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Abstract 

Nonstationary flow conditions can introduce complexities and nonlinear characteristics to pumping systems. This paper presents com-
parative studies of impeller fault detection techniques combined with artificial neural networks (ANNs) to propose the most appropriate 
diagnosis system. An experimental study, including seven impeller conditions, is performed to further explore the phenomena. Statistical 
parameters, frequency peaks, and wavelet packet energy present data feature sets, and a three-layer back-propagation ANN is used for 
fault recognition. The verification of the results proves that the detectability of the wavelet packet transform (WPT)-ANN model is con-
siderably improved by using the energy of the decomposed vibration from WPT. This model can save computational time and provide 
superior diagnostic information. This study provides two key contributions. First, the feasibility and effectiveness of common monitoring 
techniques are compared. Second, the results demonstrate the accuracy of the proposed models for impellers operating under variable 
working conditions, which has not been previously addressed in the literature.  
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1. Introduction

Centrifugal pumps are extensively used in most industrial
sectors, with increasing requirements for enhancing reliability, 
safety, and production capability. Condition-based mainte-
nance (CBM) is an important strategy for dealing with the 
aforementioned requirements by detecting early signs of fail-
ure and allowing efficient maintenance. Damage detection 
techniques are generally categorized into the following major 
levels: existing damage detection, localization, damage sever-
ity quantification, and remaining life estimation. Vibration 
monitoring is frequently applied to CBM because of its poten-
tial and sensitivity to the early detection of performance deg-
radation. This process is also applicable to pumps. Three ma-
jor factors that increase vibration levels in centrifugal pumps, 
namely, peripheral (e.g., nearby machines), mechanical (e.g., 
mechanical imbalance of rotating components), and hydraulic 
causes (e.g., flow interaction with internal components), are 
distinguished [1]. The most appropriate analysis technique can 
be selected based on the complexity of the system being con-
sidered.  
Furthermore, automated fault diagnosis techniques may be 
introduced to create intelligent fault diagnosis systems and 
are successfully adopted in many applications [2]. These 
systems aim to interrogate imput data and predict the

progression of faults. Among the available methods, 
artificial neural net-works (ANNs) have been extensively 
used by researchers. Most of these previous works involve 
the diagnosis of bearing defects, whereas only a few 
existing references deal with im-peller fault detection [3, 4]. 
Zouari and Menad [5] investigated the capability of ANNs 
to detect and classify specific faults, such as “partial flow 
rates, loosening of rear pump attach-ments, and 
misalignment,” over constant flow rates. Mean-while, a 
combined optimal wavelet packet transform (WPT) and 
ANN was presented in [6] and used to illustrate the time-
varying energy pattern of various signals. In addition, 
fluctuat-ing operating conditions are observed in many 
operating sys-tems, which can generate amplitude, 
frequency, and phase modulation in vibration signals. 
However, studies regarding the influence of fluctuating flow 
conditions for monitoring pump element conditions remain 
limited. The underlying ideas in the current study are as 
follows: (1) to contribute ef-fective features by introducing 
nonstationary signal processing and (2) to train a classifier 
to identify impeller conditions and detect and quantify 
damage severities under different operat-ing conditions. 

The remainder of the paper is organized as follows. Sec. 2 



2 

introduces relevant measurement and signal processing tech-
niques. Sec. 3 considers the use of ANNs in condition moni-
toring applications. Sec. 4 describes the experimental proce-
dure. Sec. 5 discusses feature extraction based on analyses. 
Sec. 6 presents the performance of ANNs. Sec. 7 concludes 
the study. 

