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ABSTRACT

Some metals, such as Ti-6Al-4V, have a high elongation to failure when strained
at certain strain rates and temperatures. This superplastic property can be used
to form thin, geometrically complex components. Superplastic forming is however
a slow process. The forming time can be minimised by optimising the pressure
profile applied to the forming sheet. The optimisation of the superplastic forming
pressure is usually done such that a target strain rate at a high strain rate sensitivity
is maintained. Careful consideration of the strain rate is required, since localised
thinning can occur when the material is strained too quickly.

This paper demonstrates that it is essential to explicitly include strain rate sensi-
tivity data, obtained from strain rate jump tests, during the calibration of material
model used for superplastic forming simulations. Conventional calibration methods
only consider stress-strain data at different strain rates. Such an approach implicitly
assumes that a material model that matches the stress-strain data at the different
strain rates, will automatically match strain rate sensitivity data. However, by ex-
plicitly including the strain rate sensitivity data, the selected material model is more
susceptible to localised thinning as the applied strain rate is increased. It is essential
for the selected material model to exhibit this behaviour to prevent superplastic
forming simulations at high strain rates from predicting stable deformation, when
in fact localized thinning will occur.

KEYWORDS
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optimization

1. Introduction

Superplasticity is the almost neck-free elongation of several hundreds of per cent that
can be observed in some metals when a metal with certain metallurgical properties
is strained at a certain strain rate and temperature. These metallurgical properties
usually include small, equiaxed grains that are typically less than 10 μm in diame-
ter. Ti-6Al-4V exhibits superplastic behaviour at strain rates less than 10−3 s−1 at
temperatures greater than 900◦C [1].

The relationship between logarithmic flow stress and logarithmic strain rate for
superplastic metals at high temperatures during uniaxial tensile tests has a sigmoid
shape [2,3]. The sigmoid curve, depicted in Fig. 1, is divided into three strain rate
regions where region II is the superplastic strain rate region.
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Figure 1. Sigmoid relationship between log σ and log ε̇

The strain rate sensitivity m is defined as the slope of the sigmoid curve, which is
given by [4]

m =
∂ log σ

∂ log ε̇
. (1)

Region II has the highest strain rate sensitivity, and the strain rate sensitivity decreases
in the higher strain rate region III [4].

The two factors that control superplastic failure under any selected test conditions
are the strain rate sensitivity, which dominates localised thinning, and the cavity
formation [5]. Localised thinning usually occurs in the higher strain rate regions II to
III. Cavitation failure is not investigated in this study.

The optimisation of the superplastic forming pressure is usually done such that a
target strain rate in region II is maintained [6,7]. This approach to optimising super-
plastic forming is unnecessarily restrictive, since a high strain rate sensitivity is not
required during the first stages of forming [8].

This paper demonstrates the implementation and calibration of a superplastic ma-
terial model. The importance of including strain rate sensitivity data in the calibration
of the superplastic material model in order to predict the onset of localised thinning
is highlighted.

2. Material model

2.1. Implementation

Three material models that can be used to describe superplastic behaviour are im-
plemented into Abaqus using user creep subroutines. The first model is denoted as
the SV-sinh (state variable based hyperbolic sine) model, where the equivalent creep
strain rate ε̇ of the SV-sinh model is given by [9]

ε̇ = α2 sinh (β2 (σ −R− k)) d−γ . (2)
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Here σ is equivalent stress, d is grain size, and R is the isotropic hardening. The rate
of isotropic hardening of the superplastic material is given by [9]

Ṙ = b(Q−R)ε̇ . (3)

The grain growth model is given by

ḋ = α1d
−γ0 + β1ε̇d

−φ . (4)

Here α2, β2, k, γ, b, Q, α1, γ0, β1 and φ are constants to be determined through
calibration with data.

