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Abstract

Mathematical modelling and numerical simulation of chemical transport phenomena are
very challenging due to large numbers of species and reactions involved. Reactive trans-
port models for such systems have high degrees of freedom, and therefore, are compu-
tationally expensive to solve. In this discussion, we present and numerically analyse
stoichiometric decoupling method for reducing the high degrees of freedom and hence,
cost of simulation. This method is a model reduction procedure that is based on some
key properties of chemical systems. A multi-scale model of a passive treatment method
for acidic mine effluents is used to test the efficacy of the reduction procedure. Moreover,
reduced models are characteristically non-linear and stiff, thus, we used numerical tech-
niques to study the reduction error in order to establish compatibility/efficiency of the
reduction procedure.
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1. Introduction

Multi-scale modelling of reactive transport phenomena can enhance our understanding
of chemical processes and also provide useful quantitative information for policy-making
and for improving engineering designs.

However, due to the presence of many chemical species in most chemical systems, multi-
scale models for reactive transport phenomena usually have high degrees of freedom and
therefore, are computationally expensive to analyse or solve. Thus, it is necessary for
model reduction techniques to be developed for such systems. Model reduction tech-
niques have been developed and applied to many biochemical systems that do not involve
transport phenomena. The reduction techniques and resulting approximations are in gen-
eral, based on a partial equilibrium assumption, a quasi steady state assumption and a
computational singular perturbation analysis of the system of interest [1, 2, 3].

Quasi steady state approximations (QSSAs) are common reduction techniques that
have been successfully applied in biochemical systems for many years [1, 4]. The QSSAs
reduce large systems by replacing derivatives of some species (in the system which are
assumed to be in quasi equilibrium) with algebraic functions. However, it is reported
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in [3, 5, 6, 7], that QSSAs lose some relevant properties of their original systems, and
therefore, cannot be applied in some frameworks (e. g. reactive transport modelling
where accuracy is a key issue).

Partial equilibrium approximations (PEA) form another class of reduction methods
that have also been extensively applied in biochemical systems [1, 4]. The PEA sets
derivatives corresponding to fast reactions, to zero, thus only derivatives corresponding to
slow reactions are considered in dynamical studies of the system [1, 2, 8]. The disadvantage
is that, the fast reactions of the system must be known in advance [1, 2]. This class is
also not the best reduction method in reactive transport processes where accuracy is a
key issue and information on fast reactions is usually not available.

Computational singular perturbation (CSP) methods are not extensively applied in
chemical kinetics. The CSP decouples the ordinary differential equations corresponding
to the species rate profiles into linearly independent modes, which can then be classified
into fast and slow groups. It is based on eigen-decomposition of the original system [3].
This method can be applied in reactive transport processes, however, basis functions are
required in the eigen-decomposition process of decoupling the original system. Finding
such basis functions is not an obvious task [3].

Stoichiometry and species mass balances are two internal properties of chemical systems
that can be coupled and applied to uncouple a system of equations that represent rate
profiles for the species in the system. This method is most appropriate when some of the
many species are of interest. In this discussion, we present and numerically analyse this
stoichiometric reduction procedure. The behaviour of the reduction error with respect to
high, low or normal Peclet numbers will be analysed using numerical schemes, in order to
establish efficiency and compatibility of the decoupling procedure.

Furthermore, one economically feasible class of acidic effluent treatment methods is
passive treatment methods, which encompasses all simple and less expensive pH raising
and metal removal techniques that make use of natural energy sources (e.g. gravity,
microbial metabolic energy, photosynthesis)[9, 10]. The commonest pH raising technique
involves the use of limestone or lime [11, 12, 13]. A physico-chemical process takes place
leading to reduction in the contaminant concentration. The idea of treatment is to convert
some of the water contaminants (that are usually toxic, corrosive and environmentally
unfriendly) to stable and environmentally friendly forms. Thus one only needs to keep
track of the temporal and spatial distributions corresponding to such species. Therefore,
for validation and verification of the procedure, we use a multi-scale model that describes
reactive transport processes in the passive treatment of acidic mine effluent water.

There are four Sections in this discussion. Section 1, contains the introduction to our
study and a brief review of literature on model reduction. In Section 2, we build a math-
ematical model (with six degrees of freedom) based on experimentally obtained kinetic
data for physico-chemical processes that occur in the passive treatment of acidic mine
effluent water, and then reduce the six degrees of freedom to three (using stoichiometry
and mass balance techniques). In Section 3, we present a backward (implicit) Euler time
scheme with three spatial numerical schemes that each perform best in one of three flow
regimes (high, low or normal Peclet number regimes). The schemes are also verified and
applied to solve both multi-scale models (large and reduced models) in Section 3. We
finally conclude the discussion in Section 4.
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2. Reactive transport models

Multi-scale physico-chemical processes of reactive transport phenomena in porous do-
mains can be described by the following generalized hydro-geochemical fluid flow model
(see [14, 15, 16] for detailed discussions on fluid flow through porous media):

∇ · v = 0, (1)

εf∇p = εfρg −Khv, (2)

∂εfUk
∂t

+∇ ·
(
εfvUk

)
−∇ ·

(
εfD · ∇Uk

)
= Sk, (3)

where Uk is the mass concentration of the kth species, D is a tensor for dispersivities, Sk is
a source or sink for the kth species, v is the seepage velocity vector, ρ is density of effluent
water, p is pressure, t is time, µ is viscosity of effluent water, εf is porosity of the flow
domain, ∇ is a spatial derivative vector, g is gravitational force per unit mass, Kh = µ

Kp

is the hydraulic conductivity and Kp is permeability of the porous medium.
Equations (1)-(2) are the continuity and momentum equations for the fluid flow, re-

spectively, and Equation (3) is the species transport and reaction equation.
Closure of the transport Equation (3) requires kinetic data from the chemical system

under consideration. Let Nf,r and Nb,r be total species numbers in the forward and
backward reactions of an rth elementary reaction, respectively. The mechanism for a
system of M elementary reactions involving N chemical species is generally written as:

Nf,r∑
i=1

ar,iAr,i 


Nb,r∑
j=1

br,jBr,j, r = 1, . . . ,M, (4)

where ar,i and br,j are stoichiometric coefficients for the species Ar,i and Br,j in the rth

elementary reaction. In general,
∑M

r=1(Nf,r+Nb,r) 6= N due to the presence of networking
species (i.e species engaged in more than one elementary reaction).

