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Highlights 

• Conventional asphalt mix design is a time consuming iterative process requiring significant 

amount of materials. 

• Significant information is available in a database on historical mix designs. 

• This paper presents a procedure that was followed to successfully develop Artificial Neural 

Network (ANN) and Genetic Algorithm (GA) models that utilized the database and automate 

selection of aggregate gradation and binder content to produce asphalt mixtures that comply with 

applicable specification requirements. 
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Abstract: Selection of aggregate gradation and binder content for asphalt mix design, which 

comply with specification requirements, is a lengthy trial and error procedure. Success in 

performing mix design rely largely on experience of the designer. This paper presents development 

of an automatic mix design process with the ability to both predict and optimize asphalt mix 

constituents to obtain desired mix properties. A successful automatic process requires the use of 

local past experience translated into a design aid tool, which then predicts properties of asphalt 

mix without actually testing the mix in laboratory. In the proposed approach, simple multilayer 

perceptron structure Artificial Neural Network (ANN) models were developed using 444 Marshall 

mix design data. The ANN models were able to predict both air voids and theoretical maximum 

specific gravity of asphalt mix to within ±0.5% and ±0.025, respectively, for 99.6% of the time. 

After that, the ANN models were called by a non-linear constrained genetic algorithm to optimize 

asphalt mix, while satisfying the Marshall requirements defined in the formulation as constraints. 

Durability of the optimized mix is ensured by introducing a constraint on adequacy of asphalt film 

thickness. The developed mix design aid tool is compiled into a computer software called Asphalt 

Mix Optimization (AMO) that can be used by road agencies as a mix design tool. A case study is 

presented to demonstrate the ability of the model to optimize aggregate gradation and minimize 

binder content in asphalt mix. The computed ANN outputs and the optimized gradation were found 

to compare well with laboratory measured values. Although, Marshall compacted mixes were used 

in demonstrating the approach, this method is general and can be applied to any mix design 

procedure.  

 

Keywords: Artificial neural network, genetic algorithm, gradation, asphalt mix design, 

optimization 
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INTRODUCTION 

Asphalt mix design entails proportioning of aggregates and binder in a design recipe to obtain 

desirable mechanical and volumetric properties for the mixture produced. The mechanical and 

volumetric properties significantly influence the performance and durability of asphalt mix. 

Influences of aggregate on properties of bituminous mix are well known and their requirements 

are specified by client bodies around the world. The initial efforts in finding optimal gradation 

were based on the principle that maximizing the density would result in a denser gradation, leading 

to a better performing mix (Fuller and Thompson, 1907; Roberts, et al., 1996). However, it has 

been reported in several studies that the maximum density results in low voids in Mineral 

Aggregate (VMA) and, therefore, low binder content (Pb) and Air Void (Va). McLeod (1956) 

proposed to use volumetric relationship in asphalt mix design, instead of following maximum 

density. 

The effect of aggregate gradation on volumetric parameters, strength and permanent 

deformation in asphalt mixes have been extensively studied by various researchers. Researchers 

have stressed on the importance of packing characteristics of aggregate gradation based on 

relative volume of different parts of gradation (Birgisson and Ruth, 2001), (Vavrik et al., 2002), 

(Roque et al., 2006). The approach is based on the fact that change in packing of coarse and fine 

aggregate directly relate to aggregate interlocking and void in aggregate in compacted asphalt 

mix.  

Although the current gradation design methods provide some indications on volumetric 

and mechanical properties, essentially they are empirical and require a trial and error process to 

establish an optimum blend. Further, the methods may be useful in comparing different 

gradations but cannot accurately predict volumetric and mechanical properties of asphalt mixes 
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without testing them in laboratory. Recently, in an effort to accurately estimate volumetric and 

mechanical properties of asphalt mixes, some researchers have adopted more computational 

approach, which considers particle to particle interaction (Shen and Yu, 2011), (Li and Wang, 

2015). These approaches are based on discrete element method, which uses force functions to 

define particle to particle interaction. Limitation of such models is the significant increase in the 

computational effort when smaller particles (<1.18mm) are included in the analysis. Moreover, 

the ability of these models to reach equilibrium is often significantly reduced on including the 

small particles in the analysis.  

It is evident that selection of aggregate gradation for asphalt mix design, which would 

comply with volumetric and mechanical requirement is complex and rely mainly on experience. 

Random selection based on trial and error to obtain an optimum gradation is nearly impossible. 

This is because asphalt mix formulation depends on several factors such as specific gravity, 

texture, shape and absorption properties of locally used aggregates and binder. Therefore, it is 

important that the local past experience be translated into a design aid tool. Ozturk and Kutay 

(2014) used laboratory data collected from 1,817 Superpave mix designs to develop a novel 

Artificial Neural Network (ANN) model ANN-AM. The objective of their study was to use mix 

design data in training ANN which can then be used as a virtual Superpave mix design tool. 

Aggregate gradation, specific gravity, PG grade, Pb, initial, design and maximum gyrations were 

used as input in the model to predict Va, VMA and Voids Filled with Bitumen (VFB) at different 

gyration levels. The objective of the current study is to first train an ANN model for Marshall 

mix design and then demonstrate that such a model can be used to develop an automated scheme 

to obtain optimized asphalt mix with desire properties. 
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In recent years, artificial intelligence tools have gained traction to learn surrounding conditions 

and provide successful responses. In pavement engineering, ANN has been used to interpret 

complex data obtained from field, laboratory or computer simulations. ANN has mostly been 

applied in three major areas in pavement engineering, i.e. evaluation of structural condition of 

pavement, forecasting distress condition of pavement and estimation of asphalt mix properties. In 

structural evaluation, ANN has been mainly used to interpret Falling Weight Deflectometer (FWD) 

data through an inverse scheme to predict modulus value of pavement layers (Gopalakrishnan et 

al., 2014), (Li and Wang, 2017). Apart from estimating deflections for FWD analysis, researchers 

have also demonstrated application of ANN in estimating stresses, layer thickness and joint load 

transfer in pavement. In function evaluation, ANN has been used to predict deterioration of 

pavement performance in terms of roughness, rut depth and cracking (Huang and Moore, 1997), 

(Choi et al., 2004), (Yang et al., 2003), (Lytton et al., 2010). ANN has also been used for crack 

detection, classification and determination of severity. In asphalt mix evaluation, ANN has been 

successfully used to estimate asphalt mix properties such as indirect tensile strength, density and 

dynamic modulus (Krcmarik et al., 2016), (Commuri et al., 2011), (Far et al., 2009).  

