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Abstract

Parameter tuning aims to find suitable parameter values for heuristic optim-
isation algorithms that allows for the practical application of such algorithms.
Conventional tuning approaches view the tuning problem as two distinct prob-
lems, namely, a stochastic problem to quantify the performance of a parameter
vector and a deterministic problem for finding improved parameter vectors in
the meta-design space. A direct consequence of this viewpoint is that parameter
vectors are sampled multiple times to resolve their respective performance un-
certainties. In this study we share an alternative viewpoint, which is to consider
the tuning problem as a single stochastic problem for which both the spatial loc-
ation and performance of the optimal parameter vector are uncertain. A direct
implication, of this alternative stance, is that every parameter vector is sampled
only once. In our proposed approach, the spatial and performance uncertain-
ties of the optimal parameter vector are resolved by the spatial clustering of
candidate parameter vectors in the meta-design space. In a series of numerical
experiments, considering 16 test problems, we show that our approach, Efficient
Sequential Parameter Optimisation (ESPO), outperforms both F/Race and Se-
quential Parameter Optimisation (SPO), especially for tuning under restricted
budgets.

Keywords: Heuristic Algorithms, Response Surfaces, Radial Basis Functions,
Sequential Parameter Optimisation, Particle Swarm Optimisation

1. Introduction

Heuristic optimisation algorithms are influenced by parameter values that
affect their performance. Finding a set of good parameter values is a challenging
task in particular when only restricted budgets of function evaluations can be
afforded to tune an optimisation algorithm. The main objective of this paper is
to propose a spatially distributed statistical significance approach for real para-
meter tuning of heuristic optimisation algorithms under a restricted budget.
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This study is restricted to parameter tuning that aims to find a suitable set
of parameter values that remain fixed over the solution of a problem, which is
distinct from parameter control that evolves the parameter values as a problem
is solved [16]. In particular, we restrict ourselves to real parameter tuning for
quantitative parameters of heuristic optimisation algorithms. Although there
has been much research in discrete quantitative and qualitative parameter tun-
ing, it is beyond the scope of this paper. Consequently, this study aims to find
a vector of real parameter values that results in good performance of a heuristic
optimisation algorithm when a limited number of function evaluations can be
computed. In particular, tuning under restricted budgets is a recurring prob-
lem when solving numerous practical engineering optimisation problems that
are multimodal [7, 9, 23, 26, 39, 45]. One such sector is engineering consult-
ing industries that regularly solve new problems using commercial simulation
packages. Here, every function evaluation has a direct monetary cost associ-
ated with it, in the form of time to solution, software licensing costs to conduct
simulations and paying for cloud computing to perform the simulations.
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Figure 1: Engineering optimisation problems that first require a tuning problem to be solved.

Consider the application of a heuristic optimisation algorithm to solve a
new engineering optimisation problem as depicted in Figure 1. Outlined are
two optimisation problems that need to be solved, namely the tuning prob-
lem and solving the actual engineering optimisation problem. Firstly, finding
an appropriate parameter vector for the heuristic optimisation algorithm that
performs effectively and efficiently. This is followed by solving the actual optim-
isation problem of interest, often a number of times, using the parameter vector
obtained from the parameter tuning optimisation problem. The associated com-
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putational cost of solving the tuning problem is well known [17, 33]. Following
the terminology and taxonomy outlined for classification of tuning algorithms
by Eiben and Smit [17], we restrict this study to iterative tuning methods for
which the total search effort can be expressed by

Effort = Npv ×Ntests ×Nf , (1)

where Npv indicates the number of parameter vectors to be tested, Ntests the
number of tests per parameter vector to be performed and Nf the number of
function evaluations required per run of the heuristic optimisation algorithm.
Philosophically, two dominant strategies have evolved that aim to save tuning ef-
fort as depicted in Figures 2(a)-(b) [17]. Figure 2(a) represents tuning strategies
that were predominantly designed to resolve the performance variance using the
least amount of test parameters, Ntests. Hence the sampled mean is represent-
ative of the actual mean (ground truth) for only the most promising parameter
vectors from a large selection of parameter vectors. In turn, Figure 2(b) ex-
emplify tuning strategies that aim to reduce the number of parameter vectors
Npv by estimating parameter domains with potentially good candidates and
accurately resolving the sampled mean to be representative of the actual mean
(ground truth) for each parameter vector.

Generally, tuning strategies that aim to reduce Ntests usually start with a
large number of candidate parameter vectors each sampled only a few times
Ntests ≈ 5 and intelligently add new samples to only promising candidate para-
meter vectors that can be justified statistically using statistical screening, rank-
ing and selection. The initialisation of these strategies are usually done by design
of experiments [21, 31], that aims to uniformly sample the parameter vector
space as opposed to uniform random sampling that often leads to clustering of
parameter vectors in the meta-parameter space. These include Latin-Hypercube
Sampling [21, 31, 25] and Taguchi Orthogonal Arrays [46]. Design of experiment
strategies are usually limited to less than ten parameters due to the curse of
dimensionality [8]. Tuning strategies following this approach include ANOVA
pioneered by Ronald Fisher [20] and statistical racing methods [30] with F/Race
[10] often being considered the de facto standard in tuning algorithms [2, 11].
As a consequence we select F/Race as one of our benchmarking algorithms.

In turn, tuning strategies that aim to reduce Npv start only with a few
candidate parameter vectors with the statistical performance properly resolved.
Informed by the available information new candidate parameter vectors are ad-
ded. They include the classical meta-GA [32], meta-EA [48], REVAC [34] and
ParamILS [24]. Since, the performance of a parameter vector is stochastic these
methods quantify the stochastic nature of each candidate parameter vector by
performing a fixed number of tests Ntests >> 5 that result in statistically sig-
nificant estimates of performance for each candidate parameter vector. This
ensures that only a limited number of parameter vectors are resolved statist-
ically. For restricted tuning budgets, computational improvements to these
strategies can be made by reducing both Npv and Ntests as depicted in Fig-
ure 2(c). Instead of accurately resolving the sampled mean for each parameter
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(a) Performance variance significance,
strategies to reduce Ntests.

(b) Parameter vector significance, strategies
to reduce Npv .

(c) Parameter vector and performance vec-
tor significance, strategies to reduce both
Ntests and Npv .

(d) Spatially distributed significance,
strategies to reduce both Ntests and Npv .

Figure 2: Comparison of parameter tuning paradigms (a)-(d), to resolve computational effort
in finding the optimal parameter vector.

vector, statistical screening, ranking and selection or statistical racing methods
are applied to approaches that reduce Npv with the result that both Npv and
Ntests are reduced.

