∗m > 0.

ii. If R (0) > 1 then L0
m > 0. If in addition r (L0

m) > αc, then χ (L0
m) =

r (L0
m)− αc > 0 and χ

(
L̄m
)

has at least one positive root L∗m > L0
m.

2. If r (0) < αc, R (0) > 1 (implying that L0
m > 0) and r (L0

m) > αc, then χ (L0
m) =

r (L0
m)− αc > 0 which implies that χ

(
L̄m
)

has at least one root L∗m > L0
m.

For each positive root L∗m, we can easily see that N̄m (L∗m) > 0 and C̄ (L∗m) > 0.

Moreover, for the set of parameter values given in (9), we found that N̄b (L∗m) >

0 implying that model system (1) has at least one interior equilibrium given by,

E∗ =

(
N̄m (L∗m) , N̄ (L∗m) , L∗m,

βL∗m
δ

, C̄ (L∗m)

)
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where C̄ (L∗m) , N̄m (L∗m) and N̄b (L∗m) are described in equations (13), (14) and (15)

respectively.

The remaining cases, namely,

1. R(0) > 1 and r(L0
m) < αc

2. R(0) < 1 and r(0) < αc

are investigated numerically. In the first case we have max (0, L0
m) = L0

m with

χ (L0
m) = r (L0

m) − αc < 0, while the second case implies that max (0, L0
m) = 0

with χ (0) = r (0) − αc < 0. Here we use the same parameter values given in (9)

except for κl and αm which are chosen so that conditions 1 and 2 directly above

are satisfied. The values of κl and αm along with the corresponding values of the

threshold parameters R and r are presented on top of Figure 3, where it can be seen

that the corresponding χ
(
L̄m
)

is decreasing and thus has no positive roots in the

two cases stated above.

We note here that analyzing the stability of E∗ would entail investigation of the

roots of a transcendental equation with delay-dependent parameters and unknown

parameters (due to the unknown expressions of E∗) which proves to be difficult to

examine analytically. Using parameter values from Table 1, we find that system (1)

has at least one interior equilibrium point E∗. Further, a numerical investigation of

the roots of the characteristic equation of E∗ suggests that r (0) = αc engenders a

transcritical bifurcation.

In a nutshell, the analytical assessments of model system (1) reveal that the

model produces four steady states that are; a) the trivial equilibrium state E0 that

signifies a situation in which elimination of the malignant cells go simultaneously

along with destruction of healthy tissue in the BM and PB, b)the biaxial steady

state EL that depicts a state in which non-stem malignant cells in the BM and PB

dominate the entire system at the expense of healthy cells, c) the triaxial equilibrium

point ELC that describes a situation in which the CSCs join in aiding and coexisting

with non-stem malignant cells in the BM and PB to suppress and dominate the entire

system to the disadvantage of healthy cells, and finally, d) the steady state E∗ that
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Figure 3: Profile of the decreasing function χ(Lm) using parameters from Table 1. The abscissa rep-

resents the increasing population of non-stem malignant cells in the BM and the ordinate represents

function χ(Lm).

shows the possibility of coexistence of the CSCs and the non-stem malignant cells

in the BM and PB with the healthy cells. The stability properties of these steady

states as analyzed above do show circumstances in which they could remain stable

or breakdown. Essentially, the majority of the emerging steady states show that

healthy cells remain at a disadvantage so long as non-stem malignant cells and CSCs

are present.

4. Model Simulations

In this section, we introduce Table 1 that presents various parameter values that

are deduced and inferred from the scientific literature and from which values were

obtained for the simulations and illustrations in Figures 2 and 3. We must point

out that difficulties arise in obtaining appropriate model parameters because of in-
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consistencies that sometimes occur when accessing clinical and experimental data

[108]. As a result, the parameters in Table 1 are either numerically estimated from

published results presented in existing data from the cited literature, obtained or

extracted from experimental measurements, or are appropriately chosen in line with

the roles they played during the model analysis regarding cell kinetics. Within the

framework of accommodating and correcting for the inconsistencies arising from var-

ious data sources as mentioned earlier, the extracted parameter values are bracketed

over various ranges as can be observed in the table (Table 1).

