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Abstract: This paper analyses the risk spillover effect between the US stock market 

and the remaining G7 stock markets by measuring the conditional Value-at-Risk 

(CoVaR) using time-varying copula models with Markov switching and data that 

covers more than 100 years. The main results suggest that the dependence structure 

varies with time and has distinct high and low dependence regimes. Our findings 

verify the existence of risk spillover between the US stock market and the remaining 

G7 stock markets. Furthermore, the results imply the following: 1) abnormal spikes of 

dynamic CoVaR were induced by well-known historical economic shocks; 2) The 
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value of upside risk spillover is significantly larger than the downside risk spillover 

and 3) The magnitudes of risk spillover from the remaining G7 countries to the US 

are significantly larger than that from the US to these countries. 

Keywords: Time-varying copula; Markov switching; CoVaR; risk spillover; G7 stock 

markets. 
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1. Introduction 

Since the mid-1990s, financial markets have been hit by a number of crises, 

including the 1994 Mexican peso collapse, which affected many Latin American 

countries; the 1997 Thai crisis, which ignited the East Asian crisis; the 1998 Russian 

crisis, which affected Mexico and other Latin American countries; the 1999 Brazilian 

devaluation; the 2001 crises in Argentina and Turkey and the global financial crisis of 

2008–09 triggered by the US subprime crisis in August 2009. One characteristic of 

these recent crises is their quick and violent spread across several countries (Edwards, 

2000; Kodres and Pritsker, 2002; Forbes and Rigobon, 2002; Karolyi, 2003; Bekaert et 

al., 2005; Ozcan and Unsal, 2012). Due to this spillover, and in the wake of the recent 

global crisis, a growing interest in measuring systemic risk can be observed in the 

literature.  

While Value-at-Risk (VaR) is the most common risk measure used to calculate the 

risk of an isolated individual institution (Kupiec, 2002; Jorion, 2006), the nature of 

previous financial crises led scholars to question the appropriateness of that measure to 

serve as a proxy for the ‘risk that the stability of the financial system as a whole is 

threatened’ and prompted the use of other measures, such as Conditional Value-at-Risk 

(CoVaR) (Adrian and Brunnermeier, 2011). In addition, the Basel Committee has 
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established and adapted different regulatory capital requirements in order to address 

this systemic risk (see the Basel Accords, Basel I, Basel II and Basel III).   

 Studying the interdependence among financial institutions or systems is not only 

important from a regulatory point of view (Kashyap et al., 2008; Brunnermeier et al., 

2009; Nier, 2009) but also for portfolio decisions (Ang and Bekaert, 2002; Aït-Sahalia 

and Hurd, 2016), hedging strategies (Balcilar et al., 2016), patterns of market 

integration (Bekaert and Harvey, 2003; Bartram et al., 2007) and the degree of 

contagion or spillover (Bae et al., 2003; Bae and Zhang, 2015; Lehkonen, 2015). In this 

context, the objective of this paper is to analyse the effect of risk spillover between the 

US stock market and the remaining G7 stock markets using data from more than 100 

years.  

 According to the literature, there are different channels through which financial 

shocks spread across countries and raise the systemic risk of the system (see Roubini, 

2003 for a survey), such as trade linkages (Corsetti et al., 1999; Forbes, 2012; Pritsker, 

2001), competitive devaluations (Corsetti et al., 1999), ‘wake-up calls’ (Forbes, 2012; 

Ahnert and Bertsch, 2015) or the ‘common lender’ effect (Van Rijckeghem and Weder, 

2001; Forbes, 2012; Bekaert et al., 2014). Through the first two channels, devaluation 

that occurs in a crisis-stricken country reduces the export competitiveness of the 

countries with which it competes in third markets, which can also put pressure on the 

currencies of other countries. Consistent with the ‘wake-up calls’ theory, a financial 

crisis in country 1 is a call for investors in country 2 to acquire information about the 

risk of exposure to a macro shock in that country 2 (see Anhert and Bertsch, 2017 for 

more on the wake-up theory of contagion). Finally, following Kaminsky and Reinhart 
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(1999), the common lender effect asserts that a country with the same lender as a 

country already hit by a crisis is more likely to experience a financial crisis. Based on 

the economic and financial literature, the stock market dependence among different 

countries could be explained by different linkages, such as the volume of countries’ 

trade, the intensity of the Foreign Direct Investment (FDI) flows among the countries, 

the stability of their exchange rates, their inflation or interest rates, among others 

(Asgharian et al., 2013).  

This paper is centered on studying the stock market dependence among the G7 

countries, a group of countries whose stock markets should, at least theoretically, 

show significant co-movement. Despite the theoretical linkages among these countries, 

the empirical analysis will shed light on the time-varying dependence among the stock 

markets in these countries and the direction of the risk spillovers among stock markets. 

The choice of the G7 equity markets is quite natural given their importance in the 

global economy, with these countries representing nearly two-third of global net 

wealth, and nearly half of world output. Moreover, these markets are considered as 

matured markets, with them having been established long-time back. Naturally, this 

allows us to track the entire evolution of these markets, from its initial stage to the 

current level, by covering a century of data. Also note that, the decision to look at the 

spillover from the US on to the other developed markets of the G6 countries, is 

motivated by the fact that, the US stock returns is believed to have strong predictive 

power for equity markets of other developed economies (besides emerging markets). 

Detailed discussion in this regard can be found in Rapach et al., (2013) and Aye et al., 
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(2017). 

 From an empirical point of view, the literature has used different definitions for 

and measurements of contagion. Many papers define contagion as a significant 

increase in the correlation coefficients between mean stock returns (Forbes and 

Rigobon, 2002; Bekaert et al., 2005; Boyer et al., 2006; Caporale et al., 2005; Bekaert 

et al., 2009; Jayasuriya, 2011; Ehrmann et al., 2011; Bekaert et al., 2014) or their 

volatilities (Bae et al., 2007; Diebold and Yilmaz, 2009; Beirne et al., 2010) in different 

markets during a crisis. In other words, they focus mainly on the first two moments of 

the distribution and ignore other moments. Additionally, according to most of these 

papers, stock markets tend to become closer during crises and periods of high volatility 

compared to financially stable times. In order to capture such nonlinearities in the data, 

regime switching models have also been used to test for contagion (Billio et al., 2005; 

Lopes and Nunes, 2012; Ang and Timmermann, 2011; Guo et al., 2011). However, 

again, the focus of these studies is on the first two moments of the distribution, 

disregarding other aspects, such as tail dependence, which seems to be a good measure 

of systemic risk (Adrian and Brunnermeier, 2011). Other papers in the literature have 

used quantile regression methodologies in order to capture this tail dependence or 

extreme risk (Longin and Solnik, 2001; Ang and Chen, 2002; Bae et al., 2003; Hong et 

al, 2007; Polanski and Stoja, 2015; Chuliá et al., 2017). Chuliá et al. (2017), for 

example, used multivariate quantile models to measure the tail dependence between the 

US and six Latin American countries, showing that this tail dependence is weaker than 

that between the US and more developed countries. Tail dependence has also been 

captured by Copula models (Reboredo and Ugolini, 2015; Reboredo et al., 2016). For 

example, Reboredo and Ugolini (2015) use copulas to analyse systemic risk in 

European sovereign debt markets and measure CoVaR. Based on above studies, we will 
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extend Reboredo and Ugolini (2015)’s methodology and use time-varying copula 

models with Markov switching to estimate CoVaR as a proxy for systemic risk. 