The number of algorithms that aim to reduce both Npv and Ntests are lim-
ited with this area of research not receiving significant attention albeit at the
reported success of the only four strategies developed in this domain. Two
strategies are based on meta-EA with racing [48], while the other two strategies
are Sequential Parameter Optimisation (SPO) [4, 3] and REVAC++ [40]. RE-
VAC is a population-based stochastic search method with the ++ indicating
that racing and sharpening has been added as strategies to control the number
of tests Ntests required per parameter vector. SPO in turn starts with an initial
population of candidate parameter vectors from which an approximation to the
expected performance of the stochastic utility landscape is constructed. This
approximation is then used to determine which parameter vectors should be
sampled additionally as well as to propose new candidate parameter vectors in
regions with promising expected performance. The latter is done by evaluating
the approximation for parameter vectors sampled from a design of experiment
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in the regions with promising expected performance and retaining the best per-
forming parameter vectors. Strategies that reduce both Npv and Ntests are
promising tuning strategies when restricted tuning budgets are considered.

Essentially, the approaches discussed so far consider the tuning problem as
two distinct problems. A stochastic problem to quantify the performance of a
parameter vector and a deterministic problem of finding an improved parameter
vector. It is evident that each problem is solved by its own strategy or heuristic,
i.e. the stochastic problem is resolved by sampling a candidate parameter vec-
tor multiple times, i.e. Ntests >> 1, following the classical statistical analysis
paradigm in parameter tuning, whereas which parameter vectors to consider
next are resolved using spatial sampling techniques that may or may not re-
quire the minimising of some regression surface using evolutionary algorithms.
The associated computational cost of the stochastic problem is usually reduced
by utilising statistical screening, ranking and selection or statistical racing meth-
ods. Albeit, the associated computational cost of the stochastic problem remains
prohibitively expensive when practical engineering simulation based problems
are considered for which practitioners need to tune algorithms with a restricted
tuning budget, which is typically below 100 meta-function evaluations in total.

We propose to consider the tuning problem as a single stochastic problem,
in which, the spatial location of the optimal parameter vector and its perform-
ance are uncertain following a statistical mathematical optimisation perspective
[18]. Importantly, both uncertainties are simultaneously resolved using the same
strategy, namely, the minimisation of a regression surface such that every para-
meter vector is sampled only once, i.e. Ntests = 1. The spatial and performance
uncertainty of the optimal parameter vector are resolved by the spatial clustering
of candidate parameter vectors in meta-design space as depicted in Figure 2(d).
Note the two statistical distributions namely the variance in performance of a
candidate parameter vector and the variance of candidate parameter vectors
around the optimal parameter vector, where each depicted sample is a single
sample and not the sampled mean as before. Having multiple samples cluster in
the meta-design space allows for both the refinement of the optimal parameter
vector and its respective performance utilising candidate parameter vectors that
are always only tested once, i.e. Ntests = 1.

(a) (b) (c)

Figure 3: Comparison of parameter tuning landscapes for three different PSO formulations
namely (a) standard PSO, (b) PSO with craziness [22], and (c) PSO with maximum velocity
constraint [15].
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2. Heuristic Algorithms and Tuning

For engineering applications, it is important that the tuning technique can
operate on a restricted budget, as a given set of parameters is only valid for a
specific

1. choice of heuristics in a heuristic optimisation algorithm,
2. problem or set of problems,
3. budget to solve the problem or set of problems, and
4. choice of qualitative heuristic optimisation parameters.

In this study the objective function that defines the real parameter tuning prob-
lem will be referred to as the meta-optimisation fitness (MOF), which is also
known as the utility landscape. In turn the real parameter tuning problem
will be referred to as the meta-optimisation problem [33], to distinguish it from
the engineering optimisation problem that the heuristic optimisation algorithm
needs to ultimately solve. The meta-optimisation fitness function is stochastic,
hence sampling this function multiple times and averaging the performance is
referred to as the expected meta-optimisation fitness (EMOF).

To elaborate, consider the standard Particle Swarm Optimisation (PSO) al-
gorithm [27], which has inertia ω, particle best c1, global best c2 attractors,
swarm size p and problem budget usually expressed as number of iterations i.e.
p function evaluations per iteration. To allow us to visualise the meta-design
space, we choose two parameters, namely ω and c1 = c2 to be varied while
a standard test problem set [15] is optimised. The log of the expected meta-
optimisation fitness (specifically the Mean Best Fitness [17]) is depicted in Fig-
ure 3(a), where the expected meta-optimisation fitness is obtained by averaging
100 meta-optimisation fitness values for each combination of ω and c1 = c2. In
addition, the published parameter vector by Clerc [15] is plotted as a black dot.
The non-linear relationship between suitable parameters is evident as well as
the localised domain of suitable parameters, with large parts of the parameter
domain not delivering suitable parameters. Figures 3(b) and (c) respectively de-
picts the expected meta-optimisation fitness landscape when the standard PSO
is modified to include either craziness [22] or by restricting the maximum velo-
city [15]. Again, the black dot signifies the published parameter vector of Clerc
[15]. It is evident that by including craziness Clerc’s optimal parameter set for
the standard PSO has been reduced to one of the worst performing parameter
vectors in the parameter domain, while it remains near optimal for maximum
velocity. Significant changes in domains of suitable parameter vectors in the
parameter domain is also evident. Similarly, Figure 4(a)-(d) shows changes in
the expected meta-optimisation fitness landscape when the fitness evaluation
budget, swarm size, or test problem is changed.

2.1. Formal real parameter tuning problem
Formally, the stochastic meta-optimisation problem for real parameter tun-

ing requires some scalar MOF function computed from the performance on a set
of objective functions fi (~x) , 1, . . . , k, with ~x feasible in the hypercube defined



2.1 Formal real parameter tuning problem 7

(a) Rastrigin, 10 000 evaluations, 50 Particles (b) Rastrigin, 500 evaluations, 50 Particles

(c) Rastrigin, 10 000 evaluations, 15 Particles (d) Griewank, 10 000 evaluations, 50 Particles

Figure 4: Comparison of fitness landscapes under different conditions.
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by the lower ~xl and upper bounds ~xu, for a single meta-optimisation run of the
heuristic optimisation Algorithm:

φ (~p)←
[
Algorithm(~p) : min

~x
fi (~x) s.t. ~x ∈ [~xl,i, ~xu,i] , i = 1, . . . , k

]
, (2)

that depends on parameters ~p. As pointed out, the stochastic nature of the meta-
optimisation problem is usually resolved using one strategy, while a different
strategy is employed to find suitable parameter vectors. The stochastic nature
of the meta-optimisation problem is usually resolved by computing an expected
meta-optimisation fitness (EMOF)

min
~p

Φ (~p) =

l∑
k=1

φk (~p) , (3)

which is generally the averaged meta-optimisation fitness computed l times,
with l >> 1, for a single parameter vector. To find an improved or the optimal
parameter vector, ~p∗, the EMOF is minimised using a search based strategy
that may be based on meta-GA [32], Revac [34] or ParamILS [24]. Numerous
proposals have been made to consolidate multiple MOF runs for a given para-
meter vector into an EMOF. The three primary scalarisations listed by Eiben
and Smit [17] are

• Mean Best Fitness (MBF) for a fixed number of evaluations, we determine
the average best fitness value over a number of optimisation runs;

• Average Evaluations to Solution (AES) where we record the number of
function evaluations required to reach a previously known solution; and

• Success Rate (SR) the percentage of runs to reach a previously known
solution within a given evaluation budget.

