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Objective: The development of a detailed mathematical modelling framework for the
risk of airborne infectious disease transmission in indoor spaces. This allows for detailed
mathematical analysis of experiments conducted at the Airborne Infections Research
(AIR) facility, eMalahleni, South Africa.

Methods: The mathematical modelling builds on the commonly used Wells-Riley
equation by including additional mechanisms and dynamics, and is presented modularly.
This modelling framework was applied to an experiment conducted at the AIR facility
from 31 August 2015 to 4 December 2015, in which the efficacy of upper room germicidal
ultraviolet (GUV) irradiation as an environmental control was tested. The upper room
GUV irradiation efficacy experiment in the facility did not produce expected outcomes
of having fewer infections in the test animal room than the control room, and several
potential reasons for this are investigated using the simulated model.

Results: Simulation results indicate that dynamic effects, caused by switching the
GUV lights, power outages, or introduction of new patients, did not result in the
unexpected outcomes; the experiment design sufficiently catered for these situations.
However, a sensitivity analysis highlights that significant uncertainty exists with risk of
transmission predictions based on current measurement practises, due to the reliance on
large viable literature ranges for parameters.

Significance: The developed mathematical modelling framework is found useful in
exploring possible causes of why an experiment at the AIR facility did not produce
expected results.

KEY WORDS: airborne infectious disease transmission, biological system modelling,
Mycobacterium tuberculosis, parameter extraction, sensitivity analysis

1. INTRODUCTION

Quantifying the risk of transmission of airborne
infectious diseases is useful in the evaluation of the
effectiveness of an infection control strategy. As an
infection control strategy, rapid active case finding
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of infected individuals and community intervention
is the more effective method (Nardell and Dhar-
madhikari, 2010; Yuen et al., 2015; Nardell, 2016).
However, active case finding is much more expensive
than the alternative passive case finding (Mupere
et al., 2013). Therefore, environmental control, such
as ventilation and germicidal ultraviolet (GUV)
lights, remains an important consideration for the
reduction of the risk of transmission of an airborne
infectious disease (Beggs et al., 2000; Li et al., 2007).
Environmental factors are especially important in
the time between infection and diagnosis of the
infection (Dharmadhikari et al., 2014).



2 Küsel, Craig, and Stoltz

A mathematical model can serve as an effective
tool to quantify the risk of transmission of airborne
infectious diseases (Sze To and Chao, 2010). Math-
ematical models not only help in understanding,
but have the advantage that an exploration of a
theoretical concept through mathematical simulation
is typically quicker and cheaper than conducting
an experiment (Jeffrey et al., 2003; Craig and Xia,
2005). Mathematical models are an important part of
the design of intelligent systems, where quantitative
models help to gain a deeper understanding of the
process involved and allow for systematic design
of appropriate responses to the problem (Antsaklis,
1994).

Tuberculosis (TB) remains a severe health threat
in the world, despite advances in treatment and
diagnosis in the past decade (Lönnroth et al., 2010).
In South Africa, especially, there is a call to improve
the public health response (Karim et al., 2009). Of
significant importance in the reduction of incidence
is the interruption of transmission (Dye et al., 2013;
Yates et al., 2016). The disease is caused by the
Mycobacterium tuberculosis (M. tb) pathogen, and
the main method of transmission is via aerosoled
droplets that are expelled through the respiratory
tract of a host (Schwander and Ellner, 2006).

This paper provides a framework for the inclu-
sion of a number of different factors into a single
model of the risk of TB transmission in indoor
spaces, specifically for the situation of an airborne
infectious disease research facility. The modelling
framework is applied to the risk of transmission of M.
tuberculosis in an airborne infections research (AIR)
facility in eMalahleni, Mpumalanga, South Africa
(Dharmadhikari et al., 2011, 2012, 2014; Mphaphlele
et al., 2015). The model simulation results are
compared with the results from an experiment
conducted at the research facility.

2. MODEL DEVELOPMENT

In the study of airborne infectious diseases,
animals are often used as a method of detecting
the risk to humans (Dharmadhikari and Nardell,
2008). Human to guinea pig transmission is a
common method that is used to study air disinfection
techniques (Riley et al., 1962, 1959; Nardell, 2004;
Escombe et al., 2007; Dharmadhikari et al., 2011).
This usually requires the sentinel animal to be placed
in a different room to the source of the pathogen,
with mechanical ventilation used as a proxy to the
risk of infection in the ward.

The Wells-Riley equation (Riley, 1974) remains
the most commonly used model to quantify the risk
of transmission in indoor spaces (Sze To and Chao,
2010). However, the Wells-Riley equation is limited
to situations in which the infected individuals are in
the same zone as the susceptible individuals (Noakes
and Sleigh, 2008). This makes the Wells-Riley model
not ideal for the modelling of airborne infectious
disease research facilities, where the sentinel animals
are not in the same airspace.

The approach to model development, followed by
this paper, is one of defining multiple different effects
of the risk of transmission within indoor spaces as
individual mathematical descriptions. These mathe-
matical descriptions can then be combined. Where
the mechanisms are linear, the law of additivity is
applicable; where the mechanisms are nonlinear, an
alternative approach is given. This allows freedom to
construct relevant models for different situations and
research questions.