Further, denote C and U as vectors of all species and their concentrations, respectively.
Let a subset of the above species participating in an rth elementary reaction with Nf,r

and Nb,r being the total number of species participating in the reactions on the left and
right side, respectively, be denoted as:

Cr = (Ar,1, Ar,2, . . . Ar,Nf,r
, Br,1, Br,2, . . . Br,Nb,r

)

= (Cr,1, Cr,2, . . . Cr,Nf,r
, Cr,Nf,r+1

, Cr,Nf,r+2
, . . . Cr,Nr)

where Nr = Nf,r +Nb,r. Similarly, let

Ur = ([A]r,1, [A]r,2, . . . [A]r,Nf,r
, [B]r,1, [B]r,2, . . . [B]r,Nb,r

),

= (Ur,1, Ur,2, . . . Ur,Nf,r
, Ur,Nf,r+1

, Ur,Nf,r+2
, . . . Ur,Nr)
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for r = 1, 2, . . . ,M . Further, we define

αr = (αr,1, αr,2, . . . , αNr)

as the respective orders of the species in Cr and

σr = (σr,1, σr,2, . . . , σr,Nr)

as their respective stoichiometric coefficients.
The rate at which the rth elementary reaction (4) proceeds can in general, be expressed

as follows:

Rr(U) = Kfr

Nf,r∏
i=1

U
αr,i

r,i −Kb,r

Nr∏
j=Nf,r+1

U
αr,j

r,j , r = 1, . . . ,M (5)

where Kf,r, Kb,r are the forward and backward reaction constants. From Equation (5),
we obtain the rate at which the kth species evolves as:

Sk =
M∑
r=1

σrkRr,

=
M∑
r=1

σrk

(
Kfr

Nf,r∏
i=1

U
αr,i

r,i −Kb,r

Nr∏
j=Nf,r+1

U
αr,j

r,j

)
, k = 1, . . . , N, (6)

Observe that the source/sink term Sk(U1, . . . , Uk, . . . , UN) defined in Equation (6), is a
polynomial in N variables (i.e. concentrations of all the species). Therefore, to solve (3)
for the unknown Uk, requires Ui, for i 6= k. However, mechanisms are usually very large
(i.e. M is large) and contain many species (N is large). Thus, the source/sink terms (6)
are expensive to compute. In many experimental and modelling studies, very few of the
species are of interest to the researcher, however, due to networking with other species,
the species of interest can not be treated in isolation without first decoupling. In Sections
3, we present a decoupling procedure that significantly reduces computational cost by
replacing the N variable polynomial (6) by a one-variable polynomial.

2.1. Stoichiometric decoupling method

Denote the initial concentration by U0, US the concentration due to some source/sink,
UT the transformed concentration as the reaction proceeds. Using the concept of mass
balance which ensures mass conservation in a given volume (see, for example, [17, 18, 19]
for mass conservation details), we obtain:

U = U0 + US + UT . (7)

In a mass balance expression, transformed concentrations assume positive values if
their corresponding species are reaction products and negative otherwise. If the extent of
reaction is known, then the transformed concentration of a species can be quantified by
the stoichiometric number and the extent of reaction [20]. This enables us to write mass
balance expression for any species i, as follows [18]:
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Ur,i = U0r,i + σr,i χr + USr,i
, i = 1, 2, . . . , Nr, r = 1, . . . ,M (8)

where U0r,i , USr,i
are initial data and sources for the ith species in the rth reaction, and χr

is the extent of reaction. If the species of interest corresponds to the nth element in the
subset Ur, then its mass balance expression may be written as [18]:

χr = − 1

σr,n

(
U0r,n + USr,n

)
+

1

σr,n
Ur,n, n ∈ {1, . . . , Nr}. (9)

Substituting (9) into (8), we obtain [18]:

Ur,i = U0r,i −
σr,i
σr,n

(
U0r,n + USr,n

)
+
σr,i
σr,n

Ur,n + USr,i
,

= dr,i +
σr,i
σr,n

Ur,n, i = 1, . . . , Nr, r = 1, . . . ,M, n ∈ {1, . . . , Nr} (10)

where
dr,i = U0r,i + USr,i

− σr,i
σr,n

(
U0r,n + USr,n

)
.

Using (10) in (5), a single-variable rate law for the rth elementary reaction is obtained
as follows:

Rr = Kf,r

Nf,r∏
i=1

(
dr,i +

σr,i
σr,n

Ur,n

)αr,i

−Kb,r

Nr,bf∏
j=1+Nf,r

(
dr,j +

σr,j
σr,n

Ur,n

)αr,j

, r = 1, . . . ,M.

