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ABSTRACT The use of massive multiple-input multiple-output (MIMO) base stations in heterogeneous
networks (HetNets) offers an increase in throughput without increasing the bandwidth, but with reduced
power consumption. In this paper, we investigate the optimization problem of signal-to-interference-plus-
noise ratio balancing for the case of imperfect channel state information at the transmitter. We present a
fast converging robust beamforming solution for macrocell users in a typical HetNet scenario with massive
MIMO at the base station. The proposed method applies the matrix stuffing technique and the alternative
direction method of multipliers to give an efficient solution. Simulation results of a single-cell heterogeneous
network show that the proposed solution yields performance with modest accuracy, while converging in an
efficient manner, compared with optimal solutions achieved by the state-of-the-art modeling languages and
interior-point solvers. This is particularly for cases when the number of antennas at the base station increases
to large values. This makes the solution method attractive for practical implementation in heterogeneous
networks with large-scale antenna arrays at the macrocell base station.

INDEX TERMS Massive MIMO, HetNet, macrocell, beamforming, matrix stuffing, ADMM algorithm.

I. INTRODUCTION
The rapid advancement in wireless communication technolo-
gies presents a demand for high data transmission rates.
In urban environments, a large proportion of data traffic is
generated by highly concentrated groups of users, e.g. in
restaurants or at stations and airports. These groups of users
are often termed hotspots and they comprise low mobility
users [1]. In order to cope with the high throughput demand,
use of traditional cellular networks, which comprise high-
power base stations (BSs), is practically infeasible. The use
of small cells has been found to increase the network capac-
ity effectively, while reducing the total transmit power [2].
On the other hand, a large number of small cells diminish
network performance and quality of service (QoS) for the
user [3]. The small cell radii with BS antennas on and below
rooftops cannot support users with high mobility and large
area coverage is difficult. This has led to the introduction
of the heterogeneous network (HetNet) structure which com-
prises a macrocell overlaid with small cells [2].

The overlaid cell deployment with frequency reuse of
one introduces severe inter-tier interference, especially for
cell edge users in the macrocell [4]. This is because the

macrocell users at the cell edges are further away from their
serving BS and may be in close proximity to a small cell
access point (AP). Although the small cell AP transmits with
lower power compared to the macrocell BS, it can present
severe interference to the macrocell users at the cell edges.
Massive multiple-input multiple-output (MIMO) has been
applied at the macrocell BS and results have shown that
this enhances inter-tier interference mitigation in HetNets.
Massive MIMO is a technique where arrays of hundreds of
localized or distributed antennas serve many tens of terminals
in the same time-frequency resource [5]. Large-scale antenna
arrays present a significantly huge improvement in spectral
efficiency and energy efficiency in wireless systems over the
conventional MIMO used in LTE/4G systems.

Significant performance gains are expected from network
topologies where massive MIMO BSs and HetNets coexist,
through application of beamforming. Use of massive MIMO
at the macrocell BS in a HetNet enables it to concentrate its
transmission power on the hotspots it serves, thus providing
transmission opportunities to the small cells located in other
directions. This is known as spatial blanking, and three inter-
ference coordination strategies that use this technique with
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reduced complexity have been developed [6]. The strategies
aim to address the problem of severe inter-tier interference
which results from the random geometry of hotspots using
the technique of joint spatial division and multiplexing [7].

It was observed that synchronized operation of the time
division duplexing (TDD) protocol facilitates channel esti-
mation and enables all the equipment in the network structure
to obtain information about the interfering channels with no
additional overhead [8]. The coverage probability and spec-
tral efficiency performance were analyzed for both macrocell
and small cell tiers in a massive MIMO macrocell that is
overlaid with small cells [4]. Hosseini et al. [9] consider a
reversed TDD (RTDD) protocol, where the two tiers operate
in reverse during a transmission period. That is, when the
macrocell is in downlink, the small cells will be in uplink
and vice versa. This enhances accurate estimation of the
interference subspace for fixed BSs of the two tiers. Analysis
of performance with RTDD for the case of imperfect CSI at
the transmitter has also been carried out [10]. In contrast to
[9], Sanguinetti et al. [10] make use of a wireless backhaul
among the small cells, thus applying RTDD not only between
the two tiers, but also among small cell access points.

With a large antenna array at the BS, it was shown that
the linear precoding techniques, such as zero-forcing beam-
forming (ZFBF) and minimum mean square error (MMSE)
precoding, can achieve near optimum results in terms of sum
rate performance [11], [12]. Thus the less computationally
complex linear precoding techniques have been found to be
practical to use [13]. The linear precoding schemes, however,
cannot account for CSI acquisition errors and other factors
that contribute to channel uncertainty. This has led to con-
tributions that propose other efficient robust beamforming
techniques for massive MIMO downlink systems [14]. The
key tool common to the proposed solutions is the application
of robust optimization theory. Robust beamforming is opti-
mization of the beamforming matrix for which the errors in
CSI approximation are constrained to lie in an uncertainty
set [15]. In other words, it is an uncertainty-based beamform-
ing approach in which the uncertainty model is not stochastic,
but rather deterministic and set-based [16].