The model will be given in a deterministic,
mechanistic, nonlinear state-space and continuous
time format. The deterministic model represents an
average expected risk of transmission, which is as-
sumed to be the same as the average of an equivalent
stochastic model. The deterministic model is chosen
as opposed to a stochastic probabilistic model (Nicas
and Seto, 1997) or a Markov chain model (Nicas,
2000), which simplifies the modelling process by
removing the need to specify the uncertainty through
the definition of random variable distributions in the
model.

The probability that the pathogen deposits on
the individual’s alveoli follows a Poisson distribution
(Wells, 1955; Riley et al., 1978). This probability
distribution is described through an exponential
function, similar to the result of solving a linear
differential equation. Since other influencing factors
on the risk of transmission can be expressed in
terms of rates of change, this allows for the use of
differential equations to describe the model.

A convenient way in which to represent a model
is the state-space format that relates the inputs
and state variables through simultaneous, first-order
differential equations. An advantage of the state-
space format is its relevance in control systems
theory, which can assist in the study of infectious
diseases(Craig and Xia, 2005; Doyle et al., 2007;
du Toit and Craig, 2015). Methods for parameter
extraction are well developed in control systems
theory, and provide tools for determining unknown
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parameters in a model from measurements (Xia,
2003; Xia and Moog, 2003; Filter et al., 2005).
The Gammaitoni-Nucci model also follows a state-
space format (Gammaitoni and Nucci, 1997) and,
in contrast to the Wells-Riley equation, allows for
the consideration of non-steady state conditions of
airborne infectious particles (Beggs et al., 2003).

Four different categories of state variables are
defined for the model framework used in this paper;
however, in the construction of a model, the number
of state variables within each category may vary.
The first category is the groups of susceptible
individuals that represent the populations with
the potential of being infected. The second and
third categories of state variables are the groups
of infected individuals and the groups of exposed
individuals. The distinction between the infected and
the exposed population classifications depends on
the definition of infection used in the model, and
whether an incubation period is included in the
model (Noakes et al., 2006). The final category of
state variables considered, is the number of infectious
aerosol particles within a space.

Parameters in the model will be given as non-
time varying to avoid confusion between parameters
and state variables, although the parameters may be
implemented as functions of time.

2.1 New infections in the susceptible
populations

New infections in the susceptible population Si,
are described as an average probabilistic reduction
of the susceptible population based on the expected
exposure to the pathogen. Susceptible populations
that are geographically separated can be defined as
populations in different zones and denoted with their
subscript i. A zone is an air space, which can be a
room or parts of a room (Nicas, 1996b; Noakes and
Sleigh, 2008).

The rate of new infections is proportional to
the pulmonary ventilation rate pi (m3 · s−1) of the
susceptible population and the concentration of
infectious particles that the susceptible population
is potentially exposed to (Gammaitoni and Nucci,
1997). The concentration of infectious particles is
given as the fraction of the number of infectious
particles Ci(t) (quanta) over the volume Vi (m3).
An infectivity term θi (quanta−1) allows for the
consideration of a fraction of the re-breathed air that
is inhaled, but does not cause infection, where, for
example, not all of the inhaled pathogens land on

alveoli (Nicas et al., 2005). The infectivity term also
addresses the dimensionality problem of the Wells-
Riley equation, even if it is taken as unity (Sze To
and Chao, 2010).

New infections in the susceptible populations are
described mathematically, in this model framework,
by:

dSi(t)

dt
= −piθi

Ci(t)

Vi
Si(t) . (1)

2.2 Infections without an incubation period

New infections, when no incubation period is
considered, are treated as the increase of infected
population due to the average probabilistic reduction
of the susceptible population based on the expected
exposure to the pathogen. The rate at which the
infected population grows due to exposure to the
pathogen is given by

dIi(t)

dt
= piθi

Ci(t)

Vi
Si(t) . (2)

Equation 2 is the complement of Equation
1. This ensures the total population size remains
constant when no external factors, such as birth
or deaths within the population, are considered. It
is assumed viable to leave out the consideration of
these when modelling an airborne infectious diseases
research facility.

2.3 Infections with an incubation period

The incubation period of the disease is important
to consider when the measurement of the risk is done
using a sentinel animal. To include an incubation
period, an extra epidemiological population is intro-
duced as another state variable, namely the exposed
individuals population category (Noakes et al., 2006).
The exposed individuals are a hypothetical state,
where the individual has been infected, but is
asymptotic.

If an incubation period is considered, then
the individuals first become exposed, before they
transition to the infected state. The exposed popu-
lation then increases due to the average probabilistic
reduction of the susceptible population based on the
expected exposure to the pathogen, instead of the
infected population. The rate at which the exposed
population grows due to exposure to the pathogen is
given by

dEi(t)

dt
= piθi

Ci(t)

Vi
Si(t) . (3)
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The transition from the exposed to the infected
state is based on a incubation period delay rate
αi (day−1). The terms governing this mechanism in
the exposed and the infected individuals, is given as

dEi(t)

dt
= −αiEi(t) (4)

in the exposed individuals population, and

dIi(t)

dt
= αiEi(t) (5)

in the infected individuals population.

2.4 Generation of infectious particles

Infectious particles are assumed to be generated
in the airspace through the expulsion of small,
pathogen containing aerosol particles by infected in-
dividuals (Ehrenkranz and Kicklighter, 1972; Fiegel
et al., 2006; Tang et al., 2006), with the infectivity
of an airborne disease taken to be directly linked to
these cough generated aerosols (Fennelly et al., 2004;
Jones-López et al., 2013).

