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Abstract 

This paper uses Bayesian robust new hidden Markov modeling (BRNHMM) for bearing fault detection and diagnosis based 

on its acoustic emission signal. A variational Bayesian approach is used that simultaneously approximates the distribution over the 

hidden states and parameters with simpler distribution hence using Bayesian inference for the estimation of the posterior HMM hyper-

parameters. This allows for online detection as small data sets can be used. Also, the Kullback-Leibler (KL) divergence is effectively 

used to access the divergence of the probability function of the BRNHMM, to find its lower bound approximation and by applying a 

linear transform to the maximum output probability parameter generation (MOPPG). The training set result obtained from BRNHMM 

is then compared to the result from artificial neural network (ANN) fault detection for same complex system of low speed and varying 

load conditions which are difficult from a diagnostic perspective, as found in rolling mills. 

Keywords: Acoustic emission; Artificial neural networks (ANN); Bayesian robust new hidden Markov Modeling (BRNHMM); Kullback-Leibler (KL) di-
vergence; Maximum output probability parameter generation (MOPPG); Probabilistic neural network (PNN); RBF network 

 

1. Introduction

 Monitoring the health condition of low speed and heavy-duty 

mechanical systems and the detection of damage progression from 

a very early stage in the life cycle is of great importance in many 

industries. To fully inspect the health conditions of these mechani-

cal systems, condition monitoring systems are used to collect real-

time data from the systems and therefore massive amount of data 

are acquired after a prolonged period of operation. These massive 

amounts of data are often collected and analyzed off-line [1, 2].  

Fault diagnosis of rolling element bearings using vibration or 

acoustic signature analysis is the most commonly used to prevent 

breakdowns in machinery. Vibration and acoustic sensor signals 

are usually measured and compared to reference measurements to 

determine bearing conditions. Several approaches can be used for 

the analysis of these signals, which include time domain analysis, 

frequency domain analysis and time-frequency analysis. Of these, 

frequency domain analysis is the most commonly used because of 

the simplicity of application of the Fourier transform and its ease of 

interpretation [3-5]. Frequency domain methods however do re-

quire that the bearing defect frequencies must be known or esti-

mated, and interpretation becomes more difficult when the signal 

to noise ratio is low. Frequency domain methods also tend to aver-

age in transient vibrations and therefore becomes sensitive to back-

ground noise [6, 7].  
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 Traditional techniques such as the Fast Fourier Transform (FFT) 

which finds application in the frequency domain analysis can con-

vert signals into the frequency domain, but they do not provide both 

time and frequency information simultaneously. Later studies 

showed that time-frequency analysis methods such as wavelet 

transform can be used to detect faults and can be applied to non-

linear and non-stationary signal processing. However, the wavelet 

transform has some deficiencies which include, border distortion, 

energy-leakage and interference terms [8]. Cheng et al. [9] used 

Hilbert-Huang Transform (HHT) and Self Organizing Feature Map 

(SOM) to overcome these deficiencies in his gear fault identifica-

tion. The HHT, which includes Empirical Mode Decomposition 

(EMD) and Hilbert transform, comprise of local characteristic time 

scale of a signal which could decompose the complicated signal 

into many Intrinsic Mode Functions (IMF). This could not diagnose 

the gear fault accurately so, the SOM was introduced for better en-

hanced performance. SOM is an unsupervised neural network 

learning technique with self-adaptive and self-learning features. It 

has shown that it can be used to transform arbitrarily high-dimen-

sional input data into a low-dimensional map. However, there is an 

increase in computational cost [10-12]. 

 Dual-Tree Complex Wavelet Transform (DT-CWT) threshold 

denoising and Laplacian Eigenmaps (LE) was used by Chen et al. 

[13, 14] for planetary gear fault identification. It involves the orig-

inal high-dimensional feature set, comprising the time domain fea-

tures, frequency domain features, fractal box dimension of the de-

noised signal, and permutation entropy being constructed from 

multi-domain. DT-CWT threshold denoising method performs bet-

ter in signal denoising of planetary gears. Nevertheless, it is diffi-

cult to obtain accurate diagnostic information from the denoised 

signal and the computation is too cumbersome. The introduction of 

LE as observed in Ref. [13] reduces the dimension of the original 

feature set so that low-dimensional sensitive features can be ob-

tained. 

 Chen et al. [15] also proposed a weak feature information extrac-

tion method of planetary gear based on Ensemble Empirical Mode 

Decomposition (EEMD) and Adaptive Stochastic Resonance 

(ASR). In their method, the original signal was decomposed into 

IMF with small modal aliasing by EEMD. The aspect of the ASR 

is composed of Particle Swarm Optimization (PSO) and Stochastic 

Resonance (SR). The weak fault feature information can be ex-

tracted from the output signal of the ASR system as soon as the 

signal reconstructed by effective IMFs is inputted. The PSO algo-

rithm is used to optimize the critical parameters of SR. Usually the 

SR method is limited by adiabatic approximation theory and linear 

response theory which can only deal with small parameter signals.  

Pandya et al. [16] used a method for an automation of fault diag-

nosis of ball bearings having localized defects (spalls) on the vari-

ous bearing components. The system he used uses the wavelet 

packet decomposition which made do with the ‘rbio5.5’ real mother 

wavelet function for feature extraction from the vibration signal. 

Although this method helped to alleviate the time-invariant charac-

teristic of the wavelet packet coefficient that most wavelet packet 

exhibit, its classification output yield rate still needs improvement 

as it was just a-little above 90%. Also, Pandya and Wadhwani [17] 

used the wavelet packet decomposition which made use of the ‘db8’ 

mother wavelet function for feature extraction from the vibration 

signal and the best node of wavelet packet tree was performed using 

best tree algorithm along with minimum Shannon entropy criteria 

with a combination of artificial neural network for automatic fault 

classification of rolling element bearing and they were both able to 

obtain an overall fault classification rate of 97% and 98.33% re-

spectively. However, the process of computation and mathematical 

expression is very cumbersome.  

