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Abstract
We contribute to research on the predictability of stock returns in two ways. First, we use
quantile random forests to study the predictive value of various consumption-based and
income-based inequality measures across the quantiles of the conditional distribution of
stock returns. Second, we examine whether the inequality measures, measured at a quarterly
frequency, have out-of-sample predictive value for stock returns at three different forecast
horizons. Our results suggest that the inequality measures have predictive value for stock
returns in sample, but do not systematically predict stock returns out of sample.

JEL classification: C53; G17

Keywords: Stock returns; Predictability; Inequality measures; Quantile random forests



1 Introduction

The existing literature on predicting stock returns in developed and developing countries, based

on a wide array of models and predictors, is vast, to say the least (see for example, Rapach et

al., 2005, 2013, Sousa et al., 2016, Aye et al., 2017, Jordan et al., 2017, among others). On

one hand, practitioners in finance require real-time forecasts of stock returns for asset-allocation

decisions. On the other hand, academics in finance are interested in stock-return predictability

because predictability has important implications for tests of market efficiency and, thereby,

may help to produce more realistic asset-pricing models (Rapach and Zhou, 2013). Predicting

stock returns, however, is highly challenging because stock returns inherently contain a sizable

unpredictable component and, hence, forecasting performance varies across the countries and

sample periods studied and models and predictors used. This paper contributes to research on

stock-return predictability by using a novel technique, quantile random forests, to examine the

relationship between inequality and stock returns.

With an upward trend in both income and wealth inequality globally (Piketty and Saez, 2014),

the question of whether inequality plays a role in stock-market developments becomes increas-

ingly pertinent. Intuition suggests that higher inequality is likely to lead to lower stock-market

investments (due to lower participation), thus affecting stock prices. Solid economic reasoning

that inequality can predict asset prices has been recently provided by many studies. For exam-

ple, Gollier (2001) shows that in a model with complete markets but with agents having concave

risk tolerance (i.e., dropping the assumption of constant relative risk-aversion (CRRA))1 wealth

inequality increases the equity premium, i.e., stock returns relative to the return on a risk-free

asset. Alternatively, Constantinides and Duffie (1996) maintain the CRRA assumption but in-

troduce incomplete markets. In their model, investors are identical ex ante but face uninsurable

idiosyncratic income shocks which, in turn, lead to ex post dispersion of investor incomes. As

a result, investors demand a higher risk premium for assets that provide a poor hedge against

1Cochrane (2005) points out that when agents have identical CRRA preferences and markets are complete in-
come inequality cannot affect marginal utilities and, hence, asset prices.
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idiosyncratic income shocks. If inequality is correlated with the magnitude of the uninsurable

idiosyncratic income risk and equities are a poor hedge against inequality (as shown by Ait-

Sahalia et al., 2004) then higher inequality causes a higher equity-risk premium. In addition,

political channels can lead to inequality causing the equity premium in an indirect fashion. On

the one hand, Persson and Tabellini (1994) indicate that as inequality grows politicians targeting

the median voter have incentives to tax investment for the purpose of wealth redistribution, which

causes higher risk premia (Croce et al., 2012; Gomes et al., 2012). On the other hand, Alesina

and Perotti (1996) argue that income inequality leads to political uncertainty, which increases the

equity premium as described in the works of Pástor and Veronesi (2012, 2013).

Given that there are many possible theoretical channels through which inequality can affect stock

markets, it is important to discuss work that examines some of these theoretical predictions. First,

Brogaard et al., (2015) find that, after controlling for the dividend-price ratio, higher income in-

equality (measured by the Gini coefficient) predicts not only a significantly higher equity-risk

premium but also risk premia on long-term government and corporate bonds.2 Moreover, Bro-

gaard et al. (2015) show that the inclusion of the Gini coefficient in a one-year stock-return

predictability regression that includes the dividend-price ratio more than doubles the explanatory

power (with the adjusted-R2 increasing from 5.6% to 14.8%). These findings are also shown

to be robust to alternative measures of inequality and other common financial and real-business

cycle predictors of returns generally used in this literature. Second, Christou et al., (2017) in-

vestigate whether the post-tax-and-transfer growth rate of the Gini index helps to predict the

equity premium in the G7 countries (Canada, France, Germany, Italy, Japan, United Kingdom,

and United States) using a panel-data-based predictive framework, which controls for hetero-

geneity, cross-sectional dependence, persistence, and endogeneity. Christou et al., (2017) show

that, while in general time-series based predictive regression models fail to beat the historical

average, panel-data models beat this benchmark in a statistically significant fashion for all the

seven countries. This result highlights the importance of pooling information when trying to

