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Abstract: The classical Transportation Problem (TP) Tableau which utilizes continuous 

variable cost has been used to model and solve distribution problems. However, many real 

distribution problem decisions which require various combination of fixed and variable cost 

and having several mixed variables of the binary integers and continuous types make this 

approach limited. This challenge requires new integrated models that are also NP hard for 

which exact algorithms such as branch and bound, cutting plane algorithm may be inefficient 

to use as the problem size increases in practical business cases. We present in this paper, an 

integrated model of Facility Location (FL) and Step-Fixed Charge Transportation Problem 

(SFCTP). This problem is solved using a solution heuristic that utilizes relaxation and 

linearization approach to recast it to the classical TP as a starting solution. For the improved 

solution, a low cost and efficient perturbation heuristic that works in a row-wise manner is 

developed. We also propose a lower bound based on literature as a guide in achieving a 

solution. Lastly, a numerical example is presented to illustrate the procedures of the solution. 

 

Keywords:  Facility location, step-fixed charge, linearization and relaxation, row 

perturbation heuristic 

 

 

1. Introduction  

Decisions of different time horizons such as Facility location, route selection and load 

consolidation are often encountered in distribution planning. While models exist in literature 

that supports making each of these decisions separately, there is a need to plan them in an 

integrated manner if global optimality is intended. The classical distribution model or 

transportation problem is an example of a single decision model which uses variable routing 

cost and is solved using the transportation tableau.  However, this simplistic approximation 

may not be realistic in many business cases, and has prompted research into the area of 

transportation planning with fixed charges. These fixed charges are often incurred when 

siting facilities and during route selection planning for distribution. This means there is the 

need to plan both the location of the storage facilities like depots and warehouses in an 
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integrated manner with the selection of route for the distribution of the materials, in which 

there are fixed charges along the route. There does not seem to have been many solutions 

provided for such problems. 

The complexity of the problem may be further increased by considering the fact that in route 

planning today, there may be economy or diseconomy of scale in the consolidation of load. 

Such may be due to price break or volume discounts economies or long distance traffic 

diseconomy amongst others, and these are becoming more real on daily basis as supply 

chains become longer. This means we may be dealing with an integrated problem of Facility 

Location, load consolidation and vehicle routing with fixed charge and price breaks as a 

typical instance. This type of problem is not unusual in practice, and so, there is a need to 

develop a solution for such problem.  

Integrated models and solutions such as the Fixed Charge Transportation Problem (FCTP) 

and the Step-Fixed Charge Transportation Problem (SFCTP) are examples of variants of the 

classical TP. These variants relax the entire linearity assumptions of the classical 

transportation cost objectives. [1] described the FCTP as one in which there is a variable cost 

and a fixed cost incurred for opening a transportation route with a shipment greater than zero. 

Also according to [2] in his analysis of another variant of the FCTP, known as the SFCTP, 

there can be more than one fixed cost incurred for opening a transportation route with the 

objective function behaving like a step function or a piece wise linear function. 

The FCTP has attracted a lot of research interests where the fixed charges in the problem 

statement are either at the source or along the routes. Models and solutions presented by  [3] , 

[4], [1], [5] and [6] show that the fixed charges could occur either at the source or along the 

routes. Recently, new models and solutions have emerged with various variants of the FCTP 

such as in the works of [6], [7], [8] and [9]. The SFCTP variant of the FCTP is seen in the 

multi-item volume (or weight) transportation cost discounting models of  [10]  and volume 

discount on distribution cost of  [11], [12]. Research in the field of the SFCTP is growing as 

indicated by [2] , [13]  and [14] with new problem type models and solution techniques being 

continually developed. [5] gave practical applications such as increasing taxes due to high 

turnover or some increasing fees paid after attaining some user level. [14] extended the Fixed 

Charge Solid Transportation Problem (FCSTP) by presenting a lagrangian relaxation 

heuristic for the Step-Fixed Charge Solid Transportation Problem (SFCSTP) to solve large 

instances of the problem.  

 

As indicated by [14] and [16] the FCTP has been argued to be an NP-hard problem. Similarly 

[14] has shown the SFCTP to be  much harder to solve than the FCTP. This is quite logical 

due to the fact that the step function introduces more non- linearity into the objective 

function, making the problem much more difficult to solve. In order to reduce the expensive 

computations of exact methods such as the cutting plane algorithm, branch and bound for 

mixed integer and integer variable problems which could provide optimal solutions but 

inefficiently  with increase in  problem size,  heuristics have been developed to solve the 

SFCTP. Although heuristics have the possibility of terminating quickly at a local optimum 

and giving suboptimal solutions as  indicated by [2] , in most instances their solutions are 
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good and efficient. [17], [18] and [5] in solving the FCTP and SFCTP proceeded with  good 

initial solutions through binary integer variables linearization and relaxation. Moreover, in 

the case of [5], their  improved solution to the SFCTP was obtained through the use of a 

perturbation logic. 

 

The cost of facility location is a type of fixed charge that FCTP problems and most 

importantly SFCTP problems have not considered extensively. [19] presented an integrated 

Step fixed charge with facility location costs problem and referred to it as Capacitated 

Facility Location Problem with Piecewise Linear Transportation Cost (CFLP with PLTC). 

While the fixed charges for both the FCTP and SFCTP are incurred as a result of the use of a 

route from a supply point, facility location costs are incurred due to siting or opening of 

facilities before any shipping are done through the routes [20].  Facility location fixed charge 

as described by [21] is therefore a longer horizon decision and different from the route 

selection fixed charge. Merging this with FCTP or SFCTP gives a problem that seeks to 

optimize both Facility Location Problem (FLP) and Step- Fixed Charge Transportation 

Problem (SFCTP) decisions together. This problem can be described as the Step-Fixed 

Charge Transportation and Location Problem (SFCTLP). 

Facility location in itself is known to be NP hard, and so is vehicle routing and load 

consolidation, and so, it is expected that the problem considered would be NP hard. The usual 

approach, therefore, is to either simplify the problem through the transformation of the 

original problem into some more solvable approximation, or through the relaxation of some 

original constraints, or to solve the original problem using some heuristic, or in certain 

instances, have some combinations of all these approaches. These approaches are seen in 

integrated facility location models of [19], [22] and [23] 

This paper considers a heuristic to solve the SFCTLP, and is illustrated with a small hands-on 

problem size example. This is done in order to show an in-depth understanding of  the 

workings of our solutions for the SFCTLP in a similar manner to [1] and [24]. The main 

objective in this article is about minimizing the traditional distribution problem cost of a 

source to destination where a minimum number of facilities with known capacities have to be 

chosen from amongst other competing capacitated facilities or locations with fixed location 

costs in order to ship an item through routes with step-fixed costs. 