To solve the problem of maximizing the minimum sum
secrecy rate for multi-user MIMO networks with imper-
fect CSI, an efficient approximation algorithm based on
Taylor expansion was developed [17]. Joint robust optimiza-
tion algorithms for the worst-case weighted sum rate max-
imization in multicell massive MIMO networks have been
presented [18]. The algorithms have different levels of com-
plexity and consider variations in coordination among BSs;
however, all the solutions use the semi-definite program-
ming (SDP) approach. A low-complexity robust beamform-
ing method for signal-to-interference-plus-noise ratio (SINR)
balancing in multicell massive MIMO networks that is based
on iteratively solving second-order cone problems (SOCPs)
has been designed [19]. Computational efficiency of the
method is achieved by exploiting some properties of the
optimization problem’s constraints in the robust version of

the problem. The complexity of the SDP approach is highly
sensitive to the size of the beamforming matrix, and the SDP-
based solutions can either incur appreciable computational
cost or in certain circumstances the digital resources may
not be sufficient to cater for the memory requirements of an
SDP-based solution [16]. In addition, the SDP approach can
be implemented by a limited choice of solvers, and it is unable
to handle various types of uncertainty sets.

Although the RTDD protocol aims to address the prob-
lem of imperfect CSI in HetNets with massive MIMO BSs,
its backhaul requirement for coordination increases over-
head and latency. In this paper we address the problem of
maximizing the weighted sum rate for macrocell users in
a HetNet scenario. It is worth noting that maximizing the
sum rate without increasing the bandwidth can be achieved
by increasing the users’ SINR. We propose a robust beam-
forming solution method for the problem of maximizing the
minimum achievable SINR of the macrocell users in a HetNet
scenario, which is based on iteratively solving SOCPs. The
robust scheme accounts for imperfect CSI at the transmitter,
and it can be implemented in an uncoordinated network of
BSs. We present an efficient method to solve the worst-case
SINR balancing problem for macrocell users in HetNets.
The two-stage method converges to a near optimal solution
much faster compared to the optimal solver. In the first stage,
the original non-convex optimization problem is transformed
into a standard SOCP using the Smith form reformulation and
the matrix stuffing (MS) technique [20], [21]. The resulting
SOCP is then solved by an efficient solver which uses the
alternative direction method of multipliers (ADMM) [22].
This solution method has been applied to solve optimization
problems in dense wireless networks, which are typically
used in Cloud-RAN networks [21].

The rest of the paper is organized as follows: Section II
presents the system model for both perfect and imperfect CSI
acquisition at the transmitter. In Section III, the proposed
SOCP-based solution is presented. Section IV discusses the
simulation results, and a conclusion is given in Section V.

II. SYSTEM MODEL
Consider a typical single cell of a HetNet shown in Fig. 1.
The macrocell BS consists of M transmit antennas transmit-
ting to K single-antenna macrocell user equipment (MUE).
The macrocell is overlaid with S small cells, which contain
a single-antenna BS serving a few small-cell user equip-
ment (SUE), each equipped with a single antenna. Typically
M � K and the system is also referred to as multi-user
MIMO. The K users and the small cells are served in the
same time-frequency resource and we consider the channel
to be Rayleigh fading.

The signal received at the k th MUE is modelled as

yMUE,k =
√
PbhTk s+ zMUE,k , (1)

where Pb is the transmit power of the macrocell BS, hk is the
channel vector between the kth MUE and the macrocell BS,
s = Wx is the transmitted vector with x ∈ RK containing
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FIGURE 1. Typical single cell of a HetNet with massive MIMO at the
macrocell BS.

the data symbols for the K users, and zMUE,k represents
interference plus noise. Let H = [h1, h2, . . . ,hK ] be the
M× K channel matrix, and W = [w1, w2, . . . ,wK ] be an
M× K precoding matrix. The interference and noise terms
are defined as

zMUE,k = 6i∈S ǧikxSCA,i + nMUE,k , (2)

where nMUE,k is the additive white Gaussian noise with vari-
ance σ 2, S = {1, 2, . . . S} is the set of small-cell BSs, ǧik
represents the channel from the k th MUE to small cell BS i,
and xSCA,i is the data symbol transmitted to the ith SUE from
its associated BS.

A. MODELLING FOR PERFECT CSI
In the absence of CSI acquisition errors, the WSRMax opti-
mization problem is given by

maximize 6K
k=1αk log2 (1+ γk ),

subject to 6k∈Bu‖wk‖
2
2 ≤ Pb, (3)

where Pb is the transmit power of the corresponding BS, αk
is a positive weighting factor for user k , Bu is the set of all
macrocell users served by the BS, andwk is the beamforming
vector for the k th user. γk is the SINR of the k th macrocell
user, which is given by