2. Signal processing

Signal information is commonly extracted from simple sta-
tistical parameters in a process known as time domain analysis 
(TDA). Some of these parameters and their corresponding 
equations are well documented in [7]. Root mean square 
(RMS), impulse factor, shape factor, skewness, standard de-
viation (SD), kurtosis, mean value, energy, lower and upper 
bounds, entropy, central moments, and signal distribution are 
commonly used in the literature. [8]. Crack, as a common 
impeller fault, was analyzed in [9] using statistical features, 
namely, kurtosis, RMS, skewness, and variance. However, 
these parameters frequently do not show slight changes in a 
system. Hence, fast Fourier transform has been introduced as 
an effective approach for dealing with periodic signals. Pa-
rameters, such as the arithmetic mean of a frequency spectrum, 
geometric mean, and RMS amplitude, can provide a quick 
overview of machine condition [10]. Pump rotational fre-
quency, vane passing frequency [11], and the corresponding 
harmonics are proposed as indicators that can provide valu-
able information regarding a centrifugal pump impeller that 
can be strongly affected by variable conditions. By contrast, 
wavelet analysis, which simultaneously performs time-
frequency analysis (TFA), is an effective approach for dealing 
with nonstationary signals [12, 13] and an effective tool for 
rapidly exhibiting variable amplitude and phase changes [14]. 
Wavelet analysis expands signals in terms of wavelets pro-
duced through the scaling and translation of a mother wavelet. 
Numerous wavelet transform (WT) methods, including con-
tinuous wavelet transform, discrete wavelet transform, and 
WPT, have been developed. A detailed comparison of WT 
methods and the existing formulation was presented in [15]. 

Wavelet packets (WPs) combine traditional wavelet func-
tions. Therefore, WPT enables the extraction of high time and 
frequency resolutions for signals that inherit stationary and 
nonstationary characteristics. A WP function ( )i

j,kψ  t was 
introduced as Eq. (1) in [16] with the first wavelet function, 
which is known as the mother wavelet 1 ( )ty y= .  
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WPT consists of a set of quadrature filters (H and G), which 
decompose a signal into j layers with the following expres-
sion: 

( ) ( ) ( )
2

1

[ ] .
j

i i
j j

i

f t Hf t Gf t
=

= +å (2) 

Wavelet decomposition requires prior information, such as 
the decomposition level and mother wavelet type. Despite the 
absence of a universal wavelet that can perform optimally for 
all types of signals, Daubechies wavelets, such as db2 to db35, 
are considered ideal [17], whereas a Morlet wavelet can be 
effective in representing transient vibration signals [18]. Sub-
sequently, WP-based energy is introduced as a reliable indica-
tor that can present signal energy in various frequency bands.  

WP energy, such as energy entropy and Shannon energy 
entropy, has several definitions. WP energy entropy and log-
energy entropy at a specified node in wavelet decomposition 
can be computed using Eqs. (3) and (4), where ? presents the 
wavelet packet coefficients at time ? and node n. 
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3. ANNs

ANNs are effective processing tools for nonlinear problems
with specific purposes, such as pattern recognition or data 
classification [19] through learning procedures, to achieve 
fault diagnosis. ANN applications use a simple multilayer 
perceptron (MLP) as common network architecture. This net-
work is first propagated by inputs to provide the error value 
that corresponds to each node. The error value is then trans-
mitted back to adjust network weights. A typical MLP net-
work architecture is depicted in Fig. 1. The neuron values are 
normalized within a specific range by passing an activation 
function, and network output can be executed in matrix form 
as Eq. (5) [20], where W  denotes the weight matrix, b is 
the bias vector, and f  is the activation function. 

( )( )2 1 1 1 1 2y f w f w x b f= + + (5) 

-

1log( )
1i xy

e
=

+
(6) 

In this study, vibration characteristics are used as network 
inputs, which are selected through frequency- and time-based 
characterization approaches. A gradient descent technique is 
applied to the error value to find the desired value of the 

Fig. 1. Typical MLP network architecture. 
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weight in each neuron with the aid of a logarithmic unipolar 
sigmoid function (Eq. (6)). 

In addition, the number of inputs and hidden nodes consid-
erably impacts the accuracy of networks. A large number of 
inputs can lead to an undertrained or overtrained network. 
Hence, the number of nodes in a hidden layer with respect to 
the number of inputs can be estimated using empirical Eq. (7) 
[6]. 