 

This SFCTLP emanates also as a variant of the SFCTP in like fashion as the SFCTP and 

SFCSTP. We proceed by discussing the formulation of, and reviewing known starting initial 

solutions for solving the SFCTP before presenting the integrated model for the SFCTLP, 

followed by a solution heuristic and then a numerical example. 
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2. SFCTP Model Formulation  

 

The classical TP, and its variants such as FCTP, SFCTP, SFCSTP are described as  𝑚 

suppliers and 𝑛 demand point distribution problems, where  𝑚 denotes the number of sources 

(factories, warehouses or distribution centers) and 𝑛 refers to the number of customers or 

demand points. There are supply and demand requirements which often are represented as 

capacities 𝑆𝑖 and demand 𝐷𝑗   for each source 𝑖  and demand point 𝑗 respectively over a known 

time period. The  𝑚 suppliers incur a unit transportation cost 𝑐𝑖𝑗  per unit distance and a fixed 

charge ℎ𝑖𝑗  whenever a transportation route is opened (utilized for shipping) under constraints 

of supply capacity meeting a typical demand of transportation algorithm.  

 

There are more than one fixed charges in the route (𝑖, 𝑗) when Step fixed charges are 

considered. In the SFCSTP, the fixed charges are represented by the vehicle cost of 

conveying different volumes of the load. While, in SFCTP, the fixed charges may be incurred 

either through duties, taxes or vehicle costs of different volumes transported. The number of 

fixed charges depends on the number of break points in the step function desired. In this case, 

two steps of fixed charges, ℎ𝑖𝑗1 and ℎ𝑖𝑗2, are considered without loss of generality. The fixed 

charge ℎ𝑖𝑗1  is incurred when a route is opened and termed as 𝐻𝑖𝑗1  in the objective function 

and the second ℎ𝑖𝑗2  is incurred when the shipment load (or transported unit) exceeds an 

amount  𝐴𝑖𝑗, and termed as 𝐻𝑖𝑗2  in the objective function also.  𝐴𝑖𝑗 is referred to as the break 

point and may be fixed or varying per route (𝑖, 𝑗) depending on the model under 

consideration. When there is load distribution in any route i.e.  𝑥𝑖𝑗 ≥ 0, ℎ𝑖𝑗1  is incurred. 

While ℎ𝑖𝑗2   is incurred when 𝑥𝑖𝑗 ≥ 𝐴𝑖𝑗. 

 

The standard mathematical model for the SFCTP is represented below: 

Min Z =  

      

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗    + ∑ ∑ ∑ 𝑔𝑖𝑗𝑘ℎ𝑖𝑗𝑘        

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

                                       (1) 

                         

Subject to 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 =      𝑆𝑖𝑦𝑖             ∀  𝑖 = 1 − 𝑚                                               (2) 

 

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 − 𝑛                                                   (3) 

 

∑ 𝑆𝑖𝑦𝑖

𝑚

𝑖=1

 =      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 − 𝑚, ∀  𝑗 = 1 − 𝑛       (4) 
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Where 𝑔𝑖𝑗1  =  {
1      𝑥𝑖𝑗  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ,   𝑔𝑖𝑗2    =  {

1    𝑥𝑖𝑗 >  𝐴𝑖𝑗  

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        

𝑦𝑖 =   0 𝑜𝑟 1                                                                                              
𝑥𝑖𝑗  ≥ 0                                                                                                       

 

[2] noted that the solution methods of the SFCTP depend on the break point position i.e. if 

𝐴𝑖𝑗 <  min (𝑆𝑖 , 𝐷𝑗  )  or 𝐴𝑖𝑗 ≥  min (𝑆𝑖 , 𝐷𝑗  ). If 𝐴𝑖𝑗 ≥  min (𝑆𝑖 , 𝐷𝑗  ), the optimal solution to 

the SFCTP is an optimal solution to FCTP . The SFCTP solution heuristic of [5] and the 

SFCTLP heuristic presented in this paper work through building a relaxed cost matrix which 

are modifications of [18] relaxation for the FCTP.  In our model the binary integer 𝑧𝑖𝑗  

associated with the fixed charges ℎ𝑖𝑗 (standard SFCTP model above) or  𝐻𝑖𝑗  (in our model 

below) is replaced by  𝑥𝑖𝑗 𝑀𝑖𝑗⁄    where 𝑀𝑖𝑗  =  min (𝑆𝑖 , 𝐷𝑗  ). Thus a relaxed cost matrix is 

formed. [5] followed in similar fashion to obtain a first relaxed cost matrix 𝐶𝑖𝑗 =  𝑐𝑖𝑗  +
ℎ𝑖𝑗1 + ℎ𝑖𝑗2 

𝑀𝑖𝑗
  or 𝐶𝑖𝑗 =  𝑐𝑖𝑗  +

𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 

𝑀𝑖𝑗
  and second relaxed cost matrix 𝐶𝑖𝑗 =  𝑐𝑖𝑗  +

 ℎ𝑖𝑗2 

𝑀𝑖𝑗−𝐴𝑖𝑗 
    or   

𝐶𝑖𝑗 =  𝑐𝑖𝑗  +
 𝐻𝑖𝑗2 

𝑀𝑖𝑗−𝐴𝑖𝑗 
   .  

  

To improve their initial solution of SFCTP,  [5] demonstrated that the number of  basic 

variables for a near optimal solution of the SFCTP having two steps (or tiers)  can be greater 

than(𝑚 + 𝑛 − 1) that is traditionally expected for a classical TP. They considered a 

minimization model of the step-fixed charge problem and presented a numerical example to 

support their claim. They also noted that for a two tier or two step fixed charge problem 

where load distribution 𝑥𝑖𝑗 is such that 𝑥𝑖𝑗 ≤ 𝐴𝑖𝑗 or 𝑥𝑖𝑗 > 𝐴𝑖𝑗 , perturbation moves would 

result in above or below 𝐴𝑖𝑗  distribution. This is quite logical as it expected that some 

optimal load values would occur at the break points.  They also established that using the 

transportation problem would create solutions with (𝑚 + 𝑛 − 1)  or less to which a particular 

perturbation would be needed to redistribute the load units to take advantage of the fixed 

charges along the routes. 

In Figure 1 and 2  below, the cost objective pattern with different fixed cost values and  the 

expected linearization as illustrated by [5] are shown. 
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Fig. 1: Two-step linearization and relaxation Structure [5] 

 

 

 

Fig. 2: Linearization and relaxation structure when Hi j1 < Hi j2 

[2] however showed the limitation of the second relaxed cost in the works of [5] when 𝑀𝑖𝑗 ≤

𝐴𝑖𝑗  with 𝐶𝑖𝑗 (relaxed cost) not giving a positive result. They further proposed three formulas 

for calculating relaxed cost (𝐶𝑖𝑗) which are based on firstly whether 𝐴𝑖𝑗 < 𝑀𝑖𝑗 or  𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗, 
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secondly on  𝐴𝑖𝑗  being included or not in the formula and thirdly on the number of 𝑀𝑖𝑗 − 𝐴𝑖𝑗  

shipments done. They used  𝑓𝑖𝑗1   and   𝑓𝑖𝑗2  as their route fixed cost in their formulas as 

represented below.  

