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Abstract

Historical fault data are often difficult and expensive to acquire, which can prohibit the appli-

cation of supervised learning techniques in the condition-based maintenance field. Hence, novelty

detection techniques such as discrepancy analysis are useful because only healthy historical data

are required. However, even if discrepancy analysis is implemented on a machine, some historical

fault data will become available during the operational lifetime of the machine and could be utilised

to improve the efficiency of the condition inference process. An open set recognition methodology

relying on discrepancy analysis is proposed that is capable of detecting novelties when only healthy

historical data are available. It is also capable of inferring the condition of the machine if historical

fault data are available and it is further able to detect novelties in regions not well supported by

the historical fault data. In the condition recognition procedure, Gaussian mixture models are used

with Bayes’ rule and a decision rule to infer the condition of the machine in an open set recogni-

tion framework, where it is emphasised that it is beneficial to use the complete datasets (i.e. data

acquired throughout the life of the component) for optimising the models. The benefit of the open

set recognition model is that it is easy to incorporate new historical data in the framework as the

data become available. In this work, practical aspects of the condition inference process such as the

importance of good decision boundaries are highlighted and discussed as well. The methodology is

validated on a synthetic dataset and experimental datasets acquired under varying operating con-

ditions and it is also compared to a conventional classification process where discrepancy analysis is

not used. The results indicate the potential of using the proposed methodology for rotating machine

diagnostics under varying operating conditions.
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1. Introduction

Reliable condition monitoring techniques are essential when performing condition-based main-

tenance on expensive rotating machine assets [1, 2]. Advanced signal processing [3–13] and so-

phisticated supervised machine learning techniques [14–23] are actively investigated to improve the

condition monitoring task. Deep learning techniques have also recently been used to not only infer

the condition of the machine, but also to extract features from the raw dataset i.e. it is not necessary

to manually extract the features [24, 25].

However, many supervised machine learning techniques assume that all class labels are available

at time of training and therefore the techniques require much historical fault data to be available,

which can be expensive and impractical to acquire. This has resulted in novelty detection techniques

[26–28] and techniques which address the class imbalance between healthy and damaged states [25]

to be investigated for machine condition monitoring applications. Another shortcoming of standard

supervised learning techniques in the condition monitoring field is that the condition classification

task is implicitly addressed as a Closed Set Recognition (CSR) problem as opposed to an Open Set

Recognition (OSR) problem. In the OSR framework, it is assumed that the historical datasets are

samples from a population of damage modes and therefore the class label can only be assigned to

data that are well supported by a class from the historical dataset [29–34]. This is in contrast to

a CSR framework where it is assumed that the class label can only originate from the class labels

in the historical dataset and is implicitly used in most supervised machine learning approaches for

condition monitoring.

The differences between the decision boundaries of CSR and OSR frameworks are shown in

Figure 1(a) and Figure 1(b) for a machine with healthy historical data and historical fault data

of two damage modes. In the OSR framework (i.e. Figure 1(b)), predictions are only made in

regions supported by historical data as opposed to the CSR (i.e. Figure 1(a)). Hence, the CSR

framework can lead to erroneous results when used for data from a new class or data not supported

Abbreviations: CCP, Conventional Classification Procedure; CSR, Closed Set Recognition; CWT, Continuous
Wavelet Transform; DR, Decision Rule; EM, Expectation Maximisation; GMM, Gaussian Mixture Model; GNB,
Gaussian Naive Bayes; LDA, Linear Discriminant Analysis; LR, Logistic Regression; NLL, Negative Log-Likelihood;
PCA, Principal Component Analysis; QDA, Quadratic Discriminant Analysis.
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by the historical data, i.e. outliers. However, it has to be emphasised that both CSR and OSR
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Figure 1: The differences between the decision boundaries of a Closed Set Recognition (CSR) framework and an Open
Set Recognition (OSR) framework are shown in (a) and (b) respectively for artificial data. The proposed decision
boundaries that are required for an ideal OSR framework for machine condition monitoring are shown in (c). In (c),
the five classes used in (a) and (b) are reduced to three classes i.e. healthy, damage mode 1 and damage mode 2. The
intermediate condition refers to a machine that is somewhere between a healthy and a failure state.

frameworks are supervised learning problems where the labels are used in the loss function during

model optimisation. The key distinction between the aforementioned frameworks is the assumption

that is made of the class labels; if a complete representation of the potential class labels is available at

the time of training, it is a CSR problem, otherwise, it is a OSR problem. The open set recognition

problem does not only compromise the ability of conventional classifiers to correctly predict the

condition of the machine, it can also potentially compromise the effectiveness of automatic feature

extraction methods. This is because the automatic feature extraction methods for example are

optimised based on the data available at the time of training the model and may not be the optimal

features to separate new or unseen damage modes in the feature space.

Throughout the operational lifetime of a machine, the machine transitions from a healthy state

to some damaged state e.g. a crack initialises and grows. However, this results in problems when

using the OSR framework shown in Figure 1(b); only the discrete conditions can be labelled with

a class label, with the transitions between conditions labelled as novelties when the conditions

are well-separated in the feature space. Hence, it is necessary to exploit the complete dataset

(i.e. as the machine transitions from a healthy state to a damaged state) to learn the transition
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path of the features so that the correct label can be assigned as the machine transitions between

conditions. This results in decision regions shown in Figure 1(c). It is also easier to assign class

labels to the approach in Figure 1(c) as opposed to 1(b), because the damage initiation time and the

intermediate states may not be known for the historical fault data and can be difficult to estimate

without stopping and disassembling the machine.

Discrepancy analysis is a powerful novelty detection technique that allows gearbox diagnostics to

be performed under varying operating conditions [35–39]. In discrepancy analysis, a localised novelty

score or discrepancy measure is assigned to the extracted localised features with a model optimised

on the features of a healthy gearbox. The discrepancy measure calculated for the features at each

angle index is concatenated to form a discrepancy signal, which can subsequently be processed

to infer the condition of the component. Different inputs to the model e.g. windowed vibration

data [36], features extracted from the wavelet packet transform [39], features extracted from the

continuous wavelet transform [37, 38] as well as different models e.g. Gaussian mixture models [36],

Gaussian models [39], hidden Markov models [38] can be used in the process. The synchronous

average of the discrepancy signal is a very efficient technique for gear diagnostics under varying

operating conditions [35–38]. Despite the fact that discrepancy analysis can be used to infer the

condition of the machine and to characterise and trend damage, historical fault data will become

available during the operational lifetime of rotating machines and need to be utilised to improve

the condition monitoring task. Hence, the conventional discrepancy analysis approach to novelty

detection has to be extended so that historical fault data can be incorporated into the condition

inference process. This can be achieved by carefully designing a discrepancy analysis-based condition

recognition methodology which is able to

• operate when only healthy data are available e.g. for new machines without historical fault

information available,

• automatically infer the condition of the machine if historical fault data become available,

• include historical fault data from a new damage mode in the condition recognition procedure

i.e. without re-optimising the model on all of the historical data, and

• label data from new damage modes or data that are not well supported by historical data as

novelties i.e. it should be addressed as an OSR problem as opposed to a CSR problem.
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In this work, a condition recognition methodology is proposed that satisfies the aforementioned

properties by using discrepancy analysis as basis for automatic novelty detection and condition

inference. The main contributions of this research are summarised as follows:

• An OSR methodology using discrepancy analysis is proposed that can perform automatic

novelty detection and condition inference with probabilistic inference techniques.