,L M N a= + + (7) 

where M and  N denote the node numbers in the input and 
output layers, respectively; and  a  is a constant value between 
1 and 10. 

4. Experimental verification

4.1 Experimental rig 

An experimental setup was developed to measure impeller 
vibration. The experiment was performed using seven impel-
ler conditions under fluctuating flow conditions. Impeller 
crack and imbalance were staged with increasing severity 
levels. The system was run for approximately 27 s over a 
range of variable flow rates (0 l/min to 90 l/min) and com-
prised a centrifugal pump with a closed-loop piping system. A 
single suction pump with a top discharge operating at 2700 
rpm with a single-phase electric motor was used. The pump 
was a CM-50 Pentax series with the following construction 
features: a cast-iron body and motor bracket, a Noryl® impel-
ler, and a ceramic-graphite mechanical seal that delivers water 
at a rate of up to 90 l/min. 

4.2. Experimental measurements 

The experimental data were collected in accordance with 
the procedure illustrated in Fig. 2. A triaxial accelerometer 
(Fig. 3, bottom right) with a sensitivity of 10 mV/g and a 
Quantum X-4 channel data acquisition system were used to 
collect the data at 4800 samples per second. The accelerome-
ter was mounted on top of the pump casing due to the follow-
ing reasons: (1) to keep the accelerometer in a horizontal posi-
tion and (2) to collect vibration data that are more sensitive to 
the variation in fluid dynamics derived from impeller defects 
in the radial and axial directions [8]. Two pressure gauges 
were installed to measure suction and discharge pressures, 
whereas a Venturi flowmeter was installed to obtain pump 
performance curves. Two flow valves were installed at the 
inlet line of the pump and reservoir discharge to control and 
modify the flow rate at the suction side and the water height of 
the reservoir. The closed-loop water system is shown in Fig. 
3(top). A tachometer (Fig. 3, bottom left) was positioned 
along the free end of the rotor shaft to detect the operational 
influence on the pump (rpm). X and Z denote the radial direc-
tion, whereas Y denotes the axial direction based on the coor-
dinate system shown in Fig. 3 (bottom right).  

4.3 Fault simulation 

Corrosion and external solid materials in fluids are the ma-
jor factors that contribute to impeller damage [4]. Hence, 
cracking and imbalance conditions with three severity levels 
(low, medium and high) were manually simulated using a 
hacksaw and by delivering a hammer blow. As shown in Fig. 
4, the crack location was close to the impeller eye, whereas 
imbalance was introduced to the external perimeter of the 
impeller. Closed-type impellers were used in the setup; thus, 
the damages were induced at the locations of the blades. Table 
1 outlines the condition types and the relevant fault dimen-
sions staged on the impeller. 

5. Feature extraction

Data samples were collected under a constant flow rate of
60 l/min and a flow variation ranging from 0 l/min to 90 l/min. 
Then, 4 measurements for each condition (each condition 
contained a data set of 259200 samples) were performed. 

Fig. 2. Scheme of the proposed method. 

Fig. 3. (top) Closed-loop water system; (bottom left) location of ta-
chometer; (bottom right) accelerometer. 
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Among the 7 impeller conditions, 12 vibration signals were 
observed under each condition. Therefore, 84 raw vibration 
signals were measured and used to train ANNs. 

5.1 Time domain features (TDFs) 

The following statistical parameters were calculated from 
the measured vibration: mean ,m  RMS, kurtosis ,tK  
skewness ,nS  energy E, crest factor ,rC  ,SD  impulse fac-
tor ,rC  and peak-to-peak value. The selection of appropriate 
feature sets is crucial and can enhance the accuracy rate of a 
diagnosis system. No standard method for selecting the types 
of features has yet been established; thus, the statistical pa-
rameters that are sensitive to flow variation were selected in 
this study. In this regard, the maximum likelihood estimation 
(MLE) method was used to map a simple linear model, i.e., 

( )
0

p
T

j j
j

Y x X xb ò b ò
=

= + = +å , onto each feature set to indi-

vidually identify the average absolute value of slope ( b ) for 
each feature model. The results show that only the following 
features are sensitive to the operational condition with the 
lowest uncertainties: RMS, kurtosis ,tK  skewness ,nS  and 

.SD  Fig. 5 depicts these features and the MLE linear model 
with regard to their predicted slope parameter. 