γk =
Pb
∣∣hTk wk

∣∣2
σ 2 + Pb6i 6=k

∣∣hTi wi
∣∣2 + PSCA6S

i=1

∣∣ǧik ∣∣2 , (4)

where PSCA is the transmit power of the small cell BS.
By setting a threshold for the minimum achievable rate for

each user, r , problem (3) can be solved by a bi-sectionmethod
and the resulting optimization problem is given as

minimize ‖w‖2
subject to αk log2 (1+ γk ) ≥ r, ∀k

6k∈Bu‖wk‖
2
2 ≤ Pb, (5)

where w represents the vectorized precoding matrix. This
problem can be reformulated as an SOCP optimization prob-
lem. The solution method is based on determining the upper
bound for the users’ sum rate using the uplink-downlink
duality theory [23], and then applying the max-min fairness
optimization algorithm to solve the SOCP problem [24]. For
the case of perfect CSI acquisition at the transmitter, the rate
upper bound was determined by using the capacity equation
from [25] and applying Jensen’s inequality after noting that
the log function is concave [26]. The resulting capacity limit
is given by

Ck ≤ log2

(
det

[
Ik +

1
σ 2E

(
hTk hk

)])
, ∀k, (6)

where Ik is a K × K identity matrix and E[
(
hTk hk

)
] is the

autocorrelation matrix of the channel vector hk .
It was shown that this solution method closely reaches

the performance of the optimal branch-and-bound (BRB)
method as the number of antennas at the macrocell BS is
increased to more than a hundred [27]. This ADMM-based
method achieves this near-optimal performance while con-
verging much faster than the interior-point methods because
the structure of the transformed problem can be solved by
parallel closed forms.

B. IMPERFECT CSI MODEL
It is practically impossible to achieve perfect CSI at the
transmitter, and use of TDD cannot guarantee error-free CSI
acquisition at the BS especially for users with high mobility.
The premise of the TDD protocol is that the channel is
assumed to remain constant during the channel coherence
time. This can be valid for cases where the user remains in the
same vicinity relative to the BS during the channel coherence
interval. However, for future generation networks that aim
to support very high mobility users, this assumption is not
accurate. Therefore, the focus of this work is to investigate
and optimize the performance of the massive MIMO system
for macrocell users in a HetNet scenario, in the presence of
channel estimation errors. We model the channel vectors to
account for uncertainty in the CSI acquisition, and they take
the form

hk = ĥk + ek , (7)

where ĥk is the estimated channel vector for the kth user, and
ek is the corresponding downlink channel error vector. The
channel estimation error vectors are assumed to be bounded
and to lie in an uncertainty set U , defined as

Uk = {ek : ‖ek‖ ≤ ρk , ∀k}, (8)

where ‖·‖ is an appropriate absolute norm described by the
parameter ρk , which is chosen based on the desired channel
uncertainty model [28].
Imperfect CSI for robust optimization can be modelled

either statistically or by using the worst case design. The
worst case design guarantees a certain system performance
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for channels sufficiently close to the estimated values. On the
other hand, statistically modelled imperfect CSI guarantees
a certain system performance based on averages obtained
over the number of channel realizations [29]. Selection of the
modelling design depends on the source of CSI errors at the
BS. There are two sources of uncertainty in CSI acquisition,
namely estimation error and quantization error [28]. Massive
MIMO systems rely on the law of large numberswhere the RF
chains are built with low-cost components in order to achieve
economic production, hence it can be assumed that a few
bits are reserved for CSI quantization. Considering that cur-
rent and next generation channel estimation methods provide
accurate estimates, it is highly probable that the dominant
source of uncertainty in our model is the quantization errors.
Taking into account that the quantization errors are bounded,
it can be justified to adopt the worst case design model for
imperfect CSI, which is based on the bounded channel error
model [19].

In this paper we assume that the channel error statistics
are known and we use a new capacity upper bound which
accounts for the imperfect CSI. Considering the channel
errors for each user k to be i.i.d. Gaussian entries, with zero
mean and variance σ 2

e,k , which is customary for conventional
channel estimation schemes [26], the new capacity upper
bound is determined as

Ck ≤ log2

(
det

[
Ik +

1
σ 2E

[
hTk hk + σ

2
e,kI

]])
, ∀k. (9)

From equations (6) and (9), it can be seen that the channel
errors reduce the effective capacity upper bound. This reduc-
tion in the capacity upper bound negatively affects the solu-
tion that is given by applying the max-min fairness algorithm.
The same applies to other solution methods that make use of
the rate upper bound, such as the ADMM algorithm.

III. FAST CONVERGING ROBUST BEAMFORMING
FOR IMPERFECT CSI
The robust counterpart of any optimization problem is usually
either intractable or more complex to solve. The resulting
robust optimization problem becomes intractable because the
set of constraints becomes infinite. ‘‘Commonly employed
approximation schemes usually increase the complexity of
the original problem by one degree; that is, a linear program
becomes an SOCP, and an SOCP transforms to an SDP prob-
lem’’ [19]. Common solution methods are either SDP-based
or SOCP-based. When dealing with the robust counterpart
of any optimization problem, it is either difficult to repre-
sent in tractable form or once a tractable form is obtained,
the complexity of the problem becomesmuch greater than the
original problem. The significance of increased complexity
when designing uncertainty immune beamforming matrices
is further enhanced when some of the parameters involved in
the system take up very large values as in the case of massive
MIMO systems.