• The methodology relies on discrepancy analysis which is capable of performing gearbox di-

agnostics under varying operating conditions [36–38]. The discrepancy signal is sensitive to

damage under varying operating conditions because fault sensitive features are used with a

model of the healthy features to generate the signal. Therefore, the features extracted from the

discrepancy signal are potentially sensitive to damage under varying operating conditions as

well. Therefore the methodology can be used for condition monitoring on machines operating

under varying conditions.

• It is demonstrated that the classification task is simplified by using discrepancy analysis as a

pre-processing step.

• It is demonstrated and emphasised that the classification accuracy does not necessarily convey

the actual performance of the classifier and that the characteristics of the decision boundaries

must be considered when dealing with condition monitoring problems.

• It is demonstrated that it is beneficial to use all of the available historical data as training

data (i.e. from a healthy machine to a failure), as opposed to defining discrete states for each

class or condition as shown in Figure 1(b), for an open set recognition problem. This results in

the trajectory of the data to be learned as the condition of the machine changes from healthy

to a specific damage mode as shown in Figure 1(c).

The proposed methodology is presented in Section 2, whereafter the condition recognition part

of the methodology is investigated on synthetic data in Section 3. The methodology is validated

on experimental data and compared to a conventional classification procedure that does not use

discrepancy information in Section 4. Finally, the work is concluded and recommendations are made

for future investigations in Section 5.
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2. Methodology

The proposed methodology is presented in Figure 2. Vibration data and rotational speed in-
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Figure 2: The proposed automatic novelty detection and condition inference methodology is presented, with the
sections containing each part of the methodology given as well. In this figure, it is assumed that there are historical
data of N − 1 damage modes available, with the class labels used consistently throughout this paper e.g. a class label
of 0 will always indicate a novelty or a rejected class label.

formation of the machine component are converted to a processed discrepancy signal using the

discrepancy analysis framework. The processed discrepancy signal is rich with diagnostic infor-

mation and therefore discrepancy features are extracted from the processed signal. The extracted

discrepancy signal features serve as an input to an OSR condition recognition system which is

capable of performing novelty detection and inferring the condition of the machine under varying

operating conditions. The rotational speed information can be acquired from tachometers or it can

be estimated from the vibration data itself.

More information on each step in Figure 2 is given in the subsequent sections. The proposed

methodology is a proof of concept and therefore different features and models can be used if desired.

2.1. Discrepancy analysis

Discrepancy analysis uses a model of the features, extracted from data that were acquired from

a healthy machine, to assign discrepancy measures to the features of new data. This discrepancy

measure is used to form a discrepancy signal which is analysed using techniques such as synchronous

averaging to infer the condition of the gearbox [35–38]. A brief overview of the features and models

used in this paper are given in this section.
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2.1.1. Feature extraction for discrepancy analysis

In this work, the feature extraction procedure for the discrepancy analysis step, is very similar

to the procedure used in Ref. [38]. In discrepancy analysis, it is necessary for the features to

be described in terms of time or shaft angle and therefore time-frequency analyses methods are

frequently employed [37–39]. Hence, the Continuous Wavelet Transform (CWT), which is popular

for analysing non-stationary signals for rotating machine diagnostics [4, 12, 23, 40], is used with a

Mexican hat basis function to obtain an angle-order distribution of the order tracked vibration signal,

with the order tracking performed with the available rotational speed (or phase) information. The

rotational speed can be estimated from measurement equipment [41] or estimated from the vibration

signal [42, 43] depending on the available equipment. The wavelet coefficients of the first three gear

mesh components are extracted for different shaft angles, whereafter a windowing procedure is

used to extract localised features from the wavelet coefficient signals. The windowing procedure is

described in detail in Refs. [38, 39]. In this work, ninety rectangular windows per gear revolution

with an overlap of 50% between coinciding windows are used on the wavelet coefficients of each gear

mesh component. The features extracted from each window are given in Table 1. The ten statistical

Table 1: The statistical features calculated for the windowed wavelet coefficients of each gear mesh frequency, with
more details on the features found in Refs. [18, 19, 44].

1 Mean 2 Standard deviation
3 RMS 4 Maximum
5 Kurtosis 6 Skewness
7 Shape factor 8 Impulse factor
9 Crest factor 10 Clearance factor

features in Table 1, applied to the wavelet coefficients of the three gear mesh components, result in

a 30 dimensional feature space and are denoted by bi ∈ R30 for the features extracted from window

i. Changes in the localised statistics of the wavelet coefficients, such as the localised impulsiveness

for example, as opposed to changes in the values of the wavelet coefficients are detected by the

healthy feature model. The benefit of this is illustrated in the paper by Schmidt et al. [39], where

the localised features can enhance the diagnostic information in the wavelet coefficients.

2.1.2. Discrepancy signal generation

The discrepancy signal is generated by firstly modelling the features extracted from the healthy

data, whereafter a discrepancy measure is assigned to the new features to construct a discrepancy

signal. A Gaussian Mixture Model (GMM) is used to model the features extracted with the process
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in Section 2.1.1, because it is able to represent any distribution to an arbitrary level of accuracy if

a sufficient number of mixture components is used [45] and it has performed well for discrepancy

analysis [36]. Heyns et al. [36] did not find an improvement by incorporating the operating condi-

tions in the GMM for discrepancy analysis and therefore only the fault features are used to optimise

the GMM in this section.

The GMM parameters are obtained from the Expectation Maximisation (EM) algorithm, which

is very efficient in iteratively obtaining the maximum likelihood estimates of the model parameters

[45]. The Negative Log-Likelihood (NLL) of a GMM with Nc mixture components [45]

η[l] = − log

 Nc∑
j=1

πb,jN (bl|µb,j ,Σb,j)

 , (1)

is used as a discrepancy measure, where bl denotes the features extracted from window l, πb,j is the

mixture coefficient, µb,j is the mean and Σb,j is the covariance of mixture component j of the GMM.

The mixture component πb,j weights the contribution of the jth Gaussian model to the probability

density function of the features and can be interpreted as the prior probability that component j

is active in the GMM [45]. The mean µb,j , covariance Σb,j and mixture coefficient πb,j of each

component j are the unknown parameters of the GMM and are estimated with the EM algorithm

on the healthy features. The number of latent states or mixture components, denoted by Nc, is

obtained by performing cross-validation. A multivariate Gaussian distribution over b is denoted by

N (b|µ,Σ) in Equation (1), where its mean and covariance are denoted by µ and Σ, respectively.