As highlighted before to compute the EMOF a fixed set of parameter vectors
is evaluated a number of times. The problem with this approach is that while
the statistical significance is properly accounted for a parameter vector, the spa-
tial resolution of parameter vectors are usually crudely approximated on some
predetermined grid as with F/Race and statistical exploratory analysis (SEA).
Sequential parameter optimisation (SPO) [5] aims to address both uncertainties
in some way, by utilising EMOF on an adaptively sampled grid. First, EMOF
is crudely approximated at a few design of experiment parameter vectors. A re-
gression function is then constructed that approximates the EMOF at unknown
parameters vectors using radial basis functions [19]. The approximated EMOF
is then computed for a denser design of experiment sampling of the meta-design
space. Promising parameter vectors are retained and the EMOF improved by
conducting additional sampling of the selected parameter vectors. The regres-
sion allows for estimating a unique value at a parameter vector when multiple
tests for that parameter vector has been computed. SPO requires multiple tests
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to be computed for promising candidate parameter vectors, but this can be
prohibitively expensive when restricted tuning budgets are considered.

This study addresses this issue by consolidating the uncertainties in both
i) the performance of a parameter vector, as well as, ii) the expected optimal
parameter vector. This is done by extending SPO to use an alternative to
EMOF, namely Statistical Meta-Optimisation Fitness (SMOF). SMOF accounts
for the statistical variability of a heuristic Algorithm by never computing the
MOF more than once for a parameter vector. It rather resolves the uncertainty
in performance as well as the spatial uncertainty of the optimal parameter vector
in the meta-design domain by having parameter vectors for which MOFs have
been computed cluster in the meta-design domain. The more points clustered
in a part of the meta-design domain the better both uncertainties are resolved.

Formally, it follows from the Central Limit Theorem that increasing the
sample size from a distribution with a finite level of variance, the mean of the
samples will be approximately equal to the mean of the distribution. Since,
both the variance in performance and the spatial variance around the optimal
parameter vector is finite, it follows that the mean of the samples performance
will be approximately equal to the mean of the actual performance, while the
mean of the samples for the spatial location of the optimal parameter vector
will be approximately equal to the mean of the actual optimal parameter vector.
This proves statistically that the strategy is convergent in the limit of large
sample sizes should appropriate numerical strategies be employed to realise this
approach.

2.2. Set of Test Problems and Meta-Optimisation Fitness

The set of test problems used to tune an optimisation algorithm significantly
influences the performance of a heuristic algorithm. This is due to a parameter
vector that performs well on one set of problems will not necessarily perform
well on another set of problems. This is illustrated in Figures 5(a) and (b),
where a standard PSO solved two global test problems, Alpine and Griewank
[15], using c1 = c2 = 1.43, while ω is chosen as 0.5 and 0.3. Figures 5(a) and (b)
shows the histogram of the computed objective function value after repeating
the optimisation process 100 times. It is clear that ω = 0.5 performs better on
the Griewank problem, while ω = 0.3 performs better on the Alpine problem.

This is analogous to the well known No Free Lunch statement in optimisation
[47], that no parameter vector outperforms all other parameter vectors on all
test problems. As demonstrated it is possible to find a parameter vector that
performs exceptionally well on a specific problem or class of problems, which
is often referred to as specialist heuristic algorithm settings [41], as they are
efficient for the right problem but not robust should the problem or problem
class change. On the other hand, generalist heuristic algorithm settings [41],
are parameter vectors that work reasonably well on a number of problems or
classes of problems.

In this study we consider two problem sets. Our initial investigation is con-
ducted on a set of six problems [15] that include both unimodal and multimodal



2.2 Set of Test Problems and Meta-Optimisation Fitness 10

(a) Alpine (b) Griewank

Figure 5: Comparison of PSO performance using two parameter vectors, 1) w = 0.3 and
c1 = c2 = 1.43 and 2) w = 0.5 and c1 = c2 = 1.43, on (a) the Alpine and (b) Griewank test
problems.

Table 1: Set of six test problems (f1 − f6) [15], used to conduct our initial investigation in
this study.

Problem Formulation Bounds [~xl,i, ~xu,i]

Parabola f1(x) =
∑n
i=1 x

2
i [−100, 100]

Rosenbrock f2(x) =
∑(

(1− xi)2 + 100(x2i − xi+1)2
)

[−10, 10]

Ackley f3(x) = −20e

(
−0.2

√∑n
i=1

x2
i

n

)
− e

(∑n
i=1 cos(2πxi)

n

)
+ 20 + e [−30, 30]

Alpine f4(x) =
∑n
i=1 |xi sinxi + 0.1xi| [−10, 10]

Griewank f5(x) =
∑n
i=1

(xi−100)2
4000 −

∏n
i=1 cos

(
xi−100√

n

)
[−300, 300]

Rastrigin f6(x) =
∑n
i=1 x

2
i − 10 cos 2πxi + 10 [−5.12, 5.12]
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Table 2: Set of ten test problems (f7 − f16) to verify the reported results in this study on an
independent set of problems to conclude this study.

Problem Formulation Bounds [~xl,i, ~xu,i]

Levy f7(x) = sin2(πw1) +
∑n−1
i=1 (wi − 1)2 [−10, 10][

1 + 10 sin2(πwi + 1)
]

(wd − 1)2
[
1 + sin2(2πwn)

]
,

wi = 1 + xi−1
4 , i = 1, . . . , n

Power Sum f8(x) =
∑d
i=1

((∑d
j=1 x

i
j

)
− bi

)2
[0, d]

Zakharov f9(x) =
∑d
i=1 x

2
i +

(∑d
i=1 0.5ixi

)2
[−5, 10]

+
(∑d

i=1 0.5ixi

)4
Michalewicz f10(x) = −

∑d
i=1 sin(xi) sin20

(
ix2
i

π

)
[0, π]

Sum Squares f11(x) =
∑d
i=1 ix

2
i [−10, 10]

Sum Different f12(x) =
∑d
i=1 |xi|i+1 [−1, 1]

Powers
Rotated Hyper- f13(x) =

∑d
i=1

∑i
j=1 x

2
j [−65.536, 65.536]

Ellipsoid

Perm f14(x) =
∑d
i=1

(∑d
j=1(j + 0.5)(xij − 1

ji )
)2

[−d, d]

Styblinski-Tang f15(x) = 1
2

∑d
i=1

(
x4i − 16x2i + 5xi

)
[−5, 5]

Quartic Noise f16(x) =
∑d
i=1

(
x4i
)