There are two main approaches to solving general con-
vex optimization problems. The first approach makes use of

a parser/solver, where the original problem is canonicalized
to obtain an SOCP. The SOCP is then solved to provide a
solution of the original problem. Examples of parser/solvers
that use such an approach are CVX [6], YALMIP [30],
and SeDumi [31]. These commonly used optimal solvers
are not computationally efficient for problems with large
dimensions, e.g. with massive antenna arrays at the BS. This
is because the transformations required in order to deploy
the algorithms onto embedded systems are time-consuming.
The second approach makes use of a parser/generator com-
bination, where the problem is analyzed in advance. The
generator then generates a custom SOCP solver, and the
parameters of the problem are mapped to the custom solver
to give a solution. An example of a parser/generator which
uses this approach is CVXGEN [32]. Although this approach
reduces the transformation overhead of the aforementioned
approach, the code generation step is also time-consuming
and this makes it unsuitable for rapid prototyping [20]. Also,
CVXGEN and similar frameworks, such as FORCES [33]
and ACADO [34], are limited to solving quadratic programs.

In this paper, we follow the parser/generator approach
of [20], where a problem family is canonicalized, and
lightweight code for mapping the parameters into an SOCP
is generated. The canonicalization is done using the Smith
form reformulation [35] and the matrix stuffing technique is
used for the mapping. We then adopt the ADMM to solve the
resulting SOCP-based optimization problem as done in [22].
It has been shown that use of thematrix stuffing technique and
the ADMM algorithm provides an efficient near-optimum
solution of the weighted sum rate maximization (WSRMax)
problem for macrocell users in a HetNet scenario [27]. The
flexibility of the solution allows for easy scaling of the net-
work structure for very large antenna arrays at the BS without
much increase in computational overhead.

A. SOCP-BASED ROBUST OPTIMIZATION
We propose a robust beamforming design that is based on
iteratively solving SOCPs. By not specifying any particular
norm for the uncertainty set of the channel error vectors,
the SOCP-based scheme is capable of handling a wide vari-
ety of uncertainties. We obtain a tractable robust formula-
tion which incorporates uncertainty with second order cone
constraints.

In order to obtain the robust counterpart of the WSRMax
problem in (5), it is convenient to linearize the objective func-
tion andmake it data independent [28]. To do so, we introduce
a new variable t,which is minimized as the objective. The
resultant robust formulation of (5) is written as

minimize t

subject to ‖w‖2 ≤ t

αk log2 (1+ γk ) ≥ r, ∀k

6k∈Bu ‖wk‖
2
2 ≤ Pb. (10)

In order to solve the robust beamforming optimiza-
tion problem efficiently, with acceptable definitive optimal
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accuracy, we present a solution that uses the matrix stuff-
ing technique and the ADMM algorithm. Such a solution
converges to a near-optimal solution in a much shorter time
because the structure of the transformed problem can be
solved by parallel closed forms. The solution is based on a
two-stage technique. The first stage initially transforms the
optimization problem of (5) into an ADMM-compliant form,
and in the second stage, the operator splitting method [22]
is used by the ADMM solver to obtain a solution for the
ADMM-compliant problem.

B. SOCP PROBLEM FORMULATION
The ADMM-compliant form of an optimization problem is
the standard form of an SOCP, which is represented as

PADMM :minimize cT x

subject to Ax+ µ = b

(x, µ) ∈ Rn
× V , (11)

where x ∈ Rn is the optimization variable, µ ∈ Rm denotes
the slack variable, V = {0}r × Sm1 × · · · × Smq with Sp as
the standard second-order cone of dimension p · A ∈Rm×n,
b ∈ Rm, and c ∈ Rn.

1) SMITH FORM REFORMULATION
In order to transform the optimization problem in (5) into
the standard ADMM-compliant form, we apply the Smith
form reformulation, where a new variable is introduced for
each sub-expression of the objective function and all the
constraints. The resulting problem is convex if all expressions
used are affine, and thus all equality constraints are relaxed
in order to make them affine.

By introducing new variables, t0 and t1, for the
sub-expressions in the objective function, min ‖w‖2, the rep-
resentative Smith form is given as

minimize t0
subject to (t0, t1) ∈ QN+1

t1 = w ∈ RN , (12)

where N = KM .
For the per-antenna power constraint ‖wm‖2 ≤

√
Pm,

the introduction of new variables, v0 and v1, results in the
representative formulation

(vm0 , v
m
1 ) ∈ QK+1

vm0 =
√
Pm ∈ R

vm1 = wm ∈ RK . (13)

With the aim to make the QoS constraint convex, i.e. for
all sub-expressions to be affine, let θk = 2γ /αk − 1, and we
have the expression