 The objective of this paper is to analyse the risk spillover effect between the US 

stock market and the remaining G7 stock markets using time-varying copula models 

with Markov switching and a data that covers more than 100 years and numerous 

crises. This study makes at least three contributions to the literature. First, no paper to 

date has examined the risk spillover effect between the US stock market and the 

remaining G7 stock markets in a situation with extreme co-movement based on 

CoVaRs. Further, this study examines asymmetric risk spillover between upside and 

downside CoVaR and asymmetric risk spillover to and from the US stock market and 

the remaining G7 stock markets. Second, 100 years’ worth of data is employed to 

investigate the evolution of risk spillover between the US and the remaining G7 stock 

markets. More information is involved in the data, and the influence of specific 

periods for landmark events can be identified. Furthermore, the use of over a century 

of data allows us to analyze a long period of time that includes different shocks, such 

as the Great Depression (1929-32), the World War II, the 1970s energy crisis, the 

early 1980s recession, the European sovereign debt crisis, or the Financial Crisis 

(2007-2009). Also note that, in the process of using the longest possible data span 

involving the equity markets of the G7, we are able to get around the sample selection 

bias, and hence avoid looking at only a specific stage of development of these equity 

markets. The long data samples allows us to obtain valid inferences by also involving 

large amount of data points, given that copula models are generally used for daily data, 

but with short sample spans. Finally, a more flexible time-varying copula model with 

Markov switching was developed for this long period of data to determine whether 

the dependence is high or low. Unlike previous studies that employ dynamic copulas 
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(Reboredo and Ugolini, 2015; Reboredo et al., 2016; Mensi et al., 2017), this study 

uses a hidden two-state Markov chain of the intercept term when modelling the 

dynamic copula coefficient process, in line with Silva Filho et al. (2012). this 

methodology not only verifies the dynamics of risk spillover but also determines the 

structural change of dependencies.  

 The rest of the paper is organized as follows: Section 2 presents the methodology, 

while Section 3 discusses the data and the results. Section 4 presents the conclusion.  

 

2. Methodology 

 In this paper, upside and downside CoVaRs are measured to quantify the risk 

spillover effects of extreme upward and downward changes in uncertainty from the 

US to the remaining six G7 stock markets. Time-varying copula models are employed 

to model the joint distribution and dynamic dependence between variables, similar to 

Reboredo and Ugolini (2015) and Mensi et al. (2017). However, unlike previous 

studies, we allow the dependence parameter to evolve over time and assume a hidden 

two-state Markov chain of the intercept term, similar to Silva Filho et al. (2012). 

Using this methodology, two distinct regimes (high dependence and low dependence) 

are defined in the emprical analysis. Liu et al. (2017) have presented the applicable 

conditions on various copulas. Generally, given the widely used copulas, the Normal 

copula or t copula can describe both symmetric positive and negative dependence, but 

the Normal copula has no tail dependence and the t copula has symmetric tail 

dependence. Clayton, Rotated Clayton, Gumbel and Rotated Gumbel copulas can 

describe asymmetric positive dependence. Therefore, in this paper, the above six 

representative copulas have been employed using its time-varying modelling. 
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2.1 Markov-switching time-varying copula model 

2.1.1 Main model 

 For stock returns, 𝒓𝒕 = (𝑟1,𝑡, 𝑟2,𝑡), given observations through time 𝑡 − 1, 

ℱ𝑡−1 , the conditional joint distribution 𝐹𝑡(𝑥1, 𝑥2|ℱ𝑡−1; 𝜽) , considering the 

unobserved regime variable, 𝑠𝑡, is as follows: 

 𝐹𝑡(𝑥1, 𝑥2|ℱ𝑡−1; 𝜽) = ∑ 𝐹𝑡(𝑥1, 𝑥2|𝑠𝑡 = 𝑗, ℱ𝑡−1; 𝜽) ∙ 𝑃𝑟(𝑠𝑡 = 𝑗|ℱ𝑡−1)𝑁
𝑗=1 ,  (1) 

where the regime 𝑠𝑡  at time 𝑡  evolves according to a Markov chain that is 

independent of past observations: 

 𝑃𝑟(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖, 𝑠𝑡−2 = 𝑘, ⋯ , ℱ𝑡−1) = 𝑃𝑟(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖) = 𝑝𝑖𝑗.  (2) 

Consider a time-varying copula with the two-regime switching model (Silva 

Filho et al., 2012). Given ℱ𝑡−1  and 𝑠𝑡 , the conditional joint distribution 

𝐹𝑡(𝑥1, 𝑥2|𝑠𝑡, ℱ𝑡−1; 𝜽) can be expressed as 

 𝐹𝑡(𝑥1, 𝑥2|𝑠𝑡, ℱ𝑡−1; 𝜽) = 𝐶𝑡(𝑢1, 𝑢2|𝑠𝑡, ℱ𝑡−1; 𝜽𝒄) = 𝐶(𝑢1, 𝑢2; 𝜅𝑡,𝑠𝑡
),  (3) 

and then the conditional joint distribution given ℱ𝑡−1, 𝐹𝑡(𝑥1, 𝑥2|ℱ𝑡−1; 𝜽), for the 

stock returns 𝒓𝒕 is 

𝐹𝑡(𝑥1, 𝑥2|ℱ𝑡−1; 𝜽) = ∑ 𝐶𝑡(𝑢1, 𝑢2|𝑠𝑡 = 𝑗, ℱ𝑡−1; 𝜽𝒄) ∙ 𝑃𝑟(𝑠𝑡 = 𝑗|ℱ𝑡−1)2
𝑗=1 = 𝐶𝑡(𝑢1, 𝑢2|ℱ𝑡−1; 𝜽𝒄)(4) 

where 𝜽 = (𝜽𝟏
′ , 𝜽𝟐

′ , 𝜽𝒄
′ )′, 𝑢𝑖 = 𝐹𝑖,𝑡(𝑥𝑖|ℱ𝑡−1; 𝜽𝒊), 𝑖 = 1,2.  

The copula dependence parameter 𝜅𝑡,𝑠𝑡
 evolves according to an ARMA-type process 

in which the intercept term of 𝜔̅𝑠𝑡
 depends on the regime 𝑠𝑡 shown in equation (5). 

Silva Filho et al. (2012) propose the Eq. (5), where it indicates that if the dependence 

regime at time 𝑡 is 𝑠𝑡, the dependence parameter 𝜅𝑡,𝑠𝑡
 is the function of 𝜔̅𝑠𝑡

, i.e. 

intercept term at regime 𝑠𝑡, the dependence parameter 𝜅𝑡−1 at time 𝑡 − 1 and the 

forcing variable 𝐹𝑉𝑡. But in the procedures, they assume that dependence regime at 

time 𝑡 − 1 is equal to that at time 𝑡, that is, if the regime at time 𝑡 − 1 is low 
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dependence regime, the regime at time 𝑡 must be low dependence for each dynamic 

process, and they employ two equations to describe the dynamic dependence. 