The infectious particles in a zone Ci(t) are
modelled in units quanta. A quantum of infection
is defined as the number of infectious particles that
would infect 63.2% (i.e. 1 − e−1) of the population,
if every member of the population was exposed to
this quantity of infectious particles (Wells, 1955).
The quanta is a hypothetical infectious dose unit
and describes the infectivity as well as the infectious
source strength of an epidemiological outbreak (Sze
To and Chao, 2010).

The total average size distribution of coughed
droplet nuclei is approximately 0.5-6 µm (Yang et al.,
2007) and there is a proven increase of aerosol
particles, in the region of microbial particle sizes, of
3-4 µm due to human room occupation (Bhangar
et al., 2014). Therefore, a direct link between the
number of infected and the quantity of infectious
particles in an indoor space seems reasonable.

The rate at which infectious particles are
generated in a zone is proportional to the rate of
quanta expelled by an individual φi (quanta · h−1).
If the infectious individuals Ii(t) in a zone are each
assumed to generate quanta at the same rate on
average, then the rate at which quanta in a zone is
generated is given by

dCi(t)

dt
= φiIi(t) . (6)

The quanta generation rate per infected individ-
ual φ is backwards calculated from epidemiological

data. The quanta generation rate per infected
individual is in the range of 1.25−30 840 quanta·h−1,
depending on the situation (Nardell et al., 1991;
Gammaitoni and Nucci, 1997; Beggs et al., 2003);
however, for an average TB patient, the range is
between 1.25−12.7 quanta·h−1 (Nardell et al., 1991).
Inherent in the backwards calculation of the quanta
generation rate is the viability loss and the deposition
loss of the pathogen, therefore these mechanisms
should not be considered twice when using the
quanta of infection (Fisk et al., 2004; Sze To and
Chao, 2010).

However, the quanta of infection does not have
to be used as the unit of infectious particles, and
φ could be set equal to an equivalent dose response
function. An example of this is to set

φ = Gβ , (7)

where G is the emission rate of pathogens per
infected individual, and β the alveoli disposition
fraction (Nicas, 1996a). However, when doing so, the
implications of moving from a hypothetical infectious
dose unit (quanta) to an actual infectious dose unit
need to be carefully considered. The viability of the
aerosol pathogen, for instance, would then need to
be taken into account.

2.5 Dispersion and distribution of infectious
particles

The proximity of infected individuals to suscep-
tible individuals, in relation to the ventilation air
ducts, can be an important factor (Li et al., 2007).
In situations where the air in the room is not well-
mixed, this can be modelled by using different zones
and the transfer rate of infectious particles between
these zones (Nicas, 1996b, 2000; Noakes and Sleigh,
2008).

The physical law of conservation of mass is
used as the modelling principle for the dispersion
of infectious particles through air movement. This
implies that infectious particles in a zone are assumed
to stay in that zone unless they are removed
through air movement or decay from that zone. The
removal of infectious particles from a zone due to air
movement is given by

dCi(t)

dt
= −Qi

Vi
Ci(t) , (8)

where the function Qi (m3 ·s−1) describes the airflow
out of the zone in volume of air per unit time. The
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environment is assumed to be an unmodelled sink of
the pathogens.

The increase of infectious particles in zone i due
to the removal of infectious particles from another
zone, j, is then given by

dCi(t)

dt
=
Qj

Vj
Cj(t) ,where j 6= i. (9)

Equation 9 assumes that Qj(t) (m3 · s−1) is
the airflow out of zone j, into zone i. The model
indirectly accounts for temperature changes between
zones through the consideration of volumetric air-
flow, because the rate at which infectious particles
are moved between zones is directly proportional to
the volumetric airflow rates. Volumetric airflow rates
are proportional to temperature conditions according
to Charles’s law, which forms part of the ideal gas law
(Chapman and Cowling, 1970).

These equations for the dispersion and diffusion
of infectious particles do not account for the
dynamics involved in the dispersion of infectious
particles from infected individuals into the zone
through coughing, speaking and other respiratory
expulsions (King et al., 2013; Li et al., 2013; Mousavi
and Grosskopf, 2014).

2.6 Removal of infectious airborne particles
using GUV lights

The removal of infectious particles due to
GUV irradiation will be assumed manifested as an
exponential decay of the bacteria, with none of the
bacteria being resistant to the irradiation (Nazaroff
et al., 1998; Kowalski et al., 2000; Miller and MacHer,
2000; Fisk et al., 2004). This is then modelled as

dCi(t)

dt
= −kiHi

ViU
Vi

Ci(t) , (10)

where ki is the standard decay rate constant due
to GUV light for the microbe considered and Hi is
the UV fluence (µW · cm−2) of the fixture (Kowalski
et al., 2000). The range of the standard decay rate
constant k is between 0.0987− 0.4721 cm2 · s ·µW−1

for M. tuberculosis (David, 1973; Riley et al., 1976).
The volume that is irradiated by the GUV fixture in
zone i is given by ViU .

3. EMALAHLENI AIR FACILITY MODEL

As an example of how this modelling frame-
work can be used, a model will be developed
for the Airborne Infections Research (AIR) facil-
ity at eMalahleni (formerly known as Witbank),

Mpumalanga (Dharmadhikari et al., 2011, 2012;
Mphaphlele et al., 2015). Experimental data that was
obtained from a study, on the effectiveness of upper
room GUV irradiation, conducted at the AIR facility,
is then compared to model predictions. The study at
the AIR facility was run from 31 August 2015 to 4
December 2015.