Pb
∣∣hTk wk

∣∣2
σ 2 + Pb6i 6=k

∣∣hTi wi
∣∣2 + PSCA6S

i=1

∣∣ǧik ∣∣2 ≥ θk , (14)

which is equivalent to

‖Ckw+ qk‖2 ≤ βkrTk w, (15)

where qk = [0TK , σk ]
T
∈RK+1, βk =

√
1+ 1/θk ∈ R, rk =

[0T(K−1)M ,h
T
k , 0

T
(K−k)M ]T∈RN , and Ck is given by

Ck =


hTk

. . .

hTk

0TN

 ∈ R(K+1)×N . (16)

By introducing new variables, yk0, y
k
1, y

k
2 and y

k
3, the reformu-

lated Smith form representation of (15) is given as

(yk0, y
k
1) ∈ QK+1

yk0 = βkr
T
k w ∈ R

yk1 = yk2 + yk3 ∈ RK+1

yk2 = Ckw ∈ RK+1

yk2 = qk ∈ RK+1. (17)

The resultant relaxed Smith form reformulation of the
original problem in (5) is represented as

minimize t0
subject to G0, G1(m), G2(k), ∀k,m, (18)

where G0 is the relaxed Smith form representation of the
objective function, which is given by

G0 :
{
(t0, t1) ∈ QN+1

t1 = w ∈ RN

}
. (19)

G1(m) is the relaxed Smith form representation of the power
constraint given as

G1(m) :


(
vm0 , v

m
1

)
∈ QK+1

vm0 =
√
Pb ∈ R

vm1 = wm ∈ RK

, (20)

and G2(k) represents the relaxed Smith form reformulation
for the QoS constraint of MUEk , given as

G2(k) :



(
yk0, y

k
1

)
∈ QK+1

yk0 = βkr
T
k w ∈ R

yk1 = yk2 + yk3 ∈ RK+1

yk2 = Ckw ∈ RK+1

yk3 = qk ∈ RK+1


. (21)

The standard SOCP representation of the reformulated
problem is represented by the vector of variables x, which
includes the original variables and the new variables, and
the problem data, which are defined in A, b, and c. The
optimization variables are given by

x =
[
t0; v10; . . . ; v

M
0 ; y

1
0; . . . ; y

K
0 ;w

]
∈ Rn, (22)

and the vector of coefficients is consequently given as c =
[1; 0n − 1]. The SOCP problem’s structure is characterized
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by the cone dimensions and the representation of the problem
data. The cone dimensions of the reformulated problem, n,m,
and V , are given by

n = 1+M + K + N , (23)

m = (M + K )+ (M + 1)+M (K + 1)+ K (K + 2), (24)

V = (Q1)
M+K
×QN+1

× (QK+1)L × (QK+2)K , (25)

where V is the Cartesian product of 2(M + K ) + 1 closed
convex cones, and A ∈ Rm×n and b ∈ Rm×1 are given as

A =



1
. . .

1
1 −β1rT1

. . .
...

1 −βkrTk
−1 −IN
−1 −ImK

...
...

−1 −IMK
−1 −C1

...
...

−1 −CK



, (26)

where the number of columns ofA is equal to the total number
of variables, i.e. the original variables plus the new variables
introduced by the reformulation. The rows ofA are composed
of the atoms of the reformulation, where each atom is a block
that is underlined.

b =



√
P1
...
√
PM
0
...

0

0N
0
0K
0
q1
...

0
qK



. (27)

2) MATRIX STUFFING
The canonicalization procedure carried out through the Smith
form reformulation simply creates the SOCP structure of the
original problem. For a given set of the HetNet’s param-
eters, i.e. the number of BS antennas, MUEs, and SUEs,
the ADMM-compliant problem’s structure is fixed. Thus the
structures ofA,b, c and the description of V can be generated
and stored offline, since the number of BS antennas, MUEs,

and SUEs can be assumed to remain constant for a long
period.

The problem data are then copied to the corresponding
data in PADMM for any specific network realization. This
comprises the maximum per-antenna transmit power of the
macrocell BS, i.e.,

√
Pm’s in b, the per-user SINR thresholds

γk , i.e., βk ’s in A, and the channel realizations hk ’s, i.e., rk ’s
and Ck ’s in A. This is the so called matrix stuffing technique,
which provides significantly faster transformation compared
to the modelling framework of CVX.

C. ADMM-BASED SOLUTION
To solve the formulated standard SOCP problem, we apply
a first-order method for solving very large cone programs.
The method solves the homogeneous self-embedding of a
primal-dual pair of the optimization problem by using an
operator splitting method known as the ADMM algorithm.
This approach scales favorably to convex conic problems
with very large dimensions, and it is well suited to dis-
tributed antenna setup since it can be applied in parallel
across multiple processors [24]. This first-order method can
provide reliable, modestly accurate solutions in a relatively
efficient manner because of significantly faster convergence
compared to the interior-point methods, at the cost of lower
accuracy.

1) HOMOGENEOUS SELF-DUAL EMBEDDING
The premise of homogeneous self-dual embbeding is to
encode the primal and dual pair of an optimization problem
into a single feasible problem. This entails finding a feasible
(non-zero) point in the intersection of a convex set and a
subspace. A non-zero solution of the original pair is taken as
the optimal solution, otherwise a certificate of infeasibility
is generated that proves that either the primal or dual is
infeasible.