2The authors find that a one-standard deviation increase in Gini coefficient is associated with an increase of
8.05% in expected excess log returns.
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forecast stock returns based on a measure of inequality.3 Both papers, not surprisingly, analyzed

predictability of stock returns at the annual frequency using inequality data that is generally also

available at the same frequency.

Against this backdrop, the objective of this paper is to investigate for the first time whether

inequality forecasts United Kingdom (UK) stock returns. We examine data at the quarterly fre-

quency, the highest possible, over 1977Q1 to 2016Q1 using both out of sample and in sample

approaches as well as considering income-based and consumption-based inequality measures.

Further, we introduce quantile random forests (Meinshausen, 2006) into the literature on stock-

return predictability. Quantile random forests have the advantage of being a flexible data-driven

modeling framework. Given that inequality may affect stock returns through a variety of chan-

nels and in a variety of ways, quantile random forests are capable of capturing such complex

nonlinear effects in a natural way. In addition, quantile random forests render it possible to cap-

ture any interaction effects of inequality with a wide-array of predictors (as in Jordan et al., 2017)

generally used in the literature on stock-returns predictability. Finally, as with a more standard

quantile regression model (Koenker, 2005), quantile random forests allow the predictive value of

inequality for stock returns to be traced out along the quantiles of the conditional distribution of

stock returns. This is advantageous for investors who are interested in studying the implications

of a potential stock-returns-inequality nexus for the management of tail events.

We briefly describe quantile random forests in Section 2. We describe our data in Section 3. We

describe our empirical analysis in Section 4. We conclude in Section 5.

2 Quantile Random Forests

A regression tree consists of a root, interior nodes, and terminal nodes (the leaves; for an intro-

duction to regression trees, see Hastie et al., 2009; for recent applications of regression trees in

3In a somewhat related paper, Johnson (2012) analyzes the cross-sectional pricing implications associated with
the risk of inequality. The analysis shows that stock returns that comove more with inequality attract a negative
premium. In other words, investors are willing to pay a higher price for assets which tend to provide a better hedge
against the risk of falling income status.
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economics, see Döpke et al. 2017 and Behrens et al. 2018). The nodes recursively partition the

space of predictors, xt , t = 1, ...,N, into rectangular subspaces in a top-down and binary way. A

leaf of a regression tree represents a rectangular subspace of relative homogeneity of stock re-

turns, rt+h, where h denotes the forecast horizon. The formation of rectangular subspaces starts

at the top level of a regression tree by choosing the partitioning predictor, s, and the partitioning

point, z, to form the two regions R1(s,z) = {xt,s|xt,s ≤ z} and R2(s,z) = {xt,s|xt,s > z} by solving

mins,z{RSS1+RSS2}, where RSSk =∑xt,s∈Rk(s,z)(rt+h,i− r̄t+h,k)
2, with r̄t+h,k =mean{rt+h,i |xt,s ∈

Rk(s,z)}, k = 1,2, xt,s ∈ Rk denotes that the period-t realization of predictor s belongs to region

Rk, and rt+h,i are the stock returns in region k. This search-and-split process then proceeds in a

recursive and hierarchical way until every leaf contains a minimum number of observations or

some maximal tree size is reached, both are defined in advance.

A random regression tree is a regression tree that is grown by choosing only a random subset

of the predictors in every step of the search-and-split process. A random forest is an ensemble

of random regression trees, where every single random regression tree that is member of this

ensemble is estimated on a boostrapped sample of the data (Breiman, 2001). Choosing a ran-

dom subset of the predictors and forming a random forest that consists of bootstrapped random

regression trees has the advantages that it curbs the influence of individual influential predictors

on the predictions and decorrelates the predictions form individual random regression trees.