Li et al. [3, 18] used neural networks to diagnose motor rolling 

bearings by combining it with the time-frequency domain analysis 

for the diagnosis of a fault. Likewise, the Deep Neural Network 

(DNN) is a promising tool for fault diagnosis of both the planetary 

gear and the rolling element bearing, as ANN has deficiencies in 

diagnosing complex systems which are non-stationary and non-lin-

ear. With the use of ANN for diagnosing such complex system, fea-

tures are manually extracted depending on much prior knowledge 

about signal processing. Likewise, ANN have shallow architectures 

thereby limiting it to learn complex non-linear relationships in fault 

2



   

 

  

diagnostics issues. In Ref. [1] DNN was used to overcome these 

deficiencies in their work. They used DNN to implement both fault 

feature extraction and intelligent diagnosis. DNN are implemented 

by first pre-trained by an un-supervised layer-by-layer learning and 

then fine-tuned using a supervised algorithm. Lin et al. [19] used 

the radial basis function (RBF) neural network and the robust adap-

tive controller (RAC) to analyze the stability of a non-linear system. 

In another instance Phua et al. [20] used a new approach for the 

classification of rolling element bearing faults as they combined the 

RBF network and the probabilistic neural network (PNN) to 

achieve this. With these investigations and some others, it was 

found that fault classification during the incipient stages is very dif-

ficult to achieve, especially under varying load and speed condi-

tions. This led to researchers exploring statistical approaches which 

are very effective for fault diagnosis under varying load and speed 

conditions, especially for faults during their incipient stages [21-

23]. 

       HMM has found application in so many fields like in elec-

trical, accounting, mechanical etc. In electrical, it has been used for 

fault diagnostics in industrial machines, synchronous motors, reluc-

tance motors etc. [3, 24, 25]. Jadhav and Bhandari [26, 27] in their 

work stated that the most common fault in the rotary electric motors 

(REM) is the bearing related faults which are responsible for about 

50% of all rotary machine faults and he was able to detect and di-

agnose fault in synchronous motors using hidden Markov Model. 

Reluctance motor was successfully diagnosed for fault by classifi-

cation method using hidden Markov Model by Lerner et al. [29] 

while industrial machines was considered in Ref. [30]. 

In accounting and business-related fields, HMM was used by [20, 

27, 31] to show that it can be used for the detection of frauds. Their 

objective was to detect the anomaly during the transaction and con-

firm frauds by asking some security code questions. 

   The Hidden Markov Model (HMM) is a parametric statistical 

method that has the capability of pattern classification and is suita-

ble for dynamic time series of signals that are non-stationary, has 

poor repeatability and reproducibility. It is a finite set of states, 

where each state is linked with a probability distribution. The tran-

sitions among these states are governed by a set of probabilities 

called transition probability. HMMs are often referred to as the 

‘gold standard’ for the difficult task to perform speech recognition 

[32, 33]. Nelwamondo et al. [6] used HMM combined with the use 

of Mel-frequency cepstral coefficient, fractal and Gaussian mixture 

models for early classifications of bearing faults. Lerner et al. [29] 

used a HMM based semi-nonparametric approach for fault detec-

tion and diagnosis in synchronous motors. Soualhi et al. [34] used 

HMM and combined it with neural network for the detection and 

diagnosis of fault in induction motors, but in all these works HMM 

was not as successful as expected for online fault detection, as large 

data sets are usually involved.  

    To address this Jadhav and Bhandari [27] were the first to 

use a Bayesian Hidden Markov Model-based approach for detect-

ing anomalies in electronic systems. Table 1 in the appendix shows 

a brief state-of-the-art-approach with the merits and demerits asso-

ciated with them as found in the introduction. 

In this work, a Bayesian robust new HMM (BRNHMM) is 

used and compared to neural network pattern recognition for fault 

classification and detection under varying load and speed condi-

tions. It works well for both static and dynamic signals and is thus 

effective in their modeling hence its suitability for online fault de-

tection, since small data samples are used in its diagnostics. It also 

represents constructively the uncertainty in our model structure and 

parameters as it helps to over-come the limitation of miss-specifi-

cation of the prior. In addition to the above, it averages overall pos-

sible values giving unbiased estimates, robust predictions and al-

lows the comparison of assumptions underlying different models. 

Among the disadvantages is its intense computational burden espe-

cially for models involving many variables and the posterior distri-

butions are also more difficult to incorporate into a meta-analysis 

[9, 11, 22]. The Kullback-Leibler divergence was effectively used 

to access the divergence to the probability function of the 

BRNHMM and used to find its lower bound approximation. The 

paper is structured as follows. In Sec. 2 the theorem and algorithm 
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of BRNHMM based on fault diagnosis approach is briefly intro-

duced. The experimental procedure is described in Sec. 3. In Sec. 4 

the results from the experiment are presented and a conclusion is 

drawn. 

2. Theoretical background of Bayesian Robust New Hidden 

Markov Model [28]  

HMMs have proven to be very effective among the various stochas-

tic approaches, in modeling both static and dynamic signals. HMM 

is a finite-state machine which changes its state during every time 

increment.  

HMM models can be grouped into three categories namely 

discrete, continuous and semi-continuous models with the differ-

ence lying in their use of different output production probabilities. 