The primal and dual pair, PADMM and DADMM, of the
original problem is given as

PADMM : minimize cT x

subject to Ax+ µ = b

(x, µ) ∈ Rn
× V

DADMM : minimize −bT η

subject to −AT η + λ = c

(η,λ)∈ {0}n × V ∗, (28)

where η ∈ Cm is the dual’s optimization variable, λ ∈ Cn

being the dual slack variable. V ∗ is the dual cone of the non-
empty closed convex cone V and {0}n is the dual cone of Rn.
In order to solve the problem optimally, the Karush-Kuhn-

Tucker (KKT) conditions are necessary and sufficient, and
they require strong duality, i.e. when

Ax+ µ = b, (29)

AT η + c = λ, (30)

cT x+ bT η = 0, (31)
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with (x,µ,λ, η) ∈ Rn
× V × {0}n × V ∗ satisfying the KKT

conditions and being primal-dual optimal. The primal-dual
pair of (28) is converted into a single problem by embedding
the KKT conditions into a single system of equations and
including the optimal points that the primal and dual must
jointly satisfy. This embedding gives λµ

0

 =
 0 AT

−A 0
cT bT

[ x
η

]
+

 c
b
0

,
(x,µ,λ, η) ∈ Rn

× V × {0}n × V ∗. (32)

In this case, if equation (28) is primal or dual infeasible,
then equation (32) has no solution. Homogeneous self-dual
embedding addresses this shortcoming by introducing two
new non-negative variables τ and κ , which encode the differ-
ent possible outcomes of the solution [36]. The homogeneous
self-dual embedded system of equations is then given as λµ

κ

 =
 0 AT c
−A 0 b
−cT −bT 0

 x
η

τ

. (33)

The system in equation (33) is homogeneous because if
(x∗,µ∗,λ∗, η∗) is a solution to the embedded problem, then
(ax∗, aµ∗, aλ∗, aη∗) is also a solution for any a ≥ 0. The
embedded problem is also self-dual, and the proof is shown
in [22]. To simplify the representation of the embedded
problem, let

r =

 λµ
κ

, Q =

 0 AT c
−A 0 b
−cT −bT 0

, p =
 x
η

τ

,
where (p, r) ∈ Rn+m+1,Q ∈ R(n+m+1)×(n+m+1). The embed-
ded problem is then given as

find (p, r)

subject to r = Qp

(p, r) ∈ C×C∗ (34)

where C = Rn
× V ∗ × R+ is a cone with dual cone

C∗ = {0}n × V × R+.

2) ADMM ALGORITHM
The ADMM algorithm is a first-order method for solv-
ing optimization problems, which is based on the operator
splitting method [37]. The method is well-suited for large-
scale convex optimization problems. The algorithm has been
adopted to solve optimization problems in cloud computing
environments because it can handle complex problems fairly
well, while it is scalable enough to process data with large
parameters. We propose to adopt this algorithm to solve the
homogeneous self-dual embedded problem for robust beam-
forming optimization for macrocell users in a typical HetNet.

The basic operator splitting method solves convex prob-
lems of the form

minimize [f (y)+ g(z)]

subject to Ay+ Bz = c, (35)

where A ∈ Rp×n, B ∈ Rp×m, and the variable of the original
problem x ∈ Rn, is split into two parts; that is y ∈ Rn

and z ∈ Rn in this case, provided the objective function of
the original problem is separable across the splitting. It is
assumed that f and g are convex, and they may be non-
smooth or may take on infinite values to encode implicit
constraints.

The iterations of the ADMM algorithm consist of the steps

yk+1 = argmin Lρ(y, zk , dk ), (36)

zk+1 = argmin Lρ(yk+1, z, dk ), (37)

dk+1 = dk + δ(Ayk+1 + Bzk+1 − c), (38)

where d is the dual variable, and δ > 0 is a penalty multiplier
of the augmented Lagrangian, Lρ . The initial points z0 and d0

are arbitrary, but are usually taken to be zero. The algorithm
comprises a y-minimization step, a z-minimization step, and
a step to update the dual variable. This is basically similar to
the method of multipliers, which takes the form

(yk+1, zk+1) = argmin Lρ(y, zk , dk ), (39)

dk+1 = dk + δ(Ayk+1 + Bzk+1 − c). (40)

Unlike this method of multipliers where the augmented
Lagrangian for the two variables is jointly minimized as
in (39), in the ADMM the variables are updated in an alter-
nating manner, as given in (36) and (37). Hence the term
alternating direction in ADMM.

In order to apply the operator splitting method, the embed-
ded problem in (34) is transformed into the form

minimize IC×C∗ (p, r)+ IQx̃ (p̃, r̃)

subject to (p, r) = (p̃, r̃), (41)

where IS denotes the indicator function of the set S.Directly
applying the ADMM to the self-dual embedding in (41)
yields the following algorithm:

(p̃k+1, r̃k+1) =
∏

Qp=r
(pk + λk , rk + µk )

pk+1 =
∏

C
(p̃k+1 − λk )

rk+1 =
∏∗

C
(r̃k+1 − µk )

λk+1 = λk − p̃k+1 + pk+1

µk+1 = µk − r̃k+1 + rk+1, (42)

where 5S (x) denotes the Euclidean projection of x onto
the set S, and λ and µ are dual variables for the equality
constraints on p and r , respectively.