The AIR facility in eMalahleni consists of wards
for TB patients and two animal rooms, based on the
design of the research facility used by Riley from
1958-1962 (Riley, 2001). The wards consist of three
rooms, with two beds in each room, patient ablutions
and a patient day room. A maximum of six patients
can be accommodated in the AIR facility. A layout
of the ward area and the patient rooms is shown in
Figure 1.

The assumption in the model will be made that
the air is well-mixed, because paddle fans in each
of the ward rooms help to ensure the air mixing
in the room. The air turnover rate of the paddle
fans used in the AIR facility is approximately 57h−1

(Mphaphlele et al., 2015). This is much greater than
the ventilation rate, which was 3 − 6AC · h−1. This
means that for each air change that occurs, the air
in the room is circulated approximately 10 times.

The facility is described by two sets of sus-
ceptible populations Si(t), representing the guinea
pigs in each animal room, and a single population
of infectious individuals Iw(t). Three zones are
considered in this model. The first zone considered
is the ward i = w. The other two zones considered
is the space occupied by the cages in each of the
two animal rooms; i = 1 for animal room one and
i = 2 for animal room two. Since the guinea pigs only

Patient Day

    Room

Patient Room

 Patient

Ablution

Animal

 Room

   One

Animal

 Room

  Two

Male

Shower

Female

Shower

Airlock Airlock

Patient Room

Patient Room

Fig. 1. The layout of the wards and animal rooms
of the airborne infections research (AIR) facility in
eMalahleni.
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have access to the space that their cage occupies,
only this space will be considered as a zone. The
volume considered in each of these zones is given by
Vi. There are no paddle fans in the animal rooms,
therefore the air that the guinea pigs are exposed to is
only moved through the ventilation system. However,
the ventilation air into the animal room is split up
and delivered through an installed diffuser in front
of each of the cages. This system ensures that the
sentinel animals in their cages are each exposed to
approximately equal amounts of ventilation air.

Nine state variables are used to describe the
AIR facility. Three states describe the number of
infectious particles in each of the three zones Ci(t).
Six states describe the guinea pig populations; three
for each animal room: i = 1 for animal room one and
i = 2 for animal room two. The guinea pig population
is described through classification as infected Ii(t),
exposed Ei(t) or susceptible Si(t). The model is given
in 11-19.

dS1(t)

dt
= −pθC1(t)

V1
S1(t) (11)

dS2(t)

dt
= −pθC2(t)

V2
S2(t) (12)

dE1(t)

dt
= pθ

C1(t)

V1
S1(t)− αE1(t) (13)

dE2(t)

dt
= pθ

C2(t)

V2
S2(t)− αE2(t) (14)

dI1(t)

dt
= αE1(t) (15)

dI2(t)

dt
= αE2(t) (16)

dCw(t)

dt
= φwIw −

Qw

Vw
Cw(t)

− kwHw
VwU

Vw
Cw(t) (17)

dC1(t)

dt
=
Q1in

Vw
Cw(t)− Q1out

V1
C1(t) (18)

dC2(t)

dt
=
Q2in

Vw
Cw(t)− Q2out

V2
C2(t) (19)

Patients, as the source of the infectious particles
Iw, are recruited for the study, based on referral
by the adjoining multi-drug resistant (MDR) TB
hospital. This study was approved by the human
studies committees of the South African MRC, the
US CDC, and the Harvard School of Public Health.
Only individuals with lab confirmed positive acid-

fast bacilli (AFB) sputum smear test results are
considered for inclusion in the study. The patients
are intended to remain at the AIR facility for two
weeks. The timeline of the patients admitted at the
AIR facility for the study is given in Figure 2. It
will be assumed that the generation of quanta is
representative of an average, constant value φw for
all infected individuals.

By using the theoretical quanta of infection, the
uncertainty of a number of factors can be lumped
into the variable φ, allowing for easier estimation
of this parameter in the face of uncertainty. The
quanta of infection does not, however, give a realistic
indication of the number of infectious particles in
a zone, but was chosen, instead of a dose response
model, because of the problem of a lack of infectious
dose data for infections in humans (Sze To and Chao,
2010).

Each animal room contained 90 guinea pigs,
which served as a sentinel animal model for the risk
of airborne transmission of TB. Outbred, specific
pathogen free, Dunkin-Hartley guinea pigs were used
in the experiment, with an equal number being
male and female. Two guinea pigs are kept in a
cage, but each animal room has 50 cages, leaving
10 cages unused per animal room. It is assumed
that all the guinea pigs have the same constant
average pulmonary respiratory rate p = p1 = p2
and that they are equally susceptible to infection
θ = θ1 = θ2. The incubation period of the pathogen
is given by α = α1 = α2, the time taken from
infection until the guinea pig exhibits symptoms of
infection or reacts positively to tuberculin skin test
(TST) diagnosis. Infected animals are removed and
not replaced during the course of an experiment.

