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ABSTRACT 

Motivated by the emergence of Bitcoin as a speculative financial investment, the 

purpose of this paper is to examine the persistence in the level and volatility of Bitcoin 

price, accounting for the impact of structural breaks. Using parametric and 

semiparametric techniques, we find strong evidence in favour of a permanency of the 

shocks and lack of mean reversion in the level series. We also reveal evidence of 

structural changes in the dynamics of Bitcoin. After accounting for the structural breaks 

in the level series, evidence of mean reversion is uncovered in some cases. Further 

analyses show evidence of a long memory in the two measures of volatility (absolute 

and the squared returns), whereas some cases of short memory are revealed in the 

squared returns series in particular. Practical implications are discussed on the 

inefficiency in the Bitcoin market and its importance for Bitcoin users and investors. 
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1.  Introduction  

The inception of digital currencies or cryptocurrencies, derived from mathematical 

cryptography1, have attracted the attention of the media and economic actors. They 

represent both a valid form of payment and an alternative to governments-backed 

currencies. Among many cryptocurrencies in existence such as Litcoin, Ethereum, 

Ripple, Peer coin, Ripple, and Dogecoin, Bitcoin in particular has emerged and taken an 

increasingly prominent place in the cryptocurrency markets. As of May 31, 2016, the 

market capitalization of Bitcoin exceeds 7.00 billion US dollars, constituting more than 

90% of the total cryptocurrency capitalisation (https://coinmarketcap.com).  

While the literature on the legal aspect, regulation and role of Bitcoin in the 

payment system is growing (Brito et al., 2014; Trautman et al., 2016), the finance and 

economics of Bitcoin remain understudied. Rogojanu and Badea (2014) compare 

Bitcoin to other alternative monetary systems, presenting its pros and cons. Selgin 

(2105) indicates that Bitcoin has quite similar characteristics to commodity money. 

Brandvold et al. (2015) and Bouoiyour et al. (2016) explore the contribution of Bitcoin 

exchanges to price discovery. Ciaian et al. (2016) focus on Bitcoin price formation and 

market forces of supply/demand in the cryptocurrency markets. Some studies refer to 

Bitcoin as digital gold (Rogojanu and Badea, 2014; Popper, 2015). While others 

highlight the diversification benefits of adding Bitcoin to an equity portfolio (Eisl et al., 

2015). Dyhrberg (2015) examine the relation between Bitcoin and the UK currency and 

stock markets.  

Independent whether Bitcoin is regarded as a form of payment, an alternative/digital 

form of a currency, or a financial asset and speculative investment (Yermack, 2013; 

Bouoiyour and Selmi, 2015; Bouoiyour et al., 2015), the literature on the finance of 

Bitcoin has to be extended in particular with regards to the analysis of persistence in the 

                                                           
1 Dwyer (2014) provides a detailed explanation of the principles of Bitcoin. 

https://coinmarketcap.com/
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level and in the volatility of Bitcoin price. The aim of this paper is therefore to 

contribute to the emerging literature on the economics and finance of Bitcoin through 

modelling of persistence in the level and in the volatility of Bitcoin.  

Such an analysis to whether or not long-term dependence is present in Bitcoin 

return series could answer a main question of whether or not the Bitcoin market is 

efficient. This is because the presence of long memory in the high order of Bitcoin 

series means the statistical dependence between distant observations of a price series are 

not decreasing very rapidly. Therefore, the presence of persistent dependence between 

distant Bitcoin observations represents significant evidence against the efficient market 

hypothesis or random walk model in the Bitcoin market. In this sense, conducting such 

an analysis is important for Bitcoin users and investors who are both concerned about 

managing the risk associated with sharp changes in Bitcoin prices. Put differently, 

evidence of persistence in Bitcoin prices, either with mean reverting behaviour or long 

memory returns, implies the presence of a predictable component in the dynamics of 

Bitcoin prices which raises issues regarding tests of efficiency.  More practically, users 

and investors can profit from any inefficiencies in the Bitcoin market to improve the 

risk-adjusted return (Gil-Alana et al., 2014). Furthermore, the ability of forecasting 

Bitcoin volatility has important application for hedging (Efimova and Serletis, 2014). 

Lastly, the recent acceptance of Bitcoin as a commodity and financial product by the US 

Commodity Futures Trading Commission (CFTC) makes the volatility dynamic of 

Bitcoin to play a crucial role in any potential derivatives pricing and trading. 

However, modelling price volatility and its persistence must account for non-

linearity and structural breaks especially with evidence of booms and busts in the 

Bitcoin market (Cheah and Fry, 2015). Otherwise, if structural breaks such as the 

Bitcoin price crash of December 2013 have not been addressed properly, the power of 
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the modelling will be very low and the inferences will be invalid (Harris and Sollis, 

2005).  

The analyses are carried in several phases. First, we focused on the entire sample 

using parametric and semiparametric approaches. Overall, we found evidence of 

permanency of shocks and lack of mean reversion. Second, we argued that the presence 

of long memory can be spurious in the presence of structural breaks. Therefore, we 

identified several structural breaks in line with Bai and Perron’s (2003) method and 

accordingly investigated the volatility of the subseries. We found evidence of long 

memory in Bitcoin price volatility. Finally, we focused on the volatility series by 

looking at the absolute and squared return data and find evidence of a long memory in 

most of the subseries.  