IV. NUMERICAL RESULTS
We evaluate the performance of the proposed solutionmethod
for the SINR balancing problem in terms of the average
worst case SINR for all the MUEs. For all simulation setups,
we consider a single cell of a typical HetNet, where the
macrocell is overlaid with four small cells (S = 4), each
serving one user within 10 m. Our focus is on evaluating
the performance of the macrocell users, which are uniformly
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distributed within the macrocell with a radius of 60 m.
We assume the channels to exhibit small-scale Rayleigh fad-
ing, and we model them similar to Case 1 for heterogeneous
deployments in the 3GPP LTE standard [38].

We compare the performance of the solution method,
which uses the MS technique and the ADMM algorithm
to solve the convex optimization problem, with an optimal
solution that uses CVX and the BRB algorithm. We also
compare the performance of the optimization methods with
ZFBF and MMSE precoding, which are prominent linear
precoding techniques. To implement the ADMM, we use the
splitting conic solver (SCS) [22] toolbox in Matlab, whereas
the solution method that uses the BRB algorithm is imple-
mented with the SeDuMi solver. We consider the efficiency
of the proposed solution in terms of SINR maximization
accuracy and average time taken to converge to a solution
compared to the optimal solution.

FIGURE 2. Average worst-case SINR performance against error
uncertainty set radius, ρ, bounded by l2-norm for number of macrocell
users, K = 20, and BS power, Pb = 1dB.

A. SIMULATION RESULTS FOR PERFECT CSI
Fig. 2 shows plots of the average worst case SINR against
the radius of the channel errors’ uncertainty set, ρ. The fig-
ure depicts the accuracy and robustness performance of the
proposed solution, which uses MS and SCS, by comparing
it to the aforementioned methods. The worst case SINR was
averaged over 10 channel realizations with the error uncer-
tainty bounded by the l2-norm, for K = 20 MUEs, and the
transmit power for the BS set as 1 dB. It can be seen from
the result of Fig. 2 that for the case of M = 100 antennas
at the BS, the solution method that uses theMS technique and
the SCS solver is outperformed by the optimal method, which
uses SeDuMi and CVX, and the solutions that use ZFBF and
MMSE.

From Fig. 2 it can be observed that the worst-case SINR
performance of all the solution methods, in terms of the
average worst case SINR value, increases asM increases. For
the case ofM = 150 antennas, the performance of theMS and
SCSmethod improves to be fairly close to the performance of
the optimal method which uses CVX and SeDuMi. It is also
worth noting that the MS and SCS method outperforms the

ZFBF and MMSE solutions in this case of M = 150, unlike
in the case of M = 100. As M was increased to 200 and
beyond, the simulations showed this trend of the performance
of the MS and SCS method closely approaching that of CVX
and SeDuMi, while the gap between these two optimization
solutions and the two linear precoding methods increased.

FIGURE 3. Average worst-case SINR performance against error
uncertainty set radius, ρ, bounded by l2-norm for number of BS antennas,
M = 150, number of macrocell users, K = 40, and BS power, Pb = 1dB.

Fig. 3 shows the effect of increasing the number of users
while the number of BS antennas remains 150 as in the
case of Fig. 2. A comparison of the result of Fig. 2 and the
the result of Fig. 3 shows that the average worst-case SINR
performance of all the beamforming methods diminishes.
The trend, however, remains the same with the MS and SCS
method significantly outperforming the ZFBF and MMSE
solutions, but being outperformed by the CVX and SeDuMi
method.

FIGURE 4. Average worst-case SINR performance against error
uncertainty set radius, ρ, bounded by l∞-norm for number of macrocell
users, K = 20, and BS transmit power, Pb = 1dB.

B. SIMULATION RESULTS FOR IMPERFECT CSI
Fig. 4 shows the result of evaluating the performance of the
proposed solution method in terms of robustness to the chan-
nel error uncertainty. In this case, the channel error vectors
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are bounded within a multi-dimensional box of size ρ. That
is, ‖ek‖∞ ≤ ρ, and in this case the channel error uncertainty
is said to be bounded by the l∞-norm. It is observed that
the average worst case SINR performance for both the MS
and SCS method, and the CVX and SeDuMi method is lower
than that for the case when the error uncertainty set radius
is bounded by the l2-norm, for the same value of ρ. This is
because the l∞-norm defines a smaller feasible set than the
l2-norm for the same ρ [19], which leads to the degradation in
performance. This also explains the reduced robustness of the
two optimization methods for this case of l∞-norm, which is
observed from the greater range of worst-case SINR variation
with ρ.

FIGURE 5. Average worst-case SINR performance against BS transmit
power for number of BS antennas, M = 150, number of macrocell users,
K = 20, and error uncertainty set radius, ρ = 0.8, bounded by l2-norm.