The second material model is denoted as Lin’s model, which is similar to the SV-
sinh model, except that it has a less flexible grain growth model, which is given by
[9]

ḋ = (α1 + β1ε̇) d
−φ . (5)

The third material model is a model that can be found in the paper by Nazzal et
al. [10], and it denoted as the Nazzal model in this study. The equivalent creep strain
rate ε̇ of the Nazzal model is given by

ε̇ =
Ci
dp

(
σ

1− fa0 exp (ψε)
− σ0

)1/q

+ Cii

(
σ

1− fa0 exp (ψε)

)r
. (6)

The grain growth is described by [10]

ḋ =
ks

dg
+
kd

dg

(
1− exp

(
−t
τ

))
ε̇ , (7)

where t is time. The constants Ci, p, fa0, ψ, σ0, q, Cii, r, ks, g, kd and τ also have to
be determined through calibration with data.

The equivalent plastic strain increment ∆εp and its derivative with respect to equiv-

alent stress d∆εp
dσ and strain d∆εp

dε have to be updated in the creep user subroutine when
implicit integration is used. The inputs to the subroutine include the initial conditions
to the state variables, the equivalent stress and strain at the start and at the end of
the increment, and the time and the time increment ∆t. The state variables of the
SV-sinh model and Lin’s model are the isotropic hardening variable R and the grain
size d. The state variable of the Nazzal model is grain size d.

There is viscoplastic flow when σ ≥ (k +R) in Eq. (2), otherwise ∆εp and d∆ε
dσ are

equal to zero, and R and d remain unchanged. If there is viscoplastic flow, in other
words when σ ≥ (k + R) in the case of the SV-sinh model, the increment in plastic
strain ∆εp can be calculated using the implicit trapezoidal integration method

∆εp =
∆t

2
(ε̇n+1 + ε̇n) , (8)

where ε̇n is the current strain rate and ε̇n+1 is the strain rate of the next iteration. The
state variables have to be updated before ε̇n+1 can be calculated. The state variables
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can be updated using the Newton-Raphson method which is given by

dRes

dy
∆y = −Res . (9)

In the case of the SV-sinh model and Lin’s model, y and ∆y is given by

y =

{
Rn+1

dn+1

}
, (10)

and

∆y =

{
∆R
∆d

}
, (11)

respectively. Res contains the residual of the state variables, and in the case of the
SV-sinh model and Lin’s model it is given by

Res =

{
ResR
Resd

}
. (12)

The system Jacobian dRes
dy in Eq. (9) for the case of the SV-sinh and Lin’s model is

given by

dRes

dy
=

[
∂ResR
∂Rn+1

∂ResR
∂dn+1

∂Resd
∂Rn+1

∂Resd
∂dn+1

]
. (13)

In the case of the Nazzal model, Eq. (9) can be rewritten as

dRes

dd
∆d = −Resd . (14)

The residuals Resd and ResR can be found using the implicit trapezoidal method,
where ResR is given by

ResR = Rn+1 −Rn −
∆t

2

(
Ṙn+1 + Ṙn

)
, (15)

and Resd is given by

Resd = dn+1 − dn −
∆t

2

(
ḋn+1 + ḋn

)
. (16)

Next, the derivative of the equivalent plastic strain increment with respect to equiv-
alent stress d∆ε

dσn+1
has to be calculated. It can be found using the chain rule of differ-

entiation. In the case of the SV-sinh model and Lin’s model, it is given by

d∆ε

dσn+1
=

∂∆ε

∂σn+1
+

∂∆ε

∂Rn+1

dRn+1

dσn+1
+

∂∆ε

∂dn+1

ddn+1

dσn+1
. (17)
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The derivatives dRn+1

dσn+1
and ddn+1

dσn+1
in Eq. (17) can be found using the Newton-Raphson

method

dRes

dy

dy

dσn+1
= − ∂Res

∂σn+1
. (18)