The rest of the paper is divided into three sections. The data and empirical model 

are presented. They are followed by the empirical results. Finally, concluding remarks 

are given. 

 

2.  Data and methodology 

2.1  Data 

Unlike prior studies, this paper uses two daily series of Bitcoin prices covering two 

different time periods. The first data series is from Bitstamp, the largest Bitcoin 

exchange (Brandvold et al., 2015), covering the period from August 19, 2011 to April 

29, 2016 (1226 observations). The second data series is the Coindesk Price Index 

(Cheah and Fry, 2015) from July 18, 2010 to December 15, 2015 (1977 observations).    

Given the existence of several Bitcoin exchanges around the globe, we choose to 

analyze the Coindesk Price Index which represents an average of Bitcoin prices across 
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Bitcoin exchanges. Both data are in US and depicted by data availability.  Figures 1 and 

2 plot the level of Bitcoin prices from the two series. 

 

Figure 1: The Bitsmap Price Index of Bitcoin  
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Figure 2: The Coindesk Price Index of Bitcoin 
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The statistical properties of the series are presented in Table A1 in the Appendix 

of the paper. Both series are found to be non-normal. We indicate the natural logarithms 

of the two series considered as LBITS and LCOIN as derived from Bitsmap and 

Coindesk respectively. 

 

2.2 Methodology 

The methodology used in the paper is based on the concept of fractional integration that 

basically assumes that the number of differences required to render a series to be 

stationary I(0) is a fractional value. 

For the purpose of the present work we define an I(0) process as a covariance 

stationary process with a spectral density function that is positive and finite at all 

frequencies in the spectrum. Thus, it includes the white noise model but also all types of 

stationary Auto-Regressive Moving Average (ARMA) processes. Having said this, we 

say that a time series yt is integrated of order d (and denoted as xt ~ I(d)) if it can be 

represented as: 

,...,1,0,)1(  tuxL tt
d           (1) 
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Accordingly, if d is an integer value, xt will be a function of a finite number of 

past observations, while if d is non-integer, xt depends upon values of the time series far 

away in the past. Processes with d > 0 in (1) display the property of “long memory”, 

characterised in this way because the spectral density function of the process is 

unbounded at its origin. These processes have been widely employed in recent years to 

describe the dynamics of many economic time series (see, for example, Diebold and 

Rudebusch, 1989; Sowell, 1992; Baillie, 1996; Gil-Alana and Robinson, 1997; Gil-

Alana and Moreno, 2012; etc.).  

On the other hand, the estimation of the differencing parameter d is crucial from 

different perspectives. Thus, for example, it is an indicator of the degree of persistence 

of the series, since, as it can be seen from the above equation, higher the value of d is, 

higher is the level of association between the observations. Also, if d is smaller than 0.5, 

the series is still covariance stationary, unlike what happens with values of d ≥ 0.5 

where the series becomes nonstationary in the sense that the variance of the partial sums 

increases with d; finally, if d < 1, the series is mean reverting with shocks disappearing 

in the long run unlike what happens with d ≥ 1 where the shocks persist forever. 

In this paper we estimate d using both parametric and semiparametric methods. 

From a parametric approach, we use the Whittle function in the frequency domain as 

proposed in Dahlhaus (1989) along with a Lagrange Multiplier (LM) test (Robinson, 

1994) that also uses the Whittle function in the frequency domain. The main advantage 

of the latter approach is that it remains valid even in nonstationary contexts(d ≥ 0.5) and 

the limit distribution is standard normal and does not change with features of the 

regressors unlike what happens with other unit root testing methods (Schmidt and 

Phillips, 1992). Additionally, we use a semiparametric method (Robinson, 1995) that is 
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basically a “local” Whittle function in the frequency domain with the frequencies 

degenerating to zero. 

 

3.  Results 

We separate in this section the results for the log-transformed data (and based therefore 

on the levels) from those based on the volatility proxied by using both the absolute and 

the squared return series. 

 

3.1 Log-transformed prices 

We start this section by estimating d using the parametric approach and considering the 

following model, 

yt  =α  +   βt   +   xt,      (1 – L)dxt   =  ut,    (2) 

where yt  is the observed series in natural logarithm, α and β are coefficients referring 

respectively to the intercept and a linear time trend; L is the lag-operator (Lxt = xt-1); d 

is the fractional differencing parameter, and ut is I(0) as defined above, and given the 

parametric nature of the method employed, we model first ut as a white noise process, 

and then using autocorrelation throughout the model of Bloomfield (1973).2  

Table 1 displays the estimates of d for the three cases of i) no deterministic terms 

(α and β = 0 a priori), an intercept (α unknown and β = 0 a priori), and an intercept with 

a linear time trend (α and β unknown), and present the estimates of d along with the 

95% confidence band of the non-rejection values of d using Robinson’s (1994) 

parametric approach. 