Objective 

The goal of the present study is to develop an automatic design tool, which uses local experience 

of road agencies to aid in optimizing asphalt mix. Therefore, the procedure followed was (i) to 

obtain mix properties from construction projects and use them in developing ANN models and 

(ii) develop an optimization scheme using Genetic Algorithm and automate mix design 

procedure.  

Although Superpave has gained prominence as the state-of-the-art method for asphalt 

mix design, there are still many road agencies around the world where Marshall mix design is 
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still the most prevalent asphalt mix design method. Therefore, in this study Marshall mix design 

data for mixes intended to be used for pavement construction projects were collected and used in 

developing the model. Another advantage of the developed model is that it would be helpful for 

agencies that have experience with Marshall mix performance, but plan to move towards 

Superpave mix design. In such cases, the ANN models can assist the designer to predict Marshall 

Properties for Superpave design mixes that have aggregate and binder properties that are within 

the limits of the databased used in developing the ANN models.  

Based on the existing literature and despite successful demonstration of possible 

advantageous ANN implementation in pavement engineering, it has not been adopted in practice. 

The main obstacles in adopting ANN in practice is lack of background information and complex 

architecture of ANN models. Therefore, one of the objective of this study is to develop ANN 

model that uses simple architecture and readily available asphalt mix properties as inputs.  

RESEARCH APPROACH AND DATABASE 

A model that is capable of satisfactorily estimating volumetric properties through simple input 

parameters can be used to conduct a virtual mix design. Further, the model can then be called by 

an optimization scheme to produce mixes with optimized characteristics (objectives). This is 

because the model would be able to evaluate different asphalt mix scenarios generated by varying 

the model inputs.  

Although this paper presents models developed for Marshall mix design, the approach 

described here is general and can be applied to any other mix design method. In Marshall mix 

design, four asphalt mix parameters, i.e. stability, flow, bulk specific gravity (Gmb) and 

theoretical maximum specific gravity (Gmm) are measured in laboratory and used in further 

analysis for acceptance or rejection of the mix. Initially, this study considered these four mix 
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design parameters as the target variables. However, it was later realized that a much better ANN 

model for Va can be developed compared to Gmb. Finally, it was decided to use Va as a target 

variable instead of Gmb and then Va along with Gmm were used to calculate Gmb. Therefore, four 

separate ANN models were developed to predict the four targeted variables. The input variables 

used in all the four models were the same, which were obtained from the 444 Marshall Mix data.  

In subtropical hot desert climate regions like the one in the present study, bleeding is one 

of the major concern. Therefore, there is a natural tendency in the pavement industry in regions 

with such climate to use lower binder content. Selection of lower binder content to avoid any 

potential bleeding may jeopardize durability of asphalt mixes in these regions. Studies have 

shown that durability is directly related to bitumen film thickness (FTb). Therefore, to ensure that 

sufficient durability is achieved in the mix, in addition to Marshall mix design parameters, 

minimum FTb requirement is also included in the model.  

Mix design ANN database 

All the input and the targeted variables in the ANN models were from laboratory conducted 

Marshall mix designs for actual pavement construction projects. A total of 444 Marshall mix 

design data were used in the study to train, verify and test the ANN models. The Marshall mixes 

used in this study were compacted at 75 number of blows per face of specimen. The mixes in the 

database are produced using two grade of binders, PG 64-10 and PG 76-10. The binder PG 64-10 

is unmodified asphalt of Pen grade 60/70 expected to be from a single source. The binder PG 76-

10 is modified asphalt obtained from four different sources. All the aggregates were crushed 

gabbro, expected to be from ten different suppliers. Therefore, the mix design database included 

two types of binder and a single type of aggregate. 
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The temperatures of compaction and mixing were obtained from binder’s viscosity 

temperature chart. For modified bitumen, mixing temperature corresponds to a viscosity range of 

0.75±0.05 Pas and compaction temperature corresponds a viscosity range of 1.4±0.1 Pas, measured 

at 20 rpm with Brookfield Spindle No. 27. For unmodified bitumen the temperature at a rotational 

viscosity of 0.17±0.02 Pas was used for mixing and 0.28±0.03 Pas was used for compaction. 

The targeted variables in this study are stability, flow, Va and Gmm. Here, the independent 

variables are those factors that can be obtained from simple tests on aggregates and binder in the 

laboratory, before a mix is produced. The independent variables identified in this study are 

binder content, Gsb of combine gradation, higher PG of the binder and percentage passing the 

0.075 mm, 0.425 mm, 1.18 mm, 2.36 mm, 4.75 mm, 9.5mm, 12.5 mm, 19.0 mm and 25.0 mm 

sieves. Table 1 shows the maximum, minimum, average and standard deviation of each variable 

in the database. The database comprises of Marshall test results conducted at different binder 

contents of each mix design. 

TABLE 1: Range of variables used in developing ANN model 

Variables Minimum Maximum Average 
Standard 

deviation 

Input 

variables 

Percent 

passing 

sieve 

size 

25 mm 91 100 99 2.0 

19 mm 78 100 97 5.3 

12.5 mm 64 87 79 4.7 

9.5 mm 50 76 68 4.4 

4.75 mm 39 54 47 3.5 

2.36 mm 27 42 32 2.4 

1.18 mm 10 31 21 2.7 

0.425 mm 7 19 12 1.8 

0.075 mm 3.0 6.1 4.2 0.4 

Pb % 2.5 5.5 4.1 0.7 

Gsb 2.824 2.972 2.889 0.039 

PG high  

temperature oC 
64 76 na na 

Target/ 

output 

variables 

Gmm 2.619 2.841 2.719 0.048 

Va % 1.1 11.6 5.8 2.0 

Stability, kN 9.0 31.7 15.8 3.8 

Flow (0.25 mm) 2.0 4.9 3.1 0.5 
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Two main limitations of ANN based models are: (1) the quality of prediction depends on 

the quality of ANN trained and (2) performance of ANN models is highly related to the data 

used in the development of the model. In fact, only the problems which are within the bounds of 

the data set considered in the training of ANN are expected to produce reasonable solution. 