In the case of the Nazzal model, d∆ε
dσn+1

is calculated using the chain rule of differen-
tiation

d∆ε

dσn+1
=

∂∆ε

∂σn+1
+

∂∆ε

∂dn+1

ddn+1

dσn+1
, (19)

where ddn+1

dσn+1
is given by

dResd
dd

dd

dσn+1
= −∂Resd

∂σn+1
. (20)

The derivative of the equivalent plastic strain increment with respect to equivalent
stress d∆ε

dεn+1
is also calculated using the chain rule of differentiation

d∆ε

dεn+1
=

∂∆ε

∂εn+1
+

∂∆ε

∂dn+1

ddn+1

dεn+1
, (21)

where the derivative ddn+1

dεn+1
in Eq. (21) is given by

dResd
dd

dd

dεn+1
= −∂Resd

∂εn+1
. (22)

The subroutine can be tested as a standalone routine by also computing the equiv-
alent stress increment ∆σ using the Newton-Raphson method

d∆ε

dσ
∆σ = −Resσ , (23)

where Resσ is given by

Resσ = ∆ε−∆εtarget . (24)

The total strain increment ∆ε is the sum of its elastic ∆εe and plastic ∆εp components,
where the elastic strain increment ∆εe is given by

∆εe =
σ

E
, (25)

and E is Young’s modulus. The plastic component is calculated in the subroutine. The
target strain increment ∆εtarget is given by

∆εtarget = ∆tε̇target , (26)

where ε̇target is the target strain rate.
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2.2. Calibration

Published stress-strain, strain rate sensitivity-strain and grain size-time data were
used to calibrate the SV-sinh model. The strain rate sensitivity is critical to predict
localised thinning at higher strain rates [11,12]. It will be shown in this study exactly
how critical it is to calibrate a superplastic material model using all of the available
data.

The published data, digitized from the experimental work by Ghosh and Hamilton
[11], is for Ti-6Al-4V with three initial grain sizes strained at different strain rates at a
temperature of 927◦C. Ghosh and Hamilton [11] found the strain rate sensitivity-strain
data using strain rate jump tests.

The calibration of the material models is stated as an optimisation problem where
the objective function f(x) to be minimised is given by

f(x) = eT = eσ + wmem + wded , (27)

where x is the material constants that have to be determined, eT is the total error,
eσ is the stress error, em is the strain rate sensitivity error, and ed is the grain size
error. The strain rate sensitivity error weight and grain size error weight is given by
wm, and wd, respectively. This weighted sum method always yields a minimum that
is Pareto optimal if the weights are positive [13]. The objective function is minimised
using the Nelder-Mead simplex method.

The strain rate sensitivity error em and grain size error ed are each calculated using
the root of the square error, for example, em is given by

em =

√√√√ k∑
i=1

(
mi −mdata

i

)2
. (28)

The strain rate sensitivity m is calculated using a numerical strain rate jump test.
The numerical strain rate jump test starts off at a constant strain rate ε̇ s−1. The
strain rate is then increased to 1.25ε̇ s−1 and held there for approximately 2 to 3%
plastic strain. The strain rate is then decreased back to ε̇. An example of a strain rate
jump test is shown in Fig. 2. The stress just before the decrease from 1.25ε̇ s−1 is given
by σ2, and the stress at ε̇ at the corresponding total strain is given by σ1. The strain
rate sensitivity m is therefore given by

m =
log (σ2/σ1)

log(1.25)
. (29)

More detail on strain rate jump tests is given in the relevant ASTM standard [14].

3. Results

3.1. Calibration

Three sets of error weights were investigated for the SV-sinh model. The optimised
parameters xopt, final errors e and total error eT for these weights are given in Table 1.
The weights of set 1 favour the stress-strain data more than the strain rate sensitivity-
strain data and grain size-time data, and the strain rate sensitivity-strain data is
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Figure 2. Numerical strain rate jump test

effectively ignored (this last error contributes less than 0.2% to the total error). The
weights of set 2 favour the strain rate sensitivity-strain data more than the other data
sets. The weights of set 3 attempt to balance the stress error and strain rate sensitivity
error.