2.1.3. Discrepancy signal post-processing

The synchronous average is a useful tool for analysing whether the discrepancy signal contains

deterministic components attributed to gear fault impacts [36]. The synchronous average of the

discrepancy signal of measurement j, denoted by m
(j)
η ∈ RNs , is calculated with

m(j)
η [k] =

1

Nr

Nr∑
i=1

η [k + (i− 1)Ns] , (2)

where 1 ≤ k ≤ Ns, the discrepancy signal is denoted by η, the number of rotations that was

completed by the shaft is denoted by Nr and the number of samples per shaft revolution is an integer

and denoted by Ns. The synchronous average can also be useful for attenuating the amplitude

modulation due to non-cyclic stationary loads [46], which means that the synchronous averaged
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discrepancy signal can be even more robust to non-cyclic stationary operating conditions.

In the next section, the features extracted from the processed discrepancy signal and subse-

quently used for the condition recognition procedure, are presented and discussed.

2.2. Discrepancy feature extraction

Two features are extracted from the synchronous average of the discrepancy signal given by

equation (2) to infer the condition of the gear. The first feature

rj1 =
max(m

(j)
η )−min(m

(j)
η )√

1
Ns

(∑Ns
i=1m

(j)
η [i]2

) , (3)

makes it possible to discern between localised changes and uniform changes in the synchronous

average of the discrepancy signal. This is an important generalisation of the previous work in

discrepancy analysis which was focused on localised faults. The second feature

rj2 = max(m(j)
η )−min(m(j)

η ), (4)

is the range of the synchronous average of the discrepancy signal and is sensitive to localised changes

in the discrepancy signal. The features extracted from the synchronous average of measurement j

is denoted by a two-dimensional vector rj = [rj1, rj2]
T . The two features, extracted from Equation

(3) and Equation (4), have a low dimensionality which means that neither feature subset selection

nor dimensionality reduction techniques are required to circumvent the curse of dimensionality or

to visualise the features. The low-dimensionality of the feature space helps with understanding the

performance of different classifiers for machine condition monitoring which subsequently supports

the conclusions that are drawn from the results in this paper. However, more optimised features

can certainly be investigated to obtain classifiers that perform better.

The DC offset or mean value of the synchronous average of a healthy machine can be dependent

on the discrepancy model which can adversely affect the features extracted from the discrepancy

signal. Hence, the synchronous average of the first measurement of a dataset is subtracted from the

entire dataset to obtain synchronous averages that are roughly model independent, with the new

synchronous averages used in the feature extraction process. This is allowed, because it is assumed

that the machine starts from an approximately healthy condition and deteriorates over time.
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2.3. Condition recognition procedure

In this section, the condition recognition procedure that uses the discrepancy signal features in

Section 2.2 to infer the condition of the gear is presented. In the condition recognition procedure,

the objective is to recognise that the data is part of a specific class and to classify or label the data

accordingly. However, if the condition cannot be recognised, it means that either a new damage

mode is present or an outlier is detected and the data is labelled as a novelty. This is implemented

with a OSR model which consists of two steps; probabilistic condition inference is performed to

predict the class label of the machine, whereafter the class label is either accepted or rejected.

2.3.1. Probabilistic condition inference

It is desired to cast the condition inference problem in a OSR framework as opposed to the

conventional CSR framework. Scheirer et al. [30] formalised the OSR problem in their work and

contrasted it to the CSR framework used in many applications. Casimir et al. [31] investigated

a methodology using a nearest neighbour classifier with two rejection options for induction motor

diagnostics, while Lazzaretti [29] investigated an OSR methodology for power distribution events.

The work in Refs. [29, 30, 32, 33] used support vector machines to address the OSR problem,

where Lazzaretti et al. [29] found a support vector data description model performs the best of the

considered OSR models for power distribution event detection.

In the machine condition monitoring field, the machine starts from an approximately healthy

condition and deteriorates to a specific damage mode until the machine is stopped or the component

fails. Instead of searching for the crack initiation time in the historical data and discretizing the

data into different conditions to create different damage classes which can result in classification

problems as discussed previously, it is desired to learn the trajectory of the data by using the

complete dataset for the OSR model optimisation problem. If the trajectory of the data is learned,

it can be used to infer the condition of the machine at arbitrary damage states as seen in Figure

1(c). This is essential for applying OSR in the condition monitoring field.

The problem with learning the trajectory of the data is the resulting overlap between the data

of the healthy class and the data from the damaged modes as seen in Figure 1(c). This implic-

itly violates the objectives in the support vector optimisation task i.e. finding a hyperplane that

maximises the distance between two classes, and due to the fact that the trajectory needs to be

learned, it is concluded that support vector machines are not ideal for this task. GMMs have been
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successfully used for fault classification [47] and can potentially learn the trajectory of the data

through the feature space. However, density-based methods such as GMMs suffer from the curse of

dimensionality which adversely influence their performance in OSR problems [29]. The discrepancy

features’ dimensionality in condition monitoring is significantly lower than the dimensionality of

most OSR applications and alleviates the problems of GMMs in OSR problems. Hence, GMMs are

used with Bayes’ rule for the OSR task in this work.

The condition is inferred from the discrepancy signal features by selecting the class with the

highest posterior probability i.e. arg max
i

(P (Ci|r)), with the posterior probability of class Ci being

obtained with Bayes’ rule

P (Ci|r) =
p(r|Ci)P (Ci)

p(r)
. (5)

The likelihood function and prior probability of class i are denoted by p(r|Ci) and P (Ci) respectively,

with the unconditional density over the features denoted by p(r). A unique GMM likelihood function

is used for each class, with the GMM associated with class i denoted by

p(r|Ci) =

Nc,r∑
j=1

π
(i)
r,jN

(
r|µ(i)

r,j ,Σ
(i)
r,j

)
. (6)

In Equation (6), the parameters of the GMM are estimated with the EM algorithm separately for

each class i, with π
(i)
r,j , µ

(i)
r,j and Σ

(i)
r,j denoting the parameters of the jth component of class i.

The appropriate number of mixture components Nc,r in the GMM for the condition recognition

procedure is estimated by cross-validation. The complete dataset, i.e. from a healthy machine to

a damaged machine, is used in this methodology to optimise the GMM with each damage mode,

with only the healthy data being used to optimise the GMM of the healthy machine.

In Refs. [20, 21], the class with the largest likelihood for the dataset is the inferred class

i.e. arg max
i

p(r|Ci), which is the same as arg max
i

P (Ci|r) when each class has the same prior

probability. The same prior probability cannot be assigned to each class in this framework, because

there is a large overlap in the healthy data space when using the complete datasets of the damage

modes for trajectory learning, which can lead to significant classification errors in the healthy

data region. This problem can be resolved by giving the model that correspond to the healthy

machine features preference by ensuring that its prior probability is larger than the other models

i.e. P (Chealthy) > P (Ci) for all i 6= healthy. This comes from the expectation that the machine is

healthy, unless there is strong evidence that the machine is in a damaged condition. In this work
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P (Ci) = c for all i 6= healthy and P (Chealthy) = 2 · c, with the unknown constant c obtained by

ensuring the prior is a valid probability distribution i.e. by solving
∑

i P (Ci) = 1.

The benefit of using Bayes’ rule with the GMM is that it is efficient to incorporate historical

data from a new damage mode into this framework. This is performed by optimising a GMM on

the newly acquired data, whereafter the prior probabilities of all the models have to be recalculated

with the prior probability of the new class i set to P (Ci) = c as well. Thereafter, Equation (5) can

be used to predict the class label.