+ U([0, 1]) [−1.28, 1.28]
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test problems as tabulated in Table 1. This initial set of problems is indicated
by the vector valued function,

~F (~x) = {f1(~x), f2(~x), . . . , f6(~x)}. (4)

This multi-objective optimisation problem can be solved by finding the Pareto
front of non-dominated solutions. This approach is however limited to a low
number of functions as the curse of dimensionality requires a large number of
evaluations before the actual Pareto front becomes evident. For higher dimen-
sional multi-objective problems most of the solutions computed would be non-
dominated due to the sparse sampling of the Pareto front in higher dimensions.
In this study we scalarise the multi-objective optimisation problem. Instead of
following the weighted-sum approach

F (x) =
1

N

N∑
i=1

wifi(~x), (5)

with unit weights wi = 1 as motivated by Pedersen [35], we normalise the dif-
ferent test problems such to allow us to better understand and interpret the
results. We therefore scale the problems to be indicative of the improvement
from where the heuristic optimisation algorithm started. To ensure we have res-
olution during both the initial and final phases of the optimisers we consider the
orders of improvement from where the heuristic optimisation algorithm started
as stated by

φ (~p) =
1

k

k∑
i=1

log10

f∗i

f
{0},
i

, (6)

with f∗i obtained by

min
~x
fi (~x) s.t. ~x ∈ [~xl,i, ~xu,i] , i = 1, . . . , k, (7)

using Algorithm(~p), while f{0}i is the best value after the swarm is initialised
at the beginning of the optimisation run. (6) therefore represents the average
orders of improvement over the initial value of the test problem. This implies
that an algorithm that reduces the result from 103 to 102 carries the same weight
as an improvement from 101 to 100. To highlight the initial improvement the
log10 can be omitted but to not distract from the focus of our study we choose
(6) as our MOF.

3. Proposed Restricted Budget Tuning Technique

Our proposed approach is an extension of Sequential Parameter Optimisa-
tion (SPO) [3], we therefore first give a brief outline of SPO in Section 3.1.
Thereafter we present our Efficient Sequential Parameter Optimisation (ESPO)
strategy to resolve the tuning problem for restricted tuning budgets in Sec-
tion 3.2. Both SPO and ESPO are model based techniques that construct
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surrogate models of EMOF (i.e. multiple evaluations of MOF, averaged) and
MOF (i.e. single evaluation of MOF), respectively. This is done to improve the
efficiency of the tuning process as the models can be evaluated instead of the
actual EMOF or MOF.

SPO specifically relies on approximating EMOF and the meta-design space
by first defining new sampled locations of parameter vectors and then evaluating
the approximation of the EMOF from which parameter vectors are chosen for
which the EMOF is resolved. SPO constructs regression based surrogate models
for which the number of parameter vectors at which EMOF have been resolved
is usually low, but the number of tests conducted per parameter vector is high.
By averaging the multiple tests per parameter vector to estimate the EMOF,
an interpolation based surface can be constructed that directly estimates the
EMOF.

On the other hand, ESPO constructs a response surface by using only single
MOF evaluations per parameter vector. The surrogate model is then optimised
to obtain potentially new locations for improved parameter vectors for which
only single MOF evaluations are conducted. As the sample locations cluster in
sample space the accuracy of both the optimal parameter vector values and the
expected performance for these parameter vectors are resolved without having
to have sampled the same parameter vector more than once. ESPO constructs
regression based surrogate models since the number of parameter vectors for
which the MOF has been computed is usually high in comparison to the number
of regression coefficients that needs to be estimated.

3.1. Sequential Parameter Optimisation (SPO)
SPO proposed by Bartz-Beielstein et al. [3] efficiently finds the optimal para-

meter vector for an heuristic algorithm by intelligently increasing both the num-
ber of candidate parameter vectors as well as the number of fitness evaluations
of MOF to resolve the EMOF per parameter vector per iteration. The points
added during each iteration is determined by constructing a model through
the existing points and using these points to predict new candidate parameter
vectors. SPO essentially follows the following three steps:

1. sample the EMOF,
2. interpolation or regression based approximation to EMOF, and
3. add new candidate parameter vectors.

These three steps are repeated until the utility budget is depleted. Let’s consider
each step in more detail as implemented in this study.

3.1.1. SPO - Step 1: Sample the EMOF
Initially, the meta-design space is sampled at n different candidate parameter

vectors using latin-hypercube sampling (LHS) [31], with each candidate para-
meter vector sampled m0 = 2 times to estimate EMOF. During subsequent iter-
ations only the best candidate parameter vector is retained and sampled together
with the new candidate parameter vectors. The number of samples per candid-
ate parameter vector is doubled during each iteration, that is, mk+1 ← 2×mk.
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As the iterations progress the sampled EMOF converges to the true EMOF. The
number of samples for the best candidate parameter vector from the previous
iteration is also doubled. This ensures a fair comparison between the sampled
points.

3.1.2. SPO - Step 2: Regression Based Approximation to EMOF
All the candidate parameter vectors at the current iteration is used to ap-

proximate the EMOF using a regression surrogate model. Multiple tests have
been conducted for each candidate parameter vector, which now requires a re-
gression surrogate surface to estimate the EMOF.

Although, numerous regression approximation approaches are available we
choose radial basis functions (RBF). This allows for a consistent comparison
between SPO and ESPO.

3.1.3. SPO - Step 3: Add New Candidate Parameter Vectors
The regression surrogate model is then evaluated on a denser LHS grid of

parameter vectors to identify promising candidate parameter vectors. The num-
ber of samples on the regression surrogate model is typically significantly more
than the number of current parameter vectors. The parameter vectors deemed
the most promising are then retained together with the best parameter vector
found so far.

3.2. Efficient Sequential Parameter Optimisation (ESPO)

SPO has two limitations when it comes to parameter tuning for restricted
evaluation budgets, both of which we address with our proposed ESPO.

Firstly, SPO relies on the repeated re-evaluation of individual parameter vec-
tors to obtain a statistically significant EMOF. The EMOF is then approximated
using a regression based surrogate model to resolve the multiple tests per para-
meter vector. Sampling EMOF until it is statistically significant for numerous
parameter vectors could potentially waste large portions of the tuning budget
on suboptimal parameter vectors as already pointed out. Our proposed ESPO
instead constructs a regression based surrogate model [28] through spatially
distinct parameter vectors that are always sampled only once by evaluating the
MOF once-off per parameter vector. This allows us to simultaneously resolve
the uncertainty in the response as well as the spatial uncertainty of the optimal
parameter vector in the domain through denser spatial sampling as opposed to
higher sampling of individual candidates. We demonstrate in Section 3.2.2 that
regression surfaces compensates for the stochastic nature of MOF to estimate
the EMOF from individually sampled parameter vectors for which only MOF
is computed. Addressing this first limitation, of sampling the same parameter
vector multiple times, forms the primary contribution of this study.