Meinshagen (2006) extends the concept of random forests to quantile random forests. He ob-

serves that the search-and-split process implies that at the leaves every observation of stock

returns receives a weight wt = 1{xt,s∈Rk(s,z)}/(#{ j : x j,s ∈ Rk(s,z)}), where 1 is the indicator func-

tion. The prediction of stock returns is then r̂t+h = ∑
N
t=1 wtrt+h . When estimating a random for-

est, in turn, the weight attached to observation t of stock returns is defined as wB
t = B−1

∑
B
i=1 wt ,

and the prediction of stock returns is given by r̂t+h = ∑
N
t=1 wB

t rt+h , where B denotes the num-

ber of bootstrapped random regression trees. Equipped with these weights, a quantile random

forest stores not only information on the mean of stock returns at the leaves (as a conventional

regression tree does) but rather keeps all observations of stock returns, and then uses this infor-

mation to compute an estimate, P̂(rt+h ≤ r|xt) = F̂(r|xt), of the conditional distribution func-
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tion of stock returns. This estimate is computed as F̂(r|xt) = ∑
N
t=1 wB

t 1rt+h≤r. The α-quantile

of the conditional distribution function is defined such that the probability that stock returns is

smaller than Qα , given xt , is equal to α , with an estimate of the α-quantile being computed as

Q̂α(xt) = inf{r : F̂(r|xt)≥ α}.

3 Data

Quarterly data is collected and computations are made from March (Q1) 1977 until March (Q1)

2016. The inequality data is for income equivalized by dividing by the square root of the number

of people in a household and total consumption per capita of a household. The three measures

of inequality used are the Gini coefficient, standard deviation (of the data in natural logarithms),

and the difference between the 90th and 10th percentile (with the data in natural logarithms).

The inequality measures are calculated using survey data on income and consumption from the

family expenditure survey.4 Further details on the construction of the data and the survey are

documented in Mumtaz and Theophilopoulou (2017).5 We abbreviate the three income-based

inequality measures as YI1, YI2, and YI3. The three consumption-based inequality measures

are denoted as CI1, CI2, and CI3.

The UK stock-return data and (auxiliary) predictors are primarily collected from Thomson Datas-

tream. The log change in the UK Market Return Index is used to estimate stock return.6 The other

predictors used are key candidate variables drawn from valuation fundamentals and macroeco-

nomics, which follow Goyal and Welch (2008) and Jordan et al. (2017). Specifically we include

the dividend-price ratio, dividend yield, earnings-price ratio, book-market ratio, T-Bill rate, in-

flation, and stock variance. Details on the construction of the (auxiliary) predictors can be found

at the end of the paper (Data Appendix).

4The data is downloadable from:https://discover.ukdataservice.ac.uk/series/?sn=200016 and
https://discover.ukdataservice.ac.uk/series/?sn=2000028.

5We would like to thank Professor Haroon Mumtaz for kindly sharing the inequality data with us.
6The TOTMKUK(RI) is the data series used as in many previous studies including Jordan et al. (2017).
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4 Empirical Analysis

We use the R programming environment for statistical computing for our empirical analysis (R

Development Core Team 2017) and the add-on-package “quantregForest ” (Meinshausen, 2016)

for estimation of quantile random forests. We use quantile random forests to compute both

in-sample and out-of-sample forecasts of stock returns one-quarter ahead, two-quarters ahead,

and one-year ahead (h = 1,2,4). For computing out-of-sample forecasts, we use a recursive

estimation window. The first estimation window uses data up to and including 1996Q4, then we

add data for 1997Q1 to the estimation window, and so on until we reach the end of the sample

period. We present results for quantile random forests that consist of 750 random regression

trees. We set the minimum number of observations per terminal node to ten, and we use one-

third of the predictors for random splitting. Using 500 or 1000 trees or fixing the maximum

number of terminal nodes to ten (rather than the number of observations per terminal node) leads

to qualitatively similar results (not reported, but available upon request).