HMM is an extension of Markov chains. With HMMs every state 

does not match with an observable event but is often connected to 

a group of probability distributions of state and the actual problem 

is often more complex than that described by Markov chains [33, 

35].  

The compact notation for convenience is given as λ =

(𝐴, 𝐵, 𝜋).  More generally it is given as  

λ = (𝑁,𝑀, 𝐴, 𝐵, 𝜋) which denotes a discrete HMM i.e. dis-

crete probability distributions. For a continuous HMM λ =

(𝐴, 𝐶𝑗𝑚 , 𝜇𝑗𝑚, ∑ , 𝜋𝑗𝑚 ) is used here for continuous density functions 

or distributions. Essentially there are three algorithms in HMM, 

namely the forward-backward procedure, the Viterbi algorithm and 

the Baum-Welch algorithm [29, 36]. These three basic algorithms 

represent the three basic problems to be solved respectively. The 

three problems to be solved by these algorithms are: 

 Evaluation, with an observation sequence 𝑂 =

𝑜1, 𝑜2, … , 𝑜𝑇,  and a model λ = (𝐴, 𝐵, 𝜋)  how should one effec-

tively compute 𝑃(𝑂|λ) giving that it is the probability of the ob-

servation sequence, when given the model. The forward-backward 

procedure is used for solving this problem. 

 Decoding, with an observation sequence 𝑂 =

𝑜1, 𝑜2, … , 𝑜𝑇, and a model λ, how does one choose a corresponding 

state sequence 𝑄 = 𝑞1, 𝑞2, … , 𝑞𝑇, that is optimal to the observation 

sequence generated. The Viterbi algorithm is used in this situation. 

 Training, this relates with how one adjusts the parame-

ters λ = (𝐴, 𝐵, 𝜋) to maximize 𝑃(𝑂|λ) which is the likelihood of 

all observation sequences. This is a problem of determining the ref-

erence model faults which is solved by using Baum-Welch algo-

rithm. 

The difference between the continuous HMM and the 

Bayesian approach is that the CHMM model is estimated using the 

Baum-Welch algorithm whereas our Bayesian approach is treated 

as a variational approximation method. 

The method proposed here for process monitoring of the 

rolling bearing element fault under varying condition using the 

BRNHMM involves training and detection. The following as-

sumptions are made: Each training set constitutes an observation 

sequence 𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑇  and each fault state is modeled by us-

ing an HMM. The fault state also has finite training sets and lastly, 

that number of faults to be monitored is 𝐿. The two steps involved 

here in this work are designed to: 

1) Build an HMM model  λ𝐿 for each fault state 𝐿. Hence 

there is the need to estimate the model parameters for the compact 

notation (𝐴, 𝐵, 𝜋) which optimizes the likelihood of the training 

set of the observation sequence for the 𝐿th fault state or to maximize 

the 𝑃(𝑂|λ𝐿) of the probability of observation sequence 𝑂 given 

the model λ𝐿. Expectation maximization (EM) is another term for 

which Baum-Welch re-estimation algorithm is known as Ref. [27]. 

It is needful for one to write out the log probability of the hidden 

variables and observations to derive the EM algorithm for learning 

the parameters. 
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where S is a continuous state e.g. the state at time 𝑡 taking on the 

value of “2” is represented as 𝑆𝑡 = [0 1 0 . . .  0]
𝑇. 

2) In the context of the EM algorithm, the variational 

Bayesian is the learning algorithm for continuous HMM as the car-

dinality and number of variables can be achieved. The negative free 

energy, F, is important in maximizing the marginal likelihood and 

can be defined by equation 2 below 
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 if KL is positive and greater than zero, and 𝐹 provides a lower bound 

on the model log-likelihood [37]. When KL is zero, 𝐹 becomes equal 

to the model log-likelihood and 𝑆(𝜃) becomes equal to the posterior 

𝑃(𝜃) making the model to converge. 

3) Applying the Jensen inequality twice, the model can be 

lower bounded of which the idea is to simultaneously approximate 

the distribution over both the hidden states and parameters with a 

simpler distribution. This iteratively maximizes 𝐹 as a function of 

two free distributions  𝑄(𝑆) 𝑎𝑛𝑑 𝑄(𝜃). Maximizing 𝐹 is equiv-

alent to minimizing the KL divergence between 𝑄(𝑆) 𝑄(𝜃) and 

the joint posterior over the hidden states and parame-

ters  𝑃(𝑆, 𝜃|𝐷,𝑀). 
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where 𝑀 stands for model, and 𝐷 the data of the system. Detect-

ing the unknown fault type, features are extracted from the acoustic 

emission signal and vectors are formed for vector quantization 

which is followed by the estimation of the model likelihood for all 

possible models, 𝑃(𝑂|λ𝐿), 1 ≤ 𝑙 ≤ 𝐿. The model with the highest 

likelihood is the best score for representing the fault condition i.e. 

𝐿∗ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
1≤𝑙≤𝐿

[𝑃(𝑂|λ𝐿)] the fig. 1 below shows the flow chart of 

the training to fault detection procedure. 

 

Fig. 1 The HMM pattern-based classification for 

BRNHMM see (Ref. [33]). 

It is assumed that the output probability density function can 

be written as 𝑃𝑡(𝑥) = ∑ 𝐶𝑗𝑚𝑁(𝑥|𝜃𝑗𝑚)
𝑀
𝑚=1  with ∑ 𝐶𝑗𝑚 = 1,

𝑀
𝑚=1  

where 𝐶𝑗𝑚 is the mixture coefficient and 𝑁(𝑥|𝜃𝑗𝑚) is the Gauss-

ian density. Some Matlab functions were written to help facilitate 

the program among which are the bsxfun, erfc (complementing er-

ror function), genparam (which generates initial input parameters 

from a M-by-N training data) and the BRNHMM (that constructs a 

Bayesian robust new hidden Markov model with many hidden 

states and real-value features). 