Secondly, SPO samples the constructed utility model using a denser LHS.
This still leaves finding the best predicted candidate parameter vector to chance,
which primarily depends on the number sample parameter vectors in the denser
LHS. The number of sample points could be increased, but Bartz-Beielstein



3.2 Efficient Sequential Parameter Optimisation (ESPO) 15
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Figure 6: Outline of efficient sequential parameter optimisation (ESPO).

et al. [3] admits that this wastes the tuning budget since we may add candidate
solution points closely clustered together. If these clusters are far from the
actual optimum, which will happen during the initial searches, these clusters
help little in finding the actual optimum solution. In fact, Bartz-Beielstein and
Preuss [5] used an order of magnitude more iterations during their optimisation
process to find parameter settings than we use in our approach. In ESPO we
merely optimise the regression surrogate surface to obtain candidate parameter
vectors. These candidate parameter vectors are then evaluated by evaluating
the MOF only once per parameter vector.

The outline of ESPO is depicted in Figure 6 as four steps with sufficient
detail to distinguish it from the similar SPO steps. Let’s consider each step in
more detail as implemented in this study.

3.2.1. ESPO - Step 1: Sample the Meta-Design Space
Initially, the meta-design space is sampled at m different candidate para-

meter vectors using LHS [31]. This is achieved by first sampling the design
domain using, m, points between the lower ~pl and upper bounds ~pu,

LHS(m, ~pl, ~pu)→ ~pi, i, . . . ,m. (8)

Each jth candidate parameter vector, ~pj , is then only sampled once by comput-
ing its corresponding MOF, φj = φ (~pj), by evaluating MOF only once for each
parameter vector

~Φ = {φ1, φ2, . . . , φm} . (9)
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3.2.2. ESPO - Step 2: Construct Statistical Meta-Optimisation Fitness (SMOF)
Radial basis functions (RBFs) can be used to construct interpolation or

regression based approximations to scalar functions by computing a linear com-
bination of n non-linear radial basis functions to satisfy m equations. Each
radial basis function has the same functional form but is centred around dif-
ferent parameter vectors ~cj , j = 1, . . . , n in the meta-design space, which is
mathematically expressed by

φ̃ (~p) =

n∑
j=1

αjλ (||~p− ~cj ||) . (10)

In this study a Gaussian basis function [38], λ (~p) = e−s||~p−~cj ||
2

is chosen due to
its smooth characteristics, although it is susceptible to ill-conditioning when s is
poorly chosen and as a consequence requires a strategy to resolve s. Here αj is
the associated scalar value or weight in the linear combination to approximate
some function. Hence, αj first needs to be solved from a system of equations
that aims to approximate the desired function. Given m = n unique equations
we can uniquely solve for n weights, αj , j = 1, . . . , n. However, should we
have more unique equations to satisfy m > n than the number of weights n
available, we can only approximate the desired function. We can evaluate the
design domain at m locations and enforce that the RBF recover the computed
responses at them locations with the least error using n < m basis functions. In
this study, we randomly select the n centre points ~cj of the RBF basis functions
using

LHS(n, ~pl, ~pu)→ ~cj , j = 1, . . . , n (11)

which avoids clustering of basis functions in the meta-design domain. As a result
the following system of equations

φ1 = φ̃ (~p1) =

n∑
j=1

αjλ (||~p1 − ~cj ||) (12)

φ2 = φ̃ (~p2) =
n∑
j=1

αjλ (||~p2 − ~cj ||) (13)

...
...

... (14)

φm = φ̃ (~pm) =

n∑
j=1

αjλ (||~pm − ~cj ||) (15)

can be rewritten ((12) - (15)) into matrix form, using the convention λij =
λ (||~pi − ~cj ||), to obtainλ11 · · · λ1n

...
. . .

...
λm1 · · · λmn



α1

...
αn

 =


φ1
...
φm

 or Λ~α = ~φ. (16)
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Since n < m, the residual R(~α) = Λ~α − ~φ expresses the difference between the
approximation Λ~α and the ~φ values to be recovered. Finding ~α to reduce the
difference can be solved as an optimisation problem that minimises the sum of
the errors squared given by

min
~α
E(~α) = min

~α

(
Λ~α− ~Φ

)T (
Λ~α− ~Φ

)
. (17)

The optimality criterion for (17) obtained by direct differentiation of E(~α) w.r.t.
~α gives

∇E(~α) = ~0 = 2ΛTΛ~α− 2ΛT~Φ, (18)

which leads to the least squares solution for overdetermined linear systems [44],

ΛTΛ~α = ΛT ~φ. (19)

Consequently the difference between the approximation Λ~α and the computed
MOF responses ~φ, is minimised. This is depicted in Figure 7 which depicts both
interpolation and regression based RBF approximations in conjunction with the
actual EMOF (averaged over 100 runs). The interpolation based RBF (green)
and regression based RBF (red) are constructed using only single MOF samples
at 21 locations. The mean of the function (blue) and 95% variance (blue halo)
are also depicted. To compute the MOF the test problems listed in Table 1 are
optimised using the PSO heuristic optimisation algorithm with ω = 0.5 and the
parameters c1 = c2 varying between 0 and 2.5. For the regression RBF only 10
equally spaced centres across the domain were chosen. In both cases the range
parameter s was taken as the average distance between the data points.

From Figure 7, it is clear that regression that minimizes the sum of the
error squared, acts as a filter against stochastic variation when compared to
interpolation for the same number of points. We can see that the interpolation
line deviates from the mean line in order to go through the sample points. On
the other hand the regression line tends to follow the general trend of the mean
line. We quantify the error of the interpolation RBF versus regression RBF
by computing the root mean square error (RMSE) from the actual mean for
both approximations. The interpolation RBF has a 45% larger error than the
regression RBF using exactly the same data. To improve the accuracy of the
interpolation RBF we would have needed to evaluate the same points multiple
times to compute the expected (mean) value, which is essentially what SPO does
to resolve the expected response but on average this would require significantly
more data points than regression RBF to obtain the same accuracy of the actual
mean estimate.

In addition, the above observation is supplemented by investigating to what
extent the regression approximation is representative of the actual EMOF. We
start our investigation by assuming that a linear regression model [37] is able
to describe the EMOF of the actual stochastic spatial distribution of the MOF
under consideration i.e. an instance of MOF over the entire meta-design domain
of interest is assumed to be expressed by

~φ = Λ~α∗ + ~u, ~u ∼ IID(~0, σ2I), (20)
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Figure 7: Interpolation RBF (green) and regression RBF (red) fitted through twenty one
spatially distinct evaluations of a random function with mean (blue) and 95% variance (blue
halo). The Root Mean Square Error (RMSE) for both RBFs from the actual mean is indicated
in the legend by sampling 10 points in the domain.

where IID(~0, σ2I) signifies that each instance of ~u is independently and identic-
ally distributed given some variance σ2. Here, ~α∗ signifies the actual linear
estimator that is assumed to be able to exactly reproduce the EMOF. The least
squares estimator is given by ~α = (ΛTΛ)−1ΛT ~φ, which can be evaluated using
our assumed model for the actual responses Λ~α∗ + ~u to obtain

~α = (ΛTΛ)−1ΛT (Λ~α∗ + ~u) = ~α∗ + (ΛTΛ)−1ΛT~u. (21)

The expected value E(·),

E(~α) = E(~α∗) + E
(
(ΛTΛ)−1ΛT~u

)
, (22)

reduces to
~α = ~α∗, (23)

under the condition that E
(
(ΛTΛ)−1ΛT~u

)
= (ΛTΛ)−1ΛTE (~u) → E (~u) = ~0.