We also evaluated how the average worst-case SINR scales
with the BS transmit power, Pb. The performance of the
proposed solutionmethodwas compared with that of the opti-
mal method together with the other two non-robust methods,
as shown in Fig. 5. From Fig. 5, it can be seen that the SINR
performance of the MS and SCS solution method increases
linearly, similar to that of the ZFBF, MMSE and the CVX
and SeDuMi methods, although with reduced accuracy. The
SINR performance of theMS and SCSmethod does not show
a perfectly linear variation with BS transmit power. This is
due to the limited number of channel realizations that were
carried out for the simulation.

The accuracy of the MS and SCS solution method
improves significantly as the number of BS antennas, M ,
is increased, to achieve near optimum performance of the
other beamforming methods. This was observed whenMwas
increased to 200 and beyond, where the gap between the per-
formance of the proposed method and the other beamforming
methods reduced as M increased.

C. ALGORITHM CONVERGENCE EFFICIENCY
Fig. 6 is a result of an investigation of how the average worst-
case SINR scales with the number of antennas at the BS. For
this simulation, a varying number of antennas were serving
K = 20 macrocell users, with the transmit power, Pb set

FIGURE 6. Average worst-case SINR performance for varying number of
BS antennas, with error uncertainty set radius, ρ = 0.4, bounded by
l2-norm for number of macrocell users, K = 20, and BS power, Pb = 1dB.

to be 1dB, and the uncertainty set radius, ρ, being 0.4 for
channel errors bounded by the l2-norm. It can be seen that the
MS and SCS method is outperformed by the ZFBF, MMSE,
and the CVX and SeDuMi methods for the number of BS
antennas considered, although it closely follows their average
worst-case SINR. Analysis of the efficiency of the proposed
method, with comparison to the optimal method which uses
CVX and SeDuMi, was carried out and the results are given
in Table 1.

TABLE 1. Comparison of SINR performance and convergence efficiency
for the two optimization solutions for various BS antenna cases.

Table 1 shows the results of run-time analysis of the two
optimization solutions, i.e. the CVX and SeDuMi method,
and theMS and SCSmethod. The table gives a comparison of
the maximum achievable worst-case SINR and the time taken
to converge to a solution for various numbers of antennas at
the BS. The convergence time includes both the time taken
to transform the original problem and the time taken by the
solver to reach a solution. For this comparison, the number
of MUEs, K , was set to be 20 as the number of antennas
at the BS was varied. The simulations were executed on a
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64-bit Intel CORE i5 desktop computer with 8 GB RAM.
The bisection procedure for both solution methods was set to
terminate when the difference between the objective values
of two bisection steps, ε ≤ 0.001. The maximum number of
iterations was set to be 2500 for both optimal solvers. It is
seen from Table 1 that the MS and SCS method converges
more than twice faster, with the average worst case SINR less
than 1 dB in all cases, compared to the solution that uses CVX
and SeDuMi.

Since algorithms are platform-independent and machine-
independent, we also analyzed the run-time efficiency of the
two methods by considering the local growth order of the
solutions, in addition to the convergence time. For run times
t1 and t2, with their corresponding input parameters n1 and
n2, the local order of growth, o, is given by

o =
log(t2/t1)
log(n2/n1)

(43)

The local growth order gives an indication of how the
run-time of an algorithm increases as the input parameter
increases. In this case, the input parameter is the number of
antennas at the BS, and the local growth orders of the two
optimization solutions for the varying number of BS antenna
cases are also given in Table 1. It should be noted that owing
to the computation of the local growth order as given in
equation (43), the first row of the local growth order fields
do not contain any values.

FIGURE 7. Variation of local growth order with increase in number of BS
antennas for the two optimization algorithms.

To obtain a clearer picture of the trends in the local growth
orders of the two solution methods, the results in Table 1 are
illustrated in Fig. 7. The figure shows that the growth orders
of both solution algorithms initially show an increasing trend
as the number of BS antennas, M , increases. Although the
local growth order of the MS and SCSmethod initially shows
a higher rate of increase, it begins to show a decreasing trend
as M increases beyond 250. The CVX and SeDuMi method,
on the other hand, continues to show an increasing trend for
the local growth rate as M increases.

V. CONCLUSION
A fast converging robust beamforming solution for the SINR
balancing problem, that accounts for CSI acquisition errors at
the transmitter for macrocell users in a HetNet configuration,
is proposed and presented. This solution is based on applying
the matrix stuffing technique and the ADMM algorithm to
transform and solve the original optimization problem. Sim-
ulation results show that this method gives average worst-
case SINR performance with accuracy averaging 97% for all
cases considered compared to the optimal method which uses
CVX and the BRB algorithm, while converging to a solution
more than twice faster than the interior-point method. In addi-
tion, the growth order of the ADMM algorithm’s solution
generally decreases with an increasing number of antennas
at the macrocell BS. This makes the proposed beamforming
method attractive for practical application in HetNets with
large antenna arrays at the macrocell BS in scenarios with
channel uncertainty.
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