Therefore, since the ANN models were developed using the data space shown in Table 1, it is 

expected that the model would be able to perform well within these variable ranges.  

PROPOSED GRADATION SELECTION PROCEDURE 

The ability to predict asphalt mix properties and the ability to optimize gradation to obtain desired 

mix properties are both important to automate asphalt mix design process. Therefore, the primary 

component in the aggregate gradation selection procedure proposed in the present study is the 

ANN model that can predict asphalt mix properties. The inputs to this ANN model are the 

candidate solutions from non-linear constrained Genetic Algorithm (GA).  

In practice, hot bin aggregates that are intended to be used in asphalt production are 

tested in laboratory. To obtain a combined gradation, the hot bin aggregates are blended in 

certain percentages by weight. The combined gradation is then mixed with certain percentage of 

binder to produce asphalt mix. Needless to say that, the selected hot bin and binder percentages 

shall be such that the mix provides desirable volumetric and mechanical properties which is the 

ultimate objective of mix design. Therefore, in the proposed approach, percentage of hot bins 

and percent of binder are considered as the unknowns to be searched. As explained later, the 

non-linear constrained GA systematically varies these unknowns to reach an optimized 

gradation. It is assumed that specific gravity of the individual hot bins and PG grade of the 

binder that are intended to be used in asphalt mix production are known. The specific gravity of 
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the combined gradation is calculated from the specific gravity of individual hot bins using the 

equation from the Asphalt Institute MS-2 (Asphalt Institute, 2014) 

𝐺𝑠𝑏 =
1

𝑃1
100 𝐺𝑠𝑏1

+
𝑃2

100 𝐺𝑠𝑏2
+⋯

𝑃𝑛
100 𝐺𝑠𝑏𝑛

          (1) 

where, 𝑃𝑖 is the percentage (by weight) of hot bin 𝑖 in the combined gradation, 𝐺𝑠𝑏𝑖 is the specific 

gravity of hot bin 𝑖 and 𝑛 is the total number of hot bins.  

The independent variables listed in Table 1 are percent binder content, percent passing 

individual sieve sizes (calculated from trial hot bin percentages), specific gravity of combine 

gradation (calculated using Equation 1) and PG grade high temperature are used in ANN model 

to predict target variables. 

ANN models to predict asphalt mix design parameters 

Analogous to the interconnected neurons in humans that process and transmits information, ANNs 

consist of interconnected set of nodes (artificial neurons). In ANN, nodes are essentially 

mathematical functions, which receive weighted inputs. As shown in Figure 1, after processing the 

inputs, the nodes pass output to other nodes in the next layer (if exists) through weighted links. 

ANNs learn to predict outputs by adjusting these weights.  

A large class of different ANNs are possible based on the number of nodes, arrangement 

of nodes, transfer/activation function of nodes and training function of neural network. 

Multilayer Perceptron (MLP) is one of the most used ANN for function approximation and is 

also used here. MLP consists of at least three layers, an input layer, a minimum of one hidden 

layer and an output layer. The MLP structure used in this work is shown in Figure 1. The 

structure was selected based on trial and error. During trial and error, the transfer function, the 

training function and the number of nodes were varied. It was found that a single hidden layer 

with 25 nodes, hyperbolic tangent sigmoid function for transfer and quasi-Newton 
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backpropagation function for training were sufficient to produce an MLP structures, which could 

predict the target variable with R values between 0.97-0.99. 

The inputs in the MLP shown in Figure 1 is a 12 by 1 matrix, which is listed in Table 1. 

Separate MLP were developed for the target variables shown in Table 1. Therefore, the output in 

each MLP was a single element.  

 

x1

Inputs 
Layer

Output

[X]12x1

 f(n1
1)

θ1
1

 f(nn
1)

θn
1

xm

x12

 f(n25
1)

θ25
1

 yc

θc
2

w11

w1n

w125

wm1

wmn

wm25

w121

w12n

w1225

w1c

wnc

w12c

[W]25x12 
[θ]25x1 

[W]25x1 
[θ]1x1 

[Y]1x1

Hidden 
Layer

Outputs 
Layer

n1
1

nn
1

n25
1

 

 

Figure 1: Structure of the MLP used in this study 

The steps followed in the prediction of target variables are as follows: 

1) The hidden layer receives the weighted input, which is summed up with a constant bias as 

 

𝑛𝑖
1  = 𝑤𝑗𝑖𝑥𝑗 + 𝜃𝑖

1            (2) 
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where, 𝑗 = 1, … . ,12, 𝑖 = 1, … . ,25, 𝑥𝑗 is input to MLP, 𝑤𝑗𝑖 are weights, 𝜃𝑖 are the constant 

bias terms of the hidden layer, 𝑛𝑖
1 is input to the transfer/activation function. 

2) Due to the asymptotic nature, hyperbolic tangent sigmoid is preferred as transfer function:  

𝑓(𝑛𝑖
1)  =

𝑒𝑛𝑖
1

−𝑒−𝑛𝑖
1

𝑒𝑛𝑖
1

+𝑒−𝑛𝑖
1            (3) 

The function is applied at all the nodes in the hidden layer. 

3) Linear function was used as the transfer function at the output layer. The function computes 

the output of MLP by summing up weighted output from the hidden layer with a constant 

bias as 

𝑦𝑐  = 𝑤𝑖𝑐𝑓(𝑛𝑖
1) + 𝜃𝑐

2            (4) 

where, 𝑖 = 1, … . ,25, 𝑓(𝑛𝑖
1) is output from hidden layer, 𝑛𝑖

1 is input to the 

transfer/activation function, 𝑤𝑖𝑐 are weights and 𝜃𝑐
2 is the constant bias terms of the output 

layer. 