Following Gupta et al. (2017), we compare the predictive value of forecasts by extending the

approach proposed by Fair and Shiller (1990) to a quantile-regression setting (on quantile regres-

sions, see Koenker and Bassett, 1978; Koenker, 2005). To this end, we estimate for every quan-

tile parameter α and h, the following quantile regression model γ∗
α,h = argmin

γα,h

∑t L (α,rt+h−

Xt+1γα,h), where the summation runs over the available in-sample or out-of-sample predictions,

Xt+1γα,h = γ0,α,h + γ1,α,hr̂t+h + γ2,α,hr̂wo
t+h, and L is the usual quantile regression loss function

(that is, the “check function”), and r̂wo
t+h denotes a benchmark forecast implied by a model that

does not feature any inequality measure in the vector of predictors. If the forecasts, r̂t+h, of the

model featuring an inequality measure in the vector of predictors have predictive value for rt+h,

and the predictive value of the benchmark forecasts, r̂wo
t+h, is fully contained in r̂t+h, then γ1,α,h

should be significantly different from zero while γ2,α,h should be insignificant. If both forecasts

contain non-overlapping information then γ1,α,h and γ2,α,h should be significantly different from

zero. If both forecasts do not have predictive value then both γ1,α,h and γ2,α,h should not be sig-

nificantly different from zero. Finally, if both forecasts contain the same information then γ1,α,h
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and γ2,α,h are not separately identified (see Fair and Shiller, 1990, page 377).

Figure 1 plots bootstrapped (1,000 simulation runs) p-values of in-sample tests of the null hy-

potheses that γ1,α,h (solid line) and γ2,α,h (dashed line) are not significantly different from zero.

We present results for forecasts from seven different models at three different forecast horizons

(we look at stock returns 1, 2, and 4 quarters ahead). For example, the solid line in the panel

entitled RET1-YI1 represents, for stock returns one quarter ahead, the results for the forecasts

implied by a model that features, in addition to the other auxiliary predictors, the inequality mea-

sure YI1 in the vector of predictors. The dashed line represents the results for the benchmark

forecasts implied by a model that does not feature any of our inequality measures in the vector of

predictors. Because we analyze six different inequality measures, we present results for six dif-

ferent models. In addition, we present results for a seventh model that features all six inequality

measures in the vector of predictors.

− Please include Figure 1 about here. −

The general message conveyed by the in-sample results is that the inequality measures improve

the predictive value of the models. The model that features all inequality measures in the vector

of predictors produces p-values below the conventional thresholds of 5% and 10% at most quan-

tiles and at all three forecast horizons. The p-values for the models that feature only one of the

inequality measures as a predictor are more volatile across quantiles than those for the model that

features all inequality measures as predictors. Still, the models tend to produce more significant

results than the model that excludes the inequality measures from the vector of predictors.

− Please include Figure 2 about here. −

Figure 2 plots bootstrapped p-values of out-sample tests. The results are in stark contrast to the

results of the in-sample tests. The p-values are rather volatile across quantiles and scratch the

5% and 10% thresholds only occasionally. The instability across quantiles and (to a great extent)

insignificance of the results holds at all three forecast horizons and irrespective of whether we
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include only a single or all six inequality measures in the vector of predictors. Taken together,

our results corroborate the results of Christou et al. (2017) insofar as they find, for annual data,

no evidence of out-of-sample predictability when they undertake a time-series analysis.

We obtain similar results (not reported, but available from the authors upon request) when we

analyze a somewhat shorter (beginning in 2000Q1) and a longer (starting in 1990Q1) out-of-

sample forecasting period. Moreover, the results do not change qualitatively when we replace

the recursive-estimation window with a rolling-estimation window. Experiments with a model

that features realized volatility of stock returns as a predictand rather than as a predictor show

that also for such a model there is no strong and robust evidence of out-of-sample predictability.7

Another point one might wonder about is whether there is an impact on stock returns from the first

difference of the inequality measures because a shock to inequality could create an unanticipated

return, while the level of inequality primarily impacts the expected return. When we use the first

difference of the inequality measures to estimate quantile random forests there is no systematic

evidence that the inequality measures strengthen out-of-sample predictability of stock returns.