 

The first one was given as 𝐶𝑖𝑗 = {
𝑐𝑖𝑗  +  

𝑓𝑖𝑗1 

𝑀𝑖𝑗
           𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗  

𝑐𝑖𝑗  + 
𝑓𝑖𝑗1 +𝑓𝑖𝑗2 

𝑀𝑖𝑗
    𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗

    ∀(𝑖, 𝑗)        5(a) 

 

The second given as 𝐶𝑖𝑗 = {
𝑐𝑖𝑗  +  

𝑓𝑖𝑗1 

𝑀𝑖𝑗
           𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗  

𝑐𝑖𝑗  +  
𝑓𝑖𝑗2 

𝑀𝑖𝑗−𝐴𝑖𝑗 
    𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗

    ∀(𝑖, 𝑗)         5(b) 

 

The third given as 𝐶𝑖𝑗 = {
𝑐𝑖𝑗  +  

𝑓𝑖𝑗1 

𝑀𝑖𝑗
           𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗  

𝑐𝑖𝑗  +
𝑓𝑖𝑗2 

𝐴𝑖𝑗
+  

𝑓𝑖𝑗1 

𝑀𝑖𝑗−𝐴𝑖𝑗 
    𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗

    ∀(𝑖, 𝑗)        5(c) 

 

 From their analyses they came to the conclusion  that the first formula gave the best 

approximation when compared to [18] and [5] and they also made suggestions as to using the 

other formulas as  better starting solutions for the SFCTP. 

 

 

3. SFCTLP Problem Structure And Formulation 

Two methods are utilized for the linearization and relaxation of the initial solution 

development of SFCLTP. The first procedure is as described by [18] , [5] and [2]  which 

employs the transportation model variable cost structure to form a relaxed cost matrix .  

As discussed in earlier sections, the position of 𝐴𝑖𝑗  i.e.  𝐴𝑖𝑗 <  𝑀𝑖𝑗 or 𝐴𝑖𝑗 ≥  𝑀𝑖𝑗  in 

developing the relaxed or reduced transportation cost matrix would have an effect on the 

SFCTP solution found. We also note that the break point position i.e. 𝐴𝑖𝑗 <  𝑀𝑖𝑗 or 𝐴𝑖𝑗 ≥

 𝑀𝑖𝑗  for any problem involving a two tier fixed charge cost on a route would affect the 

relaxation and perturbation pattern when seeking for a solution heuristic. Therefore, we have  

extended the model of [18] , [5] and more importantly the second formula by Altassan, El-

Sherbiny [2] by creating our starting SFCTP part of the problem using 

𝐶𝑖𝑗 = {
𝑐𝑖𝑗  +  

ℎ𝑖𝑗1 

𝑀𝑖𝑗
               𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗  

𝑐𝑖𝑗  + 
ℎ𝑖𝑗1 +ℎ𝑖𝑗2 

𝑀𝑖𝑗−𝐴𝑖𝑗 
    𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗

    ∀(𝑖, 𝑗)     5(d) 

We have used a summation of route fixed costs ℎ𝑖𝑗1 + ℎ𝑖𝑗2  or (𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 ) instead of ℎ𝑖𝑗2  

(𝐻𝑖𝑗2 ) alone to account for incurring the fixed cost ℎ𝑖𝑗1  (𝐻𝑖𝑗1 ) whenever a route is opened 
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before ℎ𝑖𝑗2  is incurred due to the break point 𝐴𝑖𝑗 . Also, we have used ℎ𝑖𝑗   instead of 𝑓𝑖𝑗 used 

in the route fixed costs. 

The second procedure develops an average relaxation method, as indicated by equation (14) 

below. This second method relaxes the location variable 𝑦𝑖  by creating an average location 

variable value 𝑦𝑖
𝑎 for all the competing locations. Through some perturbation techniques 

developed on the initial solution, better solutions are obtained.   

Our problem is stated as the Capacitated Facility Location with Step- Fixed Charges along 

the transportation routes i.e. Step- Fixed Charge Transportation and Location Problem 

(SFCTLP). 

3.1    Model assumptions 

We make the following assumptions in our model: 

1.  Deterministic input 

2. One stage or Two echelon problem  

3. Two step-fixed charge cost   

4. Single period and single item distribution problem. 

3.2    Model Parameters:  

𝑖      : Index for sources (plants, locations or row)  

𝑚    : Number of sources (plants , warehouses etc.)  

𝑛     : Number of destinations (or demand point)  

𝑗      : Index for demands (destinations or columns)   

𝑘     :  Index for Levels or (number of steps)  

 𝑐𝑖𝑗  : Unit cost of shipment on route (𝑖, 𝑗)  

𝑆𝑖    : Capacity for each location 𝑖 

ℎ𝑖𝑗1 : First level fixed cost on route(𝑖, 𝑗)  

ℎ𝑖𝑗2 : Second level fixed cost on route(𝑖, 𝑗) 

𝐻𝑖𝑗1 : First level step-fixed cost based on load distribution  

𝐻𝑖𝑗2 : Second level step-fixed cost based on load distribution  

 𝑥𝑖𝑗  : Allocation variable (or load distributions) along route (𝑖, 𝑗) 

𝑦𝑖    : Location variable for plant or source (0 or 1) 

𝑔𝑖𝑗1  : Step-fixed charge variable (determining first or second level of fixed cost) 

𝑧𝑖𝑗   : Fixed charge variable in the objective function (0 or 1)   

𝐴𝑖𝑗   : Break point for  the fixed costs along the route (𝑖, 𝑗) 

 

 

 

 

 

 



9 
 

3.3 Mathematical Model (Objective function and Constraints): 

(Objective function) 

Minimize   Z   =   

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗    + ∑ 𝐹𝑖 𝑦𝑖

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗         

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

              (6a) 

                                                                                              

      Where:    

       

∑ ∑ 𝐻𝑖𝑗1  

𝑛

𝑗=1

𝑚

𝑖=1

= ∑ ∑ 𝑔𝑖𝑗1ℎ𝑖𝑗1  

𝑛

𝑗=1

𝑚

𝑖=1

 

 

∑ ∑ 𝐻𝑖𝑗2  

𝑛

𝑗=1

𝑚

𝑖=1

= ∑ ∑ 𝑔𝑖𝑗2ℎ𝑖𝑗2  

𝑛

𝑗=1

𝑚

𝑖=1

 

 