(31 Aug - 10 Nov)

(31 Aug - 12 Oct)

(31 Aug - 05 Nov)

(31 Aug - 13 Nov)

(4 Sept - 16 Oct)

(28 Sept - 28 Oct)

(21 Oct - 6 Nov)

(7 Nov - 2 Dec)

(7 Nov - 10 Nov)

(12 Nov - 4 Dec)

(16 Nov - 4 Dec)

(20 Nov- 4 Dec)

(20 Nov - 26 Nov)

31 Aug 04 Dec

01

02

03

04

05

06

07

08

09

10

11

12

13

01 Oct 01 Nov

Fig. 2. The timeline for the patients admitted to the
AIR facility and the duration of their admittance.
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Animal care was overseen by a licensed laboratory
veterinarian and all protocols were approved by the
Animal Use committees of the South African MRC,
the US CDC, and Harvard Medical School.

The ventilation system airflow out of the wards
Qw is routed to either of the two animal rooms.
The animal rooms receive ventilation air from either
the patient ward Qi in or high efficiency particulate
arrestance (HEPA) filtered outside air on alternate
days. The airflow out of the animal rooms Qi out

is assumed to be equal to the airflow into an
animal room, because the airflow out is controlled to
maintain a constant negative pressure in the animal
rooms.

On the days that animal room one receives the
ward air, upper room GUV lights are turned on
inside the wards. The standard decay rate constant
due to GUV irradiation for M. tuberculosis is given
by kw. Animal room two is assumed to be the control
room for this experiment aimed at determining the
efficacy of upper room GUV light.

The two animal rooms in the facility are
maintained under animal biosafety level 3 conditions
(World Health Organization, 2004). The temperature
in the animal rooms is kept at 22 ± 1◦C, with a
relative humidity of 50± 10%. Workers are required
to wear a full face respirator, and must shower before
entering and upon exiting the animal room area. The
showers and airlocks are indicated in Figure 1.

4. STUDY SIMULATION

The AIR facility study that ran from 31 August
2015 to 4 December 2015 is simulated using the
model (11) - (19). The simulation is performed by
solving the model using the Runga-Kutta integration
method with a fixed time step of 1 minute per time
step (Shampine, 1994; Shampine and Reichelt, 1997).
The ward, duct and animal cage dimensions are
obtained from measurements at the facility and given
in Table I .

The ventilation data and the GUV fixture
switching are obtained from the Supervisory Control
and Data Acquisition (SCADA) system installed the
AIR facility. This gives a real-time measurement of
the airflow rates between the different zones of the
facility. The ventilation airflow rate data from the
SCADA system for the airflow out of the ward is
given in Figure 3 and the measured airflow into and
out of the two animal rooms is given in Figure 5.

The upper room GUV fixture fluence is 5µW ·
cm−2 when it is on (Mphaphlele et al., 2015), and

the fluence is taken as zero when it is off. The GUV
light is assumed to uniformly irradiate the space in
the patient ward above a height of 2.1m, or a volume
of VwU = 21.7m3. The on and off switching data is
obtained from the SCADA system, and the resulting
GUV fluence in the ward is shown in Figure 4.

The infectious source parameter Iw is defined by
the number of patients at the AIR facility and is
obtained from the patient timeline, Figure 2.

A guinea pig is taken to be infected when its
TST result is positive. The measure of the number
of infected guinea pigs is shown in Table III .

The remaining model parameters needed for the
simulation are taken from literature. The source of
these parameters is given in Table II , along with
the literature reference. Where the given parameters

Table I . The measured parameters from the AIR
facility used for the simulation. The parameters are
defined in their most convenient units.

Measurement Value
Aduct:ward out 0.09m2

Aduct:ward−animal room 0.015m2

Aduct:animal room clean air 0.034m2

Ncage 50
Vward room 1 3.0m× 4.8m× 2.6m
Vward room 2 3.2m× 4.8m× 2.6m
Vward room 3 2.9m× 4.8m× 2.6m
Vward common room 5m× 4m× 2.6m
Vcage 0.56m× 0.35m× 0.36m
Vw 164.8m3

VUw 21.7m3

Va1 174.8m3

Va2 174.8m3

31 Aug 01 Oct 01 Nov 04 Dec
0

0.05

0.1

0.15

0.2

Q
w
 (

m
3 ×s−

1 )

Fig. 3. The volumetric air flow rate from the patient
wards to the animal rooms, which is calculated by
taking the measured SCADA system values in (m ·
s−1) and multiplying by the area of the duct.
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in Table II are ranges, the actual value used for
the simulation still needs to be determined. For this
simulation, the GUV irradiation decay constant is
chosen to be the lowest value of its range, kw =
0.0987. However, to choose the quanta generation
rate per infectious individual, φw, and the incubation
period, α, within the literature plausible range, a
parameter extraction problem is set up.

A least squares, cost function minimisation
approach is used in the parameter extraction (Filter
et al., 2005). This method involves the minimisation
function solving the model (11) - (19) for a set
of φw and α chosen by the minimisation function,
then evaluating the cost of the solution. Through an
iterative process, the minimisation function chooses
a set of φw and α to minimise the cost.

The minimisation cost function is set up to be

J(α,φ) =
∑

j=1,2,3

(I1(tj)− I1,j)2

+
∑

j=1,2,3

(I2(tj)− I2,j)2

+R · (H(α− αmax) · (α− αmax)2

+H(αmin − α) · (αmin − α)2

+H(φ− φmax) · (φ− φmax)2

+H(φmin − φ) · (φmin − φ)2) (20)

The cost function’s first term describes the error
between the simulation output, Ix(tj), and the TST
results, Ix,j , of the number of infected in each
animal room, x, for each of the TST measurements,
j. The Heaviside function, H, is used to penalise
solutions that fall outside of the range allowed for the
parameters, as given in Table II . The tuning factor,
R, is used to penalise a solution that lies outside the
constraint range. The tuning factor is set to R = 100.