2.3.2. Acceptance or rejection of inferred class label

The posterior prediction obtained with Bayes’ rule in Equation (5) is dependent on the likelihood

value of the other classes due to the unconditional density, and it does not account for other classes

that can be present in the OSR problem [34]. Hence, a Decision Rule (DR) is used on the likelihood

function of the model or class i to determine whether the model is capable of predicting the class

label si ≥ 0 or not si < 0, with

si = log p(r|Ci)− αDR
i . (7)

The threshold and model fitness metric associated with the log-likelihood of class i is denoted by

αDR
i and si, respectively. If si < 0 for all i, it means that none of the models are capable of inferring

the correct class and therefore the class label predicted in Section 2.3.1 is rejected and a novelty

is detected. The posterior probabilities P (Ci|r) corresponding to the detected novelties are invalid

and are not used further in the analysis. If a novelty is detected by the condition recognition system,

it does not necessarily indicate that a new damage mode is present, but the data should rather be

investigated further by an expert in the field.

There are many criteria to select the threshold of class i, which will depend on the application

e.g. a tighter threshold can be used for critical machinery. In this work, αDR
i is selected so that 1%

of the validation set is labelled as a novelty.

2.4. Final remarks on the methodology

If discrete conditions are used to define damage modes, performance metrics such as the class av-

eraged accuracy and Youden’s index can be used to quantify the performance of the OSR model [33].

However, in the methodology, the complete dataset is used for training the condition recognition

system which poses some difficulties in quantifying the performance of the condition recognition sys-

tem i.e. the damaged class contains healthy data and the condition varies significantly throughout
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the dataset. Hence, the following procedure is used for evaluating the performance of the proposed

methodology:

• The measurement number at which the damage is detected and the characteristics of the

posterior probabilities of the classes are investigated.

• The characteristics of the decision boundaries of different classifiers are investigated and com-

pared, which is possible due to the two-dimensional discrepancy signal feature space. This

makes it possible to investigate the implications of different decision boundaries for detect-

ing a deteriorating gear condition which helps to evaluate the performance of the associated

classification models.

• The OSR abilities of the methodology is investigated by visualising the two-dimensional dis-

crepancy signal feature space. This makes it possible to evaluate the possibility of the OSR

to generalise for other damage modes.

3. Synthetic data investigation

An investigation is performed in this section on the discrepancy feature extraction and condition

recognition parts of the methodology presented in Figure 2, where it is assumed that the synchronous

average of the different damage modes are already available. The purpose of this investigation is

• to investigate the characteristics of the discrepancy features,

• to highlight the importance of the decision boundaries for machine condition monitoring,

• to highlight that it is beneficial to use the complete dataset as the gear transitions from a

healthy to a damaged state in OSR condition monitoring problems,

• and to compare the performance of the OSR condition recognition system to other conventional

CSR classifiers on the same data.
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3.1. Synthetic dataset

For the synthetic dataset, synchronous averages of six classes are generated with the following

equations

m1(j)η [l] = 0.1 · ε[l], (8)

m2(j)η [l] = κ · β · δ(l − blmedc) + 0.1 · ε[l], (9)

m3(j)η [l] = κ · β + 0.1 · ε[l], (10)

m4(j)η [l] = κ · β ·

δ(l − blmedc) +
3∑
j=1

2∑
k=1

(0.8− 0.2 · j) · δ
(
l − blmedc − j · (−1)k

)+ 0.1 · ε[l],

(11)

m5(j)η [l] = κ · β ·
bNs/3c∑
j=0

δ(j − l) + 0.1 · ε[l], (12)

m6(j)η [l] = κ · β + 0.1 · sin (10π · l/Ns) + 0.1 · ε[l], (13)

where for example, m1 denotes the synchronous average of Class 1 in Equation (8). In Equations

(8)-(13), j denotes the measurement number, l denotes the position on the gear with 1 ≤ l ≤ Ns

and l ∈ Z. The median of l is denoted by lmed. The condition of the component is indicated with a

scalar factor 0 ≤ κ ≤ 1, where 0 indicates a healthy condition and 1 indicates the component is in

its failure state according to the respective damage mode or class. The magnitude of the damaged

component in its failure state, denoted β, is sampled from a uniform distribution U with a domain

of [0.75, 0.90], i.e. β ∼ U [0.75, 0.90]. Zero mean Gaussian noise with a standard deviation of 1 is

denoted by ε[l]. The function δ(x) = 1 for x = 0 and δ(x) = 0 if x 6= 0 and the number of samples

in the synchronous average is Ns = 100. The mean and standard deviation of the six synthetic

synchronous average profiles are presented in Figure 3. Class 1 represents a healthy system, Class

2 and Class 4 represent localised damage such as a damaged gear tooth with slightly different

characteristics [36, 38], Class 3 and Class 6 represent damage over the whole profile of the gear

and lastly, Class 5 contains a relatively small portion of the gear that is damaged. The similarity

between Class 2 and 4 and Class 3 and 6 is purposefully used to make it a challenging problem for

the classifiers which will result in interesting decision regions.

The discrepancy features of the different classes, extracted with the procedure presented in

Section 2.2 are presented in Figure 4(i) for the data in Figure 3. The assumption is made that the
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Figure 3: The mean µ and the standard deviation σ of 100 synchronous averages of the discrepancy signals of the six
synthetic classes, investigated in Section 3. The data are generated with Equation (8) - (13).
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Figure 4: The features for the six classes in Figure 3 are presented in Figure 4(i). In Figure 4(ii), a stochastic transition
from Class 1 to Class 3 is presented as an example.

system starts from a healthy condition (i.e. Class 1 in Figure 3 and Figure 4(i)) and stochastically

transitions to the other conditions with an example shown in Figure 4(ii). The transition between

Class 1 and Class i is performed by linearly increasing the factor κ in the appropriate Equation

e.g. the κ in Equation (13) is changed for a transition between Class 1 and Class 6. The stochastic

transition seen in Figure 4(ii) is because β in Equation (10) is a random variable.

In the next section, CSR classification models are compared to the OSR model with the data of

the discrete classes in Figure 4(i) being used as training data.
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3.2. Discrete machine conditions for model optimisation

In this section, a conventional classification process is used where discrete states (e.g. a gear

with a broken tooth, a healthy gear etc.) are used as classes in the classification task to highlight

the limitations of CSR models and the limitations of using discrete states for OSR models.

Due to the characteristics of the features in Figure 4(i), it is expected that Linear Discriminant

Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (LR) and Gaussian

Naive Bayes (GNB) models will perform very well on the data and therefore the additional flexibility

that neural networks and support vector machines provide are not required. The aforementioned

models are implemented with scikit-learn [48] on the data in Figure 4(i) and compared to the

OSR model discussed in Section 2.3.1 and Section 2.3.2. The training data and a query point

are superimposed on the decision boundaries in Figure 5 for the LDA, QDA, LR and the OSR

model. The query point highlights that the CSR classifiers predict a class label for data far from the

training data and that the predictions are different due to the different characteristics of the decision

boundaries. The classification error of the classifiers are given in Table 2 on the testing data, with

the result of a GNB classifier presented as well. The LDA, QDA, LR and the OSR GMM classifiers

perform equally well, with the GNB performing slightly worse. The classification error is attributed

to the large overlap between Class 3 and Class 6. Even though the classification error is similar for

Table 2: Average classification error of the different models on the 200 testing measurements of each class, with the
testing data generated similarly to the data in Figure 4(i).