∴ 

∑ ∑ 𝐻𝑖𝑗1  +  ∑ ∑ 𝐻𝑖𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

 =   ∑ ∑ 𝑔𝑖𝑗1ℎ𝑖𝑗1  + ∑ ∑ 𝑔𝑖𝑗2ℎ𝑖𝑗2  

𝑛

𝑗=1

𝑚

𝑖=1

 

𝑛

𝑗=1

𝑚

𝑖=1

 

 

 Where: 

 𝑔𝑖𝑗1  =  {
1      𝑥𝑖𝑗  > 0 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ,   𝑔𝑖𝑗2    =  {

1    𝑥𝑖𝑗 >  𝐴𝑖𝑗  

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

 =   ∑ ∑ 𝐻𝑖𝑗1  𝑧𝑖𝑗 + ∑ ∑ 𝐻𝑖𝑗2

𝑛

𝑗=1

𝑚

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

 𝑧𝑖𝑗 

 

Subject to (constraints): 

 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 ≤      𝑆𝑖𝑦𝑖             ∀  𝑖 = 1 − 𝑚                                                   (7) 

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

 =      𝐷𝑗              ∀  𝑗 = 1 − 𝑛                                                       (8) 

     

∑ 𝑆𝑖𝑦𝑖

𝑚

𝑖=1

 ≥      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 − 𝑚, ∀  𝑗 = 1 − 𝑛          (9)  

 

𝑥𝑖𝑗  ≥ 0                                                                                                    (10𝑎)    

𝑦𝑖  = 0 𝑜𝑟 1      𝑧𝑖𝑗  = 0 𝑜𝑟 1                                                       (10b) 
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Equation 6(a) is the objective function.  The first term is a variable cost, the second term is 

the facility location cost and third term is the route step- fixed charge cost. Equation (7) is the 

supply capacity constraint of each location or sources. Equation (8) is the demand constraint 

to be met.  Equation (9) is the aggregate constraint for supply and demand balance. Equation 

(10a) refers to the non-negativity constraint and (10b) refer to the binary integer constraints. 

 

4    Solution Method 

 

Our solution method iterates through the steps and rules below in seeking for an improved 

solution: 

Step 1:  We develop an initial solution by linearization and relaxation of the binary variables 

(𝑦𝑖  𝑎𝑛𝑑 𝑧𝑖𝑗 )   in the model problem  

Step 2:  We calculate a lower bound for SFCTLP.   

Step 3:  Improve our initial solution through a structured perturbation procedure which we 

refer to as Row Perturbation Heuristic (RPH) 

 

The RPH works through improving the initial solution method by iterating through the 

following well established procedures of moving to a good low cost solution in an efficient 

manner. [19] discussed how the use of some of the rules below can drive towards a reduced 

cost solution. 

(a) Least cost rule 

(b) Utilization rule 

(c) Fixed cost elimination  rule (Location fixed cost and route selection fixed cost) 

(d) Feasibility rule  

 

The heuristic uses the least cost rule to determine which sources to open and where to 

allocate capacities. Moreover, it allocates load units to reduce the number of fixed costs 

incurred i.e. facility location cost and route fixed  costs by pushing load units to  already open 

sources, closing unneeded locations in the process and also  moving away from the higher tier 

fixed cost. Feasibility rule is been used to ensure capacity and demand constraints are 

satisfied during the load redistribution. 

 

4.1     Initial Solution  

 

This is achieved through the linearization and relaxation of integer (binary) variables i.e. the 

facility location  𝑦𝑖 and fixed charge selection 𝑧𝑖𝑗 variables. A relaxed transportation problem 

(RTP) is thus formed as result.  

Using the relaxation of integer variables described earlier: 

Where:   𝑧𝑖𝑗  =  𝑥𝑖𝑗 𝑀𝑖𝑗⁄  and 𝑀𝑖𝑗 = min (𝑆𝑖 , 𝐷𝑗  ) 

 

Using equation (9), The minimum supply requirement implies that: 
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∑ 𝑆𝑖𝑦𝑖

𝑚

𝑖=1

 ≥      ∑ 𝐷𝑗

𝑛

𝑗=1

             ∀  𝑖 = 1 − 𝑚, ∀  𝑗 = 1 − 𝑛     (11)      

 

We develop a new location variable𝑦𝑖
𝑎, which is the average of   ∑ 𝑦𝑖

𝑚
𝑖=1  to help relax the 

location variable 𝑦𝑖.  Thus equation (11) is restated as 

 

∑ 𝑆𝑖

𝑚

𝑖=1

 𝑦𝑖
𝑎  = ∑ 𝐷𝑗

𝑛

𝑗=1

                                                      (12) 

 

∴   

∑ 𝑆𝑖

𝑚

𝑖=1

 𝑦𝑖
𝑎  = ∑ ∑ 𝑥𝑖𝑗    

𝑛

𝑗=1

𝑚

𝑖=1

                                            (13) 

∴   

 

𝑦𝑖
𝑎   =     

∑ ∑ 𝑥𝑖𝑗     𝑛
𝑗=1

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

                                            (14) 

 

Substituting  𝑦𝑖
𝑎    for  𝑦𝑖  and      𝑧𝑖𝑗  =  𝑥𝑖𝑗 𝑀𝑖𝑗⁄   we transform equation (6a) as: 

Minimize   𝑍𝑅1=   

 

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗    + ∑ 𝐹𝑖 𝑦𝑖
𝑎

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝐻𝑖𝑗𝑘

𝑥𝑖𝑗

𝑀𝑖𝑗

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

              (6b) 

 

Substituting equation (14) in  (6b) gives: 

 

Minimize 𝑍𝑅1 =   

 

∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗    + ∑ 𝐹𝑖   [
∑ ∑ 𝑥𝑖𝑗     𝑛

𝑗=1
𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

] 

𝑚

𝑖=1

+    ∑ ∑ ∑ 𝐻𝑖𝑗𝑘

𝑥𝑖𝑗

𝑀𝑖𝑗

2

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

           (6c) 

 

𝑍𝑅1    =  

 

∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
∑ 𝐻𝑖𝑗𝑘

2
𝑘=1

𝑀𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

  𝑥𝑖𝑗                                                                   (6𝑑) 

 

Therefore  

𝑍𝑅1  =  ∑ ∑[ 𝐶𝑖𝑗]

𝑛

𝑗=1

𝑚

𝑖=1

  𝑥𝑖𝑗                                                                                              (6𝑒)  
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Where;  

𝐶𝑖𝑗 =  𝑐𝑖𝑗 +
∑ 𝐹𝑖  𝑚

𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
∑ 𝐻𝑖𝑗𝑘

2
𝑘=1

𝑀𝑖𝑗
      ∀ (𝑖, 𝑗)                                                          (15)  

 

However, considering the break point analyses we made in section 3 earlier, equation (15) 

would be limited. Therefore using equation 5(d), equation 6(d) can further be stated as   