The Nelder-Mead simplex search function is used
as a derivative-free based minimisation algorithm for
this problem (Lagarias et al., 1998). The quanta
generation rate per infectious individual for the
simulations is found to be φw = 2.5 and the
incubation period is α = 0.03.

5. RESULTS AND DISCUSSION

The simulation results, of the 31 August 2015 to
4 December 2015 experiment at the AIR facility, are
given in Figure 6 and Figure 7, for the state variables
of the guinea pig infected, exposed, and susceptible
populations for each of the animal rooms and the
amount of infectious particles in each of the three

zones. The TST results of Table III , which fall within
the period of the simulation, are also incorporated
into Figure 6.

5.1 Guinea pig population simulation results

Guinea pigs have a similar disease progression
as that of humans, with regards to M. tuberculosis;
albeit, synonymous to the unsuccessful immune re-
sponse of a human (Flynn, 2006; Dharmadhikari and
Nardell, 2008). This makes guinea pigs well suited
for airborne M. tuberculosis transmission studies as
sentinel animals (Sakamoto, 2012). However, this
measure of infectivity is problematic, because it does
not account for the complexity and dynamics of
disease manifestation in the guinea pig.

The exposed guinea pig population is an unmea-
sured state that attempts to account for some of
the disease manifestation complexities and dynamics,
by introducing an incubation period. This is an
attempt at modelling the delay between infection
by the pathogen to diagnosis through a visible
induration from a TST. However, the exposed guinea

Table II . The parameters used for the simulation
and their source. The parameters are defined in their
most convenient units.

Parameter Value Source
φ 1.25-12.7 quanta · h−1 Nardell et al. (1991)
p 0.23 m3 · h−1 Riley et al. (1962)
θ 1 quanta−1 Sze To and Chao (2010)
α 0.03-0.2 day−1 Ordway et al. (2007)
k 0.0987-0.472 m2 · J−1 Kowalski et al. (2000)
H 5 µW · cm−2 Mphaphlele et al. (2015)

31 Aug 01 Oct 01 Nov 04 Dec

0

2

4

6

H
 (

W
cm

-2
)

Fig. 4. The upper room GUV fixture fluence H in
the AIR facility. The GUV lamps were switched on
during the days animal room one received ward air
and were switched off during the days animal room
two received ward air.
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Table III . Tuberculin skin test results for the two animal rooms. The total considered to have been infected
per animal room is given by the sum of the number with positive TST results and the number euthanised.

20 Aug 2015 01 Oct 2015 30 Oct 2015 25 Nov 2015

Animal room 1 positive TST: 0 0 9 11
Animal room 1 euthanised: 0 0 0 11

Animal room 1 total infected: 0 0 9 22

Animal room 2 positive TST: 0 0 2 5
Animal room 2 euthanised: 0 0 0 14

Animal room 2 total infected: 0 0 2 19
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(a) Animal room one
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(b) Animal room two

Fig. 5. The volumetric air flow rates into the animal rooms Qi in (top) are calculated by taking the measured
SCADA system airflow velocity (m ·s−1) and multiplying by the area of the duct. The volumetric air flow rates
out of the animal rooms Qi out (bottom) are calculated by taking the ward air flow rate Qi in and adding the
measurement of the HEPA filtered air flow rate into the animal room.

pig population result is theoretical, and should be
considered with care.

5.2 Infectious particle simulation results

The number of infectious particles in the zones
is an unmeasured, ’internal’ state of the model.
These states account for higher order dynamics
in the prediction of the infected population, but
their absolute value is theoretical, and should be
considered as such. The unmeasured states of the
quanta of infectious particles in the three zones is
shown in Figure 7, and an arbitrary two day period
is shown in Figure 8 to show the day to day pattern.
Considerable fluctuations in the number of quanta
in the zones can be noted from Figure 7, with
three mechanisms attributed as responsible for these
fluctuations.

The first mechanism that impacts the fluctua-
tions in the number of infectious particles is the
number of patients in the wards. This is clear
from equation 17; however, can also be seen when
comparing Figure 2 and 7. As an example, the
average number of number of quanta on a day when
the GUV lights are on can be compared during the
first few days in October versus middle November.
On 2 October 2015, six patients are in the ward
and the average number of quanta is 3.8; however,
on 15 November 2015, only two patients are in the
ward and the average number of quanta is 1.4. The
average airflow out of the ward is similar on the two
days, being 0.0793 m3 · s−1 on 2 October 2015 and
0.0674 m3 · s−1 on 15 November 2015.

The second mechanism that impacts the fluc-
tuations of infectious particles in the zones is the
ventilation rate. For the two animal rooms (Figure
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5), this is expected to have a large impact on
the fluctuations, due to the switching between
ward air and clean HEPA filtered outside air on
alternate days. When no ward air is supplied to
the respective animal room, there is no source of
infectious particles, and the clean air supply quickly
removes the infectious particles that are in the
animal room.