The results indicate an apparent difference in the vibration 
level in the axial direction (Y-axis). Such difference is attrib-
uted to the applied defects on the impellers, which lead to an 
asymmetric flow in the system and generate large flow im-
pacts with a high vibration level in the axial direction. Fig. 
6(left) shows the selected features over constant flow for 60 s, 
whereas Figs. 6(middle) and (right) present these features as 

functions of the flow variation under normal condition and 
crack damage level 1 (C1), respectively. A careful considera-
tion of these figures shows a pattern at the vibration level re-
lated to the water flow rate and the applied defects. Fig. 7 
illustrates the features of all the conditions against one another 
over flow variation. 

Evidently, the vibration parameters are generally high for 
flow rates below 20 l/min due to cavitation. By contrast, cer-

Table 1. Specifications of impeller damage. 

Impeller condition Fault type 

Normal (N) Without fault 

Fault 1 (C1) Crack depth ; 10 mm 

Fault 2 (C2) Crack depth ; 20 mm 

Fault 3 (C3) Crack depth ; 30 mm 

Fault 4 (U1) Unbalance depth ; 4 mm 

Fault 5 (U2) Unbalance depth ; 8 mm 

Fault 6 (U3) Unbalance depth ; 12 mm 

Fig. 4. Damage induced on the impeller: (left) Impeller with crack; 
(right) unbalanced impeller. 

Fig. 5. Selected statistical features and their predicted linear model 
using the MLE method.  

Fig. 6. TDFs of the normal impeller under (left) A constant flow rate;
(middle) a variable flow rate; (right) TDFs of the damaged impeller 
(C1) under a variable flow rate. 

Fig. 7. Behavior of TDFs under a variable flow rate. 
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tain features (e.g., crest factor and mean value) do not exhibit 
a clear pattern. The crack has a more significant impact on 
vibration magnitude, whereas C3 exhibits a higher energy 
value compared with the imbalance. This finding is attributed 
to changes in impeller geometry, which considerably alter the 
flow path. Therefore, RMS and SD are more reliable than the 
other features. Meanwhile, fault classification performance 
was evaluated for the aforementioned features. The RMS 
value exhibits high sensitivity to flow variation and high per-
formance in fault classification; thus, the other features are 
normalized according to this value. The results are presented 
(in %) in Fig. 8. 

5.2 Frequency domain features 

Pump frequency (rpm), vane pass frequency (VPF), and 
their corresponding harmonics are considered valuable and 
indicative parameters. The analysis of an impeller with normal 
(N) condition operating at constant and varying flow rates 
implies high amplitude for 1 rpm, VPF, 2VPF, 3VPF and 
6VPF, and a significant increase in noise level for measure-
ments under flow variation. Moreover, the addition of dam-
ages with relevant severity levels (Table 1) to the experiment 
show that crack C influences the high harmonics of rpm, 
whereas the unbalanced condition U affects the first rpm and 
VPF. 

Hence, spectral behavior was investigated at low- (1 Hz to 
1 kHz) and high-frequency ranges (1 kHz to 2.4 kHz). 

5.2.1 Spectrum characteristics of low-frequency range 
Fig. 9 shows the frequency spectra that correspond to im-

peller conditions (Table 1). The low-frequency range plot 
depicts nearly the same broadband, which is influenced by 
flow turbulence. Fundamental frequency components are visi-
ble with high amplitudes, which are attributed to the interac-
tion between flow and impeller vanes. A comparison of the U 
and C conditions with the normal condition indicates that the 
1 rpm amplitude increases as the severity of damage increases. 
However, imbalance effects occur with higher amplitude for 2 
rpm to 5 rpm, whereas crack excitation appears in high har-
monics. Furthermore, a considerable difference in frequency 
location can be observed for each damage, where rpm and 
damage severity appear to be inversely proportional. The 1 
rpm for the normal and U3 conditions appears at 45 Hz (2700 
rpm) and 41.33 Hz (2480 rpm), respectively.  