 

 

                                                           

2 The model of Bloomfield (1973) is described exclusively in terms of its spectral density function.   It  

produces autocorrelations decaying exponentially as in the AR case, but with a small number of 

parameters. Moreover, it accomodates extremely well in the context of fractional integration. 
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Table 1: Estimates of d for the whole simple using a parametric approach 

i)    White noise disturbances 

Series No regressors An intercept A linear time trend 

LBITS 
0.978 

(0.943,   1.020) 

0.994 

(0.967,   1.025) 
0.994 

(0.967,   1.025) 

LCOIN 
1.036 

(1.011,   1.065) 

1.033 

(1.009,   1.061) 
1.033 

(1.009,   1.060) 

ii)    Autocorrelated (Bloomfield) disturbances 

Series No regressors Anintercept A linear time trend 

LBITS 
0.990 

(0.924,   1.047) 
1.070 

(1.013,   1.123) 

1.071 

(1.013,   1.123) 

LCOIN 
1.043 

(1.004,   1.084) 

1.038 

(1.002,   1.079) 
1.039 

(1.002,   1.078) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 

 
Table 2: Estimated coefficients of the selected models in Table 1 

i)    White noise disturbances 

Series d Intercept (t-value) Time trend (t-value) 

LBITS 
0.994 

(0.967,   1.025) 

2.45496 

(37.40) 

0.00301 

(1.68) 

LCOIN 
1.033 

(1.009,   1.060) 

-2.40515 

(-37.22) 

0.00431 

(2.32) 

ii)    Autocorrelated (Bloomfield) disturbances 

Series d Intercept (t-value) Time trend (t-value) 

LBITS 
1.070 

(1.013,   1.123) 

2.46210 

(37.78) 
xxx 

LCOIN 
1.039 

(1.002,   1.078) 

-2.40394 

(-37.22) 

0.00430 

(2.22) 

Notes: In parenthesis in the second column, the 95% band of non-rejection values of d; in the third and 

fourth columns they are t-values. 

 

Focusing on the deterministic terms, it can be observed that the time trend is 

required in the two series for the uncorrelated (white noise) case, but only an intercept 

for the case of logarithmic Bitcoin price form Bitstamp (LBITS) with autocorrelated 

(Bloomfield) errors.  Table 2 focuses on the selected models according to these 

deterministic terms and presents the estimated coefficients. We observe that the 

estimates of d are higher than 1 in most of the cases, Only for LBITS with white noise 
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errors, d is found to be slightly below 1 (0.994), though the unit root null cannot be 

rejected. Therefore, strong evidence is found in favour of permanency of the shocks and 

lack of mean reversion. 

Table 3: Semiparametric estimates of d for LBITS data 

Bandwidth (m) d 95% Lower I(1) Band 95% Upper I(1) Band 

20 1.182 0.816 1.184 

30 1.204 0.849 1.150 

31 1.205 0.852 1.147 

32 1.221 0.854 1.145 

33 1.235 0.856 1.143 

34 1.255 0.858 1.141 

35~ (T)0.5 1.244 0.860 1.139 

36 1.230 0.862 1.137 

37 1.213 0.864 1.135 

38 1.229 0.866 1.133 

39 1.225 0.868 1.131 

40 1.234 0.869 1.130 

50 1.193 0.883 1.116 

Notes: In bold, evidence of unit roots (d = 1) at the 5% level. 

Table 4: Semiparametric estimates of d for LCOIN data 

Bandwidth (m) d 95% Lower I(1) Band 95% Upper I(1) Band 

30 1.217 0.849 1.150 

40 1.311 0.869 1.130 

41 1.315 0.871 1.128 

42 1.298 0.873 1.127 

43 1.315 0.874 1.125 

44 ~ (T)0.5 1.313 0.876 1.123 

45 1.332 0.877 1.122 

46 1.315 0.878 1.121 

47 1.309 0.880 1.119 

48 1.291 0.881 1.118 

49 1.299 0.882 1.117 

50 1.280 0.883 1.116 

60 1.218 0.893 1.106 
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Tables 3 and 4 displays the estimates of d for the two series using a 

semiparametric method of Robinson (1995) for a selected group of bandwidth numbers 

(m).3 Using other most updated approaches also based on this technique (e.g., Phillips 

and Shimotsu, 2004; Abadir et al., 2007) produced essentially the same results.4 

Looking at the results in these two tables we obtain the same conclusions as with the 

parametric tests: evidence of d > 1 in all cases, especially for the logarithmic price index 

of Bitcoin from Coindesk (LCOIN).  

Table 5: Break dates using Bai and Perron’s (2003) methodology 

Series N. of breaks Break dates 

LBITS 4 6/15/2012;   3/04/2013;   11/14/2013;   1/13/2015 

LCOIN 5 5/10/2011;   3/01/2012;   1/26/2013;  11/18/2013; 1/11/2015    

 

 On the other hand, many authors argue that long memory can be a spurious 

phenomenon caused by the existence of structural breaks not taking into account 

(Diebold and Inoue, 2001; Granger and Hyung, 2004). Because of this, we use Bai and 

Perron’s (2003) methodology of detecting the potential presence of multiple structural 

breaks. In this regard, we regress the log-level of the two series under consideration on a 

constant and a trend to capture breaks in its mean and trend. Then we use the powerful 

UDmax and WDmax tests of 1 to M globally determined breaks proposed by Bai and 

Perron (2003), with a proposed 15% trimming of end-points, maximum of 5 breaks, and 

allowing for error distributions to differ across the breaks. The results have been 

reported in Table 5, which shows four breaks in case of the LBITS series and five for 

LCOIN, so we have five subsamples in LBITS and six in case of the LCOIN series. 

 

 

                                                           

3 The choice of the bandwidth number (m) clearly shows the trade-off between bias and variance: the 

asymptotic variance is decreasing with m while the bias is growing with m. 