However, not only are the fluctuations of the air
flow rate into the animal rooms significant, but so
are the fluctuations in the airflow out of the wards.
This airflow fluctuates due to day-night swings in
temperature, because the feedback controller of the
ward outlet fan was run in manual. The airflow
fluctuation is especially noticeable on the simulated
number of infectious particles in animal room two,
as seen in Figure 8. The facility also experienced
a number of power outages, due to an unstable
supply from the national South African electrical
grid during this period, causing the ventilation (and
GUV fixtures) to switch off for the short span of time
between the power outage and the time taken before
the backup diesel generator switched in.

When the average ward air received by each of

31 Aug 01 Oct 01 Nov 04 Dec
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Fig. 6. The infected (solid), exposed (dashed)
and susceptible (dotted) guinea pig populations
in the AIR facility. The animal room one guinea
pig populations (top) receive ward air during days
when the upper room GUV fixtures are on, and
animal room two guinea pig populations (bottom)
receive ward air during the days when the upper
room GUV fixtures are off. The total number of
infected guinea pigs that were observed during the
experiment (triangle), and as given in Table III
.

the two animal rooms from Figure 5 is compared, it is
found that animal room one gets 12.7% less ward air
than animal room two. The average combined air into
the animal rooms is 10.7% higher than the average
measured air out of the ward. These deviations are
most like a result of inaccuracies with the air flow
measurement instruments, and give an idea of the
typical uncertainty surrounding these measurements.

The third mechanism that impacts the fluctua-
tions of infectious particles in the zones, is the upper
room GUV irradiation. However, this fluctuation is
intended from the experiment design. It can be seen
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Fig. 7. The number of quanta Cw (patient wards),
Ca1 (animal room one) and Ca2 (animal room two)
in each of the zones considered for the AIR facility.
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Fig. 8. The number of quanta Cw (patient wards),
Ca1 (animal room one) and Ca2 (animal room two)
in each of the zones considered for the AIR facility.
However, only a two day period is shown to highlight
the day to day pattern seen in Figure 7.
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from Figures 7 and 8 that animal room one receives
approximately half the number of infectious particles
as opposed to what animal room two receives. This
is due to the upper room GUV irradiation lowering
the number of infectious particles in the wards on the
days when it is on. This then also translates to fewer
number of simulated infections in animal room one.

5.3 Sensitivity of the simulation parameters

There is significant uncertainty surrounding
some of the parameters that were used in the
simulation, which is mostly due to the large viable
ranges of the parameters obtain from literature. To
quantify the uncertainty, two sensitivity analyses
were performed on the parameters used in the
simulation. Both sensitivity analyses were conducted
by keeping all parameters constant, and varying only
a single parameter at a time.

The first sensitivity analysis aims to illustrate
what the effects of uncertainty in the parameter
values taken from literature are. The α, k and φ
parameters were each varied by their range given
in Table II , and the number of patients Iw in
the ward each day was increased and decreased
by one. The resulting predictions for the number
of infected guinea pigs in animal room one and
animal room two can be seen in Figure 10. From
this analysis, the impact of not knowing the true
values of α, k and φ on the simulation outcomes
is demonstrated. However, of greatest concern to
the accuracy of simulation results is the quanta
generation rate per infectious person parameter, φ,
which has the biggest impact on the simulation
results for its plausible literature range. From the
value used in the simulation, φ can vary by 458%,
which means the outcome of the simulation (the
predicted number of infected guinea pigs) for animal
room one can vary by 351% and for animal room
two can vary by 256%. However, model parameters
that have been obtained through instrumentation
measurements by the SCADA system are expected
to have low uncertainty (on the order of 1− 10% for
typical instrumentation (Liptak, 2003)).

The second sensitivity analysis aims to illustrate
the relative uncertainty in the different model
parameters by increasing and decreasing each by
an equal amount one at parameter at a time. The
resulting predictions for the number of infected
guinea pigs in animal room one and animal room two,
when each parameter was arbitrarily increased and
decreased by 50% while keeping the others constant,

can be seen in Figure 9. From this analysis, it can
be seen how the error of the true parameter value
and the estimated value would affect the accuracy of
the simulation results. It can also be noted that an
uncertainty in some parameters is indistinguishable
from an uncertainty in others, for example, the
uncertainty in pulmonary respiration rate p, the
quanta generation rate φ and the susceptibility
to infection θ all affect the simulation outcome
equally. This means that by estimating the quanta
generation rate φ, any error between the true and
simulated values of the pulmonary respiration rate
or susceptibility to infection, would result in a
corresponding error between the true and simulated
value of the quanta generation rate.

The sensitivity of the model to the quanta
generation rate per infectious person parameter,
φ, indicates a research gap around the quanta of
infection. Refining the constituent mechanism of the
quanta of infection, can be beneficial in improving
the predictability of simulations. This would also
improve the understanding of factors that play a
role in the mechanism of TB transmission. However,
the quanta of infection unit of measure transparently
represents this uncertainty, because it is a hypotheti-
cal unit. To refine the understanding of transmission
and move away from the quanta of infection unit,
would require additional measurements or other
forms of experimental data (Strydom et al., 2017).

5.4 Simulation fit and experiment outcome

The difference between the simulated number of
infected guinea pigs and the experimental results
is shown in Figure 11. It can be seen that the
simulated animal room one infected population
better reproduces the experimental measurement of
infected animals initially, but the simulated animal
room two infected population is a much better fit for
the end of the experiment.