However, this assumption cannot fully match with the Eq. (5). To solve this point, we 

add a mean equation of 𝜅𝑡,𝑠𝑡
 at time 𝑡, 𝜅𝑡 = ∑ 𝜅𝑡,𝑠𝑡=𝑗 ∙ 𝑃𝑟(𝑠𝑡 = 𝑗|ℱ𝑡)2

𝑗=1 , given the 

information ℱ𝑡, and put it in the dynamic process of dependence parameter at each 

time point, and we can construct two parameters 𝜅𝑡,𝑠𝑡
 at the following time point, 

then construct two conditional joint distribution given different regime 𝑠𝑡. 

 𝜅𝑡,𝑠𝑡
= 𝛬(𝜔̅𝑠𝑡

+ 𝛽̅ ∙ 𝜅𝑡−1 + 𝛼̅ ∙ 𝐹𝑉𝑡),  (5) 

where 𝜅𝑡 is the weighted mean of 𝜅𝑡,𝑠𝑡
: 

 𝜅𝑡 = ∑ 𝜅𝑡,𝑠𝑡=𝑗 ∙ 𝑃𝑟(𝑠𝑡 = 𝑗|ℱ𝑡)2
𝑗=1 .  (6) 

In Eq. (5), 𝐹𝑉𝑡  is equal to 
1

𝑚
∑ 𝜙−1(𝑢1,𝑡−𝑗) ∙ 𝜙−1(𝑢2,𝑡−𝑗)𝑚

𝑗=1  and 

1

𝑚
∑ 𝑡𝑛

−1(𝑢1,𝑡−𝑗) ∙ 𝑡𝑛
−1(𝑢2,𝑡−j)

𝑚
𝑗=1 for the Markov-switching time-varying normal 

(MSTVN) and t (MSTVt) copulas respectively, and 
1

𝑚
∑ |𝑢1,𝑡−𝑗 − 𝑢2,𝑡−𝑗|𝑚

𝑗=1  for the 

Markov-switching time-varying Clayton (MSTVC), 180-degree rotated Clayton 

(MSTVRC), Gumbel (MSTVG) and 180-degree rotated Gumbel (MSTVRG) copulas 

(Patton, 2006). 

Let 𝜼𝒕 = (
𝑐𝑡(𝑢1,𝑡,𝑢2,𝑡|𝑠𝑡=1,ℱ𝑡−1)

𝑐𝑡(𝑢1,𝑡,𝑢2,𝑡|𝑠𝑡=2,ℱ𝑡−1)
) , 𝝃𝒕|𝒕−𝟏 = (𝑃𝑟(𝑠𝑡=1|ℱ𝑡−1)

𝑃𝑟(𝑠𝑡=2|ℱ𝑡−1)
)  and 𝝃𝒕|𝒕 =

(𝑃𝑟(𝑠𝑡=1|ℱ𝑡)

𝑃𝑟(𝑠𝑡=2|ℱ𝑡)
). 𝑢𝑖,𝑡 = 𝐹𝑖,𝑡(𝑟𝑖,𝑡|ℱ𝑡−1), 𝑖 = 1,2. Then, based on Eq. (4), 

 𝑓𝑡(𝑟1,𝑡, 𝑟2,𝑡|ℱ𝑡−1; 𝜽) = 𝟏′(𝝃𝒕|𝒕−𝟏⨀𝜼𝒕) ∙ ∏ 𝑓𝑖,𝑡(𝑟𝑖,𝑡|ℱ𝑡−1; 𝜽𝒊)
2
𝑖=1 ,  (7) 

where 𝟏′(𝝃𝒕|𝒕−𝟏⨀𝜼𝒕) = 𝑐𝑡(𝑢̂1,𝑡, 𝑢̂2,𝑡|ℱ𝑡−1; 𝜽𝒄) , 𝝃𝒕+𝟏|𝒕 = 𝑷𝝃𝒕|𝒕 , 𝑷 = (
𝑝11 𝑝21

𝑝12 𝑝22
) , 

𝝃𝒕|𝒕 =
(

𝑃𝑟(𝑠𝑡=1|ℱ𝑡−1)

𝑃𝑟(𝑠𝑡=2|ℱ𝑡−1)
)⨀(

𝑓𝑡(𝑟1,𝑡,𝑟2,𝑡|𝑠𝑡=1,ℱ𝑡−1)

𝑓𝑡(𝑟1,𝑡,𝑟2,𝑡|𝑠𝑡=2,ℱ𝑡−1)
)

𝑓𝑡(𝑟1,𝑡,𝑟2,𝑡|ℱ𝑡−1)
=

𝝃𝒕|𝒕−𝟏⨀𝜼𝒕

𝟏′(𝝃𝒕|𝒕−𝟏⨀𝜼𝒕)
. Starting value 𝝃𝟏|𝟎 = (0.5

0.5
) . 

The sign ⊙ denotes element-by-element multiplication. 
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Let 𝝃𝒕|𝑻 = (𝑃𝑟(𝑠𝑡=1|ℱ𝑇)

𝑃𝑟(𝑠𝑡=2|ℱ𝑇)
) denote a smoothed inference about regime 𝑠𝑡 based on 

whole observations, which can be calculated using an algorithm developed by Kim 

(1994): 

 𝝃𝒕|𝑻 = 𝝃𝒕|𝒕⨀ (𝑷′(𝝃𝒕+𝟏|𝑻 ÷ 𝝃𝒕+𝟏|𝒕)), 𝑡 < 𝑇,  (8) 

where the sign ÷ denotes element-by-element division. We calculate the smoothed 

probabilities 𝝃𝒕|𝑻  by creating backward iterations of Eq. (8) for 𝑡 = 𝑇 − 1, 𝑇 −

2, ⋯ , 1. 

2.1.2 Marginal distribution 

Since financial market returns are always characterised by autocorrelation and 

volatility clustering, following most of previous literature (Liu et al., 2017; Ji et al., 

2018a, b, c), we employ an ARMA(m, n)-GARCH(p, q)-t model to construct the 

conditional marginal distributions1: 

 𝑟𝑖,𝑡 = 𝜑0 + ∑ 𝜑𝑗𝑟𝑖,𝑡−𝑗
𝑚
𝑗=1 + 𝜀𝑖,𝑡 + ∑ 𝜓𝑗𝜀𝑖,𝑡−𝑗

𝑛
𝑗=1 = 𝜇𝑖,𝑡 + 𝜀𝑖,𝑡, 𝑖 = 1, 2,  (9) 

 𝜀𝑖,𝑡 = 𝜎𝑖,𝑡𝑧𝑖,𝑡, 𝑧𝑖,𝑡~𝑖. 𝑖. 𝑑. 𝑡𝜐𝑖
, and  (10) 

 𝜎𝑖,𝑡
2 = 𝛼0 + ∑ 𝛼𝑗𝜀𝑖,𝑡−𝑗

2𝑝
𝑗=1 + ∑ 𝛽𝑗𝜎𝑖,𝑡−𝑗

2𝑝
𝑗=1 ,  (11) 

where 𝜇𝑖,𝑡 = 𝐸(𝑟𝑖,𝑡|ℱ𝑡−1) and 𝜎𝑖,𝑡
2 = 𝑉𝑎𝑟(𝑟𝑖,𝑡|ℱ𝑡−1). 