5.2.2 Spectrum characteristics of high-frequency range 
Fig. 10 shows that high orders of rpm are excited under 

crack conditions. Spectral energy is also increased signifi-
cantly at frequencies over 2000 Hz, which is due to a pressure 
drop in the pump suction. Fig. 10(bottom) depicts a high am-
plitude of U3, thereby indicating that the vibration energy of 
the rpm harmonics becomes stronger as the severity of defects 
increases.  

The system operates under fluctuating flow conditions; 
hence, the fundamental frequency amplitudes and broadband 
energies are studied as functions of flow. Fig. 11 shows the 
behavior of five selected frequency components against a 
varying flow rate. Despite the considerable effects of imbal-
ance at low frequencies (1 rpm and VPF), as shown in Figs. 
11(a) and (b), respectively, no specific behavior pattern related 
to defect severity and flow rate is illustrated. By contrast, Figs. 
11(c)-(e) explicitly show the influence of crack damage as the 
number of harmonic orders increases.  

5.3 Time-frequency features 

Vibration signals were decomposed into numerous fre-

Fig. 8. Comparison of the effects of features on classification accuracy. 

Fig. 9. Vibration spectra of low-frequency range: (top) Unbalanced 
impeller vs. normal impeller; (bottom) impeller with crack vs. normal 
impeller. 

 

Fig. 10. Vibration spectra of high-frequency range: (top) Unbalanced 
impeller vs. normal impeller; (bottom) impeller with crack vs. normal 
impeller. 
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quency bands with WPT to extract time-frequency features. 
Wavelet basis and decomposition level were selected based on 
the achieved performance in terms of classification accuracy 
using different types of wavelets and decomposition levels. 
Therefore, a 5-layer wavelet packet decomposition using 
Daubechies wavelet (db20) was performed, and 32 frequency 
bands, with each band covering a frequency interval of 75 Hz, 
were obtained. Fig. 12 simultaneously shows the feature maps 
of impeller vibration in the frequency and time domains. The 
flow rate evidently affects vibration energy, in which the fun-
damental frequency components 1´ rpm and VPF are clearly 
below 300 Hz.  

The rpm, VPF frequencies, and corresponding harmonics 
are excited and increased in low flow rates. In addition, the 
minimum noise energy is observed in flow rates higher than 
20 l/min. The C and U conditions, with their corresponding 
severities, are presented in Fig. 13. The influence of cracks is 
evident at high rpm harmonics, whereas the imbalance effects 
are clearly shown to be higher at 1 rpm.  

Moreover, the comparison of the Shannon energy distribu-
tion of all the sub-bands and log-energy distributions indicates 
explicit information regarding log-energy distribution. Fig. 14 
depicts the normalized log-energy distribution of the 32 fre-
quency sub-bands. As shown in the figure, the amount of en-
ergy for C conditions is observed at high frequencies, whereas 
the imbalance effects are observed at low frequencies. The 
energy of frequency sub-bands from WPT varies under each 
impeller condition; hence, it can represent features that exhibit 

the characteristics of diagnostic faults.  

6. ANN Performance

A three-layer feedforward ANN with an input layer, proc-
essing units (hidden layer), and an output layer was adopted in 
this section. Seven sets of features formed the inputs and were 
divided into three independent subsets to be used for training, 
validating, and testing the networks. Three ANN structures 
were designed based on the extracted features from TDA, FA 
and TFA. Four features were selected from TA, namely RMS, 
kurtosis, skewness, and SD. Five frequency peaks that corre-
spond to the pump rpm represent the spectral features. Finally, 

Fig. 11. Amplitude evolution of the frequency components: (a) 
1´ rpm; (b) VPF; (c) 2´ VPF; (d) 18´ rpm; (e) 36´ rpm. 

Fig. 12. Time-frequency plot of an impeller with normal condition. 