The major mechanism that influences the differ-
ence between the simulated results of the two animal
rooms, is the upper room GUV irradiation. Based
on the parameters used, the simulation indicates
that animal room one should have fewer infections
than animal room two. However, animal room one
actually had more infections than animal room two.
This result is different to what was expected, both
from the initiation of the experiment and from the
simulation results.

To check whether there was enough contact time
of the GUV irradiation with infectious particles,
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(a) p, φ and θ (b) α

(c) H and k (d) Qw

(e) Q1in and Q1out (f) Q2in and Q2out

Fig. 9. The sensitivity of the number of infected when each of the parameters is varied by ±50%. The black
line indicates the simulated number of infected, and the gray area the band of variation due to varying the
parameter. Some of the parameters have the same effect on the number of infected, due to being factors of
one another. The airflow Q1in and Q1out have a similar effect the results, but in different directions, giving the
same overall band of uncertainty; Q2in and Q2out affect animal room two instead of animal room one.

considering the high air turnover rate of 57h−1 due to
the paddle fan, the time taken for infectious particles
to decay will be compared to the time that air
particles are expected to be in the upper room space.

Solving equation 10 gives that the time taken for
infectious particles to decay is τ = 1

kiHi
, which for

this experiment was 203 seconds. While the time that
air particles are expected to be in the upper room
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(a) α (b) k

(c) φ (d) Iw

Fig. 10. The sensitivity of the number of infected when each of the parameters is varied by their literature
given range, as in Table II . The black line indicates the simulated number of infected, and the gray area the
band of variation. The number of patients in the ward, Iw, was varied by ±1 patient.

space is
(

VUw

Vw
· air turnover rate

)−1

, which for this

experiment was 480 seconds. This means that on each
circulation of air in the room, it is expected that(
1− e−480/203

)
= 90.6% of the infectious particles in

that air will decay. Considering that approximately
ten units of air are circulated per unit of air that is
extracted from the room, it is concluded that there
is sufficient contact time of the upper room GUV
irradiation with the infectious particles.

A potential reason for the difference in expected
to experimental results could be as a result of
unmodelled dynamics of the disease manifestation.
It could be that the actual number of infected
in animal room two is under-represented by the
last diagnosis. To remove some of the uncertainty
regarding the incubation period, and unmodelled
dynamics revolving around this, it is recommended
that the sentinel animals be kept for another month
after the end of the exposure to ward air. This has

been done in a previous experiment (Dharmadhikari
et al., 2011), and is now the standard that is used by
the AIR facility.

Although the guinea pig and TST is still the
most relevant clinical endpoint (Nardell and Sandin,
1999), a difficulty exists with using guinea pig
TST results as the measurement for the number of
infected. Because the TST cannot be conducted at
higher frequency intervals, only three data points
per animal room are available for this experiment.
This makes it impossible to ensure that the data
is a perfect representation of the actual trend. It
is unknown whether data points are slightly skewed
through the natural variation that results from
slightly different responses to the exposure of the
ward air by different animals. Using a large number
of guinea pigs for an experiment does reduce the risk
of the data not showing the true mean. Therefore, the
AIR facility does try to ensure an adequate number
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of guinea pigs is used in the experiments conducted
to give a representative sample of the number of
infected.

The simulation results depict the expected
results of fewer infections in animal room one well, as
can be seen from Figure 6. This implies it is unlikely
the fluctuations in airflow and the disruptions from
power outages resulted in the experiment producing
the unexpected results of more infections in animal
room one. This is because the airflow rate data
(Figures 3 and 5) and GUV switching data (Figure
4) were taken from the SCADA system. Therefore,
the fluctuations in airflow and the disruptions from
power outages were directly incorporated in the
simulation outcome.

The simulation also indicates the dynamic effects
of the GUV lamp switching on the infectious particles
is much faster than the switching cycle. This can be
seen from Figures 7 and 8, where there appears to
be a spike in the infectious particles entering animal
room one whenever ward air is switched to this
animal room. These spikes are caused by the time
taken by the GUV lamps to reduce the number of
infectious particles in the ward, and hence the rate of
infectious particles transferred to animal room one.
This implies the unexpected experiment results are
unlikely to be caused by the change in steady-state
of the infectious particles in the ward that happens
after switching the GUV lamps.

Based on these observations, it is the opinion
of the authors, that the unexpected experimental
results were not caused due to negligence on the
part of the AIR facility. The phenomenon observed
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Fig. 11. The error of the prediction giving by the
difference between the number of infected from the
experiment and the simulated results. The left bars
indicate the difference for animal room one, and the
right bars for animal room two.

is not yet understood, and will require further
investigation.

6. CONCLUSION

The given framework description on the risk
of transmission of an airborne infectious disease in
indoor spaces is modular in nature. This makes the
modelling process simpler through the presentation
of different mechanisms and how these mechanisms
can be combined to describe different situations.
The given approach was demonstrated through the
simulation of an experiment, conducted at the AIR
facility from 31 August 2015 to 4 December 2015.

The simulation helped investigate potential
reasons for the experiment not producing the results
that were expected. Although the cause of the
experiment not producing expected results was not
ascertained, it was found that it was not due to
an oversight on the part of the AIR facility. This
indicates that there is some mechanism or dynamic
surrounding the risk of transmission of tuberculosis
that is not yet fully understood, and requires further
research. The sensitivity analysis further shows that
accurate simulation predictions are challenging to
achieve when using the quanta of infection unit, due
to very large uncertainty surrounding the quanta
generation rate per infector.
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