By distributing the standardised residual, 𝑡𝜐𝑖
, we can obtain the conditional 

distribution of returns, 𝑟𝑖,𝑡: 

𝐹𝑖,𝑡(𝑥𝑖|ℱ𝑡−1; 𝜽𝒊) = 𝑃𝑟(𝑟𝑖,𝑡 ≤ 𝑥𝑖|ℱ𝑡−1) = 𝑃𝑟 (
𝑟𝑖,𝑡−𝜇𝑖,𝑡

𝜎𝑖,𝑡
≤

𝑥𝑖−𝜇𝑖,𝑡

𝜎𝑖,𝑡
|ℱ𝑡−1) = 𝑡𝜐𝑖

(
𝑥𝑖−𝜇𝑖,𝑡

𝜎𝑖,𝑡
|ℱ𝑡−1).  (12) 

2.1.3 Estimation 

We employ the inference for margins (IFM) method proposed by Joe and Xu 

(1996) to estimate the parameter 𝜽 = (𝜽𝟏
′ , 𝜽𝟐

′ , 𝜽𝒄
′ )′ as follows: 

                             
1 In this paper, we ignore to test the potential structural change in the marginal models, because of its complexity 

combing with time-varying copula models. We hope to find a feasible way to solve this problem in the future 

research. 
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Step 1: Estimate the conditional marginal distribution parameter 𝜽𝒊: 

 𝜽̂𝒊 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜽𝒊

∑ 𝑙𝑜𝑔 (𝑓𝑖,𝑡(𝑟𝑖,𝑡|ℱ𝑡−1; 𝜽𝒊))𝑇
𝑡=1 , 𝑖 = 1,2.  (13) 

Step 2: Estimate the conditional copula parameter, 𝜽𝒄: 

 𝜽̂𝒄 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜽𝒄

∑ 𝑙𝑜𝑔 (𝑐𝑡(𝑢̂1,𝑡, 𝑢̂2,𝑡|ℱ𝑡−1; 𝜽𝒄))𝑇
𝑡=1 .  (14) 

Joe (1997) proves that the IFM estimator 𝜽̂ = (𝜽̂𝟏
′ , 𝜽̂𝟐

′ , 𝜽̂𝒄
′ )

′
 verifies the property 

of asymptotic normality under regular conditions: 

 √𝑇(𝜽̂ − 𝜽) → 𝑁(𝟎, 𝐺−1(𝜽)),  (15) 

where 𝐺(𝜽) is a Godambe information matrix. 

2.2 Risk spillover modelling 

In this paper, we employ tail dependence and CoVaR to identify risk spillover 

across stock markets. 

For the copula at time 𝑡 presented in Eq. (4), we employ lower and upper tail 

dependence to measure extreme co-movement across markets (Joe, 1997; Liu et al., 

2017). 

For two small real numbers, 𝛼 and 𝛽 (e.g. 𝛼 = 𝛽 = 0.05), the two dynamic 

tail dependences are as follows: 

 𝜏𝑡
𝐿𝐿(𝛼, 𝛽) = 𝑃𝑟(𝐹1,𝑡(𝑟1,𝑡|ℱ𝑡−1) < 𝛼|𝐹2,𝑡(𝑟2,𝑡|ℱ𝑡−1) < 𝛽) =

𝐶𝑡(𝛼,𝛽|ℱ𝑡−1)

𝛽
        (16) 

𝜏𝑡
𝑈𝑈(𝛼, 𝛽) = 𝑃𝑟(𝐹1,𝑡(𝑟1,𝑡|ℱ𝑡−1) > 1 − 𝛼|𝐹2,𝑡(𝑟2,𝑡|ℱ𝑡−1) > 1 − 𝛽) =

𝐶𝑡(1−𝛼,1−𝛽|ℱ𝑡−1)+𝛼+𝛽−1

𝛽
(17) 

We employ CoVaR to measure risk spillover across markets (Reboredo and 

Ugolini, 2015; Reboredo et al., 2016): 

 𝑃𝑟(𝑟1,𝑡 ≤ 𝐶𝑜𝑉𝑎𝑅1|2𝐷,𝑡
𝐷,𝛼 |𝑟2,𝑡 ≤ 𝑉𝑎𝑅2,𝑡

𝐷,𝛽
) = 𝛼   (18) 

 𝑃𝑟(𝑟1,𝑡 ≥ 𝐶𝑜𝑉𝑎𝑅1|2𝑈,𝑡
𝑈,𝛼 |𝑟2,𝑡 ≥ 𝑉𝑎𝑅2,𝑡

𝑈,𝛽
) = 𝛼,  (19) 

where 𝑃𝑟(𝑟2,𝑡 ≤ 𝑉𝑎𝑅2,𝑡
𝐷,𝛽

) = 𝛽  and 𝑃𝑟(𝑟2,𝑡 ≥ 𝑉𝑎𝑅2,𝑡
𝑈,𝛽

) = 𝛽 . 𝐶𝑜𝑉𝑎𝑅1|2𝐷,𝑡
𝐷,𝛼

 and 
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𝐶𝑜𝑉𝑎𝑅1|2𝑈,𝑡
𝑈,𝛼

 can be obtained by solving the following two equations: 

 𝐶𝑡(𝐹1,𝑡(𝐶𝑜𝑉𝑎𝑅1|2𝐷,𝑡
𝐷,𝛼 |ℱ𝑡−1), 𝛽|ℱ𝑡−1) − 𝛽𝛼 = 0  (20) 

 𝐹1,𝑡(𝐶𝑜𝑉𝑎𝑅1|2𝑈,𝑡
𝑈,𝛼 |ℱ𝑡−1) − 𝐶𝑡(𝐹1,𝑡(𝐶𝑜𝑉𝑎𝑅1|2𝑈,𝑡

𝑈,𝛼 |ℱ𝑡−1), 1 − 𝛽|ℱ𝑡−1) − 𝛽 + 𝛽𝛼 = 0 (21) 

 

3. Empirical results 

3.1 Data and summary statistics 

 This study analyses over one hundred years’ worth of data regarding the stock 

markets of G7 countries—the US (USA), Canada (CAN), France (FRA), Germany 

(GER), Japan (JPN), Italy (ITA) and the United Kingdom (UK)—to measure extreme 

risk spillover. The sample period ranges from January 1915 to February 20172, and 

the monthly frequency is 1,111 observations for each series. All data are obtained 

from the Global Financial Database. We use the differences of the natural logarithm of 

stock prices to determine the return series. 