 

Fig. 13. Time-frequency plot of impellers with faulty conditions: im-
peller with crack (left column); unbalanced impeller (right column). 

Fig. 14. Normalized log-energy distribution of the frequency sub-bands 
of impellers under different operational conditions. 
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32 features, including frequency sub-band energy, were se-
lected from TFA.  

The preliminary number of nodes in the hidden layer is es-
timated using Eq. (7) as follows. For the TDA feature sets (4 
input features), the network must include 4 to 14 hidden 
nodes; for the FA feature sets (5 input features), 5 to 15 hidden 
nodes should be included; and for the WPT feature sets (32 
input features), the ANN must have 8 to 18 hidden nodes. 
Therefore, a set of training tests (within the estimated range of 
the hidden layer’s nodes) with three popular transfer functions 
and learning algorithms, namely, the Levenberg-Marquardt 
(LM), gradient descent, and quasi-Newton algorithms, were 
performed to select the most appropriate ones. This process 
was repeated 10 times for new testing data sets, and the aver-
age results demonstrated that the logarithmic sigmoid function 
for the hidden layer, the linear function for the output layer, 
and the LM algorithm achieved the lowest mean square error 
(MSE) and could provide satisfactory results in the training 
and testing steps. Table 2 shows the average MSE of the re-
sults. Afterward, a comparison of classification accuracy was 
performed for different numbers of nodes in the hidden layer, 
as shown in Table 3. The best node numbers that can stabilize 
accuracy and reduce the overfitting problem are 10, 8 and 18 
for each type of feature set. Moreover, the accuracy of ANNs 
was examined for a number of nodes from the given range and 
similar results were obtained. 

New data sets were accordingly provided to train, validate, 
and test the ANNs to verify the superiority of the ANN based 
on WPT features. The network performance and classification 
accuracy of each feature set from each methodology were 
examined through the confusion matrix and the network con-
vergence error while the maximum number of training epochs 
was set to 1000 for each training process. The convergence 
error shows the convergence process of the network to the 
lowest output error over the training epochs. The training 
process stops at the point before the validation error starts to 

increase, which indicates overfitting of the training data. Fi-
nally, the confusion matrix tabulates the proportion of correct 
predictions for each possible impeller condition.  

From the first ANN trained using the TDA feature sets, 
MSE was measured at the lowest validation error as 0.017 for 
the 26th iteration. Table 4 includes the individual accuracy of 
each class and the percentage of the correct and incorrect clas-
sifications.  

For the second ANN, five frequency peaks that corre-
sponded to the rpm of the impeller and VPF were selected. 
The lowest validation error was found within an iteration 
range of 12 to 20, with a minimum value of 0.0165. Table 5 
shows that the accuracy of the overall network performance is 
92.9 %.  

Table 2. ANN classification accuracy rates for different transfer func-
tions. 

Transfer function 
Feature set (tansig, 

tansig) 
(tansig, 
purelin) 

(logsig, 
tansig) 

(logsig, 
purelin) 

TDA features 0.05158 0.0822 0.1028 0.0839 

FA features 0.0621 0.1009 0.1501 0.0915 

WPT features 0.0969 0.0885 0.1185 0.0617 

Table 3. ANN classification accuracy rates for different numbers of 
hidden layer nodes. 

No. of nodes 4 6 8 10 12 14 16 18 

TDA features% 55.33 59.5 61.15 63.45 60.01 61.01 52.8 56.2 

FA features% 33 58.64 73.84 68.22 65.45 65.56 58.25 60.9 

WPT features% 51.74 55.29 59 61.30 90.51 63.82 75.81 96 

 

Table 4. Confusion matrix of an ANN trained using TDA features (C = 
Condition). 