4 These methods require additionally more user-chosen parameters. 
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Table 6: Estimates of d for the subsamples with WHITE NOISE errors 

i)    Series: LBITS 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.954 

(0.867,   1.068) 
0.882 

(0.822,   0.968) 

0.882 

(0.822,   0.968) 

2nd sub-sample 
1.013 

(0.925,   1.126) 

1.123 

(1.034,   1.231) 
1.124 

(1.033,   1.232) 

3rd sub-sample 
1.022 

(0.944,   1.132) 
1.044 

(0.947,   1.162) 

1.044 

(0.945,   1.162) 

4rd sub-sample 
1.023 

(0.956,   1.106) 
0.881 

(0.828,   0.964) 

0.882 

(0.817,   0.959) 

5rd sub-sample 
1.028 

(0.957,   1.108) 
0.980 

(0.905,   1.177) 

0.981 

(0.910,   1.176) 

ii)    Series: LCOIN 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
1.023 

(0.958,   1.115) 

0.988 

(0.927,   1.069) 
0.988 

(0.926,   1.071) 

2nd sub-sample 
1.016 

(0.956,   1.094) 
1.025 

(0.944,   1.126) 

1.025 

(0.944,   1.124) 

3rd sub-sample 
1.009 

(0.937,   1.090) 

0.879 

(0.817,   0.948) 
0.879 

(0.816,   0.949) 

4rd sub-sample 
1.113 

(1.032,   1.212) 

1.189 

(1.090,   1.302) 
1.185 

(1.084,   1.299) 

5rd sub-sample 
1.005 

(0.945,   1.089) 
0.945 

(0.888,   1.022) 

0.945 

(0.887,   1.021) 

6rd sub-sample 
0.978 

(0.902,   1.056) 
0.948 

(0.864,   1.036) 

0.937 

(0.857,   1.032) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 
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Table 7: Estimates of d for the subsamples with AUTOCORRELATED errors 

i)    Series: LBITS 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.897 

(0.756,   1.105) 
0.922 

(0.839,   1.052) 

0.930 

(0.841,   1.051) 

2nd sub-sample 
1.054 

(0.903,   1.246) 

1.063 

(0.954,   1.233) 
1.062 

(0.952,   1.222) 

3rd sub-sample 
1.034 

(0.905,   1.225) 

0.978 

(0.808,   1.209) 
0.978 

(0.832,   1.208) 

4rd sub-sample 
0.967 

(0.856,   1.104) 
1.041 

(0.908,   1.221) 

1.042 

(0.910,   1.221) 

5rd sub-sample 
0.973 

(0.887,   1.122) 

0.971 

(0.882,   1.133) 
0.980 

(0.877,   1.134) 

ii)    Series: LCOIN 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.992 

(0.890,   1.153) 

0.991 

(0.892,   1.117) 
0.992 

(0.888,   1.122) 

2nd sub-sample 
1.035 

(0.932,   1.156) 
0.900 

(0.819,   1.006) 

0.900 

(0.819,   1.005) 

3rd sub-sample 
1.011 

(0.898,   1.152) 

0.978 

(0.876,   1.123) 
0.978 

(0.865,   1.123) 

4rd sub-sample 
1.059 

(0.949,   1.212) 

1.112 

(0.993,   1.324) 
1.108 

(1.001,   1.317) 

5rd sub-sample 
1.011 

(0.912,   1.132) 
0.872 

(0.784,   1.002) 

0.883 

(0.769,   1.002) 

6rd sub-sample 
0.978 

(0.867,   1.090) 

0.826 

(0.733,   0.967) 
0.822 

(0.729,   0.955) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 
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Table 8: Estimated coefficients from models in Table 6 (white noise) 

i)    Series: LBITS 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.882 

(0.822,   0.968) 

2.43476 

(28.95) 
--- 

2nd sub-sample 
1.124 

(1.033,   1.232) 

1.85486 

(57.66) 

0.00979 

(2.32) 

3rd sub-sample 
1.044 

(0.947,   1.162) 

3.70272 

(39.57) 
--- 

4rd sub-sample 
0.881 

(0.828,   0.964) 

6.08838 

(94.49) 
--- 

5rd sub-sample 
0.980 

(0.905,   1.177) 

5,15055 

(145,32) 
--- 

ii)    Series: LCOIN 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.988 

(0.926,   1.071) 

-2.42648 

(-27.29) 

0.01272 

(2.73) 

2nd sub-sample 
1.025 

(0.944,   1.126) 

1.75788 

(19.57) 
--- 

3rd sub-sample 
0.879 

(0.816,   0.949) 

1.52958 

(45.04) 

0.00399 

(4.23) 

4rd sub-sample 
1.185 

(1.084,   1.299) 

2.85804 

(44.70) 

0.01571 

(1.72) 

5rd sub-sample 
0.945 

(0.888,   1.022) 

6.30871 

(123.18) 
--- 

6rd sub-sample 
0.948 

(0.864,   1.036) 

5.57167 

(156.75) 
--- 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 
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Table 9: Estimated coefficients from the models in Table 7 

i)    Series: LBITS 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.922 

(0.839,   1.052) 

2.45271 

(28.88) 
--- 

2nd sub-sample 
1.062 

(0.952,   1.222) 

1.85249 

(57.27) 

0.00959 

(3.03) 

3rd sub-sample 
0.978 

(0.832,   1.208) 

3.69738 

(39.45) 

0.01237 

(2.06) 