(11)

Moreover, let Uk in the global set C be the concentration of the species of interest that
corresponds to the local concentration Ur,n in reaction r. Then the source/sink term for
the kth species in the global set is given by [18]:

Sk =
M∑
r=1

σrnRr,

=
M∑
r=1

σrn

(
Kf,r

Nf,r∏
i=1

(
dr,i +

σr,i
σrn

Uk

)αr,i

−Kb,r

Nr∏
j=1+Nf,r

(
dr,j +

σr,j
σrn

Uk

)αr,j
)
, k = 1, . . . , N,

(12)

where σr,n is the stoichiometric coefficient of the species of interest in the rth elemen-
tary reaction. Note that the source/sink term Sk defined by (12) is a polynomial in Uk
only. Thus, using (12), Equation (3) can be independently (independent of other species
transport equations) solved for the unknown Uk.

2.2. Acid drainage model

Due to different environmental and reaction conditions, effluent water composition
varies from one system to another [13, 21, 22, 23, 24]. However there are some species
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that are common to most of such systems. Following discussions in [25, 26, 27, 28, 29],
the following set of species are common and will be considered in this discussion:

C =
(
H+, Fe3+, Fe2+, Fe(OH)3, SO

2−
4 , Ca2+, O2, HCO

−
3

)
and the corresponding vector of concentrations is given by:

U =
(
U1, U2, U3, U4, U5, U6, U7, U8

)
.

Treatment implies neutralization of hydrogen ions, oxidation of ferrous ion and fil-
tration of iron hydroxide concentration (with increasing time and distance). Following
discussions in [31, 32], we employ a linear model for filtration of iron hydroxide which is
a colloid. That is:

S4 = −θcθLKdep,fBU4, (13)

where θL is specific surface area of the limestone, Kdep,f is deposition rate constant, B is a
dynamic blocking function and θc is a coupling parameter for measuring the surface area
available for Fe(OH)3 attachment at the limestone surfaces.

Following discussions in [33, 34] with a realistic assumption that the pH is less than
3.5, oxidation of ferrous ions follow:

Fe2+ +H+ + 0.25O2 −→ Fe3+ + 0.5H2O. (14)

at a rate given by:

S3 = −εfKoU3U7, (15)

where Ko includes Henry’s constant. Note that εf appears in Equation (15) to indicate
that the oxidation occurs in the void space (of the porous media) only.

Following the work of [33, 34, 36, 37], neutralization of hydrogen ions in the passive
treatment is given by:

CaCO3 +H+ 
 Ca2+ +HCO−3 . (16)

which occurs at the following rate:

RCaCO3 = −Kf

(
(1− θc)B

)
θLU1 +KbU6U8 (17)

Note that the surface area of the limestone available (after Fe(OH)3 has been de-
posited) for hydrogen ion attachment and reaction is

(
(1− θc)B

)
θL. Using Equation (15)

and (17), the net rate of neutralization of hydrogen ions is given by:

S1 = −Kf

(
(1− θc)B

)
θLU1 +KbU6U8 − εfKoU3U7. (18)
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By substituting Equations (13)-(18) in (3), a specific multi-scale linear model of the
passive treatment method is given by:

∇ · v = 0, (19)

εf∇p = εfρg −Khv, (20)

∂εfU1

∂t
+∇ ·

(
εfvU1

)
−∇ ·

(
εfD · ∇U1

)
=

−Kf

(
(1− θc)B

)
θLU1 +KbU6U8 − εfKoU3U7, (21)

∂εfU3

∂t
+∇ ·

(
εfvU3

)
−∇ ·

(
εfD · ∇U3

)
= −εfKoU3U7, (22)

and

∂εfU4

∂t
+∇ ·

(
εfvU4

)
−∇ ·

(
εfD · ∇U4

)
= −θcθLKdep,fBU4. (23)

Observe in Equations (21) and (22), that current concentrations of calcium ions (U6),
hydrocarbonate ions (U8) and oxygen (U7) must be available for computations involving
those equations. Thus the following three extra transport equations (that will account
for the current concentrations of calcium ions, hydrocarbonate ions and oxygen) must be
added to the system (19)-(23):

∂εfU6

∂t
+∇ ·

(
εfvU6

)
−∇ ·

(
εfD · ∇U6

)
= Kf

(
(1− θc)B

)
θLU1 −KbU6U8, (24)

∂εfU7

∂t
+∇ ·

(
εfvU7

)
−∇ ·

(
εfD · ∇U7

)
= −0.25KoU3U7, (25)

and

∂εfU8

∂t
+∇ ·

(
εfvU8

)
−∇ ·

(
εfD · ∇U8

)
= Kf

(
(1− θc)B

)
θLU1 −KbU6U8. (26)

Addition of the three transport equations (24)-(26) to the system (19)-(23) has resulted
in a larger model with more degrees of freedom. This will increase the computational
time of the model. A remedy is stoichiometric decoupling which is capable of reducing
the system’s degrees of freedom with a remarkable accuracy. Firstly, define the initial
data of the species by the vector:
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U0 =
(
U10, U20, . . . , U80

)
,

and assume that there are no sources or sinks (a closed reactor) so that the source/sink
vector is given by:

US =
(

0, 0, . . . , 0
)
.

There are two stoichiometric equations in the passive treatment process, thus M = 2.
In the first equation (14) (i.e r = 1), we have the following data:

C1 =
(
Fe2+, H+, O2, Fe

3+, H2O
)
, α1 =

(
1, 0, 1, 0, 0

)
, Kb,1 = 0,

σ1 =
(
− 1,−1,−0.25, 1, 0.5

)
, Nf,1 = 2, N1 = 5, Kf,1 = εfKo. (27)

In the second equation (16) (i.e r = 2), we have the following data:

C2 =
(
CaCO3, H

+, Ca2+, HCO−3

)
, α2 =

(
0, 1, 1, 1

)
, σ2 =

(
− 1,−1, 1, 1

)
Nf,2 = 2, N2 = 4, Kf,2 = Kf

(
(1− θc)B

)
θL, Kb,2 = Kb. (28)

The first species is H+ which corresponds to k = 1 in the global set C, n = 2 in subset
C1 and n = 2 in subset n = 2. Thus applying (27) and (28) in (12) and simplifying, we
obtain:

S1 = αH1C
2
1 + αH2C1 + αH3, (29)

where αH1 = −0.25εfKo+Kb, αH2 = −εfKo

(
0.25C30+C70−0.5C10

)
−Kf

(
(1−θc)B

)
θL+

Kb

(
2C10+C80+C60

)
and αH3 = −εfKo

(
C30−C10

)(
C70−0.25C10

)
+Kb

(
C10+C80

)(
C10+

C60

)
.