In addition to the simulations indicated in Figures 2 and 3, we proceed to show

model simulations that seek to confirm our analytical findings in what follows. On

the strength of the analyses conducted in the previous section, we identified param-

eters κl, αm, and αc as crucial to the propagation of malignancy and numerically

sort to hold κl and αm fixed while studying model behavior when αc took on differ-

ent values inside and outside its stated range. As already pointed out, within the

context of the difficulties related to obtaining data, the simulation experiments that

involve different sets of parameters are considered to be equivalent to experiments

that include different disease situations in human hosts.

In Figure 4, over a relatively large time horizon of 10,000 hours, we observe

evolution towards the trivial steady state, a state that signifies the demise of the

host should no interventions to arrest the situation take place. Under similar but

slightly different parameter conditions, model simulations in Figures 5 and 6 show

BM and PB normal and malignant cells evolving over very large (10,000 hours)

time horizons either towards the steady state of coexistence (see Fig. 5 where the

mutation rate αm is slightly reduced) or towards the steady state that reveals heavily

diminished healthy cells in these compartments (see Fig. 6 where the parameter

κ1 is slightly reduced). Essentially, in all the cases depicted in the simulations, it

can be observed that the presence of malignant cells in the BM and PB leads to

a pattern of decrease among the healthy cells while the malignant cells may rise

but settle at levels that dominate the viable healthy population. In the case of the

CSCs that we consider separately, we observe under various parameter conditions
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Table 1: Parameter Values and Definitions

Symbol Values(Units) Basis Definition

α [0.002, 0.149] (/hour) [109]
growth or renewal rate of

healthy BM cells

αm [0.0013, 0.0154] (/hour) [94]
probabilistic rate of healthy BM

cell mutation into malignant cell

αmd [1.0e− 14, 5.0e− 06] [52], [55]
degree of inhibition of healthy

BM cells by malignant cells

αbd [1.0e− 14, 5.0e− 06] [52], [55]
degree of inhibition of healthy

PB cells by malignant cells

αb [0.00001, 0.0083] (/hour) [97], [110] death rate of healthy PB cells

β [0.0065, 0.0565] (/hour) [98]
release rate of BM blasts into

the PB

Tm [96, 144] (hours) [111], [112] transit time of healthy BM cells

Tc [576, 1440] (hours)
time lag for CSC conversion to

BM blasts

βm 0.00396 ± 0.04825 (/hour) [100] growth rate of BM blasts

αmr [9.0e+ 02, 1.23e+ 05] (/hour) [52], [113]
maximal release rate of mature

BM cells to the PB

αc [1.0e− 07, 1.0e− 03] (/hour)
probabilistic rate of healthy BM

cell mutation into CSC

Am [1.0e+ 10, 5.88e+ 13] (cells/liter) [114], [115]
maximum allowable number of

healthy BM cells

Ab [1.0e+ 12, 1.0e+ 13] (cells/liter) [59], [114]
maximum allowable number of

healthy PB cells

Aw [6.0e+ 12, 3.688e+ 14] (cells/liter)
[59], [100],

[112]

maximum allowable number of

healthy and malignant cells

Nmc [1.0e+ 10, 5.0e+ 11] (cells/liter) [52]
threshold level of healthy BM

cells

κc [3.0e+ 04, 1.0e+ 06] (cells/liter) CSC carrying capacity

βc [0.0001, 0.05] (/hour) growth or renewal rate of CSCs

δ [0.001, 0.2] (/hour) [100], [112] death rate of PB blasts

s [1.0e− 13, 1.0e− 12] (liters/cell)
volume growth rate of

malignant cells in PB after Tm

τ [1.0e− 13, 1.0e− 12] (liters/cell)
volume growth rate of

malignant cells in PB after Tc

µ [0.02, 0.11] (/hour) [98]
arrival rate of healthy BM cells

in PB

φ [0.002, 0.02] (/hour) arrival rate of CSCs in BM

η [0.0001, 0.05] (/hour)
transition rate of CSCs into

non-stem BM

κnm [1.0e+ 10, 5.0e+ 11] (cells/liter)
threshold population level of

healthy BM cells

κnb [1.0e+ 10, 5.0e+ 11] (cells/liter)
threshold population level of

healthy PB cells

κl [1.0e+ 10, 5.0e+ 11] (cells/liter)
threshold population level of

malignant BM cells
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Figure 4: Simulations showing the evolution of the malignant and healthy populations in the BM