3. Experimental setup 

The test rig setup comprises of brushless AC motor (Rockwell 

Automation MPL-3680B) mounted on a NSK 6309 single row 

bearing used to drive the system as shown in Fig. 2. The angular 

velocity of the motor was retrieved from one of the angular outputs 

made available in the motor drive, which is a Rockwell Automation 

Kinetix 6000 series BM-01 and allows a continuous speed variation 

from 0 to 3600 rpm. A Soundwel AE sensor with model number 

SR 150M with a frequency range of 25-530kHz was used for meas-

urement.  
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Fig. 2.  Test rig setup 

Two servo-hydraulic actuators were used for loading sinusoi-

dally, axial and radial loads on test bearings whose purpose is to 

allow simulating a real-life scenario of the bearings of a functional 

machine experiencing varying cyclic loads at different rotational 

speeds and frequencies. The test bearings used were three taper 

roller bearings (Timken HR 30307 J) which were inserted into the 

test rig one after the other with two having been introduced with 

defects and the third bearing been left undamaged. The test rotating 

speeds for the slow rotating bearings ranged from 70 to 100 rpm. 

Fig. 3 shows a schematic view of the test rig setup. 

 

 

Fig. 3. Schematic diagram of test rig setup 

The first bearing (good) was loaded sinusoidally with forces of 

amplitude 500N at a frequency of 2Hz on the axial load and ampli-

tude of 900N at a frequency of 1Hz on the radial load. Bearing two, 

in which debris was introduced, was also loaded sinusoidally with 

forces of amplitude of 500N at a frequency of 2Hz in the axial di-

rection and amplitude of 900N at a frequency of 1Hz in the radial 

direction. Bearing three, with a crack on the outer race was loaded 

sinusoidally with forces of amplitude of 500N on the axial at a fre-

quency of 2Hz and 900N at a frequency of 1Hz in the radial direc-

tion as the other two bearings. The three roller bearing AE signa-

tures were collected for four speeds, set at 70 rpm, 80 rpm, 90 rpm 

and 100 rpm using an FFT analyzer, a National Instrument data ac-

quisition card (BNC-2110) with a shielded BNC connector block. 

The induced crack was seeded on the outer raceway of the bear-

ing (as shown in Fig. 4) with the use of a small hand drilling ma-

chine to which a small disk was mounted, which was then used to 

introduce a groove on the outer raceway of the taper bearing. 

 

 

Fig. 4. Seeded damage on outer race of a bearing 

4. Results 

     Fig. 5 shows a typical acoustic signal obtained from the bear-

ing test rig, the length of the data taken was 60000 data samples. It 

cannot be observed that the amplitude of the wave formed as shown 

in the figure varies within some given time interval. 

 

Fig. 5 Acoustic signal from the test experiment 

As it was stated before, taper roller bearings (Timken HR 30307 J) 

were used to be able to artificially introduce the localized-defect, 
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since it can be dismantled from the outer raceway. The surface dam-

age was seeded on the outer raceway of the bearing and the bearing 

characteristic is given in the table below. The ball-pass frequency 

of the outer ring was found to be 25.103 KHz and 35.862 KHz for 

the two speeds respectively. 

Table 2: Bearing characteristics 

Contents Parameters 

Bearing specification Timken taper roller bearing HR 3030

7 J 

Bearing outer diameter 80 mm 

Bearing inner diameter 35 mm 

Bearing width 22.75 mm 

Bearing roller diameter 12 mm 

The number of rollers 14 

Rated speed with grease 4800 rpm 

    It should however be noted that with AE, frequencies of the 

order of 100 kHz are involved and the fault characteristic frequen-

cies caused by the defective bearing and its harmonics are difficult 

to detect in the corresponding spectrum by conventional FFT-based 

envelope analysis especially at low speeds and very low speeds (< 

10 rpm), as it occurs within a narrow band spectrum their harmon-

ics as depicted in fig. 6 below are also difficult to obtain especially 

for the outer race cracked bearings. 

 

Fig. 6 FFT plot of the acoustic signal 

     Fault classification was performed for three classes, which 

are the good bearing, debris induced bearing and an outer race 

cracked bearing. Features were extracted from the AE signals ob-

tained from these bearings and used to train both BRNHMM and 

artificial neural networks (ANN) for fault classification of low 

speed bearings which were loaded sinusoidally along the axial and 

radial directions. The essence of this work is to show which model 

or network between BRNHMM and ANN better classify faults, re-

gardless of the load and speed applied simultaneously, especially at 

varying conditions mimicking rolling mill plants that operate at low 

speed and varying load condition, for achieving fault classification. 

    Fig. 7 below represents the BRNHMM state model diagram of 

the fault classification with respect to the experiment performed. 

The BRNHMM has three states with state 1 representing the good 

bearing (G), 2 stands for the debris induced bearing (D) while 3 

represents the bearing with the crack defect in the outer race (O). 

   

 Fig. 7 BRNHMM state model for the bearing fault classi-

fication 

The transition between each state is presented in Table 3 

below. 

Table 3: Transition between each state in the BRNHMM 

model 

G P11 P12 P13 

D P21 P22 P23 

O P31 P32 P33 

 G D O 
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From the experimental run, training was done with good 

bearing data, debris induced bearing data and the outer race crack 

bearing data each for speed 70, 80, 90 and 100 rpm.  

Figs. 8 a, b, and c and 9 a, b, and c present the variational 

lower bound on the model that took place in the training process for 

optimizing the posterior parameters at 70 and 100 rpm respectively. 