The SV-sinh model data calibrated with the three different sets of weights is com-
pared to the published data in Fig. 3, Fig. 4 and Fig. 5.

Notice in Fig. 3 that the SV-sinh model describes all the stress-strain data well, but
not the strain rate sensitivity data. In particular, notice that the strain rate sensitivity
of the 6.4 μm material is less than that of the 9 μm material, when in fact it should
be the other way round. In Fig. 4 all the strain rate sensitivity data is fitted well, but
the quality of fit of the stress-strain data is compromised.

The grain size errors for all three sets are almost the same. It is however difficult to
judge the fit of the dynamic grain size-time experimental data, because there are large
error bars on the dynamic grain size-time data given by Ghosh and Hamilton [11].

Lin used a genetic algorithm to calibrate his model to the same published data [9].
The material parameters of Lin’s model is given by [9]

xopt =



γ
β2

k
α2

b
Q
α1

β1

γ0


=



1.408
0.035
0.242
0.042
1.729
6.345
1.2

3460.5
3.7


. (30)

Lin’s model is compared to the published stress-strain, strain rate sensitivity-strain
and grain size-time data in Fig. 6. Lin’s model is only calibrated with stress-strain and
grain size-time data with an initial grain size of 6.4 μm [9]. The consequence is that
the stress-strain experimental data with initial grain sizes other than 6.4 μm are not
captured in the calibration. This is evident in Fig. 6.
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Table 1. Optimised parameters for three sets of arbitrary weights for the SV-sinh model

Set w xopt e eT

1
1
1

2.3079
0.11325

1.3318× 10−17

0.04818
1.5114
5.2662
0.85654
1.8277
3.7841
0.12167

82.185
0.17902
27.988

110.35

2
24000
10.8

2.9162
0.11952

2.64× 10−17

0.14636
0.32491
3.8655
8.9568
1.8241
4.8116

6.4877× 10−8

524.77
0.030841
29.297

1581.4

3
1500
2.7

2.4253
0.11532

1.5603× 10−15

0.057089
1.033
4.5091
9.0249
1.7347
4.8029

6.9144× 10−20

125.14
0.09296
28.827

342.41
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Figure 3. The SV-sinh model with w = {1 1} (set 1) fitted to (a) stress-strain data, (b) strain rate sensitivity-

strain data, and grain size-time data in (c), (d) and (e)
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Figure 4. The SV-sinh model with w = {24000 10.8} (set 2) fitted to (a) stress-strain data, (b) strain rate

sensitivity-strain data, and grain size-time data in (c), (d) and (e)
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Figure 5. The SV-sinh model with w = {1500 2.7} (set 3) fitted to (a) stress-strain data, (b) strain rate

sensitivity-strain data, and grain size-time data in (c), (d) and (e)
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Table 2. Optimised parameters to two sets of arbitrary weights for the Nazzal model

w xopt e eT

1
1

0.0015673
1.2795× 10−9

0.62622
3.7779
2.3253
0.71504

0.0069727
370.42

0.00086761
30.35

0.0028445
0.0045786

141.54
0.30015
68.805

210.64

600
2.27

0.0018378
8.3316× 10−13

0.6848
5.8073
2.4039
1.6043

0.00043915
708.94

0.0063218
248.05
0.20933

7.1734× 10−6

209.9
0.095587
41.102

360.56

Lin does not incorporate strain rate sensitivity-strain experimental data in the cal-
ibration of his model. The consequence is that that the strain rate sensitivity-strain
model data does not match the strain rate sensitivity-strain experimental data in
Fig. 6b.

Two sets of error weights were investigated for the Nazzal model. The optimised
parameters xopt, final errors e and total error eT for these weights are given in Table 2.
The weights w = {1 1} effectively ignores the strain rate sensitivity data, while the
weights w = {600 2.27} attempt to balance the stress error and strain rate sensitivity
error.