 

𝑍𝑅2    =  

 

∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 

𝑀𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗                                   𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗        ∀(𝑖, 𝑗)  

or 

 ∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 

𝑀𝑖𝑗 − 𝐴𝑖𝑗 
    ]

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗              𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗            ∀(𝑖, 𝑗)             (6𝑓) 

 

From equation (6f) above, the cost matrix from which the transportation tableau will be 

constructed is given as: 

 

𝐶𝑖𝑗 =  𝑐𝑖𝑗 +
∑ 𝐹𝑖  𝑚

𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 

𝑀𝑖𝑗
      ∀ (𝑖, 𝑗)      𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗                                                  (16𝑎) 

or  

𝐶𝑖𝑗 =  𝑐𝑖𝑗 +
∑ 𝐹𝑖  𝑚

𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 

𝑀𝑖𝑗 − 𝐴𝑖𝑗 
      ∀ (𝑖, 𝑗)           𝑖𝑓 𝐴𝑖𝑗 < 𝑀𝑖𝑗                                (16𝑏) 

 

The linear Equation (6f) above can be solved using any optimal solution technique for 

transportation model (e.g. method of Modified U-V distribution method). This is present in 

optimization transportation software such as Tora. 

 

The load distribution obtained from the relaxed cost  𝑍𝑅2 in equation (6f) is used in 

calculating 𝑍 in equation (6a) and would be termed the current best solution(Z𝐶𝐵). After this, 

necessary perturbations following our rules are employed to arrive at another Z which is 

compared to the initial Z𝐶𝐵 .  Comparing the values of Z𝐶𝐵  and  𝑍 , If  Z𝐶𝐵 ≤ 𝑍  we keep  

(Z𝐶𝐵) as the current best, otherwise i.e. Z𝐶𝐵 > 𝑍, we term 𝑍 as the current best.  

 

 

4.2   Lower bound calculations 

 

Using equation 5(a) and our average location variable 𝑦𝑖
𝑎  in equation (14) we have also 

extended [2]  best  starting solution for  SFCTP . Our SFCLTP lower bound is thus calculated 

below.   
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𝑍𝐿𝐵  =  

 

∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 

𝑀𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗                                 𝑖𝑓 𝐴𝑖𝑗 ≥ 𝑀𝑖𝑗        ∀(𝑖, 𝑗)  

 

or 

      ∑ ∑ [𝑐𝑖𝑗 +
∑ 𝐹𝑖

𝑚
𝑖=1

∑ 𝑆𝑖
𝑚
𝑖=1

 +
𝐻𝑖𝑗1 + 𝐻𝑖𝑗2 

𝑀𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 𝑥𝑖𝑗              𝑖𝑓      𝐴𝑖𝑗 < 𝑀𝑖𝑗        ∀(𝑖, 𝑗)           (6𝑔) 

 

 

4.3      Solution   Improvement    (using The RPH proposed): 

 

The 𝑥𝑖𝑗  allocations obtained from the optimal solution of equation 6(f) is further perturbed 

using structured combinations of the least cost preference, high utilization of open locations 

and systematic elimination of fixed cost either by closing an open location or by preventing 

use of high fixed charge along the routes. The perturbation technique aims at getting a better 

solution while using the rules stated in section 4 as a guide. The Perturbation moves are a top- 

down load re-distribution along a column of each row to ensure that feasibility in demand is 

attained as described in the (4 × 4) transportation tableau in figure 3 below. 

𝑆𝑖 (location capacity) , 𝐷𝑖 (Demand capacity) . The last column represents relaxed cost 

summation along a row. 

 
Fig. 3: Sample perturbation moves 
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From equation 6(a) above, we observe that there are three cost terms in the objective function 

namely;  

(1) Variable cost (𝑉𝑐)  =   𝑐𝑖𝑗𝑥𝑖𝑗  

(2) Location or source fixed cost (𝐿𝑐 ) = ( 𝐹𝑖𝑦𝑖   )  

(3) Step fixed cost (𝑆𝐹𝑐) = ( ∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗  )   2
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1 .  

 

The degree of the values obtained for each of the terms would determine the solution 

procedure and perturbation technique to be used.  We therefore note the following scenarios 

out of several possible ones for our structured perturbation logic: 

(a)   𝑉𝑐   ≫   𝐿𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐      (Variable cost having the largest value);  

(b)   𝐿𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐      (Location cost having the largest value); 

(c)   𝑆𝑓𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑 𝐿𝑐       (Step-fixed cost having the largest value); 

(d)   𝑉𝑐   ≅   𝐿𝑐   ≅   𝑆𝐹𝑐         (The three terms being approximately equal) 

 

The Summarized perturbation procedure is given below; 

 

1. Using the linearization in 6(f) to obtain the starting solution and initial load distribution. 

The 𝑍 obtained is termed the current best (Z𝐶𝐵). 

 

2. (a) Calculate the values of the major terms of the objective function i.e. 𝑉𝑐, 𝐿𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐  

(b.1) If     𝐿𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐   go to step (3),  

(b.2) Else If   𝑆𝑓𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑 𝐿𝑐 go to step (4). 

(b.3) Else go to Step 1 and exit Procedure. 

 

3. (a.1) For location cost reduction (𝐿𝑐)  if dummy rows are obtained from step (1) 

    (a.2) Yes: ignore row and capacity in calculation. Else go to Step (3b.1) 

    (b.1) Check if  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −  ∑ 𝐷𝑗

𝑛
𝑗=1  ≥  min (𝑆𝑖=1 ⋯𝑚) , excluding 𝑖 =  𝑑𝑢𝑚𝑚𝑦 𝑟𝑜𝑤. 

    (b.2)  If true proceed to 3c.1, 

    (b.3)  Else if  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1 =  0   Stop and exit procedure. Return Z𝐶𝐵  

    (b.4) Else go to Step 3h. 

    (c.1)  Identify whether rows or locations with partially utilized capacities are available 

    (c.2) arrange in the order of decreasing ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚  where 𝐶𝑖𝑗 →    

relaxed cost matrix (Break ties arbitrarily and select largest.) 

    (d.1) Identify rows or locations with fully utilized capacities and arrange in the order of 

decreasing ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚  where 𝐶𝑖𝑗 → relaxed cost matrix (Break 

ties).If yes go to (3e.1).  If none go to Step (3g). 

    (e.1) Is there an 𝑋𝑖𝑗 with maximum 𝐶𝑖𝑗 position according to the row identified in Step 

(3d.1) ? 

    (e.2)Yes: Remove allocations starting with maximum 𝐶𝑖𝑗 position  from open and allocated 

𝑋𝑖𝑗 positions of the fully utilized rows as identified in Step3(d.1) or ( as per  partially 

utilized row as in step (3g) ) and add into position (𝑖, 𝑗)  of  the partially utilized rows in a 
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decreasing order  of ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚 to balance the row capacity (break 

ties as step3c).  