The second species of interest is Fe2+ that corresponds to k = 3 in the global set C
and n = 1 in the subset C1. Thus applying (27) in (12) and simplifying, we obtain:

S3 = αf1C3 + αf2C
2
3 . (30)

where αf1 = εfKo

(
C70 + 0.25C30

)
and αf2 = −0.25εfKo.

Thus, by closing the system (1)-(3) with (29) and (30) instead of in (15) and (18), a
non-linear multi-scale model for the passive treatment method states that:

∇ · v = 0, (31)

εf∇p = εfρg −Khv, (32)
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∂εfC1

∂t
+∇ ·

(
εfvC1

)
−∇ ·

(
εfD · ∇C1

)
=

αH1C
2
1 + αH2C1 + αH3, (33)

∂εfC3

∂t
+∇ ·

(
εfvC3

)
−∇ ·

(
εfD · ∇C3

)
= αf1C3 + αf2C

2
3 , (34)

and

∂εfC4

∂t
+∇ ·

(
εfvC4

)
−∇ ·

(
εfD · ∇C4

)
= −θcθLKdep,fBC4, (35)

2.3. Computational model

The rest of the discussion will involve a comparison to establish accuracy of the reduced
model relative to the large model, thus we limit the rest of the discussion to one spatial
dimension to enable a visual comparison. We consider a non-gravitational flow with
velocity u units in the x direction for a distance of Lx units, in a time period T units. We
further assume for simplicity, that the parameters in the model are constant and uniform
throughout the domain. Thus, we set

v = (u, 0, 0), ∇ =
( ∂
∂x
, 0, 0

)
, g = (0, 0, g), and D =

Γ 0 0
0 0 0
0 0 0

 ,
where Γ is the dispersion component in the x direction. Substituting into the non-linear
model (Equations (31)-(35)) and linear model (Equations (19)-(26)) results in the initial-
boundary value problem, find U(x, t) such that:

d

dx
ρεfu = 0, (36)

u = − εf
Kh

d

dx
p (37)

and

∂ρεfU

∂t
+

∂

∂x
(ρεfuU)− ∂2

∂x2
(ΓεfU) = SU, ∈ [0, Lx]× [0, T ] (38)

(note that ρ = 1 in the problem) subject to;

Inlet boundary Initial conditions Outlet boundary

U(0, t) = Uin U(x, t = 0) = U0
d
dx
U(Lx, t) = 0
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In the reduced non-linear model (Equations (31)-(35)), the vectors U,Uin,U0, and SU

have three components each and are defined as follows;

U = [C1, C3, C4]Tr,

Uin = [C10, C30, C40]Tr,

U0 = [C10, C30, C40]Tr,

SU = [αH1C
2
1 + αH2C1 + αH3, αf1C3 + αf2C

2
3 , −θcθLKdep,fBC4]Tr,

where Tr means transpose.
In the original large linear model (Equations (19)-(26)), the vectors U,Uin,U0, and SU

have six components each and are defined as follows;

U = [C1, C3, C4, C6, C7, C8]Tr,

Uin = [C10, C30, C40, C60, C70, C80]Tr,

U0 = [C10, C30, C40, C60, C70, C80]Tr,

SU = [−Kf

(
(1− θc)B

)
θLC1 +KbC6C8 − εfKoC3C7, −εfKoC3C7, −θcθLKdep,fBC4,

− θcθLKdep,fBC4, −0.25KoC3C7, Kf

(
(1− θc)B

)
θLC1 −KbC6C8]Tr.

3. Numerical modelling

In this section, a finite volume procedure (just to ensure that resulting schemes inherit
the conservation property of the models in Section 2 above) is employed to discretize
the spatial derivatives of the advection-diffusion-reaction equation and a time integration
approach is employed to discretize the semi-discrete problem. The resulting numerical
schemes will be used to simulate the multi-scale models developed in Section 2. The
schemes presented here have been used by the authors in [38, 39] to successfully simulate
physical problems. Our goal is to apply these standard schemes to the stoichiometric
decoupling method, to investigate compatibility and suitability of the method for reactive
transport problems.

3.1. Model discretization

We first discretize the spatial domain [0, Lx] uniformly into Nx internal nodes such that
Lx = ∆x × Nx, where ∆x is the spatial step size. The nodes are placed in the domain
such that the ith internal node is located at (2i−1)

2
∆x. Thus the tuple of discrete domain

values is [0, 0.5∆x, 1.5∆x, . . . , Lx].
Next, we develop a control volume of length δXwe = ∆x with cross-sectional area

Ac around each of the Nx nodes. The center of the control volume coincides with each
internal node and its interfaces at boundary nodes coincide with the domain boundary
interfaces. We denote current node by P, and its neighbours by W = P−1 for the western
and E = P + 1 for the eastern nodes, respectively. The western and eastern interfaces of
the control volume are denoted by w and e, respectively (see Figures 1 and 2). The time
interval [0, T ] is also discretized such that ∆t = T

Nt
, where ∆t is the time step size and Nt

is the total number of time steps.
We begin discretization of Equations (36)-(38) by integrating over the P th control

volume (which is defined by the spatial interval [w, e] in Figure (2)) and also over the kth
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Uin

0 Lx
P

E

Inner nodes

Control volume
on inlet boundary
node

P
W∆x

2 ∆x
WE

P

Control volume
on inner node

Control volume on
outlet boundary
node

Figure 1: Domain discretization used in our discussion.