4) All the computed yc values from the MLP are compared with actual yt values from the 

training data set using mean square error given as 

𝑚𝑠𝑒 =
1

𝑁
∑ (𝑦𝑡 − 𝑦𝑐)𝑖

2𝑁
𝑖=1           (5) 

where, N is the size of data set = 444, 𝑦𝑡 is targeted value and 𝑦𝑐 is computed value. The 

weights in the hidden layer and the output layer were varied using quasi-Newton 

backpropagation function until the mse value reaches less than 10-4 for Gmm and 10-1 for 

the rest of the variables or the number of epochs reaches 2000. 

Following the above steps, the overall network can be mathematically expressed as 

 

𝑦𝑐  = ∑ 𝑤𝑖𝑐(∑ 𝑓(𝑤𝑗𝑖𝑥𝑗 + 𝜃𝑖
1)12

𝑗=1 )25
𝑖=1 + 𝜃𝑐

2           (6) 
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where, 𝑗 = 1, … . ,12, 𝑖 = 1, … . ,25, 𝑥𝑗 is input to MLP, 𝑤𝑗𝑖 are weights, 𝜃𝑖
1 are the constant bias 

terms of the hidden layer, 𝑤𝑖𝑐 are weights and 𝜃𝑐
2 is the constant bias terms of the output layer. 

Eighty percent of the dataset was used in the neural network training following the steps described 

above. Ten percent of the dataset was used in validation and another ten percent in testing the 

trained ANN.  

The training, validation and testing of all the ANN models were performed using Matlab’s 

neural network tool box. Comparison of the ANN predicted with laboratory measured values is 

presented in Figure 2.  

As mentioned earlier, initially Gmb was considered as a target variable instead of Va. 

However, as it can be seen in Figure 2, a better ANN could be developed for Va compared to 

Gmb. Therefore, Gmb was computed using ANN obtained Gmm and Va. Next, the accuracy of the 

ANN models were evaluated at typically accepted tolerance values. It was found that the ANN 

models were able to successfully predict Gmm, Va, Stability and Flow for 99.8%, 96.0%, 97.8% 

and 99.1% of times at acceptable tolerance values of ±0.05, ±0.5, ±2.0 and ±0.5, respectively. On 

reducing the acceptable tolerance values by half, the success percentage for Gmm, Va, stability 

and flow were 99.6%, 74.1%, 87.8% and 95.5%, respectively.  

The performance of ANN models shows that the proposed MLP structure was able to 

learn and predict the targeted variables within acceptable error. Therefore, the ANN models were 

found to be well suited in developing optimization tool to aid asphalt mix design.  
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Figure 2: Comparison of ANN predicted versus measured values for Gmm, Va, stability, flow and Gmb 
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GA Model to Optimize Asphalt Mix 

Traditional optimization techniques used in pavement engineering are generally based on direct 

search (such as Hooke-Jeeves, simplex) or gradient search methods (such as secant method, 

Newton Raphson, modified Powell hybrid and modified Levenberg-Marquardt). In absence of a 

continuous differentiable function, the traditional optimization techniques are limited in their 

ability to find a solution. Furthermore, the solution obtained from these techniques are dependent 

on the location of the starting point in the search. GA have been shown to produce much superior 

results compared to the traditional techniques. The advantages of GA are that (i) it does not require 

calculating gradient and (ii) it can produce global solution (Deb, 2009). 

GA is a non-traditional optimization technique based on evolutionary algorithm (EA), in 

which, each iteration moves the problem towards a better solution. A typical GA problem 

includes an objective function, which is required to be optimized (minimized or maximized), 

taking into consideration that the solution lies within a search space defined by the limits 

(bounds) on the variables. First step in a GA optimization problem that does not include non-

linear constraints is to generate initial set of candidate solution called population, which are 

within the search space. Next all the candidate solutions are ranked based on their objective 

function value. Out of these candidates, some of the solutions are selected using a probability 

based scheme and the rest are discarded. The selected candidates are called parents. Crossover 

and mutation are the two steps in which new candidates called offspring are produced through 

flow of information from one parent into another and inducing localized changes. Based on 

termination criteria either these offspring are used as initial pool of solutions to continue to next 

iteration, or the best among the offspring is chosen as the optimized solution. 
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Most of the GA application in pavement engineering are in analysis of either FWD data 

(Chatti et al., 2017) or maintenance and rehabilitation strategy (Bosurgi and Trifiro, 2005), 

Panagopoupou and Chassiakos, 2012). GA in FWD data analysis is used to estimate in situ 

properties of pavement layers by minimizing difference between field-measured and predicted 

deflections.  Varma and Kutay (2013) and Varma and Kutay (2016) developed linear-constrained 

GA based FWD analysis model called BACKLAVA and BACKLAVAN. The constraints were 

introduced to reduce search space in their problem formulation. The authors related the sigmoid 

function curve parameters with linear viscoelastic properties of asphalt mix to propose simple 

linear constraint in their formulation. However, they showed that the linear constraint can be 

embedded in the objective function itself by redefining the variables, thus converting the linear 

constrained GA problem into an unconstrained GA. Alternately, the linear constraints, along 

with the upper and lower limits can be used to always generate populations that comply with 

them. However, this is not always possible in a non-linear constrained GA problem.  