4rd sub-sample 
1.041 

(0.908,   1.221) 

6.00385 

(93.30) 
--- 

5rd sub-sample 
0.980 

(0.877,   1.134) 

5.14729 

(145.02) 

0.00284 

(1.64) 

ii)    Series: LCOIN 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.992 

(0.888,   1.122) 

-2.42349 

(-27.25) 

0.01271 

(2.59) 

2nd sub-sample 
0.900 

(0.819,   1.006) 

1.77646 

(20.06) 
--- 

3rd sub-sample 
0.978 

(0.865,   1.123) 

1.52540 

(44.48) 

0.00408 

(2.54) 

4rd sub-sample 
1.108 

(1.001,   1.317) 

2.86173 

(44.26) 

0.01396 

(2.18) 

5rd sub-sample 
0.872 

(0.784,   1.002) 

6.33130 

(124.69) 
--- 

6rd sub-sample 
0.822 

(0.729,   0.955) 

5.53702 

(159.89) 

0.00148 

(2.01) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 

 

 Tables 6 and 7 report the estimates of d using the parametric method for each 

subsample with white noise and autocorrelated errors respectively, while Tables 8 and 9 

display the estimated coefficients for each case. We observe across these tables some 

cases of mean reversion here, particularly for LBITS in the first and fourth subsamples, 

and for LCOIN in the third one. However, under autocorrelated errors (Tables 7 and 9), 

mean reversion only takes place for LCOIN during the last subsample. 
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3.2 Volatility series 

As earlier mentioned, we approximate the volatility by using two standard measures, the 

absolute and the squared returns, and we conduct the same type of analysis as in Section 

3.1 for the corresponding series. Absolute returns were employed among others by Ding 

et al. (1993), Granger and Ding (1996), Bollerslev and Wright (2000), Gil-Alana 

(2005), Cavalcante and Assaf (2004), Sibbertsen (2004) and Cotter (2005), whereas 

squared returns were used in Lobato and Savin (1998), Gil-Alana (2003), Cavalcante 

and Assaf (2004) and Cotter (2005).  

Table 10: Estimates of d based on the absolute and squared returns 

i)    White noisedisturbances 

Series No regressors An intercept A linear time trend 

Absolutertns. LBITS 
0.281 

(0.252,   0.313) 

0.269 

(0.2400.302) 
0.281 

(0.252,   0.313) 

Absolutertns. LCOIN 
0.302 

(0.2820.330) 

0.293 

(0.2680.321) 
0.290 

(0.264   0.319) 

Squaredrtns. LBITS 
0.234 

(0.2000.272) 
0.231 

(0.197   0.269) 

0.228 

(0.1930.267) 

Squaredrtns. LCOIN 
0.222 

(0.1940.256) 

0.215 

(0.1850.242) 
0.209 

(0.181   0.237) 

ii)    Autocorrelated (Bloomfield) disturbances 

Series No regressors An intercept A linear time trend 

Absolutertns. LBITS 
0.372 

(0.321,   0.446) 
0.354 

(0.301,   0.430) 

0.357 

(0.297,   0.422) 

Absolutertns. LCOIN 
0.362 

(0.3140.417) 

0.334 

(0.2830.372) 
0.334 

(0.279   0.386) 

Squaredrtns. LBITS 
0.301 

(0.2380.400) 
0.298 

(0.240   0.388) 

0.297 

(0.2330.386) 

Squaredrtns. LCOIN 
0.252 

(0.2140.316) 

0.233 

(0.2040.283) 
0.228 

(0.186   0.281) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 

 

Table 10 displays the estimates for the four series (that is, absolute and squared returns 

of LBITS and LCOIN) again for the three cases of no regressors, an intercept, and an 

intercept with a linear time trend. As expected evidence of long memory (d > 0) is 
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found here in all cases, with the estimated values of d ranging between 0.2 and 0.4 in all 

cases. 

 

3.2.1 Absolute return series 

 

Focusing now on the same breaks as in the previous cases, the results for the two cases 

of uncorrelated and autocorrelated errors are displayed in Tables 11 and 12, and their 

corresponding estimates for the selected models are reported in Tables 13 and 14. 

Table 11: Estimates of d for the subsamples with WHITE NOISE errors 

i)    Series:  Absolute returns of LBITS 

Sub-Series No regressors Anintercept A linear time trend 

1st sub-sample 
0.135 

(0.071,   0.213) 

0.111 

(0.065,   0.189) 
0.038 

(-0.044,   0.119) 

2nd sub-sample 
0.246 

(0.146,   0.364) 
0.209 

(0.123,   0.322) 

0.209 

(0.117,   0.322) 

3rd sub-sample 
0.468 

(0.395,   0.568) 
0.457 

(0.368,   0.552) 

0.446 

(0.354,   0.551) 

4rd sub-sample 
0.445 

(0.352,   0.557) 

0.379 

(0.299,   0.478) 
0.404 

(0.303,   0.508) 

5rd sub-sample 
0.142 

(0.087,   0.228) 

0.125 

(0.072,   0.198) 
0.130 

(0.072,   0.202) 

ii)    Series: Absolute returns of LCOIN 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.344 

(0.261,   0.443) 
0.317 

(0.242,   0.407) 

0.317 

(0.242,   0.407) 

2nd sub-sample 
0.297 

(0.222,   0.384) 

0.266 

(0.186,   0.355) 
0.256 

(0.179,   0.355) 