Yet another concern is whether excluding forecasts for the period of the financial and economic

crisis of 2007/2008 changes our results. In order to inspect the impact of the financial and

economic crisis more closely, we estimate two versions of the Fair-Shiller quantile regression

models. In the first version, we only use out-of-sample forecasts up to and including 2006Q4. In

the second version, we exclude out-of-sample forecasts for the period from 2007Q1 to 2009Q4.

Again, there is no systematic evidence of out-of-sample predictability of stock returns. As for

the in-sample results, we reestimate the quantile-random-forest model but exclude data for the

7Another aspect that is relevant for the evaluation of out-of-sample forecasts (especially regarding their useful-
ness in practice) is that the inequality measures should be released at or prior to when a forecast is made. While the
surveys used by Mumtaz and Theophilopoulou (2017) are at an annual frequency, the authors assign households to
different quarters within a year based on the date of survey interviews. Knowing the timing of the survey interviews,
they can calculate the measures of inequality at a quarterly frequency. As a robustness check, however, we accounted
for the fact that data on inequality for a specific year and, hence, for the quarters of that particular year will only be
available at the beginning of the next year. When we account for a publication lag of four quarters, the results (not
reported, but available from the authors upon request) of the out-of-sample tests do not change qualitatively.
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period from 2007Q1 to 2009Q4. Results are qualitatively similar to those reported in Figure 1.

The in-sample results, thus, are not strong only because they include the crisis period (that is,

due to a potential look-ahead bias).

It is important to check whether the lack of out-of-sample predictability is an artefact of the

forecasts computed by means of quantile random forests. In order to consider this possibility,

we compute forecasts by means of (i) a quantile boosting model as described in Pierdzioch et

al. (2016), and, (ii) a standard “kitchen-sink” quantile regression model that always contains all

regressors (that is, the auxiliary predictors plus the inequality measure being studied). We then

estimate the Fair-Shiller quantile regression models for the forecasts implied by such a model.

Again, we do not find systematic evidence of out-of-sample predictability.

− Please include Figure 3 about here. −

Finally, we compare quantile random forests with the quantile boosting model and the standard

quantile regression model in terms of their out-of-sample forecast performance. To this end, we

use the “check function” as our loss function. Specifically, we compute, for every single one of

the three forecasting models and for the various quantile parameters, the cumulated loss defined

as the sum of the values taken by the loss function over the out-of-sample period. We then as-

sess relative forecasting performance by computing the difference between the cumulated losses.

Figure 3 shows that, except for small quantile parameters, quantile random forests tend to per-

form better than the competitor models for h = 1, and that the quantile boosting model performs

better than both quantile random forests and the quantile regression model. For h = 2 and h = 4,

and when we consider only one inequality measure at a time, the two competitor models show a

slightly better performance for various quantile parameters in the range between approximately

0.2 and 0.5. The competitor models, however, tend to lose in terms of relative performance for

larger quantile parameters. When we simultaneously consider all inequality measures, quantile

random forests show the strongest relative forecasting performance. Only the quantile boosting

model performs better than quantile random forests for some quantile parameters in the range

between roughly 0.4 and 0.8, and only for h = 4.
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5 Concluding Remarks

Inequality of income and wealth has been on the rise in many countries around the world. This

can potentially have serious social and economic consequences but the impact on financial mar-

kets has been largely unexplored. Notable exceptions include Gollier (2001) and Ait-Sahalia et

al. (2004), who identify mechanisms through which higher inequality leads to a higher equity

premium and thus lower stock prices. Brogaard et al. (2015) and Christou et al. (2017) examine

whether inequality predicts stock returns in the US and the G7 respectively. Using annual data

they find a statistically significant relationship.

This paper extends the literature by providing rigorous evidence on the relationship between

inequality and the conditional distribution of stock returns in the UK. We implement a novel

technique, quantile random forests, which enables predictability across the whole spectrum of

the conditional distribution of stock returns to be examined. Quantile random forests is a flexible

data-driven nonparametric method which can accomodate interactions among predictor variables

of unknown form and complex nonlinear phenomena which are often apparent in financial mar-

kets. Moreover, the method is robust to the inclusion of irrelevant predictors, which is clearly

advantageous given that many possible theoretical channels through which inequality can affect

stock markets have been discussed in the literature.