In general, non-linear constrained optimization problems are solved by penalizing the 

objective function for any violation to the constraints (Deb, 2000), (Conn et al., 1991). This 

penalty ensures that the search is systematically dragged away from any search space which is 

violating non-linear constraints. In this paper Matlab function ‘ga’ is used to perform non-linear 

constrained optimization. The function ‘ga’ handles the Non-linear equality and inequality 

constraints by creating an augmented Lagrangian form called sub-problem for the original 

problem (Conn et al. 1991), (Conn et al. 1997). Equation 8 shows the augmented Lagrangian 

form of a general original problem in Equation 7 

min   𝑓(𝑥) , 𝑓𝑜𝑟 𝑥                        (7) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 
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𝐶𝑖(𝑥) ≤ 0, 𝑖 = 1 𝑡𝑜 𝑛  

𝐶𝑒𝑞𝑗(𝑥) = 0, 𝑗 = 1, 𝑚   

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 

where, 𝑓(𝑥) is objective function, 𝑛 and 𝑚 are number of inequality and equality non-linear 

constraints, 𝐶𝑖(𝑥) and 𝐶𝑒𝑞𝑗(𝑥) are inequality and equality non-linear constraints 

min   ψ(𝑥, 𝜆, 𝑠, 𝜌) = 𝑓(𝑥) − ∑ 𝜆𝑖

𝑚

𝑖=1

𝑠𝑖 log(𝑠𝑖 − 𝐶𝑖(𝑥)) + ∑ 𝜆𝑗

𝑛

𝑗=1

𝐶𝑒𝑞𝑖(𝑥) +
𝜌

2
∑ 𝐶𝑒𝑞𝑖(𝑥)2

𝑛

𝑗=1

 

  (8) 

Where, 𝜆𝑖 are non-negative Lagrange multipliers, 𝑠𝑖 are slack variables. In non-linear constrained 

GA, this augmented Langragian sub-problem is minimized. In each GA iteration the Langragian 

coefficients are fixed and the sub-problem thus obtained is minimized until termination criteria 

reaches. It is worth noting that since the sub-problem strips the non-linear constraints from the 

original problem, it is optimized using GA with only linear constraints and bounds to be satisfied. 

Figure 3 shows the procedure followed in obtaining an optimized gradation using the ANN-GA 

hybrid approach.  

Case Study 

The selection of aggregate gradation and binder content affects the cost and quality of 

asphalt mix. Cost of asphalt mix increases with the use of aggregates with higher specific gravity 

or high binder content. Increase in specific gravity of aggregates is in general related to increase 

in size of the largest aggregate in the mix. However, increase in size of the largest aggregate in 

mix leads to reduced design asphalt content and lower overall mix cost. Therefore, binder is 

typically considered as the most expensive component of asphalt mix. In the present study, hot 

bin percentages and binder content are optimized to obtain an asphalt mix that satisfies 
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specification requirements at the lowest possible binder content. This means that, the objective 

function for the case study is to be minimized Pb.  

Apart from the cost consideration, another reason for considering binder content 

minimization as the objective of the case study is that, all the mixes in this study were intended 

for projects in the subtropical hot desert climate, where the maximum air temperatures in the 

months of May, June, July and August are 42.6oC, 43.6oC, 45.3oC and 44.3oC, respectively. 

Therefore, the temperature of pavement at 20 mm depth in the region has a tendency to go up to 

about 70oC. In these hot weather condition, bleeding is one of the major concerns. Naturally, in 

the regional pavement industry there is a tendency to lower binder content in asphalt mixes to 

avoid any potential risk of bleeding. Minimizing binder content may end up depriving the 

aggregates from enough surface film thickness, which can subsequently lead to reduction in 

durability. To address this issue, the formulated model includes a constraint on minimum FTb 

requirement. Although the binder content is minimized during the GA optimization, the asphalt 

mix is checked for the FTb, which is calculated using MS-2 Asphalt Institute (2014) surface area 

method. 

It should be noted that the overall approach developed here is general and the objective 

function can be replaced by any other expression that requires optimization (e.g. stability or 

density or a combination). Formulation of the optimization model using GA is: 

min   𝑃𝑏       (9) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐿𝑖𝑚𝑖𝑡𝑠 𝑜𝑛 𝐺𝐴 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: 

  𝐻𝐵𝑘
𝑙 + 𝐻𝐵𝑘

𝑚 ≤ 𝐻𝐵𝑘 ≤ 𝐻𝐵𝑘
𝑢 − 𝐻𝐵𝑘

𝑚; 

𝑃𝑏
𝑙 + 𝑃𝑏

𝑚 ≤ 𝑃𝑏 ≤ 𝑃𝑏
𝑢 − 𝑃𝑏

𝑚 
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𝑙𝑖𝑛𝑒𝑎𝑟 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 

𝑃𝑑
𝑙 + 𝑃𝑑

𝑚 ≤ 𝑃𝑑 ≤ 𝑃𝑑
𝑢 − 𝑃𝑑

𝑚;  

𝐹𝑇𝑏
𝑙 ≥ 8;  

𝐻𝐵1 = 100 − ∑ 𝐻𝐵𝑘

𝑛

𝑘=2

 

 

𝑁𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 

𝑆 ≥ 𝑆𝑢 + 𝑆𝑚;  

𝐹𝑙 + 𝐹𝑀 ≤ 𝐹 ≤ 𝐹𝑢 − 𝐹𝑚;  

𝑉𝑎𝑙 + 𝑉𝑎𝑚 ≤ 𝑉𝑎 ≤ 𝑉𝑎𝑢 − 𝑉𝑎𝑚;  

𝑉𝑀𝐴 − 𝑉𝑀𝐴𝑚 ≥ 14; 

𝑉𝐹𝐵𝑙 + 𝑉𝐹𝐵𝑚 ≤ 𝑉𝐹𝐵 ≤ 𝑉𝐹𝐵𝑢 − 𝑉𝐹𝐵𝑚; 

𝐹𝐵𝑅𝑙 + 𝐹𝐵𝑅𝑚 ≤ 𝐹𝐵𝑅 ≤ 𝐹𝐵𝑅𝑢 − 𝐹𝐵𝑅𝑚 

where, 𝐻𝐵𝑘 is percentage of hot bin size 𝑘 = 2 to 𝑛 where 𝑛 is number of hot bins; 𝑃𝑏 is percent 

bitumen by weight; 𝑃𝑑 is percent passing sieve size 𝑑 = 25.0 𝑚𝑚, 19.0 𝑚𝑚, 12.5 𝑚𝑚, 9.5 𝑚𝑚, 