and PB towards the trivial steady state E0. In the top two graphs, healthy BM and PB cells fall

to low levels upon the emergence of malignant non-stem cells that rise to high levels but fall to low

levels due to possible unavailability of nutrients for supporting their continued growth over a large

time horizon of 10,000 hours as shown in the bottom two graphs. The parameters κl (denoted here

in uppercase) and αm are held fixed while different values of αc are considered. The visually distinct

solid curves for the value αc = 2e− 09 are shown.
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for parameters κl, αm, and αc in Figure 7 that their population level rises over

a moderate time window of 600 hours and peaks for very large time horizons as

conversions take place from this compartment to the non-stem compartment. In

Figure 8 the simulations reveal that a functional relationship exists between the non-

stem malignant population in the BM and the equilibrium state of the CSCs that

suggests that these two, albeit malignant populations, enhance the existence of each

other. We note that this confirmatory evidence from the simulations gives adequate

credence to our earlier analytical finding that the very presence of CSCs enhances

and stimulates the entire malignant architecture.

5. Discussion and Concluding Remarks

From a survey of the literature, we observe that of the few existing CSC-driven

mathematical models, the one proposed by Stiehl and Marciniak-Czochra [75] is

most relevant to our studies, as we noted earlier, since it addresses the CSC concept

within the blood system as we attempt to do in this discourse. It is instructive to

note that despite the entirely different approaches adopted in our model and the

model in [75], similar model predictions are obtained in certain circumstances. Stiehl

and Marciniak-Czochra [75] describe cell activity in multiple healthy and diseased

cell compartments with interaction among the cells described by a nonlinear coupled

signal. In our model, discrete time delays inherent in the cell cycle that may be

unavoidable are introduced, cell-cell interactions in the BM and PB are quantified

by mass action type terms, and asymptotic bounds on cells in the BM and PB

appear. The resulting steady states of our model and the Stiehl-Marciniak-Czochra

model show coexistence of healthy and malignant cells in certain scenarios that may

describe preleukemic states such as the myelodysplastic syndromes and they also

show the pure diseased states. Obviously because of how the nonlinearities and

other factors play out in the two different models, different model predictions are

expected in certain circumstances. For example, the resulting biaxial steady state

in our model captures the dominance of non-stem malignant cells over healthy cells

without the participation of CSCs while the triaxial steady state which is similar to
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Figure 5: Simulations depicting evolution of the malignant and healthy populations in the BM and

PB towards the steady state of coexistence E∗. In the top two graphs, healthy BM and PB cells fall

to low levels upon the emergence of non-stem malignant cells that rise to high levels but settle at

levels that ensure their dominance in the PB over a large time horizon of 10,000 hours as shown in

the bottom two graphs. The parameters κl (denoted here in uppercase) and αm are held fixed while

different values of αc are considered. The visually distinct solid curves for the value αc = 2e − 09

are shown.
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Figure 6: Simulations showing the evolution of malignant and healthy populations in the BM and

PB towards the biaxial equilibrium EL in which healthy cells face extinction. In the top two graphs,

healthy BM and PB cells fall to low levels upon the emergence of non-stem malignant cells that rise

to high levels but settle at levels that may render them still viable despite possible unavailability of

nutrients to sustain their growth over a large time horizon of 10,000 hours as shown in the bottom

two graphs. The parameters κl (denoted here in uppercase) and αm are held fixed while different

values of αc are considered. The visually distinct solid curves for the value αc = 2e− 09 are shown.
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Figure 7: Simulations depicting evolution of the CSC population over moderate (left panel) and

very large (right panel) time horizons. A semi-log plot of CSC + 1 is used here for ease of notation.