LDA QDA GNB LR GMM
9.25% 9.92% 12.33% 9.25% 9.25%

the aforementioned models, their decision boundaries in Figure 5 have very different characteristics.

The implication of this is that different predictions are made by the different classifiers as the data

transition from Class 1 to another class. This emphasises that the classification errors are not the

only important performance metric, but also the decision boundaries of the classifiers. The decision

boundaries in a CSR framework are obtained from an optimisation process aiming to minimise the

prediction error of the classifier for the historical data and may not necessarily have the desired

properties for machine condition monitoring problems.

The superiority of the OSR GMM with three mixture components is seen in Figure 5(iv). The

OSR GMM contains tightly fit boundaries around the regions supported by the historical data and

a white region between the clusters which has a class label of 0. This indicates that the model
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(iv) OSR GMM
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Figure 5: The decision regions for three classifiers using a CSR framework and the OSR model are superimposed
on the training data in this figure. The colourbar indicates the class label, where a class label of 0 indicates that
a novelty is detected in that region. Abbreviations: Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), Logistic Regression (LR) and Open Set Recognition Gaussian Mixture Model (OSR GMM).

is incapable of predicting the class label of the data in the regions that are not supported by the

historical data and therefore novelties are detected in those regions. This is in contrast to the CSR

classifiers, which can have misleading predictions in regions unsupported by the data.

The large novelty detection regions in Figure 5(iv) can however lead to problems when inferring

the condition of a deteriorating machine, i.e. novelties will be detected in the transition process. A

solution for this problem is therefore investigated in the next section.

3.3. Complete dataset for model optimisation

The OSR GMM decision boundaries in Figure 5(iv) are impractical for condition monitoring

purposes because novelties will be detected almost continuously during the condition transition
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process. Therefore, it is proposed in this article that the data of the transition from Class 1 to the

other classes are used for optimising the GMM classifier i.e. the whole dataset, as it transitions from

Class 1 to Class 3 in Figure 4(ii), is labelled as Class 3 in this section. Therefore, no distinctions

are made between the initial state and the final state when optimising the model.

The number of mixture components in the GMM of each class was determined with five-fold

cross-validation, with the number of components determined to be four. The training data and the

resulting decision regions of the OSR GMM are presented in Figure 6. It can be observed that the
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Figure 6: The decision regions for the OSR GMM that is optimised with the transition data is presented. For
example, the data of the transition from Class 1 to Class 3 in Figure 4(ii) are the training data of Class 3 for the OSR
GMM.

decision regions surround the training data, while the regions unsupported by the training data are

classified as novelties i.e. a class label of 0 is obtained.

The posterior probability of the OSR GMM classifier using the complete dataset is compared

to the posterior probability of the CSR LR classifier for the transition from Class 1 to Class 3 in

Figure 7, with arg max(P (Ci|r)) being used to infer the class label. A moving average with a length

of 30 and an overlap of 25 measurements was used on the raw probability data to reduce the noise

due to the stochastic transition process. The corresponding decision boundaries of the OSR GMM

and CSR LR classifiers are shown in Figure 6 and Figure 5(iii) respectively. Initially, the data are

in the healthy region and therefore the predicted class label is Class 1 for both classifiers. In Figure

7(i), the LR classifier incorrectly infers that Class 5 is present between measurement number 150

and 300 due to the characteristics of its decision boundary. In contrast to the LR classifier, the

GMM condition recognition system in Figure 7(ii) correctly infers the class during the transition

process. It is therefore clear from the results in Figure 6 and Figure 7(ii) that the decision regions
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Figure 7: The posterior probability of the different classes for the LR classifier and the condition recognition system
using the GMMs as the data stochastically transitions from Class 1 to Class 3. This is presented for the transition
data in Figure 4(ii), using the decision boundaries in Figure 6 and Figure 5(iii).

can be controlled by learning the trajectory of the data with an appropriate classifier and the full

training set (i.e. using continuous as opposed to discrete machine states), which is beneficial for the

condition recognition process. This also emphasises that care should be taken when using non-linear

classifiers that either transform the data to a high dimensional space e.g. support vector machines,

or perform automatic feature selection e.g. neural networks. Using the aforementioned classifiers

can result in the classes to be perfectly separated, but the decision regions may not preserve the

important characteristics for machine condition monitoring applications.

The posterior probability in Figure 7(ii) does not indicate a change in condition between mea-

surement number 200 and 1000 and can therefore not be used for fault trending. This is because the

only aim of the condition recognition system is to determine whether the data belong to a specific

class or not (when a novelty is detected). Therefore, it is suggested that the latent variables or

hidden states of the GMM be used to detect changes in the features. The hidden states for the

testing data, obtained from maximising the posterior distribution over the latent states as described

in Ref. [45], are presented in Figure 8 for the model of Class 3, with three progression stages iden-

tified. The rapid alternation between two states indicate that the data reside in a region of the

Figure 8: The hidden states of the GMM associated with the data of Class 3 as the data transition from Class 1 to
Class 3.
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feature space well supported by two clusters i.e. there is a large overlap between the two clusters.

The first hidden state is associated with the healthy data region, whereafter the active hidden state

change as the data move through the different clusters, which can support maintenance decisions.

For example, the first progression stage can signal a warning and if the latent state of the GMM

reaches the final progression stage i.e. stage 3, the machine needs to be stopped immediately.

The results in this section validate the abilities of the proposed discrepancy features, they

highlight the benefits of using an OSR as opposed to a CSR framework, and the importance of the

decision boundaries in the machine condition monitoring field is emphasised as well. In the next

section, the methodology is validated on experimental data.

4. Experimental validation

The proposed methodology is validated on experimental gearbox data, acquired under varying

operating conditions, in this section. An overview of the dataset is given in Section 4.1, whereafter

the proposed methodology is investigated in Section 4.2 and compared to a conventional classifica-

tion approach in Section 4.3.

4.1. Experimental dataset

The experimental setup, shown in Figure 9, consists of an alternator and an electrical motor

which are independently controlled to exert specific operating conditions on the three helical gear-

boxes seen in the figure. Two healthy and two accelerated life tests were performed on the setup by

Figure 9: Experimental setup

introducing artificial damage on the gear of the test gearbox. The centre helical gearbox, labelled

as the test gearbox in Figure 9, was monitored for damage throughout the fatigue tests by taking

regular vibration measurements. The axial component of the tri-axial accelerometer, which is lo-

cated on the bearing housing of the test gearbox, is used as source of vibration data. The optical

probe and the zebra-tape shaft encoder are used to obtain the rotational speed information of the

input shaft of the test gearbox and is used in the discrepancy analysis step of the methodology
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shown in Figure 2. The operating conditions that were imposed on the system are presented in

Figure 10. The duty cycle of the operating conditions is 10 seconds, with each measurement having
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Figure 10: The operating conditions that were present for each measurement. The rotational speed is calculated from
the geometrically compensated [41] tachometer signal.

a duration of 20 seconds. The sampling frequency of the vibration signals was 25.6 kHz and the

sampling frequency of the tachometer signal was 51.2 kHz.