Furthermore, the comprehensive inequality data we utilize enable predictability of stock returns

to be examined at a quarterly frequency for several income inequality and several wealth in-

equality measures. The UK data spans the period from 1977Q1 to 2016Q1, with 1997Q1 on-

wards utilized for out-of-sample testing. The key insights from the empirical analysis are that

models which incorporate inequality information are able to enhance stock-return predictability

in-sample but are not able to enhance out-of-sample forecasts. These empirical results raise in-

teresting questions. One question is whether we should trust the in-sample or the out-of-sample

results. This question is difficult to answer. On the one hand side, an investor who considers

to use inequality measures as a means to improve real-time portfolio-allocation decisions may

find our out-of-sample results more useful than the in-sample results. On the other hand side, a
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researcher who is interested in the structural links betwen stock-market developments and trends

in inequality may put more emphasis on the in-sample results. Also, Inoue and Kilian (2005)

emphasize that the sample split required for implementing an out-of-sample test results in a loss

of information and, therefore, a loss of power.8

Given that inequality of income and wealth has attracted increasing attention of researchers and

the public in recent years, it is interesting to extend in future research our empirical analysis to

other countries and other asset prices. Another possibility is to use the data we have studied in

our research to examine whether inequality and the UK stock market comove in the long run.

8Another possibility is to estimate quantile random forests on the full sample of data, but then to use the withheld
(so called out-of-bag) data of the bootstrap samples to compute (out-of-bag) forecasts.
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Data Appendix

The following list summarizes information on the (auxiliary) predictors being used:

• Dividend-price ratio (log): Difference between the log of dividends paid on the market

index and the log of market index price, where dividends are measured using a one-year

moving sum.

• Dividend yield (log): Difference between the log of dividends and the log of one month

lagged market index price.

• Earnings-price ratio (log): Difference between the log of earnings on the market index and

the log of stock prices, where earnings are measured using a one-year moving sum.

• Book-to-market ratio: Ratio of book value to market value for the market index.

• Risk-free rate: Interest rate on a UK treasury bill.

• Inflation rate: Consumer Price Index (CPI) quarter-on-quarter inflation rate based on CPI

data taken from International Monetary Fund’s (IMF’s) International Financial Statistics

(IFS).

• Stock variance: Sum of squared weekly returns on the market index.
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Figure 1: In-Sample Results
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Note: p-values are based on 1,000 bootstrap simulations. Solid lines: p-values for the forecasts computed by means of a model that features an
inequality measure in the vector of predictors. Dashed line: p-values for the forecasts computed by means of a model that does not feature any
inequality measures in the vector of predictors. Dashed horizontal lines: 5% and 10% thresholds. RETh: stock returns at forecast horizon h. The
forecasts are computed by means of a quantile random forest that consists of 750 random regression trees.
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Figure 2: Out-of-Sample Results
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Note: p-values are based on 1,000 bootstrap simulations. Solid lines: p-values for the forecasts computed by means of a model that features an
inequality measure in the vector of predictors. Dashed line: p-values for the forecasts computed by means of a model that does not feature any
inequality measures in the vector of predictors. Dashed horizontal lines: 5% and 10% thresholds. RETh: stock returns at forecast horizon h. The
forecasts are computed by means of a quantile random forest that consists of 750 random regression trees.
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Figure 3: Comparison of Forecast Performance
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Note: The figure plots for the quantile parameters (horizontal axis) the following loss differentials: quantile random forests minus quantile
regression model (solid lines), quantile random forest minus quantile boosting model (dashed lines), and quantile boosting model minus quantile
regression model (dotted lines). The loss is defined in terms of the cumulated values taken by the “check function”, where the summation runs
over the out-of-sample period. The dashed horizontal line is the zero line. RETh: stock returns at forecast horizon h. The forecasts for the
quantile random forests are computed by means of a model that consists of 750 random regression trees.
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