We limit ourselves to showing just the plots of the variational lower 

bounds at 70 and 100 rpm because of space limitation. 

 

 

  
Fig. 8a Variational lower bound for 

good bearing with training at 70 rpm 

 

Fig. 8b Variational lower bound for 

debris induced bearing with train-

ing at 70 rpm 

 

                                 

 
Fig. 8c Variational lower bound for outer race cracked bearing with training 

at 70 rpm 

 

 

It is evident from figs. 8 a, b & C that for the good bearing model 

the free energy of the lower bound which is at 770.3 joules begin to 

stabilize after around 43 iterations at 70 rpm, whereas for the anom-

alous models the energy of the lower bound was at 802.2 joules and 

stabilized a bit faster with that of the debris stabilizing the lowest 

after 30 iterations. While for the outer crack race it stabilizes at 39 

iterations with the energy of the lower bound been at 808.9 joules. 

As found in these experiments conducted, it indicates that when a 

crack is found in a working bearing it tends to exhibit higher energy 

on the working bearing, followed by reduced energy when debris 

are found in the bearing. 

 

  
Fig. 9a Variational lower bound for 

good bearing with training at 100 rpm 

 

Fig. 9b Variational lower bound 

for debris induced bearing with 

training at 100 rpm 

 

                                        

 
Fig. 9c Variational lower bound for outer race cracked bearing with training 

at 100 rpm 

 

 

From figs. 9 a, b and c for the good bearing model the free 

energy of the lower bound is at 788.8 joules and begins to stabilize 

after around 36 iterations at 100 rpm, whereas for the anomalous 

models the energy of the lower bound is at 808.9 joules and stabi-

lized after 34 iterations. The outer crack race model stabilized after 

35 iterations at 100 rpm with the energy of the lower bound being 

at 808.9 joules. These experiments indicate that energy of the lower 

bound is usually in the highest when cracks are formed in bearing 

than when debris is formed when at a low speed (with conclusion 

drawn from the four speeds considered) and is at its lowest in good 

working bearing.    
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The ANN was trained with thirteen well-established statis-

tical features found in the literature. These features were extracted 

from the acoustic emission (AE) time history data and have been 

used for fault classifications in other literature. They are the mean, 

standard deviation, crest factor, root-mean-square (RMS), variance, 

norm, sum, minimum, maximum, median, range, skewness and 

kurtosis.  The Bayesian robust new hidden Markov model for the 

models of the three categories of state used in the training process 

for both the healthy and anomalous models is shown in figs. 10 a-

c. As stated in paragraph 2 “the model with the highest likelihood 

is usually the best score for representing the fault condition”, it was 

found after computation that for each model under the different 

speed conditions, the model with the highest likelihood was that of 

the condition represented. 

 
 

Fig. 10 a) Bayesian robust new 

HMM for normal bearing model at 

100 rpm 

Fig. 10 b) Bayesian robust new 

HMM for debris induce bearing 

model at 100 rpm 

                                          

 
Fig. 10 c) Bayesian robust new HMM for outer race crack bearing model at 

100 rpm 

Table 4 shows the features equations for the training done 

in ANN. 

Table 4:  Features extracted from the AE time histories data and 

their equations [7, 37] 

 

 

Feature 

AE time histories 

abbreviation 

Equation 

Kurtosis 
kurtosisX  

  4

1

4
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N

i

i

 

Skewness 
skewnessX  

  3

1

3
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1
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Crest factor 
CFX   




N
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i

i

x
N

x

1
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Root-mean-

square 
rmsX  




N

i

ix
N 1

21
 

Standard de-

viation 
xstdX   
















N

i

i xx
N 1

2
_

1

1
 

Variance 2

var xX   














N

i

i xx
N 1

2
_1

 

Norm 
2

XX norm   




N

i

ix
1

 

Mean 

xmean XX 
_

 



N

i

ix
N 1

1
 

Sum 
sumX  




N

i

ix
1

 

Median 
medianX   xmedian  

Minimum 
minX   xmin  

Maximum 
maxX   xmax  

Range 
rangeX  minmax xx   

With respect to the training just as it was for the BRNHMM 

in the ANN training, the good bearing represent index 1, the debris 

induced bearing represent index 2 while the outer race crack bear-

ing index 3. Targets were set for each class index while the simu-

lated result was computed using Matlab. The network has three lay-

ers (the input layer, the hidden layer and the output layer) with the 
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hidden layer having 10 states. Table 5 shows the result obtained 

after the training was done for the ANN. 

Table 5: ANN output classification result 

 Result at speed 70 rpm, took 27 it-

erations 

Target class             2 1 3 

Simulated class       1 1 3 

 Result at speed 80 rpm, took 21 it-

erations 

Target class             2 1 3 

Simulated class       2 1 3 

 Result at speed 90 rpm, took 42 it-

erations 

Target class             2 1 3 

Simulated class       2 1 3 

 Result at speed 100 rpm, took 26 it-

erations 

Target class             2 1 3 

Simulated class       2 1 3 

 

Table 6 shows the result of the log-likelihood for the differ-

ent model run for BRNHMM. 

Training Mode Log-likelihood 

Fault  

class 

Speed 

70 

rpm 

80 

rpm 

90 

rpm 

100 

rpm 

Good 

bearing 

data 

G 131.4538 184.3939 96.9743 45.3567 

D 121.1390 119.3415 91.3265 42.0180 

O 129.5494 179.6677 96.5922 45.2185 

Debris  

induced  

data 

G 73.3347 177.5201 125.164

2 

246.7132 

D 86.0431 247.1741 131.238

9 

250.1108 

O 84.4187 246.8940 131.148

3 

250.0533 

Outer  

race crack  

data 

G 139.1618 97.9514 339.758

6 

60.5178 

D 148.1032 167.1507 346.099

1 

63.9386 

O 149.8086 
172.9499 346.274

3 

64.0194 

 

It was observed from the training run that at low speed un-

der the varying load and low speed conditions which mimicked the 

rolling mills plants, the ANN was not able to classify correctly at a 

low speed of 70 rpm but shows correct classification at higher speed 

see table 5. Unlike the ANN, the BRNHMM correctly classify for 

the difficult condition of low speed and varying load. 