In the first experiment, vibration measurements were taken from a healthy test gearbox, where-

after the gearbox was disassembled and the gear was seeded with damage as shown in Figure 11(i).

The gearbox was reassembled with the damaged gear and operated again with the operating con-

ditions shown in Figure 10 until the gear tooth failed as shown in Figure 11(ii). In the second

experiment, data were collected from a healthy gearbox whereafter the gearbox was disassembled

and reassembled with a gear shown in Figure 11(iii). The gearbox was operated again, with the

operating conditions in Figure 10 imposed on the system, until the damaged tooth ultimately failed

as shown in Figure 11(iv). More severe damage was seeded in the gear in Figure 11(iii) compared

to the gear in Figure 11(i) by creating a slot that was 20% deeper in the gear tooth. This resulted

in a significantly shorter time of operation (i.e. 3 days as opposed to 20 days) and a more abrupt

failure for the damaged gear in the second experiment.

In all subsequent sections where the data are shown over measurement number for the damaged

gears, the first measurement was acquired for the gear in the initial condition (i.e. Figure 11(i) for

experiment 1 or Figure 11(iii) for experiment 2) and the last measurement was acquired for the

gears in their final condition (i.e. Figure 11(ii) for experiment 1 or Figure 11(iv) for experiment

2). In contrast, the healthy gears were in the same condition for all healthy gear measurements

of the two experiments. The healthy gear data will be referred to as healthy or a class label of 1

will be given, while the damaged gears will be referred to as damaged or a class label of 2 will be

given where necessary. This is to be consistent with the class labels in Figure 2. If more damage
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(i) Exp. 1: Before (ii) Exp. 1: After

(iii) Exp. 2: Before (iv) Exp. 2: After

Figure 11: Damaged gears before and after the two fatigue experiments are presented with an arrow that indicates
the location of the damage. The gear of the first experiment was tested for approximately 20 days before failure, in
contrast to the second gear that ran approximately for 3 days before failing.

modes were to be investigated, it would be necessary to use more descriptive labels for the damaged

datasets.

4.2. Application of proposed methodology

In this section, the proposed methodology in Section 2 is investigated on the experimental data

of the Section 4.1. The first part of the investigation focuses on a novelty detection problem where

only healthy historical data are available and the second part focuses on a novelty detection and

classification problem where there are historical fault data available as well. A summary of the data

used in the investigations of this section is presented in Table 3. Discrepancy analysis, the first step

of the methodology in Figure 2, is investigated for the experimental datasets in the next section.
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Table 3: The number of measurements used for the different datasets in the investigations, with the training and
testing datasets being unique. The novelty detection training data refer to the case where the condition recognition
system is only optimised with healthy data, where the classification training data refer to the case where the condition
recognition system is optimised with historical fault data as well.

Dataset Training Training Testing
description (Novelty detection) (Classification) (Novelty detection & Classification)

Exp. 1: Healthy 44 44 50
Exp. 2: Healthy 0 0 50
Exp. 1: Damaged 0 166∗ 500∗

Exp. 2: Damaged 0 0 215∗

∗The measurements are evenly spaced throughout the life of the gear.

4.2.1. Discrepancy analysis

The discrepancy analysis step is implemented using the procedure described in Section 2.1 on

the healthy historical experimental data. The number of latent states in the GMM is estimated by

using five-fold cross validation which resulted in eight latent states i.e. Nc = 8 in Equation (1) to

be used. The synchronous average of a healthy gearbox and a gearbox with localised gear damage,

calculated with Equation (2), are presented in Figure 12. The localised damage at 180o is easily
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Figure 12: The synchronous average of the discrepancy signals of a healthy gearbox and of a gearbox with a damaged
tooth at 180o is presented.

identified when compared to the synchronous average of a healthy gearbox and looks similar to

Class 2 and Class 4 in Figure 3.

Heyns et al. [36] illustrated that discrepancy analysis is better suited than using the synchronous

average or power spectral density of the vibration signal for gearbox diagnostics under varying

operating conditions. This is illustrated by comparing the synchronous averaged vibration signal

and the synchronous averaged discrepancy signal in Figure 13 for two measurements of the damaged

gearbox of the first experiment. It is evident that the synchronous averaged discrepancy signal is

more sensitive to damage than the synchronous averaged vibration signal. Therefore, it is sensible to

use the synchronous averaged discrepancy signal as opposed to the synchronous averaged vibration

signal in the next step.
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Figure 13: Synchronous averaged vibration signals are compared to synchronous averaged discrepancy signals of a
gearbox with a damaged tooth at 180o for two measurements.

4.2.2. Discrepancy feature space of experimental dataset

The discrepancy features, discussed in Section 2.2, are presented in Figure 14 for the four gear

datasets presented in Section 4.2 and Table 3. In Figure 14(i), all the datasets start at the zoomed

portion box, also indicated by ”Initial” and as the gear condition changes, the features move to

”Final” with a trajectory in a similar direction as Class 2 and Class 4 in Figure 4(i). The large

(i) Full feature space

4 6 8 10
Feature 1

20

40

60

F
ea

tu
re

2

Initial

FinalExp. 1: Healthy

Exp. 1: Damaged

Exp. 2: Healthy

Exp. 2: Damaged

Zoomed portion

(ii) Zoomed portion

3 4 5 6 7
Feature 1

10.0

12.5

15.0

17.5

F
ea

tu
re

2

Figure 14: The full feature space of the four experiments is presented, with a zoomed view of the healthy feature
region as well. In Figure 14(i), the starting position of the transition process, denoted ”Initial”, and the stopping
position of the transition process, denoted ”Final”, are presented for clarity.

overlap in the healthy data region in Figure 14(ii) is attributed to the fact that the damaged

gears start approximately in a healthy condition, i.e. the seeded damage is small, whereafter

the gears deteriorate during the experiments. The influence of the deterioration of the gear is

clearly seen in Figure 14(i), with the two gears having approximately the same trajectory. The

slight differences in the trajectories are attributed to the fact that the seeded damage had different
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characteristics which resulted in a more abrupt failure for the second gear. The disassembling and

reassembling process between the experiments also resulted in the features to have slightly different

characteristics, however, the effect of this is negligible in comparison to the changes in the features

as the condition of the gear changes.

In the next section, the condition recognition system is only optimised on healthy data, to test

its ability to perform novelty detection.

4.2.3. Classification with only healthy historical data (Novelty detection)

It is necessary to test the ability of the condition recognition system to perform novelty detection

when only historical data from a healthy machine are available. Therefore, it is assumed that only

the healthy historical data in Table 3 are available for optimising the classifier presented in Figure

2. The discrepancy features are extracted from the aforementioned healthy historical data with the

procedure discussed in Section 2.2, whereafter a single GMM is optimised on the healthy historical

data with the procedure discussed in Section 2.3.1.