δxWP δxPE

δxw δxe

∆x = δxwe

W w e EP

Figure 2: A control volume of an inner node P bounded to the west by node W and to the east by node
E.

time interval [tk, tk+1], as follows;∫ tk+1

tk

∫ e

w

Ac
d

dx
ρεfudxdt = 0, (39)

and
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∫ tk+1

tk

∫ e

w

Ac
∂ρεfU

∂t
dxdt+

∫ tk+1

tk

∫ e

w

Ac
∂

∂x
(ρεfuU)dxdt

−
∫ tk+1

tk

∫ e

w

Ac
∂2

∂x2
(ΓεfU)dxdt

=

∫ tk+1

tk

∫ e

w

AcSUdxdt. (40)

Equation (39) becomes:

Fe − Fw = 0, (41)

where Fe = (ρεfuAc)e and Fw = (ρεfuAc)w are the eastern and western convective fluxes
across control volume interfaces. We linearize the source term (i.e. SU = b0−SPU, where
SP depends on previous values of U) and discretize the integrals in Equation (40) to
obtain:

aoP (Uk+1
P − Uk

P ) =− (FeU
k+1
e − FwUk+1

w )

+ (AcΓεf )e

(∂U
∂x

)k+1

e
− (AcΓεf )w

(∂U
∂x

)k+1

w

+ ∆xAcb0 −∆xAcSPU
k+1
P , (42)

where aoP =
ρεfAc∆x

∆t
. The notations Uk+1

e , Uk+1
w are values and

(
∂U
∂x

)k+1

e
,
(
∂U
∂x

)k+1

w
are

derivatives of U at time tk+1, at the eastern and western interfaces of the control vol-

ume, respectively. The values Ue, Uw and derivatives
(
∂U
∂x

)
e
,
(
∂U
∂x

)
w

do not fall on main

nodes (i.e. P, E,W ), thus are unknown. We approximate the derivatives using centred
differencing as follows:(∂U

∂x

)k+1

e
≈ Uk+1

E − Uk+1
P

δxPE
,
(∂U
∂x

)k+1

w
≈ Uk+1

P − Uk+1
W

δxWP

, (43)

where δxWP = δxPE = ∆x.
Substituting (43) into (42) we obtain;

aoP (Uk+1
P − Uk

P ) =− (FeU
k+1
e − FwUk+1

w )

+De(U
k+1
E − Uk+1

P )−Dw(Uk+1
P − Uk+1

W )

+ ∆xAcb0 −∆xAcSPU
k+1
P , (44)

where De =
(AcΓεf )e
δxPE

and Dw =
(AcΓεf )w
δxWP

are diffusive fluxes across the eastern and

western interfaces of the control volume. We now approximate the values Uk+1
e and Uk+1

w

using the upwind differencing, central differencing and hybrid schemes of [38, 39].
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3.2. Upwind differencing approximation

The upwind approximation for a positive flow direction where Fe, Fw > 0 is;

Uk+1
w = Uk+1

W

Uk+1
e = Uk+1

P . (45)

3.3. Central differencing approximation

The central differencing approximations of the values of U at the western and eastern
interfaces are;

Uk+1
w =

1

2
(Uk+1

W + Uk+1
P ),

Uk+1
e =

1

2
(Uk+1

P + Uk+1
E ). (46)

3.4. Hybrid differencing approximation

We define the Peclet number at the control volume interfaces as;

Pe =
Fe
De

=
Fw
Dw

The hybrid differencing scheme sets the diffusive fluxes in (44) to zero (De = Dw = 0)
and substitutes the following piecewise expressions (based on Peclet number);

Uk+1
w = 1

2

(
1 + 2Dw

Fw

)
Uk+1
W + 1

2

(
1− 2Dw

Fw

)
Uk+1
P for − 2 < Pe < 2,

Uk+1
w = Uk+1

W , Uk+1
e = Uk+1

P for Pe ≥ 2,

Uk+1
w = Uk+1

P , Uk+1
e = Uk+1

E for Pe ≤ 2,

Uk+1
e = 1

2

(
1 + 2De

Fe

)
Uk+1
P + 1

2

(
1− 2De

Fe

)
Uk+1
E for − 2 < Pe < 2.

3.5. Fully implicit schemes

In general, applying any of the schemes to approximate the unknown values in (44),
will result in the linear system;

aPU
k+1
P = aoPU

k
P + aEU

k+1
E + aWU

k+1
W + Sb, (47)
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where

aP = aE + aW + aoP − SP ,
F = Fe = Fw = ρεfuAc,

D = De = Dw =
AcΓεf

∆x
,

aoP =
ρεfAc∆x

∆t

and the coefficients aE, aW , Sb are defined in Table 1 according to the scheme used.

Table 1: Coefficients for the algebraic model (47), according to spatial discretization schemes.