   (e.3)  No: maximum position has no load then move to next in rank of 𝐶𝑖𝑗, (break ties 

arbitrarily )  

    (f) Repeat step 3(e) until allocations have been completely removed in the fully or   

partially utilized row identified as per step (3e).  Go to Step (3h) 

     (g) Arrange the partially utilized location or row capacity in an order of decreasing 

∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚, ( break ties as in Step3c)  and select Maximum. Repeat 

Steps (3e) to (3f). 

     (h.1) Use the current load distribution to calculate 𝑍(𝑛𝑒𝑤)  . Compare the values of Z𝐶𝐵  

and  𝑍(𝑛𝑒𝑤)  

(h.2) If  𝑍(𝑛𝑒𝑤) <  Z𝐶𝐵   we term 𝑍 as the current best and go to Step (1).  

(h.3) If otherwise i.e. 𝑍 (𝑛𝑒𝑤) >   Z𝐶𝐵,  Stop and exit procedure. 

4.   (a.1) For the Step-fixed charge cost reduction, check if any dummy rows? 

(a.2) Delete any dummy rows or unutilized locations obtained in step 1. 

(b.1) Identify if rows or locations with partially utilized capacities are available 

(b.2) Arrange in the order of increasing ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚  where 𝐶𝑖𝑗 →  

relaxed cost matrix (Break ties arbitrarily).  

(c) Identify rows and locations with fully utilized capacity and arrange in the order of 

increasing  ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚 . (Break ties as in Step4b).  

If none go to Step (3b). 

(d.1)  Check If  there are open and allocated 𝑥𝑖𝑗 positions greater than  𝐴𝑖𝑗 within the 

largest row as identified by step (4c) at maximum 𝐶𝑖𝑗 position?  

(d.2.) No: If maximum position has no load move to next in rank of 𝐶𝑖𝑗 

(d.3) Yes:  Check if un-allocated position𝑠 𝑥𝑖𝑗 of the row as identified by step (4b.1) can 

accommodate move.  

(d.3.1)  No : If current capacity cannot accommodate the reallocation, move to the next 

ranked partially utilized capacity row according to  Step(4b.1) Proceed till the identified 

 𝑥𝑖𝑗 position in step(4d.1) or ( 4g) has been redistributed in a single step of 𝐴𝑖𝑗. If no 

partially utilized row with availability go to Step (3b). 

    (d.3.2) Yes: Redistribute (𝐴𝑖𝑗) identified at Step(4.d.1) starting with the 𝑥𝑖𝑗 with at 

maximum 𝐶𝑖𝑗 position  

    (f.) Repeat Step (4b) to (4d) until moves already taken are about to be repeated or till a 

position   𝑥𝑖𝑗 − 𝐴𝑖𝑗 after using step (4d or 4g) becomes 𝑥𝑖𝑗 . Use the current load 

distribution to calculate  𝑍 . go to Step (3b). 
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4.4   RPH Flow Chart Description 

A flow chart showing the perturbation steps described above and how they iterate to improve 

the starting solution is presented in figure 4 below. The flow chart symbols utilized have the 

same meaning as standard flow chart symbols.  

 

RPH iterative procedure as shown in the flow chart uses the initial solution to determine 

quickly whether location Fixed cost elimination or upper tier route fixed cost elimination 

would be appropriate to achieve an overall  cost reduction. The load redistribution using the 

order of decreasing  ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   from the fully allocated routes during Location fixed cost 

elimination, aims to reduce cost from high cost arcs or routes. Furthermore, reducing cost by 

value 𝐴𝑖𝑗  from maximum 𝐶𝑖𝑗  position at Step 4 prevents incurring upper tier route fixed 

cost. Also, load redistribution into locations with increasing order of ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚  in step 4 

ensures lower cost routes are utilized before higher ones. The flow chart also has the capacity 

to quickly arrive at a current best solution depending on the problem structure encountered 

while checking the condition  (∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1 =  0) and using the exit procedure of 

Step (2b.3). 
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Fig. 4: Flow chart on row perturbation heuristic improving initial solution 
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5   Numerical Example  

Given the Supply and demand capacities, unit costs and fixed charges as in the Table1 and 2  

below ( adapted from [5]),we illustrate the workings of RPH. 

 

Table 1   Supply, demand, location (set up) costs and unit cost parameters 

i 𝑺𝒊 𝑭𝒊 j = 1 
 

2 3 4 

 
  𝑐𝑖𝑗 

1 
25 100 1 3 1 3 

2 
25 200 2 2 3 2 

3 
25 250 2 1 2 1 

4 
25 150 1 3 1 3 

𝑫𝒋 
10 30 20 15 

 

Table 2       Two tier fixed charges on route  𝑖, 𝑗 

i 𝒉𝒊𝒋𝟏 , 𝒉𝒊𝒋𝟐 𝒉𝒊𝒋𝟏 , 𝒉𝒊𝒋𝟐 𝒉𝒊𝒋𝟏 , 𝒉𝒊𝒋𝟐 𝒉𝒊𝒋𝟏 , 𝒉𝒊𝒋𝟐 

1 
10 ; 20 10 ; 10 10 ; 30 10 ; 10 

2 
10 ; 30 10 ; 20 10 ;  20 10 ; 20 

3 
10 ; 20 10 ;  30 10 ;  10 10 ;  30 

4 
10 ; 20 10 ; 10 10 ; 30 10 ; 10 

 
j =1 2 3 4 

 

The break point 𝐴𝑖𝑗 = 5  (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ) through route 𝑖, 𝑗 

 

From equation 6(a) to 10(b) we note that; 

If    𝑥𝑖𝑗 > 0  𝑎𝑛𝑑 ≤ 5 , 𝑔𝑖𝑗1 = 1 , 𝑔𝑖𝑗2 = 0,   𝑎𝑛𝑑 𝑧𝑖𝑗 = 1   

Therefore: 𝐻𝑖𝑗1  𝑧𝑖𝑗 +  𝐻𝑖𝑗2  𝑧𝑖𝑗 = 𝑔𝑖𝑗1ℎ𝑖𝑗1𝑧𝑖𝑗 +  𝑔𝑖𝑗2ℎ𝑖𝑗2𝑧𝑖𝑗 = (1) × ℎ𝑖𝑗1 × (1) + (0) ×

ℎ𝑖𝑗2 × (1)= 𝐻𝑖𝑗1  𝑧𝑖𝑗 

 