The objective of the condition recognition system is only to infer whether the features are from

a healthy machine or not i.e. a novelty is detected and therefore it is unnecessary to use Bayes’

rule given by Equation (5). Hence, the GMM of the healthy features and the decision rule given by

Equation (7) are used in the condition recognition system to label the data as healthy (i.e. class

label of 1) or as a novelty (i.e. class label of 0).

The next step is to evaluate whether the trained condition recognition system can infer the

condition of the gearbox correctly for different gear conditions. The testing measurements from the

four datasets in Table 3 are used to evaluate the performance of the condition recognition system,

with the class labels presented in Figure 15. The healthy gear data in Figure 15(i) and 15(ii) are

classified correctly with only three measurements being incorrectly labelled as novelties in Figure

15(i) i.e. they are labelled as class 0. These three measurements are outliers in the dataset.

Most of the initial damaged gear measurements of the first experiment are classified as healthy

in Figure 15(iii) due to the small damage which resulted in an overlap in the healthy feature region

as seen in Figure 14(ii). As the condition of the gear deteriorates, novelties are detected at an

increasing rate until the gear tooth ultimately fails. In contrast to the result in Figure 15(iii), the

damaged gear of the second experiment does not contain evidence of a long transition from healthy

to damage period in Figure 15(iv). A few of the measurements are classified as novelties which can

indicate the presence of damage, with the failure occurring in the final stages of the experiment.
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Figure 15: The output of the condition recognition system in Figure 2 for the different datasets when only healthy
historical data are available. The inferred class label correspond to the class labels in Figure 2, with 0 indicating a
novelty and 1 corresponding to the healthy class.

The detection of the failure in the final stages of the experiment is not a deficiency of the method;

the seeded damage was more severe for the second experiment than for the first experiment which

resulted in a significantly shorter experimental time (i.e. 3 days as opposed to 20 days) due to the

gear tooth failing abruptly.

The synchronous averaged discrepancy signals, corresponding to the measurements where nov-

elties are detected in Figure 15(iii) and Figure 15(iv), are presented in Figure 16. The many

(i) Exp. 1: Damaged

0 45 90 135 180 225 270 315 360
Position on gear [deg]

0

25

50

N
L

L

(ii) Exp. 2: Damaged

0 45 90 135 180 225 270 315 360
Position on gear [deg]

0

20

40

N
L

L

Figure 16: The synchronous averaged discrepancy signals which correspond to the novelties detected in Figure 15(iii)
and 15(iv) are presented in Figure 16(i) and Figure 16(ii), respectively. Different colours are used to emphasise that
the synchronous averages of different measurements are presented.

synchronous averages in Figure 16(i) make it difficult to interpret the results in the figure and

therefore a three-dimensional figure is presented in Figure 17 of the same results. There are not

many novelties detected in Figure 15(iv) and not many synchronous averages presented in Figure
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16(ii), which makes the results in Figure 16(ii) easy to interpret and therefore a three-dimensional

surface is not shown for that data. The results in Figures 16 and 17 indicate that the novelties,

detected in Figure 15(iii) and Figure 15(iv), are due to localised damage on a gear tooth. Hence,

Figure 17: The results in Figure 16(i) are presented as a three-dimensional surface to make it easier to interpret the
results.

it is not only possible to automatically label the measurements from a damaged gearbox under the

varying operating conditions in Figure 10 as novelties with the condition recognition system, but

also to characterise the damage by manually investigating the corresponding synchronous averaged

discrepancy signal.

In the next section, it is investigated whether it is possible to update the condition recognition

system after historical fault data become available. The ability of the condition recognition system

to correctly infer the condition of the gearbox is investigated as well.

4.2.4. Classification with healthy and damaged gear historical data

In this section, it is assumed that the historical damaged gear data, presented in Section 4.1

and Table 3, are available after the condition recognition system has already been optimised as a

novelty detector in the previous section. Hence, the historical fault data, labelled as the training

data in Table 3 need to be incorporated into the condition recognition system. The training data

of the damaged class are spaced throughout the life of the gear from its initial damaged state and

its failure state as described in Table 3.

The condition recognition system is updated by firstly optimising a new GMM on the damaged
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class discrepancy signal features, whereafter the prior probabilities of the healthy and damaged gear

classes are calculated as discussed in Section 2.3.1. The resulting prior probabilities of the classes

are therefore P (Chealthy) = 2/3 and P (Cdamaged) = 1/3. Hence, the condition inference procedure

works in two steps: Firstly, the likelihood p(r|Ci) of the GMM of the damaged gear (optimised in

this section) and the GMM of the healthy gear (optimised in the previous section) are calculated

for the discrepancy signal features of a new measurement. Thereafter, the likelihoods and the prior

probabilities are used with Bayes’ rule to infer the condition of the gear as described in Section

2.3.1. The inferred class is then either accepted or rejected (i.e. labelled as a novelty) according to

the procedure in Section 2.3.2.

The OSR GMM using Bayes’ rule, with and without the decision rule given by Equation (7),

are investigated on the four experimental datasets, with the resulting decision boundaries presented

in Figure 18. Both classifiers distinguish the different classes well, but the classifier without the
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Figure 18: The decision region for the GMM condition recognition system in Section 2.3.1 with and without the
decision rule is superimposed on the features of the experimental datasets. Note: Different colour bar ranges are used
in Figure 18(i) and 18(ii)

decision rule is incapable of detecting new classes and outliers as evidenced in Figure 18(i). The

classifier with the decision rule learned the trajectory of the data as the gear’s condition deteriorates

and can indicate when there is a region in the feature space unsupported by the training data as

seen in Figure 18(ii).

The posterior probability of the different classes calculated using Equation (5) for the four

datasets, are smoothed using a moving average window with a length of 5% the number of measure-

ments and a 90% overlap, and presented in Figure 19. The healthy gear data in Figure 19(i) and

Figure 19(ii) are classified correctly. The damaged gear posterior probabilities in Figure 19(iii) and

Figure 19(iv) indicate that the gears started from approximately healthy conditions, whereafter the
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Figure 19: Posterior probability of the two classes for the four experimental datasets using the condition recognition
system with the decision rule.

damage progressed up to the failure of the tooth. The damage in Figure 19(iii) can be detected

at the 244th measurement, while the damage in Figure 19(iv) is detected at the 203rd measure-

ment. The different characteristics in Figure 19(iii) and Figure 19(iv) are attributed to the different

characteristics of the seeded damage and experimental time discussed in Section 4.1.

The change in probability for the damaged gears is evidence that the condition of the gears

change with measurement number, however, it is shown in Section 3 that the hidden states contain

useful information as well. The hidden states of the GMM for the associated class, determined by

the procedure described in Bishop [45], are presented in Figure 20 for the damaged gears. The two
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Figure 20: The hidden state in which the data reside as a function of measurement number for the damaged gears.
Three stages are identified in Figure 20(i) and labelled with Roman numerals.

damaged datasets exhibit very similar characteristics. The first two states are visited for the initial

measurements and as the gear deteriorates, state 3 and 4 become more active. The presence of
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Stage II and III in Figure 20(i) indicate that the tooth failed or that failure is imminent. Due to

the abrupt failure of the second gear tooth, the progression between Stage II and III is not seen.