Table 1 presents the summary statistics for G7 countries’ stock returns. Panel A 

shows that the means of all countries’ stock returns are positive, indicating that the 

stock markets showed a general upward trend over a long period of time. JPN has the 

largest mean (0.616), and CAN has the smallest (0.427). There is no significant 

difference in the minimum returns for most countries, but GER has a significantly 

lower minimum return than the others (-145.996). This slump took place in July 1948 

due to World War II. USA is more stable than the other countries and has the smallest 

standard deviation (4.459), while ITA is the most volatile and has the largest standard 

deviation (7.239), followed by GER (6.771). The skewness and kurtosis of the 

statistics indicate that all returns have asymmetric leptokurtic characteristics, and the 

                             
2 The original data sample was collected from January 1915 to February 2017, but there are many monthly zero 

return data regarding the French stock market from 1915 to 1924. Therefore, to avoid bias estimation due to data 

quality, data from July 1924 to February 2017 is eliminated from coefficient estimations. 
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Jarque-Bera statistics significantly reject the null hypothesis of normal distribution for 

all returns. Panel B presents the correlations among stock returns, all of which are 

significantly positive at the 1% level. The correlation coefficient between CAN and 

USA is highest (0.702), and the other correlation coefficients are around 0.3. These 

significant correlations indicate the integration of developed countries’ stock markets, 

which allows for information shocks and risk spillover across countries. 

Figure 1 presents the Granger causal flows among G7 stock returns, showing that 

there are close lagged relationships among these countries’ stock markets. 

Interestingly, USA is the most influenced market in the Granger causality network. All 

G7 countries’ stock returns—except those of JPN—can lead to Granger causal stock 

returns for USA at the 5% significance level. In addition, USA can also lead to 

Granger causal returns for UK and CAN at the 5% significance level. FRA is the only 

country with only outflows of Granger causality, while JPN is the only one with only 

inflows of Granger causality. 

Table 1. Summary statistics 

Panel A: data statistics 

 Mean Median Max. Min. Std. Dev. Skew. Kurt. Jarque-Bera 

CAN 0.427 0.770 20.589 –33.460 4.688 –1.063 8.496 1607.539**a 

FRA 0.607 0.732 24.255 –27.605 5.563 –0.136 4.304 82.214** 

GER 0.447 0.377 38.238 –145.996 6.771 –9.037 200.238 1.8E+6** 

JPN 0.616 0.626 50.872 –27.216 6.120 0.589 10.081 2384.955** 

ITA 0.570 0.322 46.811 –30.757 7.239 0.901 8.480 1540.299** 

UK 0.443 0.828 42.320 –30.924 4.723 –0.151 11.936 3700.945** 

USA 0.501 0.971 40.746 –30.753 4.459 –0.509 15.070 6792.302** 

Panel B: correlation coefficients 

 CAN FRA GER JPN ITA UK USA 

CAN 1       

FRA 0.422** 1      

GER 0.287** 0.313** 1     

JPN 0.197** 0.224** 0.135** 1    

ITA 0.288** 0.358** 0.268** 0.224** 1   

UK 0.497** 0.422** 0.297** 0.222** 0.338** 1  

USA 0.702** 0.338** 0.277** 0.164** 0.289** 0.393** 1 
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Note: a ** denotes significant at the 1% level. 

FRA

UK GERUSA

CAN JPN

ITA

 
Figure 1. Granger causality among G7 stock returns 

(Note: An arrow denotes Granger causality at a 5% significance level) 

 

3.2 Model estimation 

 Before estimating the marginal distribution of stock returns, some necessary 

diagnoses need to be tested. Table 2 presents the autocorrelation and conditional 

heteroscedasticity tests for the G7 stock returns. The Ljung-Box test results, 

represented by 𝑄𝑟, indicate that the stock returns feature significant autocorrelation. 

When ARMA models are used to estimate stock returns, the autocorrelation 

(measured by 𝑄𝑎) disappears, and significant ARCH effects are measured by 𝑄𝑎
2 and 

the Lagrange Multiplier test, the results of which are represented by 𝐿𝑎. Furthermore, 

where an ARMA-GARCH process is applied to stock returns, it is revealed that the 

null hypothesis (no autocorrelation and conditional heteroscedasticity) cannot be 

rejected, except in the case of GER. Therefore, it is reasonable to use 

ARMA-GARCH models to estimate the marginal distribution of G7 stock returns. 

GER’s stock returns do not show evidence of conditional heteroscedasticity, which 

indicates that its market risk stays almost constant over time. Therefore, GER is not 

considered in our further investigation of risk spillover. 
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Table 2. Autocorrelation and conditional heteroscedasticity tests 

 𝑸𝒓(𝟖)b 𝑸𝒂(𝟖) 𝑸𝒂
𝟐(𝟖) 𝑳𝒂(𝟖)c 𝑸𝜺(𝟖)d 𝑸𝜺

𝟐(𝟖) 𝑳𝜺(𝟖) 

CAN 44.323 ** a 7.670 86.364 ** 58.945 ** 5.977 2.163 2.252 

FRA 29.693 ** 8.469 78.680 ** 50.848 ** 8.032 3.630 3.537 

GER 32.374 ** 5.928 0.096 0.090 -- -- -- 

JPN 19.213 * 8.394 324.969 ** 172.158 ** 5.872 3.979 3.948 

ITA 47.881 ** 13.627 210.799 ** 113.325 ** 12.542 8.612 8.365 

UK 26.972 ** 12.323 114.388 ** 69.650 ** 7.542 4.686 4.989 

USA 103.853 ** 10.512 244.799 ** 157.932 ** 9.221 6.048 6.063 

Note: a * and ** denote significance levels of 5% and 1%, respectively. 
b Q and Q2 denote the Ljung-Box statistics for corresponding series and squared series, respectively. 
c LM denotes the Lagrange Multiplier test statistic for conditional heteroscedasticity. 
d 𝑄𝑟 denotes Q statistics for stock returns, 𝑄𝑎 denotes Q statistics for ARMA process and 𝑄𝜀 denotes Q 

statistics for ARMA-GARCH process. 

 

 Table 3 presents the estimated coefficients of marginal distribution for each stock 

return based on the ARMA(m, n)-GARCH(p, q)-t model. The optimal lagged order of 

the ARMA(m, n)-GARCH(p, q)-t model is determined by the BIC information 

criterion. From table 3, following Patton (2013) and Ji et al. (2018), we employ the 

KS and CvM statistics for good-of-fit test. The results show that all conditional 

marginal distributions are not rejected at 1% level, indicating that all marginal 

distributions are reasonable. Meanwhile, table 3 shows that there are some differences 

in the estimated models for each series. JPN follows the AR(1)-GARCH(1, 1) process 

and UK follows the ARMA(1, 1)-GARCH(1, 1) process, while other series follow the 

MA(1)-GARCH(1, 1) process. All the standardised residuals feature a t distribution. 

The degree of freedom of the t distribution, measured by υ, is less than 10, indicating 

that the error terms were not normal. This result is consistent with the evidence 

presented in Table 1.   
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Table 3. Coefficient estimation of marginal distribution for each stock return 

 CAN FRA JPN ITA UK USA 

Conditional mean 

𝝋𝟎 0.796 (0.126) a 0.633 (0.172) 0.499 (0.125) 0.437 (0.185) 0.803 (0.294) 0.939 (0.115) 

𝝋𝟏   0.101 (0.031)  –0.180 (0.395)  

𝝍𝟏 0.138 (0.030) 0.169 (0.031)  0.163 (0.031) 0.254 (0.388) 0.239 (0.029) 

Conditional variance 

𝜶𝟎 1.258 (0.475) 1.849 (0.772) 0.686 (0.288) 1.408 (0.529) 0.518 (0.201) 0.778 (0.269) 

𝜶𝟏 0.108 (0.029) 0.101 (0.026) 0.152 (0.030) 0.132 (0.028) 0.189 (0.036) 0.093 (0.024) 

𝜷𝟏 0.835 (0.041) 0.841 (0.042) 0.843 (0.028) 0.843 (0.029) 0.811 (0.030) 0.860 (0.032) 

𝛖 5.107 (0.756) 9.903 (2.408) 5.649 (0.943) 6.763 (1.376) 5.794 (0.977) 4.436 (0.656) 

Goodness-of-fit tests (1000 times) 

KS 0.279 0.283 0.603 0.681 0.650 0.036 

CvM 0.208 0.366 0.479 0.583 0.656 0.045 

Note: a () denotes a standard error. 