Condition C1 C2 C3 C4 C5 C6 C7 Accuracy

C1 14.3 % 0 0.5 % 0 0 0.5 % 0 93.1 % 

C2 0 13.8 % 2.6 % 1.1 % 0 0.5 % 0 76.5 % 

C3 0 0 14.3 % 1.1 % 0 0.5 % 0 87.5 % 

C4 0 0 0 10.6 % 0 0 0 100 % 

C5 0 0.5 % 0 1.6 % 14.3 % 0 0 87.1 % 

C6 0 0 0 0 0 12.7 % 0 100 % 

C7 0 0 0 0 0 0 14.3 % 100 % 

Accuracy 100 % 96.3 % 77.8 % 74.1 % 100 88.9 % 100 % 91 % 

Table 5. Confusion matrix of an ANN trained using FA features. 

Condition C1 C2 C3 C4 C5 C6 C7 Accuracy
C1 14.3 % 0 0 0 0 0 0 100 % 

C2 0 14.3 % 0 0 2.4 0 0 85.7 % 

C3 2.4 % 0 9.5 % 0 0 0 0 100 % 

C4 0 0 0 14.3 % 0 0 0 100 % 

C5 0 0 4.8 0 11.9 % 0 0 71.4 % 

C6 0 0 0 0 0 14.3 % 0 100 % 

C7 0 0 0 0 0 0 14.3 % 100 % 

Accuracy 100 % 100 % 66.7 % 100 % 83.3 100 % 100 % 92.9 % 

Table 6. Confusion matrix of an ANN trained using WPT features. 

Condition C1 C2 C3 C4 C5 C6 C7 Accuracy
C1 14.3 % 0 0 0 0 0 0 100 % 

C2 0 11.9 % 0 0 0 0 0 100 % 

C3 0 0 14.3 % 0 0 0 0 100 % 

C4 0 0 0 14.3 % 0 0 0 100 % 

C5 0 0 0 0 14.3 % 0 0 100 % 

C6 0 0 0 0 0 14.3 % 0 100 % 

C7 0 2.4 % 0 0 0 0 14.3 % 85.7 % 

Accuracy 100 % 83.3 % 100 % 100 % 100 % 100 % 100 % 97.6 % 
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Moreover, the behavior of the ANN network error trained 
using the energy values from WPT achieved the lowest value 
(0.001). Table 6 indicates an overall accuracy of 97.6 % with 
only one misclassification, i.e., Class 7 (unbalanced impeller 
with a severity level of 3) is misclassified as Class 2 (crack 
level 2).  

7. Results and discussion

Nonstationary flow conditions can produce nonlinear char-
acteristics in pumping. Thus, the use of signal processing 
techniques and ANNs in diagnosing centrifugal pump impel-
lers, which operate under fluctuating flow rates, was examined 
in this work. An adequate technique was introduced to reduce 
uncertainties regarding the occurrence of flow fluctuations. An 
experiment was performed under impeller fault conditions, 
such as cracking and imbalance. The vibration signals were 
analyzed in the time, frequency, and time-frequency domains. 
The results proved that fluctuating flow conditions for an im-
peller without damage might lead to a slight change in pump 
rotational speed. However, a considerable change can be ob-
served on pump rpm as a defect starts to grow. Furthermore, 
the features collected from nondimensional training data sets 
were used to train ANNs. This online fault detection system 
requires prior off-line work to train the classifier using data 
from the experimental setup. It can help identify impeller con-
ditions and quantify the severity of damages. Training algo-
rithms, network hidden nodes, and the effectiveness of differ-
ent transfer functions were compared, and the results proved 
that the accuracy of ANN prediction was considerably im-
proved by using decomposed vibration signals and energy-
based features. The network accuracy results indicate that the 
WPT-ANN model achieves low MSE, high correlation coeffi-
cients, and fast training time, which can save computational 
time. This model can be used effectively to classify impeller 
defects under nonstationary conditions.  

The effectiveness of the proposed method was demon-
strated through the induced impeller conditions under un-
steady flow rates. However, this model can be extended and 
improved to deliver promising results in fault detection for 
extensive applications. To further improve the model, ANN 
performance should be maximized using optimization algo-
rithms, such as genetic and evolutionary algorithms, and 
threshold impact on the classification of new damages with 
sizes between the ones used in this study should be investi-
gated.  
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