3rd sub-sample 
0.244 

(0.178,   0.329) 
0.230 

(0.166,   0.324) 

0.232 

(0.164,   0.323) 

4rd sub-sample 
0.436 

(0.354,   0.526) 
0.406 

(0.337,   0.497) 

0.412 

(0.335,   0.503) 

5rd sub-sample 
0.290 

(0.247,   0.364) 

0.254 

(0.202,   0.312) 
0.234 

(0.189,   0.309) 

6rd sub-sample 
0.325 

(0.248,   0.422) 

0.289 

(0.215,   0.365) 
0.314 

(0.237,   0.435) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 

  



18 
 

Table 12: Estimates of d for the subsamples with AUTOCORRELATED errors 

i)    Series: Absolute retunrs of LBITS 

Sub-Series No regressors Anintercept A linear time trend 

1st sub-sample 
0.280 

(0.180,   0.413) 

0.225 

(0.143,   0.341) 
0.117 

(-0.015,   0.275) 

2nd sub-sample 
0.334 

(0.162,   0.590) 
0.254 

(0.090,   0.466) 

0.254 

(0.015,   0.465) 

3rd sub-sample 
0.648 

(0.466,   0.835) 
0.608 

(0.392,   0.815) 

0.598 

(0.371,   0.818) 

4rd sub-sample 
0.437 

(0.289,   0.622) 

0.317 

(0.205,   0.489) 
0.355 

(0.203,   0.614) 

5rd sub-sample 
0.267 

(0.159,   0.418) 

0.218 

(0.112,   0.346) 
0.241 

(0.133,   0.505) 

ii)    Series: Absolute returns of LCOIN 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.516 

(0.336,   0.823) 
0.443 

(0.309,   0.660) 

0.443 

(0.309,   0.660) 

2nd sub-sample 
0.288 

(0.125,   0.454) 

0.226 

(0.082,   0.373) 
0.218 

(0.055,   0.390) 

3rd sub-sample 
0.254 

(0.133,   0.424) 
0.237 

(0.122,   0.408) 

0.237 

(0.122,   0.409) 

4rd sub-sample 
0.440 

(0.317,   0.607) 
0.384 

(0.267,   0.532) 

0.400 

(0.267,   0.549) 

5rd sub-sample 
0.343 

(0.279,   0.443) 

0.272 

(0.200,   0.378) 
0.262 

(0.177,   0.350) 

6rd sub-sample 
0.217 

(0.139,   0.332) 

0.177 

(0.115,   0.291) 
0.240 

(0.123,   0.497) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 
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Table 13: Estimated coefficients from models in Table 11 (white noise) 

i)    Series: Absolute returns of LBITS 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.038 

(-0.044,   0.119) 

0.08199 

(7.74) 

-0.000312 

(-3.70) 

2nd sub-sample 
0.209 

(0.123,   0.322) 

0.02463 

(5.06) 
--- 

3rd sub-sample 
0.457 

(0.368,   0.552) 

0.05872 

(1.92) 
--- 

4rd sub-sample 
0.404 

(0.303,   0.508) 

0.14571 

(5.78) 

-0.000402 

(-2.63) 

5rd sub-sample 
0.130 

(0.072,   0.202) 

0.03138 

(6.12) 

-0.000046 

(-1.83) 

ii)    Series: Absolute returns of LCOIN 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.317 

(0.242,   0.407) 

0.06932 

(3.58) 
--- 

2nd sub-sample 
0.256 

(0.179,   0.355) 

0.08750 

(4.25) 

-0.000189 

(-1.65) 

3rd sub-sample 
0.230 

(0.166,   0.324) 

0.01823 

(3.45) 
--- 

4rd sub-sample 
0.406 

(0.337,   0.497) 

0.04503 

(2.34) 
--- 

5rd sub-sample 
0.234 

(0.189,   0.309) 

0.05954 

(6.09) 

-0.000113 

(-2.92) 

6rd sub-sample 
0.314 

(0.237,   0.435) 

0.05243 

(5.33) 

-0.000114 

(-2.30) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 
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Table 14: Estimated coefficients from the models in Table 12 (autocorrelation) 

i)    Series: Absolute returns of LBITS 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.117 

(-0.015,   0.275) 

0.07912 

(5.40) 

-0.000293 

(-2.57) 

2nd sub-sample 
0.254 

(0.090,   0.466) 

0.02611 

(2.81) 
--- 

3rd sub-sample 
0.608 

(0.392,   0.815) 

0.05455 

(1.10) 
--- 

4rd sub-sample 
0.355 

(0.203,   0.614) 

0.12483 

(5.69) 

-0.000342 

(-2.72) 

5rd sub-sample 
0.241 

(0.133,   0.505) 

0.03760 

(4.73 

-0.000070 

(-1.78) 

ii)    Series: Absolute returns of LCOIN 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.443 

(0.309,   0.660) 

0.08973 

(2.24) 
--- 

2nd sub-sample 
0.218 

(0.055,   0.390) 

0.08607 

(4.84) 

-0.000180 

(-1.85) 

3rd sub-sample 
0.237 

(0.122,   0.408) 

0.02066 

(2.52) 
--- 

4rd sub-sample 
0.384 

(0.267,   0.532) 

0.03708 

(1.60) 
--- 

5rd sub-sample 
0.262 

(0.177,   0.350) 

0.06103 

(5.49) 

-0.000116 

(-2.63) 

6rd sub-sample 
0.240 

(0.123,   0.497) 

0.04266 

(5.58) 

-0.000084 

(-2.22) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 

 

Starting with the case of uncorrelated errors, evidence of long memory is found 

here in all cases except for the first subsample in LBITS where the null of d = 0 cannot 

be rejected. The same evidence is obtained with autocorrelated (Bloomfield) 

disturbances, and long memory is found in all subsamples except for the first one with 

LBITS. 
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3.2.2 Squared return series 

The results for the case of the squared returns are displayed across Tables 15 – 18. 