 

  

We use six time-varying copulas with regime-switching models to calculate the 

dependence of each pair of stock returns. Table 4 presents the log-likelihood values 

for the six selected time-varying copulas with regime switching, including MSTVN, 

MSTVt, MSTVC, MSTVRC, MSTVG and MSTVRG copulas, and also the 

log-likelihood values for the corresponding static copulas, i.e. N, t, C, RC, G and RG 

copulas. We can find that all log-likelihood values for the time-varying copulas with 

regime switching are obviously larger than those for the corresponding static copulas 

for all asset pairs, indicating that it is valuable to employ time-varying copulas with 

regime switching to explore the dependence and measure the CoVaR between 

financial assets. Thus, this paper prefers the time-varying copulas with regime 

switching to static copulas for the empirical analysis. As presented in table 4, MSTVt 

is optimal for CAN–USA, JPN–USA and UK–USA analyses, MSTVN is optimal for 

ITA–USA analyses, while MSTCRG is optimal for FRA–USA analyses according to 

the log-likelihood values of all time-varying copulas with regime switching. The 

dependence of the whole sample for each pair of stock returns is also calculated and 

shown in Table 4. The static dependence of CAN–USA is highest, and there is no 

significant difference between the other four pairs, consistent with the correlation 

results presented in Table 1.  
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Table 4. The log-likelihood value for time-varying copula with regime switching 

 CAN-USA FRA-USA JPN-USA ITA-USA UK-USA 

Kendall a 0.444 0.190 0.118 0.185 0.236 

MSTVN 334.414 76.448 45.429 75.309 b 105.829 

MSTVt 342.370 78.263 46.001 73.865 110.383 

MSTVC 298.749 77.199 45.277 65.095 102.810 

MSTVRC 236.425 45.223 27.094 53.999 63.387 

MSTVG 309.165 63.653 37.463 67.016 90.533 

MSTVRG 327.789 78.512 45.307 70.702 104.697 

N 303.663 60.506 19.189 53.435 91.745 

t 318.774 65.310 25.426 58.430 98.248 

C 266.755 69.348 22.183 55.995 92.158 

RC 222.063 29.070 10.282 30.741 55.389 

G 289.182 48.021 16.824 44.837 78.860 

RG 302.339 70.311 22.352 60.379 94.233 

Note: a Kendall denotes the Kendall coefficient over the whole sample period.  

     b Bold denotes the maximum log-likelihood value.  

 

 

Table 5 presents the estimated coefficients with the optimal Markov-switching 

time-varying copula models for each pair, as determined by Table 4. In this paper, we 

employ IFM method to estimate the copula model according to Joe (1997), where the 

standard errors should be computed via Godambe matrix and have uniqueness if the 

scores vector and hessian matrix are obtained. The corresponding standard errors 

indicate that most parameters are significantly different from 0. In this section, we 

differentiate the two regimes modelled in Eq. (5) as high dependence and low 

dependence regimes. Table 5 presents the estimated probabilities of 𝑝11 and 𝑝22, 

both of which are significantly close to 1, indicating persistence of a high or low 

dependence regime. 𝜔1 and 𝜔2 are identified as the intercept terms of the two 

regimes, respectively. The substantial difference between 𝜔1 and 𝜔2 verifies the 

change between high and low dependence, with 𝜔1 denoting high dependence and 

𝜔2  denoting low dependence. In this study, high dependence refers to excess 

co-movement over a normal degree between assets in two countries usually induced 

by an external shock, such as a financial crisis. Low dependence means that 
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co-movement between assets in two countries remains at a normal level in a tranquil 

market environment.  

Table 5. Coefficient estimation for time-varying copula with regime switching 

 𝝎𝟏 𝝎𝟐 𝜷 𝜶 𝒏 𝒑𝟏𝟏 𝒑𝟐𝟐 

CAN-USA 
1.847 1.047 0.251 0.049 8.028 0.998 1.000 

(0.371) a (0.269) (0.565) (0.113) (2.079) (0.002) (0.005) 

FRA-USA 
–0.114 –0.385 0.508 0.105 

-- 
0.996 0.987 

(0.335) (0.262) (0.278) (0.270) (0.003) (0.008) 

JPN-USA 
1.888 0.312 –1.941 0.527 20.413 0.995 0.997 

(0.483) (0.199) (0.097) (0.258) (14.553) (0.004) (0.002) 

ITA-USA 
2.527 0.801 –2.049 0.242 

-- 
0.987 0.996 

(0.298) (0.139) (0.053) (0.232) (0.011) (0.002) 

UK-USA 
2.747 1.239 –2.034 0.069 12.303 0.993 0.999 

(0.215) (0.154) (0.086) (0.140) (4.707) (0.004) (0.000) 

Note: a () denotes the standard error.  

 

3.3 Smoothed probabilities and tail dependences 

 The two dependence regimes defined above can also be verified by smoothed 

probabilities and tail dependences. Figure 2 presents the time-varying smoothed 

probabilities of high and low dependence for each stock return pair. At each time 

point, the sum of the probabilities of high dependence and low dependence is equal to 

1, but the probability of switching between high and low dependence for each pair 

differs over time. For CAN–USA, the smoothed probability is significantly divided 

into two intervals, with the dependence relation remaining high before 1960 and 

becoming low after 1970. During the period from 1960 to 1970, the dependence 

relation is in transition. The dependence relations for JPN–USA, ITA–USA and UK–

USA are relatively stable, continuously remaining at a high or low dependence regime. 

Figure 2 shows that these dependence relationships tend to remain low before 2000, 

and they remain at a high dependence regime in the 21st century. This means that the 

global economic integration and a more open market environment have led to closer 

relationships between markets. The transformation of smoothed probabilities for 
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FRA–USA is specific and relatively unstable. However, although the smoothed 

probabilities of FRA–USA frequently transitioned between high and low dependence, 

a high dependence regime remained dominant after 2000. 

 

 

 

Figure 2. Smoothed probabilities for low and high dependence regimes 

 

 The lower and upper tail dependences between the US and the remaining G7 

stock returns are presented in Figure 33. Similar tail dependence behaviour was found 

                             
3 The lower and upper tail dependences are the same for all pairs except FRA–USA due to the symmetric copula 

function. 
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for the smoothed probabilities for each pair. Correspondingly, the tail dependence 

parameters are lower during low dependence regimes, and they are higher during high 

dependence regimes. In the same dependence regime, the tail dependence is volatile, 

indicating the dynamic dependence structure of asset pairs between the US and 

remaining G7 stock returns. 