    The total percent of correctly classified cases with the ANN as 

specified in fig. 11 is 60.9 % while the misclassified cases is 39.1 %. 

This result from the confusion matrix show that ANN is not a very 

good classifier for the varying load and speed condition of rolling 

element bearing. However, the confusion matrix for the Bayesian 

Regularization method as shown in fig. 12 proves that the Bayesian 

method gives better result than ANN. 

The total percent of correctly classified cases with the Bayesian 

method as specified in fig. 12 is 99.1 % while the misclassified 

cases is 0.9 %. 

  

Fig. 11 Confusion matrix for the Bayesian method 

 

Fig. 12 The confusion matrix for the ANN classification method 
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5. Conclusion   

Presented here in this paper is a system satisfactory for on-

line evaluation of low speed and varying load application in roller 

bearing by use of BRNHMM classifiers. Training the model on data 

obtained directly from the experiment was performed successfully 

and this helps to ensure the validity of the model. BRNHMM works 

satisfactorily with raw signals with little or no pre-processing and 

uses Kullback-Leibler divergence method for obtaining faster iter-

ation in the various models which thus makes this work unique to 

the other methods in existence. Through the experimental study of 

roller bearing rotating at low speed and varying load condition, 

BRNHMM has been shown to be able to represent the most relevant 

aspects of the sensory signals. Hence it is evident that from the di-

agnostics accuracy shown by BRNHMM that its representation 

when compared to that of ANN is quite satisfactory as it classifies 

accurately even at a low speed of 70 rpm which is not achievable 

with the use of ANN. The literature records the disadvantage of the 

use of HMM which makes it unfit for on-line use (due to the in-

volvement of large data sets to train the model for fault classifica-

tion). This was overcome here by using the BRNHMM combined 

with the selection of the output symbol vector by the Gaussian den-

sity of continuous HMM and this has become a successful tool for 

process monitoring and fault detection in roller bearing operating 

in a complex scenario like as found in rolling mills.  

 

6. Reference 

[1] F. Jia, Y. Lei, J. Lin, X. Zhou and N. Lu, ‘Deep neural networks : 

A promising tool for fault characteristic mining and intelligent 

diagnosis of rotating machinery with massive data’, Mechanical 

Systems and Signal Processing, 72–73, (2016) pp. 303–315. 

[2] S. John Sakellariou, K A. Petsounis and D. F. Spilios, Vibration 

based fault diagnosis for railway vehicle suspensions via a 

functional model based method: A feasibility study, Journal of 

Mechanical Science and Technology, 29 (2) (2015) pp. 471-484 

[3] B. Li,. M-Y. Chow, Y. Tipsuwan and J. C. Hung, ‘Neural-

network-based motor rolling fault diagnosis’, IEEE Transactions 

on Industrial Electronics, 47(5), (2000) pp. 1060–1069. 

[4] Y. Li, T. R Kurfess, and S. Y Liang, ‘Stochastic prognostics for 

rolling element bearing’, Mechanical Systems and Signal 

Processing, 14(5), (2000) pp. 747–762. 

[5] S. S. Rao, and M. J. Horton, Mechanical vibrations Fifth Edition 

(2011). 

[6] F. V. Nelwamondo, T. Marwala, and U. Mahola, ‘Early 

classifications of bearing faults using Hidden Markov Models, 

Gaussian Mixture Models, Mel-frequency Ceptral coefficients and 

fractals’, International Journal of Innovative Computing, 

Information and Control, x(0x,x 2005), (2005) pp. 1–19. 

[7] H. Ocak, and K. A. Loparo, ‘A new bearing fault detection and 

diagnosis scheme based on hidden markov modeling of vibration 

signals’, in Acoustics, Speech, and Signal Processing, 1988. 

ICASSP-88., 1988 International Conference on 5:3141 - 3144, 

(2001) pp. 1–4.  

[8] Z. K. Peng, and F. L. Chu, ‘Application of the wavelet transform 

in machine condition monitoring and fault diagnostics : a review 

with bibliography’, Mechanical Systems and Signal Processing, 

18(2), (2004) pp. 199–221.  

[9] G. Cheng, Y-L. Cheng, L-h. Shen, J-B. Qui and S. Zhang, 

‘Gear fault identification based on Hilbert – Huang 

transform and SOM neural network’, Measurement, 46(3), 

(2013) pp. 1137–1146. 

[10] Z. Derouiche, M. Boukhobza, B. Belmekki and J. M. 

Rouvaen, ‘Application of neural networks for monitoring 

mechanical defects of rotating machines’, Journal of Energy 

and Power Engineering, 6, (2012) pp. 276–282.  

[11] V. Hariharan, and P. S. S. Srinivasan, ‘New approach of 

classification of rolling element bearing fault using artificial 

neural network’, Journal of Mechanical Engineering, ME 

40(2), (2009) pp. 119–130. 

[12] R. Zaeri, A. Ghanbarzadeh, B. Attaran and S. Moradi  

‘Artificial neural network based fault diagnostics of rolling 

element bearings using continuous wavelet transform’, IEEE, 

11(3), (2011) pp. 753–758. 