For different fixed values of κl (denoted in uppercase) and αm, the CSC population tends to rise and

peak at certain levels. The visually distinct solid curves for the values αc = 2e−07 and αc = 2e−09

are shown.

37



Figure 8: Simulations illustrating the functional relationship between the steady state level of CSCs

and the equilibrium population of non-stem BM malignant cells, as seen in the left panel. The

right panel shows the decreasing functions H and G as shifts occur in the non-stem BM malignant

population.

what is obtained in [75] describes the evolution of a pure malignant state that also

includes CSCs.

Bringing together all the notable results we have obtained from our model analyses

and simulations, the following paint a comprehensive picture of model evolution and

behavior when CSCs emerge in association with providing further mathematical-

scientific foundations that undergird the developing CSC theory.

1) The model predictions seek to buttress the findings in [6] and other works such

as those in [75] that suggest that malignant domination of the entire bone

marrow - peripheral blood architecture occurs once malignancy evolves. Model

predictions show that this is achieved through the evolution towards steady

states in which any semblance of cell normality, portrayed through the presence

of healthy cells, is ultimately rendered nonexistent.

2) Model analyses and simulations, as seen through Eqns. (10) - (13) in subsec-

tion 3.2, show that the emergence of CSCs lends support to an environment

in which the non-stem malignant population in the BM evolves towards an

expanded equilibrium state. Such an anomalous situation in turn tends to en-

hance the equilibrium state of the CSC population. In such circumstances, the
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CSC population, no matter how small, may be serving as a major driver of

malignancy.

3) The model predicts the evolution of four steady states; the trivial steady state,

E0, in which no normal or malignant cells are ultimately present, the biaxial

equilibrium, EL, that shows complete dominance by the non-stem malignant

populations in the BM and PB, the triaxial equilibrium, ELC , that reveals dom-

inance by the CSC population and the non-stem malignant populations in the

BM and PB, and the steady state of coexistence, E∗, the interior equilibrium.

4) Model analysis reveals that the triaxial steady state, which quantifies malig-

nant dominance in the BM and PB by non-stem malignant cells and CSCs,

remains stable and does not break down under conditions where a large time

lag exists for the emergence and conversion of CSCs into non-stem malignant

cells. This may provide the underpinning for regarding the CSCs as the main

agents propelling malignant propagation and the main instigators of relapses

after remissions are achieved [8–11]. Additionally, the existence of such a large

time lag may suggest that CSCs may possess the capabilities of hiding their

effects for a long period of time.

5) Model calculations reveal that malignancy may take hold in the BM and PB

when mutation of healthy BM cells into CSCs increases beyond a certain thresh-

old but the turnover of CSCs into the malignant BM is higher than CSC prolif-

eration leading to CSC conversion into non-stem malignant cells. Under such

circumstances, cells may move rapidly through the CSC compartment and the

CSC population may maintain asymptotically low numbers that correspond to

the biaxial equilibrium.

6) Model results tend to support the findings in [6] that once the hematopoietic

system evolves towards a malignant state, such a state becomes irreversible in

the absence of treatment and the effort needed to completely disrupt this state

may entail the total eradication of all cells including the healthy ones and this

undoubtedly suggests the enormous challenges confronting cancer treatment.

7) Maintenance of a positive equilibrium level of CSCs depends on the relationship
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between the release rate of CSCs to the non-stem malignant BM, the intrin-

sic growth rate of CSCs, and the CSC carrying capacity and this reflects the

influence of the BM micro-environment in CSC propagation.

8) The model-suggested functional relationship that exists between CSCs and non-

stem malignant cells may indicate that as long as non-stem malignant cells ex-

ist in the BM, CSCs may emerge and act to enhance and support malignant

growth. Conversely, existence of CSCs enhances the propagation of non-stem

malignant cells. Existence of this functional relationship may support the find-

ing in [2] that shifts in the equilibrium states may critically influence clinical

outcomes and lead to more CSC-rich tumors. Essentially, these cell entities

serve to reinforce the survival of each other and result in the anomalous en-

hancement of the CSC population.