 

 

 

 

Figure 3. Lower and upper tail dependences between the US and the other G7 stock returns 
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3.4 Spillover from the US to the remaining G7 stock returns 

 The findings presented above have verified the dynamic dependences between 

the US and the remaining G7 stock returns and have identified the dependence 

regimes in different periods. Furthermore, to investigate the spillover from the US to 

the rest of the G7 stock returns, the upside and downside VaRs and CoVaRs for G7 

stock returns are estimated based on our optimal regime-switching time-varying 

copulas. In this section, CoVaR is measured as the VaR for G7 stock returns at a 95% 

confidence level (𝛽 = 0.05) conditional on the VaR for the US stock return at the 95% 

confidence level (𝛼 = 0.05). CoVaR is used to measure the impact of extreme risk in 

the US stock market on the risk level in the remaining G7 stock markets, which is a 

good indicator of risk spillover. Table 6 presents the summary statistics of VaRs and 

CoVaRs. In Panel A of Table 6, the upside and downside VaRs for the US stock 

returns are calculated. Comparison of the value of VaRs for the US market with the 

value of the VaRs for the other G7 markets, as shown in Panels B–F in Table 6, the 

absolute mean VaR for the US is smallest regardless of whether the VaR was upside or 

downside, indicating that the US is safer than the other G7 countries in the financial 

market. However, there are not significant differences among the standard deviations 

of the VaRs of the G7 countries. The upside and downside CoVaRs for the G7 

countries are also calculated and shown in Panels B–F of Table 6. The results indicate 

that the CoVaR values are almost twice as large as their corresponding VaR values. 

The mean CoVaR for Italy is highest of all the G7 countries, consistent with the 

ranking of its VaR.  
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Table 6. Summary statistics for VaRs and CoVaRs 

 Mean Median Max. Min. Std. Dev. 

Panel A 

𝑉𝑎𝑅𝑈𝑆𝐴
𝐷  –5.208 –4.478 –2.601 –24.084 2.609 

𝑉𝑎𝑅𝑈𝑆𝐴
𝑈  6.918 6.280 33.192 4.362 2.395 

Panel B 

𝑉𝑎𝑅𝐶𝐴𝑁
𝐷  –6.227 –5.548 –3.797 –23.770 2.243 

𝑉𝑎𝑅𝐶𝐴𝑁
𝑈  7.729 7.064 21.099 5.485 2.040 

𝐶𝑜𝑉𝑎𝑅𝐶𝐴𝑁|𝑈𝑆𝐴(𝐷)
𝐷  –14.402 –12.986 –9.093 –48.193 4.708 

𝐶𝑜𝑉𝑎𝑅𝐶𝐴𝑁|𝑈𝑆𝐴(𝑈)
𝑈  15.904 14.516 42.686 10.759 4.493 

Panel C 

𝑉𝑎𝑅𝐹𝑅𝐴
𝐷  –8.186 –7.715 –4.971 –20.026 2.028 

𝑉𝑎𝑅𝐹𝑅𝐴
𝑈  9.444 8.959 20.810 6.406 2.046 

𝐶𝑜𝑉𝑎𝑅𝐹𝑅𝐴|𝑈𝑆𝐴(𝐷)
𝐷  –14.876 –14.276 –9.524 –33.802 3.258 

𝐶𝑜𝑉𝑎𝑅𝐹𝑅𝐴|𝑈𝑆𝐴(𝑈)
𝑈  11.952 11.369 26.624 7.842 2.457 

Panel D 

𝑉𝑎𝑅𝐽𝑃𝑁
𝐷  –8.476 –7.593 –3.340 –35.362 4.409 

𝑉𝑎𝑅𝐽𝑃𝑁
𝑈  9.598 8.756 43.330 4.384 4.495 

𝐶𝑜𝑉𝑎𝑅𝐽𝑃𝑁|𝑈𝑆𝐴(𝐷)
𝐷  –12.411 –10.966 –4.302 –46.335 6.235 

𝐶𝑜𝑉𝑎𝑅𝐽𝑃𝑁|𝑈𝑆𝐴(𝑈)
𝑈  13.533 12.165 48.213 5.366 6.261 

Panel E 

𝑉𝑎𝑅𝐼𝑇𝐴
𝐷  –10.162 –9.137 –5.010 –32.887 4.447 

𝑉𝑎𝑅𝐼𝑇𝐴
𝑈  11.073 9.920 41.471 5.796 4.654 

𝐶𝑜𝑉𝑎𝑅𝐼𝑇𝐴|𝑈𝑆𝐴(𝐷)
𝐷  –15.295 –13.723 –6.647 –44.233 6.362 

𝐶𝑜𝑉𝑎𝑅𝐼𝑇𝐴|𝑈𝑆𝐴(𝑈)
𝑈  16.206 14.622 54.686 7.539 6.517 

Panel F 

𝑉𝑎𝑅𝑈𝐾
𝐷  –6.504 –5.988 –2.095 –30.289 3.326 

𝑉𝑎𝑅𝑈𝐾
𝑈  7.837 7.391 36.246 3.421 3.305 

𝐶𝑜𝑉𝑎𝑅𝑈𝐾|𝑈𝑆𝐴(𝐷)
𝐷  –11.883 –10.986 –4.458 –51.605 5.692 

𝐶𝑜𝑉𝑎𝑅𝑈𝐾|𝑈𝑆𝐴(𝑈)
𝑈  13.216 12.321 59.012 5.881 5.662 
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 First, the risk spillover effects are tested by comparing the cumulative distribution 

for CoVaR and the corresponding VaR of the G7 stock markets using a bootstrap 

Kolmogorov–Smirnov (KS) test, in line with Reboredo et al (2016). Table 7 presents 

the results of upside, downside and asymmetric risk spillover. Our results first indicate 

that the upside CoVaR is significantly larger than its corresponding VaR, while the 

downside CoVaR is significantly smaller than its corresponding VaR for five G7 

countries. This is consistent with our expectation that there is significant risk spillover 

from the US to the remaining G7 stock markets, verifying the existence of some 

potential systemic risk in the global financial market. Second, we test whether upside 

and downside risk spillover are different for the G7 countries. The upside and 

downside values of CoVaR normalised by its corresponding VaR are compared. The 

results in the last column of Table 7 indicate that the magnitude of downside risk 

spillover is significantly larger than that of upside risk spillover for all the G7 

countries. This finding clearly proves an asymmetric effect between upside and 

downside risk spillover. 