[13] X. Chen, G. Cheng, H. Li and Y. Li ‘Fault identification 

method for planetary gear based on DT-CWT threshold 

denoising and LE †’, Journal of Mechanical Science and 

Technology, 31(3), (2017) pp. 1035–1047. 

[14] Z. Shuai, Z. Yongxiang and Z. Jieping 'Rolling element-bearing 

feature extraction based on combined wavelets and quantum-

behaved particle swarm optimization', Journal of Mechanical 

Science and Technology, 29 (2) (2015) pp. 605-610. 

[15] X-H. Chen, G. Cheng, X-L. Shan, X. Hu, Q. Guo and H-

G. Lin ‘Research of weak fault feature information 

extraction of planetary gear based on ensemble empirical 

mode decomposition and adaptive stochastic resonance’, 

Measurement. Elsevier Ltd, 73, (2015) pp. 55–67.  

[16] D. H. Pandya, S. H. Upadhyay and S. P. Harsha,    ‘Ann based 

fault diagnosis of rolling element bearing using time-frequency 

domain feature’, International Journal of Engineering Science 

and Technology, 4(6), (2012) pp. 2878–2886. 

[17] M. Yadav, and S. Wadhwani, ‘Automatic Fault Classification of 

Rolling Element Bearing using Wavelet Packet Decomposition 

and Artificial Neural Network’, International Journal of 

Engineering and Technology, 3(4), (2011) pp. 270–276. 

[18] W-Y. Choi, D-H Choi and K-J Cha, ‘Robust estimation of 

support vector regression via residual bootstrap adoption’, Journal 

of Mechanical Science and Technology, 29 (1) (2015) pp. 279-

289  

11



[19] C-M. Lin, A-B. Ting and M-C. Li, ‘Neural-network-based robust 

adaptive control for a class of nonlinear systems’, Neural Comput 

& Applic, 20, (2011) pp. 557–563. 

[20] C. Phua, D. Alahakoon and V. C. S. Lee, ‘Minority Report in 

Fraud Detection : Classification of Skewed Data Minority Report 

in Fraud Detection : Classification of Skewed Data’, Sigkdd 

Explorations, 6 (1) (2004) 50-59 

[21] P.-C. Fernando, ‘Kullback-leibler divergence estimation of 

continuous distributions’, IEEE International Symposium on 

Information Theory - Proceedings, (2008) pp. 1666–1670. 

[22] O. Geramifard, J. Xu, and S. Kumar, ‘Fault detection and 

diagnosis in synchronous motors using hidden Markov model-

based semi-nonparametric approach’, Engineering 

Applications of Artificial Intelligence. Elsevier, 26(8), (2013) 

pp. 1919–1929. 

[23] B. Yang, T. Han and W. Hwang, Fault diagnosis of rotating ma-

chinery based on multi-class support vector machine, Journal of 

Mechanical Science and Technology (KSME Int. J.), Vol. 19, No. 

3, (2005); pp 846 - 859.  

[24] G. Zoubin ‘An Introduction to Hidden Markov Models and 

Bayesian Networks’, International Journal of Pattern 

Recognition and Artificial Intelligence, 1(15), (2001) pp. 9–42 

[25] B. Ilhem, B. Amar, and A. Lebaroud, ‘Classification method 

for faults diagnosis in reluctance motors using hidden Markov 

models’, in 2014 IEEE 23rd International Symposium on 

Industrial Electronics (ISIE), (2014) pp. 984–991.  

[26] O. Geramifard, J-X. Xu, S. K. Panda. ‘Fault detection and 

diagnosis in Synchronous motoers using Hidden Markov model-

based Semi-nonparametric approach’, (2013) pp. 1–17.  

[27] S. N. Jadhav, and K. Bhandari, ‘Anomaly detection using 

hidden Markov Model’, International journal of 

computational Engineering Research, 3(7), (2013) pp. 28–35. 

[28] E. Dorj, and C. Chen, ‘A Bayesian Hidden Markov Model-

Based Approach for Anomaly Detection in Electronic 

Systems’, IEEE, (2013) pp. 1–10. 

[29] U. Lerner, R. Parr, and D. Koller, ‘Bayesian Fault Detection and 

Diagnosis in Dynamic Systems’, in Proceedings of the 

seventeenth National Conference on Artificial Intelligence (AAAI-

00), (2000) pp. 531–537. 

[30] P. Sirima, and P. Pokorny, ‘Hidden Markov models with 

covariates for analysis of defective industrial machine parts’, 

journal of Mathematics and Statistics, 10(3), (2014) pp. 322–330. 

[31] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis and P.K. Chan 

‘Cost-based Modeling for Fraud and Intrusion Detection : Results 

from the JAM Project’, Proceedings of DARPA Information 

Survivability Conference and Exposition, (2000) pp. 130–144. 

[32] P. Baruah, and R. B. Chinnam, ‘HMMs for diagnostics and 

prognostics in machining processes’, International journal of 

Production Research, 43(6), (2005) pp. 1275–1293. 

. 

[33] Z. Li, Z. Wu, Y. He and C. Fulei  ‘Hidden Markov model-

based fault diagnostics method in speed-up and speed-down 

process for rotating machinery’, Mechanical Systems and Signal 

Processing, 19, (2005) pp. 329–339. 

[34] A. Soualhi, G. Clerc, H. Razik and A. Lebaroud ‘Fault detection 

and diagnosis of induction motors based on hidden Markov 

model’, in Electrical Machines (ICEM), 2012 XXth International 

Conference on IEEE, (2012) pp. 1693–1699.  

[35] V. Purushotham, S. Narayanan, and S. A. N. Prasad, ‘Multi-fault 

diagnosis of rolling bearing elements using wavelet analysis and 

hidden Markov model based fault recognition’, 38, (2005) pp. 