This condition holds for the uncertainty regarding the response for a para-
meter vector per definition of EMOF. Secondly, by computing instances of MOF
clustered in the domain per definition implies that EMOF is resolved in the do-
main of the clustered points. The larger the number of points in the cluster the
better EMOF is resolved. The only assumption that does not strictly hold is
that each instance of ~u is identically distributed. This is evident from Figure 7,
but again the spatial variation in σ2 is usually within the same order in the
domains of interest which approximately satisfies this assumption. We refer to
this approach as Statistical Meta-Optimisation Fitness (SMOF).
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The time complexity to compute SMOF, once the MOF for each parameter
vector has been evaluated, is dictated by the solution of ~α = (ΛTΛ)−1ΛT ~φ.
Following the Bachmann-Landau notation [1], the time complexity to solve ~α
for a system of m equations and n regression coefficients are as follows:

1. O(n2m) to compute ΛTΛ,
2. O(nm) to compute ΛT ~φ,
3. O(n3) to solve the linear system (ΛTΛ)−1~α = ΛT ~φ using Cholesky factor-

isation.

Asymptotically O(n2m) dominates O(n3) since we are dealing with a regres-
sion problem, i.e. n < m. Consequently the total asymptotic time complexity
to compute SMOF is O(n2m). In addition, the error rate for non-parametric
regression surfaces constructed with a sample size m is proportional to m

−2
2+k ,

where k is the number of parameters i.e. ~p ∈ Rk [43]. This leads to exponen-
tial time complexity of m as k increases when aiming to construct a regression
surface with similar accuracy. Fortunately, the number of parameters k for a
heuristic optimisation algorithm is usually limited or can be reduced using di-
mensional reduction or feature extraction techniques [13], that aims to capture
the data without redundancy e.g. maximum relevance and minimum common
redundancy (N-MRMCR-MI) [14] or the tolerance rank-variance formulation
(TRVF) [12]. In addition, evaluating m parameter vectors is an embarrassingly
parallel computational problem.

3.2.3. Basis Functions and Shape Parameters
A secondary benefit of regression RBF is that numerical ill-conditioning is

delayed in particular when the susceptible Gaussian radial basis function is
selected, requiring s to be resolved with due care.

For example, consider the Gaussian basis function evaluated at a unit dis-
tance ||~p−~cj || = 1, which gives e−s. For large s a large negative value exponent
is evaluated which is close to zero. In turn, for a small s the exponent of a
number close to 0 is evaluated, which is close to 1. However, making s too small
results in ill-conditioning as the linear system represented by (16) becomes sin-
gular. This is elegantly illustrated by the following example.

Consider the quadratic surface, f(x) = x21 + 10x22, depicted in Figure 8(a).
This is approximated by sampling this function at nine points on a 3×3 grid. An
interpolation based RBF surface using Gaussian basis functions is constructed
from the nine sampled points using three selected shape parameters, namely
s = 1, 0.1 and 5 × 10−5 and depicted in Figures 8(b)-(d). The ill-conditioning
resulting from choosing s too small is evident.

Usually an appropriate shape parameter is computed by minimising the well-
known Leave One Out Cross Validation Error (LOOCVE) as a function of s
[38]. This is illustrated in Figure 9 for our example problem, which shows
the error function is insensitive in the region of the actual optimum. Instead of
minimising LOOCVE we confirmed in all our tests that the actual optimum was
close to the average distance between the different points making up the RBF
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(a) Actual quadratic surface

(b) s = 1× 100 (c) s = 1× 10−1 (d) s = 5× 10−5

Figure 8: Effect of the shape parameter s when approximating the (a) actual quadratic surface
using interpolation based RBF with Gaussian basis functions.

response surface. We exploit this observation in this study by always resolving
s as the average distance between the centre points. However, we suggest that
the LOOCVE be formally minimised using the average distance between centres
as a starting guess for the optimisation problem to resolve s.

3.3. ESPO - Step 3: Add SMOF Optimum as Candidate Parameter Vector

The global best parameter vector is estimated by finding the optimal SMOF,
which is then included in the new construction of a regression response surface
using a new LHS set of RBF centres as a fraction of the total number of points,
including the newly added point.

In this study, the SMOFmodel is optimised using the limited memory version
of the BFGS Quasi-Newton method with bound constraints (L-BFGS-B) [29,
49]. The multi-start strategy allows for multi-modality in the SMOF model to
be handled. The model is optimised 25 times from uniform randomly chosen
starting points in the meta-design domain in addition to including the previous
global best as a starting point. The best solution over all the runs is recorded.
Fortunately, analytical gradients for the regression RBF surface can be easily
computed making a multi-start gradient based strategy available as an efficient
optimisation approach.

This elementary strategy can easily be improved using a more robust multi-
start strategy. One such an example is the Bayesian Stopping criteria proposed
by Snyman and Fatti [42]. They proposed that the optimisation runs be repeated
from different starting bounds until the global minimum is found within a given
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Figure 9: Optimal (green) and averaged distance estimated (red) shape parameter s.

level of confidence. However, the freedom of choosing an optimisation strategy
ultimately lies with the user as long as the estimated global optimum parameter
vector is robustly resolved.

3.4. Pseudocode for ESPO
The pseudocode for ESPO is listed under Algorithm 1. The function ESPO

requires the initial number of LHS designs m, parameter vector upper and lower
bounds (~pl and ~pu), fraction of centers of the total number of parameter vectors
(nfraction), number of optimisation restarts (kmax ) and the total function eval-
uation budget (budget) to be specified. This is in addition to the availability of
a function to compute latin-hypercube samples LHS and a selected MOF φ(~p).

4. Numerical Results

The numerical results in this study are presented in three sections. Firstly,
a sensitivity study of the parameters of ESPO is conducted to find robust set-
tings for these parameters. This is followed by a detailed investigation on the
performance of F/Race, SPO and ESPO on the set of six test problems, where
after the study is concluded by confirming the results on an independent set of
ten test problems.