If    𝑥𝑖𝑗 > 0  𝑎𝑛𝑑 > 5 , 𝑔𝑖𝑗1 = 1 𝑎𝑛𝑑  𝑔𝑖𝑗2 = 1, 𝑧𝑖𝑗 = 1   

Therefore: 𝐻𝑖𝑗1  𝑧𝑖𝑗 +  𝐻𝑖𝑗2  𝑧𝑖𝑗 = 𝑔𝑖𝑗1ℎ𝑖𝑗1 +  𝑔𝑖𝑗2ℎ𝑖𝑗2 = (1) × ℎ𝑖𝑗 × (1) + (1) × ℎ𝑖𝑗2 × (1) 

= 𝐻𝑖𝑗1  𝑧𝑖𝑗 + 𝐻𝑖𝑗2  𝑧𝑖𝑗  
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If 𝑖𝑓  𝑥𝑖𝑗 = 0, 𝑧𝑖𝑗 = 0,    Therefore: 

𝐻𝑖𝑗1  𝑧𝑖𝑗 + 𝐻𝑖𝑗2  𝑧𝑖𝑗 = 0 

 

For (𝑖, 𝑗) position (1,1) 

𝑀11 = 10 , and 𝐴11 = 5  thus  𝐴11  < 𝑀11 

 

From equation (16a and 16b) above 

Equation 16b is selected  

 

𝐶11 =  [𝑐11 +
𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4
+

ℎ111+ ℎ112

𝑀11 − 𝐴11
]  

 

 

𝐶11 =  [1 +
100 + 200 + 250 + 150

25 + 25 + 25 + 25
+

10 + 20 

10 − 5
] = 14   

 

For all (𝑖, 𝑗) position,  𝐴𝑖𝑗  < 𝑀𝑖𝑗 

 

Equation 16b is selected for 𝐶11, 𝐶12. . . 𝐶𝑚𝑛 

𝐶𝑖𝑗  relaxed cost matrix for  𝐶11, 𝐶12. . . 𝐶𝑚𝑛 is given in Table 3 below; 

 

Table 3:  𝐶𝑖𝑗  relaxed cost matrix 

 

 

14 
 

11 
 

10.67 
 

12 

 

17 

 

10.5 
 

12 
 

12 

 

15 

 

10 
 

10.33 
 

12 

 

14 

 

11 
 

10.67 
 

12 

 

 

5.1   Initial solution 

 

Tora software which uses the modified u-v distribution method of solving linear 

transportation models was used to solve the cost matrix above (as a balanced problem) 

optimally to give the initial solution of the SFCLTP (𝑍𝑅2) represented Table 4 below. 
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Table 4:  Optimal load distribution using the relaxed cost matrix 

            5 

14 
 

11 
 

10.67 
 

12 

20 

0   25 

 

17 

5 

10.5 
 

12 

15 

12 

5 

0    25 

 

15 

 25 

10 
 

10.33 
 

12 
 

0    25 

5 14 

  

11 

20 

10.67 
 

12 
 

0    25 

10 
 

30 

 

20 

 

15 

 

25 

 

 

For our lower bound value for SFCLTP (𝑍𝐿𝐵), the cost matrix below was obtained from the 

relaxed unit cost in equation (6g) like the relaxed costs of (16a and 16b). The load 

distributions after solving optimally with Tora software are presented Table 5 below. 

 

Table 5:   Optimal load distribution for lower bound determination 

10 

11 
 

10.8 

15 

10 
 

11.33 
 

0   25 

 

13 

5 

10.2 
 

11.5 

15 

11 

5 

0    25 

 

12 

 25 

9.6 
 

10 
 

10.67 
 

0    25 

 

11 

  

10.8 

5 

10 
 

11.33 

20 

0    25 

10 
 

30 

 

20 

 

15 

 

25 

 

 

Using equation (6f) above; 

𝑍𝑅2   =    (14 × 5) + (14 × 5) + (10.5 × 5) + (10 × 25) + (10.67 × 20) + (12 × 15)   

=    835.9 

Using equation (6e) for our lower bound calculation, 

𝑍𝐿𝐵     =    (11 × 10) + (10.2 × 5) + (9.6 × 25) + (10 × 5) + (10 × 15) + (11 × 15)   

=    766 

Using the load distribution for both 𝑍𝑅2  and  𝑍𝐿𝐵    and equation (6a) for calculating 𝑍  for 

𝑍𝑅2  and  𝑍𝐿𝐵    which is represented as Z (𝑍𝑅2)  and Z (𝑍𝐿𝐵) respectively, 
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Z (𝑍𝑅2) =    (14 × 5) + (14 × 5) + (10.5 × 5) + (10 × 25) + (10.67 × 20)

+ (12 × 15) + (100 + 200 + 250 + 150)

+ (10 + 10 + 10 + 40 + 40 + 30) =   935 

 

Z (𝑍𝐿𝐵) =     (1 × 10) + (2 × 5) + (1 × 25) + (1 × 15) + (1 × 5) + (2 × 15)

+ (100 + 200 + 250 + 150) + (10 + 30 + 10 + 40 + 40 + 30) =   955 

 

Therefore our current best solution (Z𝐶𝐵)  for the SFCLTP Z (𝑍𝑅2) =    935 with a lower 

bound  𝑍𝐿𝐵 =  766  

 

 

5.2    Improved solution (Using RPH) 

 

In order to apply our RPH solution heuristic, the initial solution 𝑍𝑅2  matrix is labeled row 

and column wise as in Table 6 below: 

 

 

Table 6:  Row and Column labelling of initial solution to apply RPH 

 

From section 4.2 and using our initial solution Z (𝑍𝑅2) obtained in 5.1 we note that optimum 

objective function cost and current best ( Z𝐶𝐵) = 935. 

 

Step (1)   Current best ( Z𝐶𝐵) = 935. 

Step (2a) Variable cost (𝑉𝑐)  =   𝑐𝑖𝑗𝑥𝑖𝑗 = 95 

                Location or source fixed cost (𝐿𝑐 ) = ( 𝐹𝑖𝑦𝑖  ) = 700 

                Step fixed cost (𝑆𝐹𝑐) = ( ∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗  )   2
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1 = 140 

Step (2b.1) Therefore since  𝐿𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐  → Step 3 

Step (3a.1) No dummy rows → Step (3b.1) 

Column1  Column 2 Column 3 Column 4 Dummy  A  

14 5 
11.33 

 

10.67 
 

12 
 

0 

20 

  25 47.67 Row1 

17 

 

10.5 

5 

12 
 

12 

15 

0 

5 

   25 51.5 Row2 

15 

 

10 

 25 

10.33 
 

12 
 

0 

0 

   25 47.33 Row3 

14 5 
11 

 

10.67 

20 

12 
 

0 

0 

   25 47.67 Row4 

10 
 

30 

 

20 

 

15 

 

25 
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Step (3b.1) Check  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1  ≥ min(𝑆𝑖=1 ⋯𝑚) 𝑖. 𝑒 100 − 75 = 25 → Step (3c.1) 

Step (3c.1) Row 1 and Row 2 are partially utilized→ Step (3c.2). 