654–664. 

[36] L. R. Rabiner, ‘tutorial on Hidden Markov Models and selected 

applications in speech recognition.pdf’, Proceedings of the IEEE, 

77(2), (2009) pp. 257–286.  

[37] F. Perez-Cruz, ‘Kullback-leibler divergence estimation of 

continuous distributions’, IEEE International Symposium on 

Information Theory - Proceedings, (2008) pp. 1666–1670. 

Henry O. Omoregbee is a research student 

in the Department of Mechanical and Aero-

nautical Engineering at the University of 

Pretoria in South Africa and a member in 

the research group of the Centre for Asset 

Integrity Management (C-AIM) at the 

same university. 

His research area is on Diagnosis and Prog-

nosis of rolling element bearing using 

acoustic and vibration measurement and analysis techniques. He has a 

Master of Science degree in Industrial and Production Engineering from 

the University of Ibadan, Nigeria and a Bachelor of Engineering in Pro-

duction Engineering from the University of Benin, Nigeria. 

Stephan Heyns is professor in the De-

partment of Mechanical and Aeronauti-

cal Engineering at the University of Pre-

toria in South Africa, as well as director 

of the Centre for Asset Integrity Manage-

ment (C-AIM) at this university. 

His personal research focuses are on ma-

chine and structural health monitoring 

using vibration measurement and analy-

sis techniques including optical measurement techniques, and physical 

asset integrity management, and the use of machine learning and statisti-

cal analysis techniques in these applications.  His current work includes 

structural integrity monitoring in turbomachinery using non-contact 

measurement, gearbox condition monitoring, and the use of optical 

measurement techniques for structural integrity assessment. 

12



 

 

 

 

  

 

 

 

Appendix 

Table 1: State-of-the-art-approaches with their use. 

 

State-of-the-art appro

-aches 

Purpose of use Advantages Disadvantages 

Time domain analysis The interpretation of the signal 

is done through several  

parameters. Some of the param

eters are: RMS, Crest factor,  

peak, probability density functi

on, second, third and fourth or

der statistical moments, which 

can be extracted from  

vibration signal 

1. Simple to analyze  

criteria like the ampli- 

tude and peak to peak 

value. 

2. Calculation of paramet

-ers is not much  

involving and can be   

in-terpreted with simplic

-ity. 

3. Easy to implement  

in low cost online  

monitoring equipment. 

4. Depending on the  

quality and sensitivity  

of the extracted features

 used in estimating the 

bearing condition,the   

accuracy of the fault   

can be determined. 

1. Difficult to retrieve rele

-vant information from   

time signal. 

2. The parameters do not 

give nor provide any    

diagnostic information. 

Frequency Analysis In frequency domain-based  

analysis Fourier transformations 

are employed to transform time

 domain signals into frequency 

domain. 

To retrieve information from  

time domain signal e.g. with  

the use of Fast Fourier  

transform.  

This is often applied where  

there are harmonics in the  

periodicity of the signal. 

1. frequency domain  

analysis is the most  

commonly used  

because of the simplici- 

ty of application of the 

Fourier transform and   

its ease of interpretation

  

2. The fact that in using 

spectrum analysis each 

discrete frequency can  

be monitored in contrast

to the overall amplitude 

which is an advantage 

over the time domain  

analysis. 

1.The major disadvantages 

of Fourier analysis consid

ered here can be cited as 

information loss and diffic

-ulty in interpreting the si

-gnals when moving from 

time domain to frequency 

domain, particularly in   

non-stationary  

 signals. 

2.Frequency domain meth-

ods however do require  

that the bearing defect fre

-quencies must be known 

or es-timated, and interpre

-tation 

 becomes more difficult    

 when the signal to noise  

 ratio is low. 

3.Frequency domain meth- 

ods also tend to average  

in transient vibrations and 
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therefore becomes sensit-  

ive to background noise. 

Time-frequency       

analysis 

time-frequency analysis methods

such as wavelet transform  

could be widely used to detect 

faults and can be applied to  

non-linear and non-stationary  

signal processing 

1. It can be combined  

with high intelligence  

network to yield better  

results in situation  

where the signal is  

complex, non-linear  

and non-stationary. 

2. It can be used to  

deal with small para- 

meter sginal which is   

suitable for online      

analysis. 

1. some deficiencies     

which includes, border   

distortion, energy-leakage 

and interference terms. 

2. There is an increase in 

computational cost. 

parametric statistical  

method 

parametric statistical method  

has the capability of pattern  

classification and is suitable  

for dynamic time series of  

signals that are non-stationary, 

and which has poor repeat 

ability and reproducibility. e.g. 

HMM 

1. HMMs are often refer

red to as the ‘gold stan

dard’ for the diffi- 

cult task to perform  

speech recognition. 

2. It can be combined w

ith high intelligence net

work to yield better res

ults in situation  

where the signal is  

complex, non-linear  

and non-stationary. 

3. When combined with 

high intelligence networ

k, can be highly  

suitable for analyzing   

small data set hence   

good for online use. 

1. On their own they  

usually involve large data 

set hence not suitable for 

online use. 

 

Artificial intelligence Is a promising field with recent

 advances in its model such as  

the deep neural network 

1. The advent of deep  

neural network has  

help to overcome all  

the deficiencies asso- 

ciated with the use of  

ANN 

1. Often involve the use  

of large data set. 

2. ANN has deficiencies  

in diagnosing complex   

systems which are non-sta

tionary and non-linear. 

3. ANN have shallow arch

-itectures thereby limiting 

it to learn complex non-li

near relationships in fault 

diagnostics issues. 
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