For this study, we include the SPO strategy as a benchmark strategy for
two reasons. Firstly, SPO has proved to be an efficient and competitive tun-
ing strategy [6]. Secondly, our proposed approach extends on the concepts on
which SPO is based. As outlined, our proposed strategy also constructs approx-
imations of the utility function but with the difference that the approximation
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Algorithm 1 Efficient Sequential Parameter Optimisation (ESPO)

1: function ESPO(m, ~pl, ~pu, nfraction, kmax, budget)
2: Initialise:
3: ~p1, . . . , ~pm ← LHS(m, ~pl, ~pu) sampled parameter vectors between ~pl and ~pu
4: ~Φ = {φ1, φ2, . . . , φm} ← φj = φ (~pj) , j = 1, . . . ,m
5: Construct SMOF :
6: while m < budget do
7: n← int(nfraction×m).
8: ~cj , j = 1, . . . , n← LHS(n, ~pl, ~pu) sampled centres for RBF
9: Λij ← λ(‖~pi − ~cj‖), i = 1, . . . ,m; j = 1, . . . , n

10: ~φ = {φ1, φ2, . . . , φm} ← φj = φ (~pj) , j = 1, . . . ,m

11: ~α← (ΛTΛ)−1ΛT~φ
12: φ̃(~x)←

∑n
j=1 αjλ(‖~x− ~cj‖)

13: Optimise SMOF :
14: k ← 0
15: φbest ← min(~Φ)

16: ~xbest ← phi(~xbest) = min(~Φ)
17: while k < kmax do:
18: if k = 1 then ~x0 = xbest
19: else ~x0 = rand(~pl, ~pu)

20: end if
21: Find ~x∗ = min~xφ̃(~x) using ~x0 as starting point
22: if φ̃(~x∗) < φbest then
23: φbest = φ̃(~x)
24: ~xbest = ~x∗

25: end if
26: k ← k + 1.
27: end while
28: ~pm+1 ← ~xbest
29: m← m+ 1

30: end while
31: return ~pm
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estimates both the performance and spatial location of the candidate optimal
parameter vector using parameter vectors that were tested only once.

4.1. ESPO Parameter Sensitivity Study

Before we proceed, it is clear that ESPO has its own set of parameters that
needs to be selected. They are the following three parameters:

1. Rs - the fraction of the total meta-evaluation budget to evaluate for the
initial regression RBF surface,

2. Rc - the fraction of centres of the total number of points,
3. Rr - the ratio of the shape parameter to the average distance between

points.

The number of centres n{k} at iteration k for the regression RBF is some chosen
as some fraction Rc of the total number of MOF evaluations m{k}, which can
be expressed as n{k} = Rc × m{k} with Rc ∈ (0, 1]

⋂
R. The centres, ~cj , are

determined by computing a Latin Hyper Cube sample over the defined meta-
design domain which avoids spatial clustering of the centres that may otherwise
lead to ill-conditioning.

This necessarily raises the question “Are we better off, aren’t we just repla-
cing one set of parameters for another?”. However, there are two scenarios that
would leave us better tuning ESPO than trying to directly tune the heuristic
optimisation algorithm.

Firstly, we are better off when ESPO has less parameters than what needs to
be tuned for a typical heuristic optimisation algorithm. Secondly, we are better
off if the ESPO parameters are less sensitive than the parameters of a typical
heuristic optimisation algorithm. To illustrate the later observation regarding
the difference between a sensitive and robust parameter, consider Figures 10(a)
and (b). Therefore to ascertain the robustness of the three parameters of ESPO
we conduct a sensitivity analysis, which demonstrates that the ESPO paramet-
ers are found to be robust. We are therefore able to propose appropriate values
for each of the three parameters.

This is done by performing a coarse 33 full factorial experiment, i.e. three
values per parameter for the three ESPO parameters as tabulated in Table
3. It is evident that the parameters values in the full factorial experiment
differ significantly allowing for a proper sensitivity versus robustness study to
be performed. The performance of each point on the full factorial grid of ESPO
parameters was sampled a 100 times to get an accurate estimate of the EMOF
and MOF variance of the estimated optimal PSO parameters. For the PSO we
estimated w and c1 = c2, while the problem dimension for the problems listed
in Table 1 was chosen to be 30 and the particle swarm size 50.

Figure 11 shows the results of the coarse parameter search for the ESPO
tuning method with the ESPO parameter vector given in the form {Rc, Rs, Rr}.
From it we see that all the ESPO parameters yielded PSO parameters that lead
to a mean MOF between −3 and −3.5. This shows that in all cases the ESPO
found parameters that lead the PSO algorithm to make on average three orders
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Figure 10: Illustration of the difference between (a) a sensitive and (b) robust parameter
value.

Table 3: Parameter values tested for ESPO.

Parameter Value 1 Value 2 Value 3
Rs 0.10 0.20 0.40
Rc 0.25 0.50 0.75
Rr 0.50 1.00 2.00

Figure 11: Violin-plots of the mean MOF, averaged over 100 ESPO runs, for the 10 parameter
vectors with the most variance of 27 computed ESPO parameter vectors. The ESPO parameter
vectors are given in the form {Rc, Rs, Rr}.
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Figure 12: Comparison of the MOF (log scale) estimated 100 times for F/Race, SPO and
ESPO on the six test problems listed in Table 1.

of magnitude improvement on the individual test problems. The fact that all
the violin-plots in Figure 11 are more or less on the same level shows that the
ESPO algorithm is fairly insensitive to its own parameters. The violin plot with
parameters Rc = 0.5 , Rs = 0.1, and Rr = 0.5 performed marginally better and
had the lowest variance and thus we will use it for the remainder of our study.

4.2. Performance Comparison on Six Test Problems

In addition to SPO and ESPO we also consider arguably the de facto stand-
ard tuning algorithm namely F/Race [2], as a standard benchmark. To compare
the performance of F/Race, SPO and ESPO we tune the Particle Swarm Optim-
isation algorithm on the six test problems listed in Table 1. We now deliberately
choose the problem dimension and number of particles in the PSO distinct from
the values chosen in the sensitivity study in Section 4.1. The problem dimension
is now selected as 15 and following Pedersen and Chipperfield [36] we select the
swarm size 30.

For all three tuning techniques we restrict the meta-evaluation budget to 100
MOF evaluations, while the total fitness budget for the PSO algorithm is 5000.
Consequently, to tune the algorithm using one approach therefore requires a
total of 500 000 function evaluations to evaluate the six test problems.
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Figure 12 shows the results obtained from the multiple tuning runs on a
logarithmic scale. We see that F/Race and SPO produced parameters that
had anything from 1 to 3 orders improvement on average on the set of six test
problems. On the other hand, ESPO consistently produced parameters that
reached at least three orders improvement on the test problem set.

The PSO parameters obtained by SPO had the greatest variability in the as
depicted in Figures 13(a) and (b), while ESPO had the least variability. This is
most likely because SPO evaluates the intermediate models using a LHS instead
of optimising the RBF response surface. By optimising the RBF regression sur-
face we see that ESPO is able to resolve PSO parameters more consistently.
In ESPO we optimise the model using deterministic gradient optimisation al-
gorithms, so we are confident that at least we find a local minima of the model.
Through the multi-start strategy employed the probability of finding the actual
global minimum of the model is also improved. It is evident that the PSO is
by far more sensitive to ω than the c12 parameter. All three tuning methods
found ω parameter vectors clustered around 0.7 with SPO and F/Race more
dispersed than ESPO. Interestingly, these ESPO values are clustered around
the published values by Clerc [15].