Differencing scheme aW aE Sb

Upwind D + F D ∆xAcb0

Central D + F
2

D − F
2

∆xAcb0

Hybrid max
(
F,D + F

2
, 0
)

max
(
− F,D − F

2
, 0
)

∆xAcb0

Numerical scheme (47) is the standard Backward Euler time-integration scheme that
has been coupled with either first order consistent Upwind or second order consistent Cen-
tral differencing or Hybrid spatial discretizations (see a detailed discussion in [38, 39]).
This standard Euler scheme is popular for its unconditional stability with respect to time-
step size restrictions (i.e. unconditional stability with respect to the CFL condition).
However, monotonicity properties ensure stability of numerical schemes when oscillations
from the scheme are introduced by model parameters. Linear numerical schemes possess
the monotonicity property if the posses diagonally-dominant coefficients and non-negative
off-diagonal coefficients [40]. It is clear that scheme (47) possess the monotonicity prop-
erty when the Upwind and Hybrid coefficients are used (see the coefficients in Table 1).
Therefore, the Upwind and Hybrid schemes are unconditionally stable for all flow regimes.
However the Central differencing coefficient aE will fail to satisfy the monotonicity con-
dition in a positive advection dominated flow case, i.e.

aE < 0, =⇒ D − F

2
< 0, =⇒ Pe > 2.

For practical applications where diffusive or dispersive transport is dominant (implying
Pe < 2), the Central differencing coefficients will provide the best results (since it is
second order consistent). For applications where there is a balance between advective or
convective, and diffusive or dispersive transport, the Hybrid coefficients will provide the
best results (since it is unconditionally stable and its order is between one and two). The
Upwind coefficients will provide the efficient results in cases where advective or convective
transport is dominant. In Section 4 below, we present numerical results to illustrate the
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properties of scheme (47) under various flow regimes.

4. Numerical experiments

In this section, we present results obtained from numerical experiments involving the
numerical schemes presented in Section 3 above. Results presented are on convergence
tests for the schemes, accuracy test and simulation cost for the stoichiometric decou-
pling method presented in Section 2. The objectives are to show numerically, that the
numerical schemes are convergent (thus are suitable for investigating the stoichiometric
problem), to show that the stoichiometric decoupling method is accurate (thus can be ap-
plied to reactive transport problems) and finally, to show that the stoichiometric method
can significantly reduce simulation cost. In Section 4.1, we present convergence results
for the differencing schemes (i.e. only spatial discretizations, the Upwind, Central and
Hybrid schemes). In Section 4.2, we present convergence results for the full schemes (both
temporal and spatial discretizations). In Section 4.3, we presented accuracy results for
the stoichiometric method discussed in Section 2. In Section 4.4, we present results on
simulation cost for the stoichiometric method.

4.1. Convergence test: differencing schemes

In this section, we validate our experimental code and also assess the accuracy of the
scheme (47), by comparing numerical solutions obtained with the Upwind, Central, and
Hybrid coefficients with the analytical solution, for a steady one-dimensional scalar U
transport. The analytical solution is [39]

U(x) = Uin +
(Uout − Uin)×

(
exp(ρux

Γ
)− 1

)
exp(ρuLx

Γ
)− 1

, (48)

where the parameters are given by;

Lx = 1 m, ρ = 1 Kgm−3, Γ = 0.1 Kg(ms)−1, u = 0.1, Uin = 1 Kg, Uout = 0.

Figure 3 shows that the numerical solution is accurate and that the accuracy increases
as the number of grid points increase. Table 2 and Figure 4a show that the error between
the analytical and numerical solution decreases monotonically as the grid gets finer, and
therefore the Scheme 47 is convergent with the Upwind, Central differencing and Hybrid
coefficients. However, while the Hybrid and Upwind coefficients make the scheme uncon-
ditionally stable, one can observe in Figure 4b that, the Central differencing coefficients
make the scheme conditionally stable (i.e stable only when |Pe| < 2).

4.2. Convergence test: fully implicit schemes

Furthermore, we investigated the accuracy of the fully implicit scheme by compar-
ing numerical solutions with the analytical solution for one-dimensional time-dependent
diffusion of a scalar U, without sources or sinks, given by [39]:

U(x, t) =
4U0

π

∞∑
n=1

(−1)n+1

2n− 1
exp(−αnλ2

nt) cos(λnx), (49)
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(a) Coarse grid (5 nodes). (b) Fine grid (35 nodes).

Figure 3: Solution of scheme (47) for 1 dimensional advection-diffusion equation, compared with its
analytical solution (48).

Table 2: Errors of numerical scheme (47), according to Upwind, Central differencing and Hybrid coeffi-
cients and across grid spacing, with Γ = 0.1, u = 0.1.

Spatial schemes
max |error|, (×10−3)

Nx = 5 Nx = 10 Nx = 15 Nx = 20

Upwind differencing 9.4562 5.2589 3.6581 2.8060
Central differencing 33.1232 8.1054 3.5741 2.0020
Hybrid differencing 6.1640 1.7484 0.8098 0.4650

where

λn =
(2n− 1)π

2Lx
, αn =

Γ

ρ
, (50)

Lx = 0.02 m, ρ = 107 Jm−3K−1, Γ = 10 W (mK)−1, u = 0.0 ms−1,

U0 = 200 K, Uout = 0,
∂U

∂x
(0, t) = 0, T = 40 s. (51)

Figure 5 shows that the numerical solution is accurate and that the accuracy increases
as the number of grid points increase. Table 3 and Figure 6 show that the error between
the analytical and numerical solution decreases monotonically as the grid gets finer, thus
the fully implicit scheme is a convergent scheme.

The summary in this section is that the schemes are accurate and convergent. The hy-
brid and upwind schemes are unconditionally stable while the central differencing scheme
is stable when the Peclet numbers is low (more diffusion than advection). We can there-
fore, perform numerical experiments using a numerical code which is based on the fully
implicit schemes.
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(a) Spatial error graphs.
(b) Unstable central differencing scheme when
|Pe| > 2), (u = 2.5, Γ = 0.1).

Figure 4: Convergence and stability according to the Upwind, Central differencing and Hybrid schemes.

Table 3: Errors of Scheme (47), according to the Upwind, Central differencing and Hybrid coefficients,
and across grid spacing with (ρ = 107,Γ = 10).