Step (3c.2) Arranging in decreasing ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚 

   In decreasing order we have(Row 2, Row1).  Row 2 selected as having largest 

 ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚  

Step (3d.1) Row 3 and Row 4 are fully utilized. 

In order of decreasing  ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=𝑚   𝑓𝑜𝑟 𝑖 = 1,2. . . 𝑚 (Row4, Row3).  

Row 4 is   selected →Step (3e.1).  

The Row selection is shown in Table 7 below: 

 

 

Table 7: Row selection for perturbation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step (3e.1) Row 4, has 𝑋41 = 5 at largest 𝐶𝑖𝑗 = 𝐶43 and also load at 𝑋43 = 20 →Step (3e.2). 

Step (3e.2) Remove allocation at 𝑋41 = 5 and add to position 𝑋21 

Remove allocation at 𝑋43 = 20 also, but no capacity to accommodate move at    

position 𝑋21. Row 1 is selected next in the decreasing order to receive 𝑋43 = 20 

→Step (3f). 

Step (3f). Allocations have been fully removed go to →Step (3h). 

Step (3h.1).  While current best Z𝐶𝐵 = 935  New load distribution is given in Table 8 below: 

 

 

 

 

 

 

 

 

14 

5 

11.33 
 

10.67 
 

12 
 

47.67 25 Partially 
utilized 

17 
 

10.5 

5 

12 
 

12 

15 

51.5 25 Partially 
utilized & 
selected 

15 
 

10 

25 

10.33 
 

12 
 

47.33 25 Fully 
utilized 

14 

5 

11 
 

10.67 

20 

12 
 

47.67 25 Fully 
utilized & 
selected 

10 
 

30 

 

20 

 

15 
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Table 8:  Load distribution after Applying RPH 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z (𝑛𝑒𝑤) =    (1 × 5) + (2 × 5) + (2 × 5) + (1 × 25) + (1 × 20) + (2 × 15)

+ (100 + 200 + 250) + (10 + 10 + 10 + 40 + 40 + 30) =   790 

 

 

Step (3h.2).  𝑍(𝑛𝑒𝑤) <  Z𝐶𝐵   we term 𝑍(𝑛𝑒𝑤) as the current best and go to Step (1).  

Step (1)    Current best ( Z𝐶𝐵) = 790. 

Step (2a) Variable cost (𝑉𝑐)  =   𝑐𝑖𝑗𝑥𝑖𝑗 = 100 

                Location or source fixed cost (𝐿𝑐 ) = ( 𝐹𝑖𝑦𝑖  ) = 550 

                 Step fixed cost (𝑆𝐹𝑐) = ( ∑ ∑ ∑ 𝐻𝑖𝑗𝑘𝑧𝑖𝑗  )   2
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1 = 140 

Step(2b.1) Therefore since  𝐿𝑐   ≫   𝑉𝑐   𝑎𝑛𝑑  𝑆𝐹𝑐  → Step 3 

Step(3a.1) Dummy row at Row 4.→ Step(3a.2) 

Step(3a.2) Ignore row in calculation capacity. → Step 3b.1 

Step(3b.1) Check  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1  ≥ min(𝑆𝑖=1 ⋯𝑚) 𝑖. 𝑒 75 − 75 = 0 →Step (3b.2) 

Step(3b.2) Check  ∑ 𝑆𝑖𝑦𝑖
𝑚
𝑖=1  −   ∑ 𝐷𝑗

𝑛
𝑗=1 =  0  i. 𝑒 75 − 75 = 0  

                    Stop and exit procedure 

Return Z ( Z𝐶𝐵) = 790 

Therefore Z (RPH) = 790 

 

 

6 Discussion Of Solutions Obtained 

For the numerical examples in section 5.1 above, using the recast/ relaxed cost matrix as 

stated in equation 16(a) and 16(b) 𝑍𝑅2 = 835.9. Also, our lower bound calculation from 

equation (6g) gives 𝑍𝐿𝐵 = 766. In this example, the relaxed value i.e.  𝑍𝑅2 gave an upper 

bound to the objective function 𝑍( 𝑍𝑅2)  = 935 obtained by equation (6a). From figures1 and 

2, we note that the ideal relaxed cost matrix is linear in the objective function and should give 

a lower bound to the SFCLTP objective function. Furthermore, there could be instances 

where the relaxation type used could give an upper bound at the break point as seen in figure 

14 
5 

11.33 
 

10.67 

20 

12 
 

25 

17 5 
10.5 

5 

12 
 

12 

15 

25 

15 

 

10 

25 

10.33 
 

12 
 

25 

14 

 

11 
 

10.67 
 

12 
 

25 

10 
 

30 

 

20 

 

15 
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2. Our lower bound 𝑍𝐿𝐵  gave the minimum out of  𝑍𝐿𝐵 , 𝑍2, 𝑍( 𝑍𝐿𝐵) and 𝑍( 𝑍𝑅2). However,  

the load distribution of  𝑍𝑅2 gave better starting solution for our RPH . 

The starting solution for our numerical example 𝑍( 𝑍𝑅2) is 935. However, our solution 

heuristic gave an improved objective value Z (RPH) = 790 with all constraints satisfied. 

Using our RPH solution in section 5.1, location (Row 4) out of the four competing locations 

with equal supply capacities but different set up costs is closed as unprofitable for shipping 

through the fixed charges and transportation costs. RPH thus uses a structured combination of 

Fixed location cost elimination, cheap route variable cost and load consolidation at lower tier 

route fixed cost to drive towards an improved solution while also ensuring feasibility of all 

constraints are satisfied.  

 

7 Perspective  

 

An integrated model that combines the fixed location cost and step-fixed charge 

transportation cost has been proposed in this paper. We have termed it Step-Fixed charge 

Location and Transportation Problem (SFCLTP). In this model, the Step-Fixed charge 

Transportation Problem  of [18] has been extended. Moreover, the linearization and 

relaxation method developed by [5] and [1] have been extended using the normal 

Transportation Tableau as a starting solution.  Through a perturbation technique that uses the 

variable transportation cost, fixed facility location cost, and step- fixed charge cost along the 

selected route in deciding the perturbation moves, we progressively obtain better solutions 

than the optimal solution obtained from the relaxed transportation problem. These solutions 

are considered good enough, and we have termed the heuristic Row perturbation Heuristics 

(RPH). 

Future directions on our model could be on applying single solution metaheuristics such as 

simulated annealing, Tabu search or population metaheuristics such as genetic algorithm, 

particle swarm optimization to evaluate the relative effectiveness and efficiency of RPH to 

these metaheuristics.  Lastly, initial solutions that do not use the relaxation and linearization 

which we have employed and better improvement solutions for SFCLTP could be 

investigated on. 
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