Starting again with white noise errors, evidence of long memory is obtained in all cases 

except for the first subsamples in the case of the LBITS data. In these two cases we 

cannot reject the null of I(0) or short memory behaviour. 

Table 15: Estimates of d for the subsamples with WHITE NOISE errors 

i)    Series:  Squared returns of LBITS 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.080 

(0.013,   0.165) 

0.075 

(0.012,   0.156) 
0.025 

(-0.065,   0.117) 

2nd sub-sample 
0.082 

(0.015,   0.203) 
0.076 

(-0.022,   0.196) 

0.066 

(-0.035,   0.195) 

3rd sub-sample 
0.347 

(0.255,   0.445) 
0.344 

(0.254,   0.435) 

0.338 

(0.234,   0.423) 

4rd sub-sample 
0.389 

(0.288,   0.507) 

0.355 

(0.267,   0.511) 
0.678 

(0.326,   0.862) 

5rd sub-sample 
0.077 

(0.028,   0.157) 

0.070 

(0.024,   0.144) 
0.093 

(0.028,   0.165) 

ii)    Series: Squared returns of LCOIN 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.236 

(0.149,   0.346) 
0.211 

(0.136,   0.300) 

0.207 

(0.135,   0.301) 

2nd sub-sample 
0.201 

(0.124,   0.280) 

0.184 

(0.117,   0.283) 
0.166 

(0.089,   0.277) 

3rd sub-sample 
0.244 

(0.155,   0.353) 
0.245 

(0.155,   0.355) 

0.246 

(0.155,   0.352) 

4rd sub-sample 
0.396 

(0.309,   0.506) 
0.387 

(0.294,   0.497) 

0.390 

(0.303,   0.503) 

5rd sub-sample 
0.309 

(0.231,   0.380) 

0.279 

(0.212,   0.357) 
0.265 

(0.190,   0.343) 

6rd sub-sample 
0.426 

(0.302,   0.581) 

0.390 

(0.284,   0.572) 
0.524 

(0.384,   0.676) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 
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Table 16: Estimates of d for the subsamples with AUTOCORRELATED errors 

i)    Series: Squared retunrs of LBITS 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.165 

(0.067,   0.312) 

0.166 

(0.055,   0.295) 
0.073 

(-0.069,   0.239) 

2nd sub-sample 
0.065 

(-0.111,   0.283) 
0.048 

(-0.091,   0.266) 

0.048 

(-0.121,   0.266) 

3rd sub-sample 
0.508 

(0.295,   0.829) 
0.508 

(0.272,   0.829) 

0.477 

(0.225,   0.826) 

4rd sub-sample 
0.179 

(0.054,   0.355) 

0.158 

(0.040,   0.279) 
0.178 

(0.022,   0.299) 

5rd sub-sample 
0.163 

(0.051,   0.326) 

0.153 

(0.041,   0.286) 
0.266 

(0.089,   0.846) 

ii)    Series: Squared returns of LCOIN 

Sub-Series No regressors An intercept A linear time trend 

1st sub-sample 
0.576 

(0.034,   1.180) 
0.444 

(0.264,   1.214) 

0.480 

(0.264,   1.233) 

2nd sub-sample 
0.164 

(0.014,   0.314) 

0.126 

(0.007,   0.288) 
0.065 

(-0.080,   0.267) 

3rd sub-sample 
0.089 

(-0.034,   0.258) 
0.086 

(-0.034,   0.259) 

0.087 

(-0.035,   0.259) 

4rd sub-sample 
0.252 

(0.117,   0.466) 
0.236 

(0.106,   0.424) 

0.257 

(0.104,   0.466) 

5rd sub-sample 
0.212 

(0.140,   0.354) 

0.182 

(0.134,   0.280) 
0.154 

(0.090,   0.273) 

6rd sub-sample 
0.018 

(-0.073,   0.132) 

0.016 

(-0.078,   0.135) 
0.044 

(-0.056,   0.222) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 
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Table 17: Estimated coefficients from models in Table 15 (white noise) 

i)    Series: Squared returns of LBITS 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.025 

(-0.065,   0.117) 

0.01648 

(4.16) 

-0.000083 

(-2.64) 

2nd sub-sample 
0.076 

(-0.022,   0.196) 

0.00125 

(3.34) 
--- 

3rd sub-sample 
0.344 

(0.254,   0.435) 

0.00962 

(0.87) 
--- 

4rd sub-sample 
0.678 

(0.326,   0.862) 

0.14069 

(10.32) 

-0.000350 

(-2.17) 

5rd sub-sample 
0.093 

(0.028,   0.165) 

0.00224 

(3.75) 

-0.000005 

(-1.74) 

ii)    Series: Squared returns of LCOIN 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.211 

(0.136,   0.300) 