Grid points Numerical scheme
max |error|

Nt = 20 Nt = 40 Nt = 80 Nt = 120

Upwind differencing 6.6741 4.6611 3.6835 3.2026
Nx = 5 Central differencing 6.6741 4.6611 3.6835 3.2026

Hybrid differencing 6.6741 4.6611 3.6835 3.2026

Upwind differencing 4.0992 2.1609 1.2146 0.9026
Nx = 15 Central differencing 4.0992 2.1609 1.2146 0.9026

Hybrid differencing 4.0992 2.1609 1.2146 0.9026

Upwind differencing 3.9012 1.9727 1.0296 0.7185
Nx = 25 Central differencing 3.9012 1.9727 1.0296 0.7185

Hybrid differencing 3.9012 1.9727 1.0296 0.7185

4.3. Accuracy test: Stoichiometric decoupling method

In this section, we present results of our numerical investigations on the reduction error
between the stoichiometrically reduced model and the original large model. This error
is defined as the difference of concentrations of species that are common (ferrous and
hydrogen ions) to both models. However, from the results, the error defined by hydrogen
was greater (worse) than the error defined by ferrous ions. Thus we choose to present and
discuss the worse case only. The general input data for parameters in the models, that
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(a) Coarse grid (5× 20). (b) Fine grid (25× 160).

Figure 5: Solutions of one dimensional diffusion equation, obtained with Scheme (47) and compared with
its analytical solution (49).

(a) Spatial errors. (b) Temporal errors.

Figure 6: Errors graphs of Scheme (47) Upwind, Central differencing and Hybrid schemes, and across
grid spacing (step sizes).

we used in the experiments are given by:

Lx = 10, T = 50, Γ = 0.01, ρ = 1, εf = 0.1,
d

dx
p = 0.004, Ko = 0.025, θc = 0.3,

θl = 0.005, β = 0.001, Kf = 0.13, Kb = 0.0025, Ac = 1, Kh = 0.001, Kdep,f = 0.01,

C10 = 0.01, C30 = 0.0001, C40 = 0.02, C60 = 0.0001, C70 = 0.02, C80 = 0.0001.

The results show that the concentration of the contaminants in both reduced and
large models, decrease with time and distance (see Figure 7), as expected in the passive
treatment method. The worse case error between the reduced and large models is in the
order 10−10, which is remarkable. This error decreases with more time points and becomes
stable with more spatial nodes (see Table 4).
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Moreover, further investigations revealed that treatment occurs across different orders
of magnitude of diffusion and advection (see Figures 8 and 9 ). The worse case error
remains in the order 10−10 but varies across different orders of magnitudes of diffusities
and velocities (see Tables 5 and 6).

(a) Profile across space (30× 50). (b) Profile across time (30× 50).

Figure 7: Ferrous ion profiles in the large model (19)-(26) and reduced models (31)-(35) given in Section
2.2.

Table 4: Errors of the reduced non-linear model (31)-(35), across space, time and schemes with d
dxp =

−4× 10−10,Γ = 0.1.

Grid points Numerical schemes
max |error|, (×10−10)

Nt = 10 Nt = 20 Nt = 30 Nt = 50

Upwind differencing 4.2217 3.5411 3.5231 3.1327
Nx = 10 Central differencing 4.2215 3.5410 3.5230 3.1327

Hybrid differencing 4.2217 3.5411 3.5231 3.1327

Upwind differencing 4.2217 3.5411 3.5231 3.1327
Nx = 20 Central differencing 4.2216 3.5411 3.5231 3.1327

Hybrid differencing 4.2217 3.5411 3.5231 3.1327

Upwind differencing 4.2217 3.5411 3.5231 3.1327
Nx = 30 Central differencing 4.2217 3.5411 3.5231 3.1327

Hybrid differencing 4.2217 3.5411 3.5231 3.1327

4.4. Simulation cost: Stoichiometric decoupling method

In this Section, we present and discuss results on cost of simulation for the models
presented in Section 2. We measure cost by the CPU time, CPU time differences and
relative CPU time that the numerical schemes require to solve the large linear model and
the stoichiometrically reduced non-linear model. The CPU time differences and relative
CPU time are defined as follows:
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(a) Space, Γ = 0.1, ddxp = −4× 10−10. (b) Time, Γ = 0.1, ddxp = −4× 10−10.

Figure 8: Ferrous ion profiles in the large model (19)-(26) and reduced model (31)-(35), when diffusities
and velocities are low.

Table 5: Errors of the reduced non-linear model (31)-(35), across space, time and schemes, with d
dxp =

−0.004,Γ = 0.01. Note that ∗ ∗ ∗∗ means not applicable due to stability issues).

Grid points Numerical schemes
max |error|, (×10−10)

Nt = 10 Nt = 20 Nt = 30 Nt = 50

Upwind differencing 4.2202 3.5408 3.5229 3.1326
Nx = 10 Central differencing ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗

Hybrid differencing 4.2206 3.5409 3.5230 3.1327

Upwind differencing 4.2216 3.5411 3.5231 3.1327
Nx = 20 Central differencing ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗

Hybrid differencing 4.2217 3.5411 3.5231 3.1327

Upwind differencing 4.2217 3.5411 3.5231 3.1327
Nx = 30 Central differencing ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗

Hybrid differencing 4.2217 3.5411 3.5231 3.1327

CPU time difference = CPUL − CPUS (52)

and

Relative CPU time =
CPUL − CPUS

CPUL

(53)

where CPUS is CPU time for the stoichiometrically reduced nonlinear model and CPUL

is CPU time for the original large linear model. In the experiments, we fixed the final
time at ten (T = 10) and used a fine time resolution (5000 time steps) to ensure that
results are not affected much by numerical discretization errors.