9) The complexities inherent in the model manipulations suggest that the emer-

gence of the CSC population presents with very serious complications of the

already existing evolutionary malignant dynamics that as can be observed af-

fects the equilibrium state of the entire malignant system. This suggests that

the CSC population is very crucial and critical in propagating malignancy to a

very large extent, as has been found in a number of cancers ([8], [16], [30]).

At this juncture, it stands to reason that the body of evidence that has accumu-

lated in the literature so far about CSCs undoubtedly points to their identification as

perhaps one of the major culprits, if not the major culprit, driving cancer propaga-

tion and development possibly at the microscopic level before detection, at diagnosis,

and during treatment and our work here supports this line of thought. As we have

already noted, CSCs are adjudged to be some of the main protagonists in hasten-

ing the termination of remissions, causing treatment failure, and instigating relapses.

Despite the accumulated evidence about these cells so far, we believe more work still

needs to be done in thoroughly understanding how these cells behave and act within

the bone marrow-peripheral blood milieu.

The work we have done here is an attempt, albeit from a theoretical and phe-

nomenological standpoint, to investigate and provide biologically driven mathemat-
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ical underpinnings for the CSC theory. Admittedly, we must say that such work in

association with other mathematical modeling endeavors in this area remains a chal-

lenging task in its very self because of the relatively low availability of definitive CSC

data at this time and this highlights the novelty of our model and CSC-driven mod-

els such as the Stiehl-Marciniak-Czochra model [75]. What we have basically done

is to, at a relatively preliminary stage, draw from available biomedical information

on the CSC hypothesis and employ prior existing ideas such as those propounded by

Clarkson [7] about cancer development, to develop an expanded mathematical model

that we believe provides certain insights and scientific bases that lend credence to

the existence and evolution of CSCs.

We must emphasize at this point that the study of time delays in biological sys-

tems has always been a nontrivial undertaking but such studies do open up windows

through which certain underlying dynamics could be uncovered. In Adimy et. al.

[116] for example a single distributed time delay was introduced into a system of two

nonlinear ODEs that corresponded with the duration of the cell cycle and oscillations

in some periodic hematological diseases were studied. Crauste [117] studied the sin-

gle discrete delay in the Mackey model [113] highlighting the cell cycle duration in a

system of two nonlinear ODEs. From such perspectives, the new insightful value of

our work here lies in the ability of the model to show how two naturally occurring

discrete delays inherent in the cell cycle that cannot be ignored participate in and

largely complicate model dynamics and their analyses in the presence of an emerging

population of CSCs reflected in a coupled nonlinear system of five ODEs. The model

also uncovers the structural relationship that exists between non-stem malignant cells

and CSCs, a relationship that may drive propagation towards CSC abundance over

time [2]. This suggests that attempts to eliminate or control malignancy through

treatment may not be successful by only focusing on one cell entity and leaving the

other. This structural relationship between non-stem malignant cells and CSCs may

have to be completely disrupted at the same time that these cell entities are identified

and attacked and this constitutes part of our future modeling tasks as we employ the

model to study various treatment strategies.
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In our search and quest for more knowledge about an enigmatic disease such as

cancer in general and CSCs in particular we must acknowledge that a number of

questions remain and new ones constantly arise that must be consistently addressed.

Within our modeling frameworks alone, some of these questions border on; the types

of interactions that arise between healthy cells, CSCs, and non-stem malignant cells

and behaviors that evolve when such interactions propagate. Other questions include

how CSCs and non-stem malignant cells, taken together, may behave in the presence

of various forms of treatment protocols. Addressing such questions form the focus

of our future investigations. We must say at this final juncture that it appears that

extensive studies of the BM may hold important clues to thoroughly understanding

malignancy and CSCs for a long time to come. In this respect, we hope to continue

our investigations by looking at various viewpoints and approaches in the modeling

of cancer and its treatment.
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