0.01067 

(2.87) 
--- 

2nd sub-sample 
0.166 

(0.089,   0.277) 

0.01579 

(3.24) 

-0.000050 

(-1.85) 

3rd sub-sample 
0.245 

(0.155,   0.355) 

0.00112 

(0.72) 
--- 

4rd sub-sample 
0.387 

(0.294,   0.497) 

0.00495 

(1.04) 
--- 

5rd sub-sample 
0.265 

(0.190,   0.343) 

0.00772 

(3.51) 

-0.000020 

(-2.37) 

6rd sub-sample 
0.524 

(0.384,   0.676) 

0.01682 

(6.20) 

-0.000048 

(-2.68) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 
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Table 18: Estimated coefficients from models in Table 16 (autocorrelation) 

i)    Series: Squared returns of LBITS 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.073 

(-0.069,   0.239) 

0.01606 

(3.30) 

-0.000080 

(-2.10) 

2nd sub-sample 
0.048 

(-0.091,   0.266) 

0.00146 

(2.22) 
--- 

3rd sub-sample 
0.508 

(0.272,   0.829) 

0.01173 

(0.54) 
--- 

4rd sub-sample 
0.178 

(0.022,   0.299) 

0.01599 

(4.37) 

-0.000058 

(-2.93) 

5rd sub-sample 
0.266 

(0.089,   0.846) 

0.00412 

(3.48) 

-0.000012 

(-2.08) 

ii)    Series: Squared returns of LCOIN 

Sub-Series d Intercept (t-value) Time trend (t-value) 

1st sub-sample 
0.444 

(0.264,   1.214) 

0.01867 

(1.28) 
--- 

2nd sub-sample 
0.065 

(-0.080,   0.267) 

0.01552 

(4.77) 

-0.000049 

(-2.67) 

3rd sub-sample 
0.086 

(-0.034,   0.259) 

0.00134 

(1.08) 
--- 

4rd sub-sample 
0.236 

(0.106,   0.424) 

0.00344 

(0.90) 
--- 

5rd sub-sample 
0.154 

(0.090,   0.273) 

0.00701 

(5.01) 

-0.000019 

(-3.46) 

6rd sub-sample 
0.044 

(-0.056,   0.222) 

0.00251 

(5.01) 

-0.000006 

(-2.69) 

Notes: In bold the selected models according to the deterministic terms. In parenthesis the 95% band of 

non-rejection values of d. 

 

Allowing for autocorrelated disturbances, we see in Table 18 that there are some 

more cases of short memory (i.e. d= 0). They are those corresponding to the first two 

subsamples in LBITS, and contrary to previous tables, to the second, the third and the 

sixth subsamples in LCOIN. 
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4.  Conclusion and implications 

Along with the rapid emergence of Bitcoin as a financial asset, there has been a growing 

interest among Bitcoin users, investors, and policy-makers in understanding the issue of 

persistence in Bitcoin prices, especially because the Bitcoin market exhibited periods of 

boom and bust coupled with extreme market volatility. Such a behaviour implies non-

linearity dynamics in the price of Bitcoin.  

While limited studies have focused on the economics and finance of Bitcoin, no 

previous studies have examined whether or not the Bitcoin market is efficient. This 

paper addresses this literature gap and thus participates to the advancement of 

knowledge and debate on this newly emerged crypto-currency. In particular, it used two 

Bitcoin indices and employed long range dependence techniques based on fractional 

integration in order to focus on the persistence and volatility of Bitcoin accounting for 

non-linearity dynamics in the price of Bitcoin.  

The empirical results are summarized as follows. First, we found strong 

evidence supporting the permanency of shocks and lack of mean reversion in the log-

transformed prices in both using parametric and semi-semiparametric methods.  Second, 

we identified at least four structural breaks in each of the data series, one of which 

corresponds to the price crash of December 2013, and accounted for their importance in 

describing the dynamics of the Bitcoin market. Specifically, we observed cases of mean 

reversion in some subsamples in both data series. Third, we used two standard measures 

of volatility, the absolute and the squared returns, and found evidence of long memory 

in almost all subsamples in the absolute returns series. While evidence of long memory 

was also reported in the squared return series, the results differed between the two 

volatility measures as evidence of short memory was more pronounced in the squared 

return series.  
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Our empirical findings imply the importance of accounting for the long memory 

property in an empirical analysis that consider the finance of Bitcoin such as optimal 

hedging estimation, risk portfolio management, and potential option valuation. The 

findings also offer market participants and analysts an interesting opportunity to get 

benefits from the inefficiencies in the Bitcoin market. As such, they can potentially 

improve the risk-adjusted performance of their portfolios by using long memory based 

frameworks. 
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APPENDIX: 

 

Table A1: Summary Statistics: 

Statistic BITCOIN (Bitstamp) BITCOIN (Coindesk) 

 Mean 241.5266 181.4523 

 Median 227.92 76.8900 

 Maximum 1132.01 1147.2500 

 Minimum 2.24 0.0500 

 Std. Dev. 232.6023 230.2312 

 Skewness 0.865282 1.3644 

 Kurtosis 3.195702 4.2699 

 Jarque-Bera 154.9434 746.2470 

 Probability 0.0000 0.0000 

Observations 1226 1977 
Notes: Std. Dev.: Standard Deviation; Probability corresponds to the rejection of the hypothesis of 

normality associated with Jarque-Bera test. 

 

 