4.75 𝑚𝑚, 2.36 𝑚𝑚, 1.18 𝑚𝑚, 0.425  𝑚𝑚 and 0.075 𝑚𝑚; 𝐹𝑇𝑏 is bitumen film thickness, 

calculated using MS-2 Asphalt Institute method; 𝑆 is stability, obtained from ANN model, 𝐹 is 

flow, obtained from ANN model; 𝑉𝑎 is obtained from ANN model; 𝑉𝑀𝐴 is calculated using 

Equation 10; 𝑉𝐹𝐵 is calculated using Equation 11; 𝐹𝐵𝑅 is calculated using Equation 12; upper 

script 𝑙 denotes lower limit; upper script 𝑢 denotes upper limit; upper script 𝑚 denotes marginal 

limit. 
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Figure 3: Flow chart for the ANN-GA approach using non-linear constrained optimization 

 

𝑉𝑀𝐴 = (100 −
𝐺𝑚𝑏

𝐺𝑠𝑏
(100 − 𝑃𝑏))     (10) 
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where, 𝐺𝑚𝑏 and 𝐺𝑠𝑏 are calculated using Equation 13 and Equation 1 respectively.  

 

𝑉𝐹𝐵 =
(𝑉𝑀𝐴−𝑉𝑎)

𝑉𝑀𝐴
100     (11) 

𝐹𝐵𝑅 =
𝑃0.075

𝑃𝑏𝑒
      (12) 

where, 𝑃0.075 is percent passing sieve 0.075mm; 𝑃𝑏𝑒 is effective binder content of the mix. 

 

𝐺𝑚𝑏 = (1 −
𝑉𝑎

100
) 𝐺𝑚𝑚    (13) 

where, 𝑉𝑎 and 𝐺𝑚𝑚 are both obtained from ANN models.  

The non-linear constraints in Equation 9 shall not be confused with limits on variables 

namely 𝐻𝐵𝑘 and 𝑃𝑏. The values for all the parameters in the non-linear constraints are either 

obtained from ANN models or derived using them. Therefore, they are not directly related to the 

actual variables of the GA, 𝐻𝐵𝑘 and 𝑃𝑏. In fact, although the expressions in non-linear 

constraints appear to be linear, they are obtained through non-linear mapping of variables 𝐻𝐵𝑘 

and 𝑃𝑏 in ANN (through Equation 6). The developed model is compiled into a computer 

software called AMO that can be used by transportation agencies as a mix design tool. 

The addition of marginal limits are often considered in field for quality control purpose. 

This is included in the formulation only to provide an option for designers to gain confidence 

that the selected gradation is not too close to upper or lower limits in specifications. 

Laboratory Verification of the Proposed Approach 

A laboratory testing plan was implemented to verify the approach developed in this paper. The 

objectives of the laboratory study was to check the following: (i) performance of the ANN model 

close to the range of the data set that were used for the development of the model; (ii) compliance 
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of ANN model to fundamental requirements and (iii) performance of the ANN-GA approach in 

obtaining an optimized gradation. For the laboratory testing, fresh hot bin aggregates and polymer 

modified PG 76-10 binder were obtained from asphalt plant. The properties of the hot bin 

aggregates are shown in Table 2.  

Five job mix formula (JMF) were generated using the hot bins shown in Table 2. The 

first three mixes were generated to check performance of the developed ANN models. JMFs of 

these three mixes were obtained from construction projects. Hot bins percentages were adjusted 

to obtain the gradations. By comparing Table 1 and Table 2 it can be seen that for the first mix, 

Mix-1, the gradation was outside the JMFs that were used to develop the ANN models. Whereas, 

the JMFs of Mix-2 and Mix-3 were within the range of the JMFs database for the ANN models. 

Next, the optimization approach proposed in the study was used to obtain mixes that satisfy the 

specification requirements presented in Table 3 at the lowest possible binder content. At first, the 

GA optimization was performed at population-generation combination of 50-5, without 

considering the film thickness constraint. The gradation and binder content outputted from the 

first run is referred in the paper as Mix-4. The film thickness for Mix-4 was found to be 7.9 

microns. Since the film thickness in Mix-4 was less than 8.0 microns it was rejected. Next, the 

GA optimization was performed at population-generation combination of 200-5. The gradation 

and binder content output from the second run is referred in the paper as Mix-5. Film thickness 

for Mix-5 was found to be 8.2 microns.  
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TABLE 2: Job mix formula of asphalt mixed used in laboratory verification 

 Property Hot Bin Gradation  Combined Gradation 

Parameter 

Sieve 

Size 

mm 

HB1- 

22-12 

mm 

HB2- 

12-7 

mm 

HB3- 

7-4 

mm 

HB4- 

4-0 

mm 

HB5- 

Filler Mix-1* Mix-2 Mix-3 Mix-4 Mix-5 

Percent 

Passing 

(%) 

25.0 100 100 100 100 100 100 100 100 100 100 

19.0 89 100 100 100 100 100 100 98 98 98 

12.5 13 100 100 100 100 88 81 83 81 81 

9.5 1.1 62 100 100 100 75 69 70 71 71 

4.75 0.7 1.1 66 98 100 46 46 47 51 53 

2.36 0.6 0.7 3 82 100 29 31 31 33 38 

1.18 0.6 0.6 1.0 55 100 19 18 21 23 26 

0.425 0.6 0.6 1.0 28 100 11 12 12 13 15 

0.075 0.4 0.5 1.0 6.0 81 4.8 4.6 4.6 4.6 5.0 

Gsb 2.943 2.906 2.877 2.824 2.824 2.943 2.877 2.879 2.878 2.876 2.873 

Pb% na na na na na na 4.3 4.0 4.1 3.91 3.96 

PG 

Grade 
na na na na na na 

PG 

76-10 

PG 

76-10 

PG 

76-10 

PG 

76-10 

PG 

76-10 

*Mix-1 gradation outside the JMFs in the data base used to develop the ANN models 

TABLE 3: Boundary and marginal limits on variables and constraints in GA optimization 