Table 7. Tests of risk spillover and asymmetric effects of CoVaRs 

Symbol Downside risk spillover Upside risk spillover Asymmetric effect 

1|2 𝐻0: 𝐶𝑜𝑉𝑎𝑅1|2𝐷
𝐷 = 𝑉𝑎𝑅1

𝐷 

𝐻1: 𝐶𝑜𝑉𝑎𝑅1|2𝐷
𝐷 < 𝑉𝑎𝑅1

𝐷 

𝐻0: 𝐶𝑜𝑉𝑎𝑅1|2𝑈
𝑈 = 𝑉𝑎𝑅1

𝑈 

𝐻1: 𝐶𝑜𝑉𝑎𝑅1|2𝑈
𝑈 > 𝑉𝑎𝑅1

𝑈 

𝐻0:
𝐶𝑜𝑉𝑎𝑅1|2𝐷

𝐷

𝑉𝑎𝑅1
𝐷 =

𝐶𝑜𝑉𝑎𝑅1|2𝑈
𝑈

𝑉𝑎𝑅1
𝑈  

𝐻1:
𝐶𝑜𝑉𝑎𝑅1|2𝐷

𝐷

𝑉𝑎𝑅1
𝐷 >

𝐶𝑜𝑉𝑎𝑅1|2𝑈
𝑈

𝑉𝑎𝑅1
𝑈  

CAN|USA 0.910 *** 0.923 *** 0.665 *** 

FRA|USA 0.863 *** 0.507 *** 0.977 *** 

JPN|USA 0.358 *** 0.357 *** 0.134 *** 

ITA|USA 0.426 *** 0.439 *** 0.102 *** 

UK|USA 0.556 *** 0.562 *** 0.647 *** 

Note: a * and ** denote significance levels of 5% and 1%, respectively. 
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Figure 4. VaRs and CoVaRs for the G7 stock returns conditional on the VaR for the US stock 

 

 

 Finally, Figure 4 presents the dynamics of upside and downside VaRs and 

CoVaRs for the G7 stock markets. The shape of the CoVaRs in each country is 

comparatively different, which means that the impact of extreme risk in the US 

market on extreme risk in the G7 markets is unique for each individual country. 

Specifically, the gap between CoVaR and VaR in CAN is relatively larger than that in 

other countries. In particular, the gap between downside CoVaR and VaR is intuitively 

larger than the upside CoVaR and VaR, as verified by the asymmetric tests shown in 
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Table 7. Moreover, there are some obviously unequal spikes in the dynamic CoVaRs 

for each stock market pair, which were induced by specific economic events. For 

example, there were sudden spikes in CoVaRs due to the Great Depression in the US 

in 1933; World War II in 1945; the three oil crisis in 1973, 1979 and 1990; and the 

2008 global financial crisis. 

 

3.5 Asymmetric risk spillover to and from the US stock market 

 In this section, we estimate the CoVaR for the US stock market conditional on the 

VaR for G7 stock returns at a 95% confidence level. Table 8 presents the results of 

asymmetric tests performed to determine risk spillover to and from the US stock 

market. This analysis allows us to determine which country can exert a greater 

influence on other countries from a risk perspective. Surprisingly, there are significant 

asymmetric effects, and the magnitude of risk spillover from other G7 stock markets 

to the US stock market is larger than that from the US stock market to the remaining 

G7 stock markets. One possible reason is that the VaRs of the G7 stock markets are 

larger than the VaR of the US stock market, as presented in Table 6. 

Table 8. Asymmetric test for risk spillover to and from the US stock market 

Symbol Downside asymmetry Upside asymmetry 

1|2 
𝐻0:

𝐶𝑜𝑉𝑎𝑅1|2(𝐷)
𝐷

𝑉𝑎𝑅1
𝐷 =

𝐶𝑜𝑉𝑎𝑅2|1(𝐷)
𝐷

𝑉𝑎𝑅2
𝐷  

𝐻1:
𝐶𝑜𝑉𝑎𝑅1|2(𝐷)

𝐷

𝑉𝑎𝑅1
𝐷 <

𝐶𝑜𝑉𝑎𝑅2|1(𝐷)
𝐷

𝑉𝑎𝑅2
𝐷  

𝐻0:
𝐶𝑜𝑉𝑎𝑅1|2(𝐷)

𝑈

𝑉𝑎𝑅1
𝑈 =

𝐶𝑜𝑉𝑎𝑅2|1(𝐷)
𝑈

𝑉𝑎𝑅2
𝑈  

𝐻1:
𝐶𝑜𝑉𝑎𝑅1|2(𝐷)

𝑈

𝑉𝑎𝑅1
𝑈 <

𝐶𝑜𝑉𝑎𝑅2|1(𝐷)
𝑈

𝑉𝑎𝑅2
𝑈  

CAN|USA 0.388*** 0.173*** 

FRA|USA 0.776*** 0.347*** 

JPN|USA 0.190*** 0.050* 

ITA|USA 0.253*** 0.111*** 

UK|USA 0.492*** 0.275*** 

Note: a *, ** and *** denote significance levels of 10%, 5% and 1%, respectively. 

 

4. Conclusions 

This paper analyses the risk spillover effect between the US stock market and the 
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remaining G7 stock markets using time-varying copula models with Markov 

switching and data that covers more than 100 years and numerous crises. The CoVaRs 

of each stock market are measured to investigate risk spillover with upside, downside 

and asymmetric effects between the US and the remaining six G7 countries. 

Our models reveal the dynamic dependence structure of the stock markets with 

two different regimes. Generally speaking, the dependences between the US and the 

remaining G7 stock markets are positive. The whole sample dependence of Canada 

and USA is the highest of the five pairs. Two distinct dependence regimes, named 

high dependence and low dependence, are verified by different dependence 

parameters across regimes. The estimated smoothing probabilities imply that the 

dependence structure between the US and the remaining G7 stock markets changes 

over time. The status of a dependence regime is persistent and highly correlated with 

changes in tail dependence. Moreover, the probability that dependence relations 

between the US and G7 stock markets will enter a high dependence regime has 

increased in the 21st century, especially during the 2008 financial crisis. 

Estimation of CoVaRs verified that there is significant risk spillover between the 

US and the remaining G7 stock markets. This means that the VaR for one stock 

market conditional on the VaR for another stock market is significantly larger than the 

upside VaR and significantly smaller than the downside VaR. This finding can provide 

evidence that a country’s risk may trigger global systemic risk. Moreover, there is an 

asymmetric effect between upside and downside risk spillover, and the magnitude of 

downside risk spillover is larger than that of upside risk spillover. This conclusion 

aligns with our expectation that asset decline is more likely to lead to a wider range of 

financial contagion. Finally, comparison of the risk spillover to and from the US stock 

market revealed that the impact of CAN, FRA, GER, JPN, ITA and UK on the US 
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stock market is greater than that of the US on the remaining six G7 countries.  

 Important economic and financial implications can be derived from this paper. 

First, our main results suggest that any negative shock affecting one of the national 

stock markets will rapidly affect other stock markets, and thus, increase global 

systemic risk. Positive shocks, on the contrary, are not so rapidly spread among 

different stock markets. Third, the results point to an increase in the risk spillovers in 

the 21st century compared to previous periods. From a regulatory point of view, this 

new context explains, for example, the recent Basel III international regulatory 

framework. Furthermore, our results suggest that negative shocks originated in CAN, 

FRA, GER, JPAN, ITA and the UK have more negative effects on the US stock 

market than those shocks originated in the US have on the remaining G7 countries, so 

that, stronger policies should be directed to counteract shocks which could negatively 

affect the stock markets in these countries. From the investors’ point of view, the 

results also suggest that higher diversification opportunities in G7 stock markets can 

be found in periods of positive stock market returns than in those of negative returns.  

This paper provides a new analytical tool for investigating nonlinear dynamic 

dependence, asymmetry and risk spillover. Our findings have important implications 

for financial investors and risk managers in terms of risk prediction and portfolio 

strategy. In particular, our useful information regarding upside and downside risk can 

help develop asymmetric trading strategies. 
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