The Nazzal model calibrated with the two different sets of weights is compared
to the published data in Fig. 7 and Fig. 8. The strain rate sensitivity-strain data is
described better by the SV-sinh model as compared to the Nazzal model for weights
w = {1 1}. The grain growth of the Nazzal model shown in Fig. 7 and Fig. 8 is faster
than the grain growth of the SV-sinh model and Lin’s model.

3.2. Finite element tensile test model

The different material models are compared by modelling the tensile tests that gen-
erated the stress-strain curves. The ability of the different material models to predict
the earlier onset of necking as the applied strain rate is increased is of particular in-
terest. If the material models do not predict this behaviour, such models would not
be suitable to optimize pressure profiles during superplastic forming.

The geometry and dimensions of the tensile test specimen are from Ghosh and
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Figure 6. Lin’s model compared to published (a) stress-strain data, (b) strain rate sensitivity-strain data,

and grain size-time data in (c), (d) and (e)
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Figure 7. The Nazzal model with w = {1 1} fitted to (a) stress-strain data, (b) strain rate sensitivity-strain

data, and grain size-time data in (c), (d) and (e)
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Figure 8. The Nazzal model with w = {600 2.27} fitted to (a) stress-strain data, (b) strain rate sensitivity-

strain data, and grain size-time data in (c), (d) and (e)
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Figure 9. The tensile test model

Hamilton [11]. The test specimen is 1.63 mm thick. The tensile test model is meshed
with four layers of C3D8 elements. The meshed tensile test model is shown in Fig. 9.
The mesh is graded to be finer in the gauge area, and it is finer towards the middle
of the gauge section. This mesh grading is necessary to maintain good mesh quality
towards the end of the simulations, where elongations of up to 250% are required
to investigate if localized deformation will occur. Our numerical experiments have
indicated that this mesh density is adequate to ensure mesh independent results [15].

The boundary conditions of the tensile test model are based on the ASTM standard
[14]. The top and bottom surfaces of the tabs cannot displace in the y-direction. The
middle line along the leftmost and rightmost surfaces cannot displace in the z-direction.
The left shoulder cannot displace in the x-direction. A velocity boundary condition is
applied to the right shoulder of the specimen. The magnitude of the velocity boundary
condition is given by [11,14]

v = L0ε̇ exp (ε̇t) , (31)

where L0 is the initial gauge length and t is the time from the start of the test. The
applied velocity boundary condition is supposed to be such that a constant strain rate
is maintained throughout the gauge section [11]. Strain rates of 10−3 s−1, 2×10−3 s−1

and 5× 10−3 s−1 are used in this study. The initial grain size is set to 6.4 μm.
The final thickness results from point A to point B for the finite element model with

the different material models at the three different strain rates are given in Fig. 10. It
can be observed that most of the deformation is in the gauge section for all the models
investigated.

The thickness results are non-uniform in the gauge section for all three sets of the
SV-sinh model and for the Nazzal model with w = {600 2.27} at 2 × 10−3 s−1 and
5 × 10−3 s−1 in Fig. 10b and Fig. 10c, respectively. The results of Lin’s model and
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the Nazzal model with w = {1 1} show no localised thinning at or near the end of
the 2× 10−3 s−1 and 5× 10−3 s−1 simulations. Recall that Lin did not use strain rate
sensitivity data to calibrate his material model. The calibration of the Nazzal model
with w = {1 1} did however incorporate strain rate sensitivity-strain data, but the
strain rate sensitivity data was not captured with this set of weights. The strain rate
sensitivity error of the Nazzal model with w = {1 1} is three times more than the
strain rate sensitivity error of the Nazzal model with w = {600 2.27}.