The hidden states can therefore be used in the maintenance decision making process, for example if

the gear is classified as damaged and if state 2 is visited more frequently, a warning is issued and if

state 3 and 4 (i.e. Stage II to III) is reached, the machine needs to be stopped as soon as possible.

It is concluded that the methodology is capable of detecting novelties and classifying the data

correctly. The benefits of the open set recognition framework is clearly highlighted on the synthetic

and experimental data. However, the benefits of using discrepancy analysis as a pre-processor for

the classification problem has not yet been investigated. This investigation is performed in the next

section.

4.3. Comparison to a Conventional Classification Procedure (CCP)

The aim of the investigation in this section is to highlight the benefits of using discrepancy

analysis prior to extracting the features used for classification. The feature extraction procedure in

Section 2.1.1 is extended for a Conventional Classification Procedure (CCP) to circumvent the use

of discrepancy analysis in the condition inference procedure. The following process is used:

• Calculate the CWT of the order tracked vibration signal for the first three gear mesh compo-

nents according to Section 2.1.1.

• Calculate the statistics given in Table 1 for the entire measurement. Hence, the windowing

procedure is not used and this results in a single 30 dimensional feature set to be extracted

for each measurement of the four datasets.

• The condition recognition system cannot be efficiently optimised due to the high dimen-

sionality of the features, hence the dimensionality of the features is reduced with Principal

Component Analysis (PCA). PCA is used, because it performed the best of all dimensional-

ity reduction methods used for gear diagnostics in Ref. [18]. The PCA model is optimised

on the historical data which is used to project the features on a lower-dimensional principal

component feature space. The accumulative contribution rate is used to determine the appro-

priate dimensionality of the principal component feature space [38], which resulted in three

dimensions to be used.

In Figure 21, the proposed discrepancy features and the CCP features are compared for 44

historical healthy measurements and 44 historical damage measurements, with the latter spaced
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evenly over two days before the first gear failed. The 44 historical damage measurements used in

Figure 21(ii) are not included in Table 3 and are used to compare the sensitivity of the features to

faults. The two classes in Figure 21(i) are fairly well separated, with only a few samples overlap-
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(ii) Proposed discrepancy features
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Figure 21: A comparison of the feature space using the proposed discrepancy features in Section 2.1.1 and the
conventional features discussed in Section 4.3.

ping. However, the proposed discrepancy analysis features in Figure 21(ii) separate the two classes

significantly better than using the principal components of the raw features, which indicate that the

proposed discrepancy features are more sensitive to damage. The large variance of the historical

damaged data in Figure 21(ii) is attributed to features’ sensitivity to the large change in machine

condition as the gear tooth failed.

In Section 4.2, 44 healthy measurements are used for optimising the healthy GMM and 166

damaged gear measurements are used for optimising the model of the damaged GMM as outlined in

Table 3. However, the 166 damaged measurements did not work very well with the PCA model due

to the large overlap between the healthy historical data and the healthy portion of the historical

fault data as shown in Figure 22(i). In contrast, the condition recognition system in Figure 22(ii)

performs significantly better when using the 44 damaged measurements in Figure 21(ii). Performing

dimensionality reduction with the complete dataset did not separate the classes well which resulted

in poor decision boundaries. Hence, the historical features presented in Figure 21(i) are used in the

CCP for all subsequent analyses.

The principal component feature space, superimposed on the decision boundaries of the condition

recognition system, is presented in Figure 23 for the four datasets. It is difficult to see the trajectory

of the features as the gear condition deteriorates for the two experiments in contrast to Figure 14.

There a difference in the trajectory in the final stages of the condition transition process for the

two experiments i.e. Exp. 1: Damaged and Exp. 2: Damaged in Figure 14. This resulted in

some measurements of the second experiment with the damaged gear i.e. Exp. 2: Damaged to be

31



(i) With 166 historical damage measurements
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(ii) With 44 historical damage measurements
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Figure 22: The decision region for the proposed condition recognition procedure with the 44 measurements in Figure
21(i) used for optimising the damaged model in contrast to using the damaged measurements discussed in Table 3. A
class label of 0 corresponds to a novelty, a class label of 1 corresponds to a healthy gear and 2 corresponds to a gear
with localised damage.
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Figure 23: The principal component feature space of the features from the four experimental datasets using the
procedure discussed in Section 4.3 is shown with the decision regions of the condition recognition system.

incorrectly classified as outliers.

The posterior probability of the datasets, calculated with the same procedure as section 4.2, is

presented in Figure 24. It is clear from the results that the classifier is capable of predicting the

class label correctly for the healthy measurements and in the final measurements of the damaged

gears, the damage is detected. The damage in Figure 24(iv) is detected at the same measurement

number as in Figure 19(iv) due to the fact that the tooth failed abruptly. However, the damage

in Figure 24(iii) is detected at the 460th measurement, which is significantly later than in Figure

19(iii), because the discrepancy features are more sensitive to changes in machine condition.

Hence, processing the data with discrepancy analysis results in a better performance (e.g. it
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Figure 24: The posterior probabilities of the two classes for the four experiments using the principal component
features with the condition recognition system, i.e. discrepancy analysis is not used.

detects damage earlier and clearer decision boundaries are obtained) and therefore it is sensible to

include discrepancy analysis in the OSR methodology.

5. Conclusion and recommendations

In this paper, an open set recognition methodology is proposed and investigated on a synthetic

dataset and on experimental datasets acquired under varying operating conditions. It is shown that

the methodology is capable of detecting novelties when only historical fault data are available, it

is able to predict the condition of the machine from the data if historical fault data are available,

it is easy to adapt the model when historical fault data of a new damage mode become available

and class predictions are only made when the data are in regions supported by the historical data.

If the new data are not supported by the historical data, a novelty is detected and the data can

be manually analysed to infer the condition of the machine. The methodology is also compared to

the case where discrepancy analysis is not used to process the data. It is shown that the proposed

discrepancy features are very sensitive to damage and they perform significantly better than using

principal component analysis to reduce the dimensionality of the feature space. Lastly, it is also

shown that learning the trajectory of the data as the condition of the machine changes can improve

the predictive capabilities of the classifier, especially in the open set recognition framework.
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In future work, it is suggested that this methodology be extended to the case where multiple

faults are present, for more complicated gearboxes such as planetary gearboxes and also for other

types of faults such as bearing damage. Distinguishing between localised and distributed gear

damage is very important and needs to be addressed in future experimental studies as well. It is

suggested to investigate and compare other potential feature extraction methods and models for

OSR. The predictive uncertainties obtained from Bayesian data analysis can also potentially be

used in the condition monitoring field for OSR problems. Deep learning techniques, which have

much potential for rotating machine diagnostics, must also be adapted to incorporate the open

set recognition problem and the continuous transitions between healthy and damaged states in

the model. Lastly, the experimental setup, the operating conditions and the seeded damage are

simplifications of actual characteristics of gearboxes found in industrial environments and therefore

the methodology needs to be validated on industrial machines as well.
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