To interrogate the quality of the estimated optimal PSO parameters by
ESPO specifically, we performed an exhaustive line search at one of the obtained
solutions along both parameter axes in Figure 14. Each line search consisted of
100 different points, where each point sampled the MOF a 100 times. We then
plotted the EMOF value along the line and also showed the 95% confidence
interval for the values. The optimal parameter vectors found by ESPO is shown
on the Figure as a blue dot. This clearly illustrates the estimated optimal para-
meter vectors are at the basin of at least a local minimum as both parameters
are at the minimum of a local basin.

Finally, to investigate the dependency between the two parameters in Figures
17(a), 17(b) and Figure 14 we plotted all the points the tuning techniques
found on a contour plot of EMOF in Figure 15. This shows a banana shaped
valley, similar to the two-dimensional Rosenbrock function, in which a domain
of better performing parameter vectors lie. All three tuning methods found
parameter vectors close to and along this valley. However, the ESPO points are
more localised within the valley. Looking at the EMOF in Figure 15, we have
confidence that this is in fact globally optimal within a statistical margin.

4.3. Performance Comparison on Ten Independent Test Problems
To ensure that the observed response can be generalised we consider all three

tuning methods on ten different test problems listed in Table 2. The problem
dimension and particle size is still chosen as 15 and 30 respectively, while the
meta-optimisation budget and function evaluation budget is chosen as before.

Figure 16 shows the results obtained from the multiple tuning runs on a
logarithmic scale. We see that the bulk of ESPO performance is between 7 and
8 orders better than F/Race and SPO.

The PSO parameters obtained by ESPO had the least variance as depicted
in Figures 17(a) and (b), while F/Race and SPO had higher variance. Although
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(a)

(b)

Figure 13: Distribution of the (a) ω and (b) c1 = c2 PSO parameters obtained by 100 runs of
the different tuning techniques on the six test problems listed in Table 1.
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Figure 14: Line-searches around the optimal point parameter vector during meta-optimisation
along a random search direction.

Figure 15: Spatial distribution of the optimal PSO parameters found by the different tuning
methods.
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Figure 16: Comparison of the MOF (log scale) estimated 100 times for F/Race, SPO and
ESPO on the ten test problems listed in Table 2.

the PSO algorithm was tuned for ten different test problems the same conclusion
as before is drawn, that is ESPO performs orders better than the closest rival
which is F/Race.

5. Conclusion

Real parameter tuning algorithms require individual parameter vectors to
be sampled multiple times, i.e. Ntests >> 1, to estimate the expected per-
formance of the respective parameter vectors required to compute the Expected
Meta-Optimisation Fitness (EMOF). Statistical screening, ranking and selec-
tion or statistical racing methods are mostly used to reduce the associated cost
to compute EMOF, but unfortunately, the cost remains prohibitively expens-
ive when practical engineering problems are considered subject to restricted
meta-evaluation budgets well below 100 evaluations in total.

This study proposed an alternative approach to reduce the computational
cost by never sampling an individual parameter vector more than once, i.e.
Ntests = 1. This is achieved by resolving the spatial location of the optimal
parameter vector in the meta-design domain and its associated performance by
spatial clustering of parameter vectors the meta-design domain. This is achieved
by fitting a regression based response surface through the parameter vectors
with each vector sampled only once. The regression surface is then optimised
to estimate the spatial location of the optimal parameter vector and its mean
performance. We refer to this fitness function as Statistical Meta-Optimisation
Fitness (SMOF).

A regression RBF response surface approach is proposed, namely Efficient
Sequential Parameter Optimisation (ESPO), as an effective model based tuning
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(a)

(b)

Figure 17: Distribution of the (a) ω and (b) c1 = c2 PSO parameters obtained by 100 runs of
the different tuning techniques on the ten test problems listed in Table 2.
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approach to construct and minimise SMOF under restricted tuning budgets. We
showed that the ESPO parameters are insensitive and therefore fairly robust by
conducting a sensitivity study in addition to considering its performance on
two distinct test problem sets. We considered a moderate fitness budget of 5
000 function evaluations per meta-function evaluation, and a meta-evaluation
budget of 100 evaluations in total. This means that just to tune a stochastic
optimisation algorithm we require 500 000 function evaluations. If each function
evaluation were to take 60 seconds, then the entire tuning process would take
just short of a year on a single core computer. Clearly this becomes prohibitively
expensive. If you want to tune anything besides academic test problems then
you must do so very efficiently with a restricted meta-evaluation budget.

We compared ESPO to both F/Race and SPO on two sets of test prob-
lems ranging from 15 to 30 dimensional problems. On both test sets, ESPO,
found superior performing parameters to F/Race and SPO using the same meta-
evaluation budget. A line search, depicted in Figure 14, showed these paramet-
ers are indeed locally optimal, which was then verified to be globally optimal.
Finally, it found a parameter vector that outperformed the values published by
Clerc (2006). It seems that ESPO should be the tuning method of choice for
low utility budgets. In addition, ESPO should not be viewed as a competitor
to SPO but as an improvement to the concepts introduced by SPO that makes
it more efficient in restricted tuning budget scenarios. This is due to two fa-
vourable properties of the method. Firstly, it only evaluates a parameter vector
once and then uses regression to get an accurate model of the expected utility
landscape. This means that it uses much fewer points to build a regression
model than SPO, which evaluates parameter vectors multiple times. Secondly,
ESPO uses formal optimisation techniques to optimise the regression model in-
stead of following SPO’s strategy to sample the regression model using design
of experiments. This accelerates the quality of the solutions obtained from the
regression model.

Additional research is required to asses the robustness of the ESPO para-
meters on practical problems. In addition to considering heuristic optimisation
algorithms with more parameters, as well as parameters that are defined over
different length scales. It would be of significant practical benefit to include
discrete parameters.

Lastly, a reminder that tuning is not always practical. Even with low utility
budgets tuning is still a significant computational cost. When practitioners are
constantly optimising unique problems once-off it makes little sense to perform
tuning before optimising the problem directly. There is always a balance to
be kept between optimising with sub-optimal parameters versus tuning and
then optimising with "optimal" parameters. Tuning really comes to its own in
situations where similar problems have to be solved multiple times. For example,
constantly solving vehicle routing problems for different scenarios. Here, a tuned
algorithm can save valuable time by conducting a tuning study once-off for a
set of representative scenarios and then using the optimal parameters to solve
new routing scenarios. Here, again having to compute each parameter vector
only once during the tuning process may save significant resources in contrast
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to repeatedly sampling individual parameter vectors.
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