The maximum principal strain rate versus the normalised deformed distance along
the middle of the tensile test model for set 3 of the SV-sinh model at 10−3 s−1 is shown
in Fig. 11. The increase in maximum principal strain rate in the gauge section is 57%
from 10 s to 2480 s in Fig. 11. This may be due to considerable flow of material from
the tabs to the gauge section that increases with time. Material flows from the tabs to
the gauge section, because the material is less resistive to flow at high temperature.
The flow of material from the tabs has been observed in real superplastic tensile tests
by Abu-Farha [16].

The flow of material from the tabs influences the stress-strain measurements. This is
a possible explanation of the inconsistency between the implied strain rate sensitivities
from the stress-strain curves, as compared to the strain rate sensitivities obtained from
strain rate jump tests. This also justifies an approach where the stress-strain data is not
considered as more important than the strain rate sensitivity data during calibration.

Inverse modelling of the tensile test can be done to calibrate the material model in
order to account for the varying strain rate throughout the gauge section with time
[17], but this approach is beyond the scope of the current paper.

In summary, all three versions of the calibrated SV-sinh model and the Nazzal model
with w = {600 2.27} show the onset of localised thinning with increasing strain rate.
These models would be suitable to minimise the final forming time of a superplastic
forming process, by finding a pressure profile that forms the part faster, subject to
some minimum allowable thickness. An optimization algorithm that uses the material
model calibrated in this paper would naturally avoid pressures that deform the part
too quickly, since this would lead to localized thinning [15].

4. Conclusion

The SV-sinh model and the Nazzal model are successfully calibrated with published
stress-strain data, grain size-time data and strain rate sensitivity-strain data using a
weighted sum optimisation strategy. The thickness results indicate localised thinning
in the gauge section for all three weight sets of the SV-sinh model and for the Nazzal
model with w = {600 2.27} at strain rates of 2 × 10−3 s−1 and 5 × 10−3 s−1. The
Nazzal model with w = {1 1} showed no localised thinning at or near the end of the
2×10−3 s−1 and 5×10−3 s−1 simulations. The Nazzal model with w = {1 1} incorpo-
rated strain rate sensitivity-strain data in the calibration process, but the strain rate
sensitivity data was not captured with this set of weights. The strain rate sensitivity
error of the Nazzal model with w = {1 1} is three times more than the strain rate
sensitivity error of the Nazzal model with w = {600 2.27}.

These models were compared to a model by Lin, which is similar to the SV-sinh
model, with the exception that it has a less flexible grain growth model than the
SV-sinh model. Lin calibrated his model only to stress-strain and grain size-time ex-
perimental data with an initial grain size of 6.4 μm [9]. He did not make use of data
with different initial grain sizes, and he did not use strain rate sensitivity-strain data
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Figure 10. Final thickness results along the middle of the tensile test specimen at a strain rate of (a) 10−3

s−1, (b) 2× 10−3 s−1 and (c) 5× 10−3 s−1
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Figure 11. Maximum principal strain rate along the middle of the tensile test model with time for set 3 of
the SV-sinh model at 10−3 s−1

to calibrate the model. It was shown that this calibration of Lin’s model consequently
did not show localised thinning with increasing strain rate for the finite element tensile
test model. A material model should therefore not only be fitted to data of only one
grain size and strain rate if the material model is going to be used in multi-axial sim-
ulations. This is because the material model needs to provide an adequate description
for many grain sizes and strain rates during a multi-axial simulation. This happens
when some parts of the sheet are in contact with the die and other parts are still
forming into the die cavity.

The velocity boundary condition was assumed to lead to a constant strain rate in the
gauge section. However, it was found that the maximum principal strain rate increased
with time. This might be due to material flow from the tabs. This is also a possible
explanation of the inconsistency between the implied strain rate sensitivities from the
stress-strain curves, as compared to the strain rate sensitivities obtained from strain
rate jump tests. This also justifies an approach where the stress-strain data is not
considered as more important than the strain rate sensitivity data during calibration.
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