Variables Parameter 
Lower 

Limit 

Upper 

Limit 

Marginal 

Limit 

GA 

Variables 

Hot Bin %, HB2 5 50 0 

Hot Bin %, HB3 5 50 0 

Hot Bin %, HB4 5 50 0 

Hot Bin %, HB5 0 7 0 

Binder Content Pb 3.5 4.5 0.2 

Constraint 

Parameters 

% passing 19.0 mm 80 100 4 

% passing 12.0 mm 63 85 4 

% passing 9.5 mm 57 77 4 

% passing 4.75 mm 40 60 3 

% passing 2.36 mm 25 45 3 

% passing 0.425 mm 10 22 2 

% passing 0.075 mm 2 8 1 

Stability, S (kN)  9.5 - 0 

Flow, F (0.25 mm)  2.5 4.0 0 

Air Void, Va (%) 4.5 8 1 

Bitumen film thickness 

(FTb) microns 
8.0 - - 

VMA (%) 14 - - 

VFB (%) 50 75 0 

Filler to binder ratio 

 (FBR) 
0.8 1.5 0 
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To accept the prediction of asphalt mix properties it is mandatory that the solution complies with 

the following three fundamental rules:   

𝐺𝑚𝑚 ≮ 𝐺𝑚𝑏       (14) 

𝐺𝑠𝑒 ≮ 𝐺𝑠𝑏      (15) 

𝑃𝑏𝑎 ≮ 0      (16) 

Compliance of these fundamental rules can be viewed as protection to ensure the results are 

meaningful. It can be seen in Table 4 that all the three fundamental rules are achieved in the 

ANN model. Therefore, the predicted results can be considered eligible to compare with 

laboratory obtained results. Asphalt mixes Mix-1, Mix-2, Mix-3 and Mix-5 were tested in 

laboratory to verify the ANN predicted results.  

TABLE 4: Fundamental properties of asphalt mix obtained from ANN 

Parameter Mix-1 Mix-2 Mix-3 Mix-4 Mix-5 

Gmm 2.700 2.718 2.712 2.709 2.703 

Gmb 2.517 2.554 2.539 2.519 2.518 

Gse 2.911 2.916 2.914 2.900 2.898 

Pba, % 0.42 0.46 0.44 0.30 0.31 

 

Figure 4 presents comparison of asphalt mix volumetric properties obtained from the GA-ANN 

model, AMO, with laboratory measurements. It can be seen from the figure that the model was 

able to estimate asphalt properties for the Mix-2, Mix-3 and Mix-5 within the laboratory 

precision limit prescribed in ASTM. As expected, some of the parameters predicted by ANN for 

Mix-1 did not match laboratory measurements. This is expected, as it is well known that ANN 

models cannot accurately predict inputs that are outside the range of the data that were used 

during the training of the ANN networks.  
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*Mix-1 gradation outside the JMFs in the data base used to develop the ANN models 

Figure 4: Comparison of the laboratory measured results with ANN model prediction 
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SUMMARY AND CONCLUSION 

In this study an ANN and GA based optimization model called AMO has been developed to 

automate selection of aggregate gradation and binder content to produce asphalt mixtures that 

comply with applicable specification requirements. Successful implementation of the approach 

was demonstrated for Marshall mixes.  

The model is developed using feed forward backpropagation neural network with a single 

hidden layer MLP structure. The input variables in the model were aggregate gradation, percent 

binder content, combine bulk specific gravity of aggregate and PG grade high temperature. It was 

found that hidden layer with 25 nodes, hyperbolic tangent sigmoid function for transfer and quasi-

Newton backpropagation function for training were sufficient to produce Gmm, Va, stability and 

flow values with R values between 0.97-0.99. The model was able to successfully predict Gmm 

(±0.025), Va (±0.5%), stability (±2 kN) and flow (±0.25 mm) for 99.6%, 96.0%, 97.8% and 95.5% 

of the time, respectively. Further, it was found that the ANNs produce results such that 𝐺𝑚𝑚 >

𝐺𝑚𝑏 , 𝐺𝑠𝑒 > 𝐺𝑠𝑏 and 𝑃𝑏𝑎 > 0, indicating that the predicted results are fundamentally meaningful.  

The developed ANN models were then called in a non-linear constrained GA to optimize 

aggregate gradation. The Marshall requirements were put as non-linear constraints in the 

optimization formulation and the binder content was minimized. The non-linear constraints were 

handled by using augmented Langragian algorithm. Four new asphalt mixes different from the 

ANN database were prepared in laboratory using hot bin aggregates and polymer modified 

binder obtained from an asphalt plant to verify the developed model. It was found that the ANN 

models were not able to predict Marshall properties of Mix-1. This was expected because, the 

JMF selected for Mix-1 was intentionally selected outside the range of database that was used to 
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train the ANN models. Comparison of ANN predicted and laboratory measured results show that 

the ANN could predict Marshall properties within the ASTM precision limits. 

The model developed in this paper should be considered more conceptual. Although the 

approach is demonstrated for Marshall compacted mixes, it can be applied to any other mix 

design method. 

ACKNOWLEDGEMENTS 

This study was partially supported by Doha Technical Laboratories (DTL). We thank Ayman Al 

Ghbani and Ahmed Hindi from DTL, who provided insight and expertise that greatly assisted the 

research. The incentive funding for rated researchers received from the National Research 

Foundation (NRF) in South Africa is also gratefully acknowledged.  

REFERENCE 

1. Asphalt Institute. (2014), Asphalt Mix Design Methods, MS-2, 7th edition, Asphalt 

Institute. 

2. Birgisson, B. & Ruth B. (2001), Development of Tentative Guidelines for the Selection of 

Aggregate Gradations for Hot-Mix Asphalt. Aggregate Contribution to HMA 

Performance, ASTM 1412, 2001. 

3. Bosurgi, G. & Trifiro, F. (2005), A model based on artificial neural networks and genetic 

algorithms for pavement maintenance management. International Journal of Pavement 

Engineering. Vol 6, pp. 201–209. 

4. Chatti, K., Kutay, E., Lajnef, N., Zaabar, I., Varma, S. & Lee, S. (2014), Enhanced Analysis 

of Falling Weight Deflectometer Data for use with Mechanistic-Empirical Flexible 



Optimizing asphalt mix design process using artificial neural network and genetic algorithm 

28 

 

Pavement Design and Analysis and Recommendations for Improvements to Falling Weight 

Deflectometer. FHWA Report, Washington, DC. 