The final time was set at T = 10, Upwind, Central and Hybrid discretization were
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(a) Space, Γ = 10, ddxp = −0.008. (b) Time, Γ = 10, ddxp = −0.008.

Figure 9: Ferrous ion profiles in the large model (19)-(26) and reduced model (31)-(35), when diffusities
and velocities are high.

Table 6: Errors of the reduced non-linear model (31)-(35) across diffusivities, pressure gradient and
schemes, with Nx = 30, Nt = 50.

Dispersion Numerical schemes
max |error|, (×10−10)

d
dx
p = −4× 10−10 d

dx
p = −0.004 d

dx
p = −0.006 d

dx
p = −0.008

Upwind differencing 3.1327 3.1327 3.1327 3.1319
Γ = 0.1 Central differencing 3.1327 ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗

Hybrid differencing 3.1327 3.1327 3.1327 3.1326

Upwind differencing 3.1218 3.1030 3.0704 3.0157
Γ = 1 Central differencing 3.1154 ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗

Hybrid differencing 3.1281 3.1087 3.0843 3.0423

Upwind differencing 1.7284 1.5670 1.4876 1.4094
Γ = 10 Central differencing 1.7249 ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗

Hybrid differencing 1.7284 1.5747 1.4985 1.4233

applied to both models presented in Section 2 and the CPU time for models were mea-
sured. Figures 10a, 10c and 10e show plots of CPU time against times steps. For all
the schemes and for both models, the CPU time generally increased with increasing time
steps, however, the CPU time for the stoichiometrically reduced nonlinear model recorded
the least CPU time. Another observation is that, the CPU time difference between the
stoichiometric model and the large linear model increased with increasing time steps. This
observation can be seen clearly in Figures 10b, 10d and 10f.

Furthermore, to determine the CPU time saved by solving the stoichiometrically de-
coupled model instead of the large linear model, the CPU time differences for both models
(measured across all discretizations) were normalized by the CPU time for the large model,
(i.e using Equation (53)). Figure 11 shows the results of the investigation. About 80 per-
cent of CPU time will be saved if the stoichiometrically reduced nonlinear model is solved
instead of the large linear model.
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5. Conclusion

Mathematical models for reactive transport processes have high degrees of freedom due
to the presence of many species, participating in large reaction mechanisms. Most often,
not all the species profiles are of interest, but due to coupling with other species the entire
set of equations in the model must be solved simultaneously. This is computationally
expensive.

In this discussion, we have presented a model reduction procedure that is based on
stoichiometry and mass balances. This procedure is capable of reducing the high degrees
of freedom to any degree of interest (see Section 2.1 for details).

A multi-scale model with six degrees of freedom, that describes a passive treatment
method for acidic mine effluents has been presented and reduced by the procedure to
three degrees of freedom (follow the discussion in Section 2.2).

The resulting reduced model is non-linear, thus we presented numerical schemes that
are based on finite volume and time integration dicretization procedures. Three spatial
schemes (Upwind, Central differencing and Hybrid schemes) suitable for discretizing dif-
ferent flow-regime problems were coupled with backward Euler time approximation to
obtain a fully implicit scheme for the time-dependent advection-diffusion-reaction Equa-
tion (follow the discussion in Section 3).

Numerical experiments were performed to verify the numerical schemes, and results
show that the schemes were reasonably accurate and convergent (see Section 4.1 and 4.2).
All the numerical schemes were applied to the large linear and reduced non-linear models
(taking stability of the numerical schemes into consideration) in a numerical experiment, in
order to establish accuracy of the Stoichiometric procedure (discussed in Section 2.1). The
results showed that, the contaminant concentration (composed of ferrous ions, hydrogen
ions and ferric hydroxide) in both reduced and large models, decreased in time and space
as expected in the passive treatment method for mine effluent water. Furthermore, the
results revealed a remarkable accuracy for the stoichiometric decoupling method even
in the worse case. The reduction error did not cause stability issues for the numerical
schemes (the numerical schemes were able to contain the reduction errors) for varying
Peclet number conditions (follow the discussion in Section 4.3), this shows that the method
is compatible with numerical schemes.

Moreover, experiments were performed to determine cost of simulation for both large
linear and the stoichiometrically reduced nonlinear models using CPU time. Results
showed that the stoichiometrically reduced model recorded the least CPU time, and the
CPU time difference increased with increasing time steps. Relative CPU time difference
showed that about 80 percent of CPU time can be saved if stoichiometrically reduced non-
linear model is simulated instead of the original large linear model (follow the discussion
in Section 4.4).

Therefore, we conclude based on the evidence provided that, the stoichiometric decou-
pling procedure is an efficient method for reducing simulation cost of reactive transport
models, especially when some of the species are of interest as in this case of passive
treatment of acidic mine effluent water.
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(a) CPU time using Upwind scheme. (b) CPU time difference using Upwind.

(c) CPU time using Central scheme. (d) CPU time difference using Central scheme

(e) CPU time using Hybrid scheme. (f) CPU time difference using Hybrid scheme.

Figure 10: CPU time and CPU time differences for large linear and reduced nonlinear models using
Upwind, Central and Hybrid schemes, measured across time steps using 10 spatial steps.
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(a) Relative CPU time/Upwind/10 steps. (b) Relative CPU time/Upwind/200 steps.

(c) Relative CPU time/Central/10 steps. (d) Relative CPU time/Central/200 steps

(e) Relative CPU time/Hybrid/10 steps. (f) Relative CPU time/Hybrid/200 steps.

Figure 11: Relative CPU time for the large linear and reduced nonlinear models using Upwind, Central
and Hybrid schemes, measured across 5000 time steps using 10 and 200 spatial steps
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