5. Choi, J., Adams, T., & Bahia, H. (2004), Pavement roughness modeling using back-

propagation neural networks. Computer-Aided Civil and Infrastructure Engineering, 

19(4), pp. 295–303. 

6. Commuri, S., Mai, A. & Zaman, M. (2011), Neural network based intelligent compaction 

analyzer for estimating compaction quality of hot mix asphalts. Journal of Construction 

Engineering and Management, 137 (9), pp. 634–644. 

7. Conn, A., Gould, N. & Toint, L. (1997), Globally Convergent Augmented Lagrangian 

Barrier Algorithm for Optimization with General Inequality Constraints and Simple 

Bounds. Mathematics of Computation, Vol 66 (217), pp. 261-288. 

8. Conn, A., Gould, N. & Toint, L. (1991), Globally Convergent Augmented Lagrangian 

Algorithm for Optimization with General Constraints and Simple Bounds. SIAM Journal 

on Numerical Analysis, Vol 28(2), pp. 545–572. 

9. Deb, K. (2000), An efficient constraint handling method for genetic algorithms,” Computer 

Methods in Applied Mechanics and Engineering, 186 (2-4), pp. 311-338. 

10. Deb, K. (2009), Optimization for Engineering Design: Algorithms and examples. PHI, 

New Delhi. 

11. Far, M., Underwood, B., Ranjithan, S., Kim, Y. & Jackson, N. (2009), Application of 

Artificial Neural Networks for Estimating Dynamic Modulus of Asphalt Concrete. 

Transportation Research Record, 2127, pp. 173-186. 

12. Fuller, W.B. and Thompson, S. (1907), The laws of proportioning concrete, Transactions 

of the ASCE, v. 159. 



Optimizing asphalt mix design process using artificial neural network and genetic algorithm 

29 

 

13. Gopalakrishnan, K., Kim, S., Ceylan, H. & Kaya, O. (2014), Development of asphalt 

dynamic modulus master curve using falling weight deflectometer measurements. Ames, 

IA: Iowa DOT, Final Report. 

14. Huang, Y. & Moore, R. (1997), Roughness level probability prediction using artificial 

neural networks,” Transportation Research Record 1592, pp. 89–97. 

15. Krcmarik, M., Varma, S., Kutay, E. & Jamrah, A. (2016), Development of Predictive 

Models for Low-Temperature Indirect Tensile Strength of Asphalt Mixtures. Journal of 

Materials in Civil Engineering, 28(11). 

16. Li, Y. & Wang L. (2015), Computer-aided procedure for determination of asphalt content 

in asphalt mixture using discrete element method. International Journal of Pavement 

Engineering, pp. 1-10. 

17. Li, M. & Wang, H. (2017), Development of ANN-GA program for backcalculation of 

pavement moduli under FWD testing with viscoelastic and nonlinear parameters,” 

International Journal of Pavement Engineering, pp. 1-9.  

18. Lytton, R.L., Tsai F., Lee, S., Luo, R., Hu, S. & Zhou, F. (2010), Models for predicting 

reflection cracking of Hot-mix Asphalt Overlays. NCHRP Report 669, Appendix A. 

19. McLeod, N. & Davidson, J. (1981), Particle Index Evaluation of Aggregates for Asphalt 

Paving Mixtures, Proceedings, Association of Asphalt Paving Technologists, Vol. 50, pp. 

251-290. 

20. Ozturk, H. & Kutay, M. (2014), An artificial neural network model for virtual Superpave 

asphalt mixture design. International Journal of Pavement Engineering, 15(2), pp. 151-

162. 



Optimizing asphalt mix design process using artificial neural network and genetic algorithm 

30 

 

21. Panagopoupou M. & Chassiakos A. (2012), Optimization model for pavement maintenance 

planning and resource allocation. Transportation Research Circular E-C136. 

22. Roberts, F., Kandhal, P., Brown, E., Lee, D. & Kennedy, T. (1996), Hot Mix Asphalt 

Materials, Mixture Design, and Construction.  National Asphalt Paving Association 

Education Foundation. Lanham, MD. 

23. Roque, R., Birgisson, B., Kim, S. & Gaurin A. (2006), Development of Mix Design 

Guidelines for Improved Performance of Asphalt Mixtures. Final report, FDOT. 

24. Shen, S. & Yu, H. (2011), Analysis of aggregate gradation and packing for easy estimation 

of hot-mix-asphalt voids in mineral aggregate. Journal of Materials in Civil Engineering, 

23(5), pp. 664-672. 

25. Varma, S. & Kutay, E. (2016), Backcalculation of Viscoelastic and Nonlinear Flexible 

Pavement Layer Properties from Falling Weight Deflections. International Journal of 

Pavement Engineering, Vol. 17(5), pp. 388-402. 

26. Varma, S., Kutay, E. & Chatti, K. (2013), Data Requirements from Falling Weight 

Deflectometer Tests for Accurate Backcalculation of Dynamic Modulus Master curve of 

Asphalt Pavements. Airfield and Highway Pavement 2013: Sustainability and efficient 

pavements, California, pp. 445-455. 

27. Vavrik, W., Huber, G., Pine, W., Carpenter, S. & Bailey, R. (2002), Method for Gradation 

Selection in Hot-Mix Asphalt Mixture Design. Transportation Research E-Circular, Report 

No: E-C044. 

28. Yang, J., Lu, J., Gunaratne, M. & Xiang, Q. (2003), Forecasting Overall Pavement 

Condition with Neural Networks: Application on Florida Highway Network. 

Transportation Research Record, 1853, pp. 3–12. 


	Highlights
	INTRODUCTION
	Objective

	RESEARCH APPROACH AND DATABASE
	Mix design ANN database

	PROPOSED GRADATION SELECTION PROCEDURE
	ANN models to predict asphalt mix design parameters
	GA Model to Optimize Asphalt Mix
	Case Study
	Laboratory Verification of the Proposed Approach

	SUMMARY AND CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCE

