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Highlights 

• Predictive ability of rare disaster risks for WTI oil market returns and volatility analysed. 

• A nonparametric quantile-based methodology over the monthly period of 1918:01-2013:12 

is employed. 

• Rare disaster-risks strongly affect both WTI returns and volatility, with stronger evidence at 

lower quantiles. 

• Results are robust to alternative specification of volatility and measures of rare disaster 

risks. 

 

Abstract 

This paper provides a novel perspective to the predictive ability of rare disaster risks for West 

Texas Intermediate (WTI) oil market returns and volatility using a nonparametric quantile-

based methodology over the monthly period of 1918:01–2013:12. We show that a nonlinear 

relationship and structural breaks exists between oil returns and various rare disaster risks; 

hence, linear Granger causality tests are misspecified and the linear model results of non-

predictability are unreliable. However, the quantile-causality test shows that rare disaster-

risks strongly affect both WTI returns and volatility, with stronger evidence of predictability 

observed at lower quantiles of the respective conditional distributions. Our results are robust 

to alternative specification of volatility (based on a GARCH model), and measure of rare 

disaster risks (based on the number of crises). 

Keywords: Oil returns and volatility; Rare disasters; Nonparametric quantile causality 

                                                           
# We would like to thank two anonymous referees for many helpful comments. However, any remaining errors 

are solely ours. 



2 

 

1. Introduction 

Crude oil can be regarded perhaps the most important commodity given its influential 

role in the world economy relative to other commodities, particularly in terms of its causal 

effects on recessions (Hamilton, 1983, 2008, 2009, 2013; Elder and Serletis, 2010) and 

inflation (Stock and Watson, 2003). Additionally, oil is indispensable for the industrial, 

transportation, and agricultural sectors, whether used as feedstock in production or as a 

surface fuel in consumption (Mensi, et al., 2014). Consequently, there is a vast literature on 

the oil-stock market relationship suggesting that oil price shocks significantly impact stock 

returns and that these shocks contain information that can be transmitted to the stock market 

(see e.g. Jones and Kaul, 1996; Sadorsky, 1999; Jimenez-Rodriguez and Sanchez, 2005; 

Basher and Sadorsky, 2006; Driesprong et al., 2008; Nandha and Faff, 2008; Apergis and 

Miller, 2009; Kilian and Park, 2009; Miller and Ratti, 2009; Chen, 2010; Arouri and Rault, 

2011; Basher, Haug, and Sadorsky, 2012; Cunado and Perez De Gracia, 2014; and Alsalman 

and Herrera, 2015). From an economic perspective, given the intricate relationship between 

the real economy and financial markets through expectations of cash flows and profitability 

of firms, one can argue that the effect of oil price shocks on the stock market is partially 

driven by the increased uncertainty in real economic activity, which in turn reduces 

investment, consumption and aggregate production (see Elder and Serletis, 2010 and Jo, 

2014). 

In another strand of the literature however, motivated by the failure of theoretical pricing 

models to replicate the level, volatility and countercylicality of equity risk premia, a growing 

body of work has focused on time-varying disaster risks as a factor that can explain the high 

excess returns and volatility observed in the stock market. Following the early work of Rietz 

(1988), a number of theoretical and empirical papers have recently provided evidence of the 

predictive power of rare disaster risks for excess returns and volatility in financial markets 
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(see for example, Barro, 2006, 2009; Gourio, 2008a, b, 2012; Barro and Ursúa, 2008, 2009, 

2012; Barro and Jin, 2011;  Berkman et al., 2011, 2017; Gabaix, 2012; Nakamura et al., 2013; 

Wachter 2013; Farhi and Gabaix, 2016; Manela and Moreira, 2017). While Gourio (2012) 

argues that an increase in the probability of a disaster creates a collapse of investment and 

consequently drives the risk of a recession, Wachter (2013) relates the time-varying risk of 

rare disasters to consumption shocks, which in turn drives excess returns and volatility in the 

stock market. Similarly, Gabaix (2012) proposes a model that combines time-variation in the 

probability of a rare disaster with time-variation in the degree to which dividends respond to 

a disaster in order to explain the excess volatility puzzle in stock returns. Similarly, using 

global political instability as a proxy for rare disaster risk, Berkman et al. (2017) document a 

positive intertemporal relation between disaster probability and the market risk premium. 

Further focusing on asset pricing implications, Berkman et al. (2011) show that time-varying 

rare disaster risks are also priced in the cross-section of stock returns, implied by higher 

returns observed for industries that are more crisis risk sensitive. 

Given the overwhelming evidence on the stock-oil market relationship as well as a 

significant effect of disaster risks on stock market excess returns and volatility, a natural 

research question is whether such a relationship exists between time-varying disaster risks 

and oil return dynamics. Following the arguments by Barro, (2006, 2009), Gourio (2012), 

Wachter (2013), if uncertainty regarding the probability and size of disasters leads to a great 

deal of uncertainty in terms of investment growth or consumption patterns, then considering 

the suggestion by Bernanke (2016) that both oil and stock markets tend to move together as 

they both react to a common factor reflecting global aggregate demand, one obvious channel 

that links disaster risks to oil market movements is the potential effect of rare disasters on 

growth expectations for both output and consumption.  
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A second channel through which disaster risks can affect oil return dynamics is via its 

contribution to jump risk in oil prices. While the presence of jump risk driving stock and 

bond returns is well documented in the literature (e.g. Maheu and McCurdy, 2004; Dunham 

and Friesen, 2007; Huang and Tauchen, 2005; Maheu et al. 2013 and Guo et al., 2016), there 

is growing evidence suggesting that jumps account for a large part of the variation in crude 

oil prices and a substantial part of the risk premium in oil derivatives prices is due to jumps 

(e.g. Larsson and Nossman, 2011; Christoffersen et al., 2016; Baum and Zerilli, 2016). In the 

context of stock returns, Wachter (2013) relates time-varying disaster probabilities to large 

instantaneous changes, i.e. jumps, in aggregate consumption. Suggesting that the equity 

market premium is partially driven by the comovement of agents’ marginal utility and the 

price process for stocks in times of disaster (i.e. jump risk), Wachter (2013) shows 

mathematically that time-varying disaster risk contributes to the equity premium in the form 

of compensation for jump risk. Given this perspective, one can argue that time-varying rare 

disaster risks also contribute to the presence of jumps in oil excess returns in the form of a 

compensation for consumption shocks such that an increase in the risk of rare disasters 

increases return and volatility in the oil market. To that end, the analysis can provide insight 

to the effect of oil price shocks on stock market returns and volatility from a novel angle. 

The goal of this paper is to examine the predictive power of rare disaster-risks for the 

return and volatility dynamics of West Texas Intermediate (WTI) oil prices using a long span 

of historical data over the period 1918:01-2013:12. In the process, we contribute to the 

literature on rare disaster risks and financial markets from a commodity market perspective 

by focusing on crude oil. To that end, given the evidence in Berkman et al. (2011) that 

industries that are more sensitive to crisis risks yield higher returns, our direct focus on crude 

oil can provide valuable insights as to whether the crisis risk premium on particular industries 

are channelled via their sensitivity to oil price fluctuations. Furthermore, knowledge of the 
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factors (in this case, rare disaster risks) that drive oil market returns and volatility is likely to 

constitute valuable information for economic agents including those who price and trade 

derivatives contracts underlying energy assets. 

To achieve our objective, we conduct the predictability analysis based on the k-th order 

nonparametric causality-in-quantiles test recently developed by Balcilar et al. (2016a). This 

test studies higher order causality over the entire conditional distribution and is inherently 

based on a nonlinear dependence structure between the variables, as captured by data-driven 

nonparametric functions. The nonparametric causality-in-quantiles test of Balcilar et al. 

(2016a) combine elements of the test for nonlinear causality of k-th order developed by 

Nishiyama et al. (2011) with the causality-in-quantiles test developed by Jeong et al. (2012) 

and, hence, can be considered to be a generalization of the former. The causality-in-quantile 

approach has the following three novelties: Firstly, it is robust to misspecification errors as it 

detects the underlying dependence structure between the examined time series, which could 

prove to be particularly important as it is well known that oil returns display nonlinear 

dynamics (Balcilar et al., (2016a)) – something that we show to be the case formally via 

statistical tests in our case as well. Secondly, via this methodology, we are able to test not 

only for causality-in-mean (1st moment), but also for causality that may exist in the tails of 

the joint distribution of the variables, which in turn, is important if the dependent variable has 

fat-tails – a feature we show below to hold for oil returns. Finally, we are also able to 

investigate causality-in-variance and, thus, study impact on volatility. Such an investigation is 

imporant because, during some periods, causality in the conditional-mean may not exist 

while, at the same time, higher-order interdependencies may turn out to be significant. 

Note that, other standard nonlinear causality tests (for example, Hiemstra and Jones 

(1994), and Diks and Panchenko (2005, 2006)) and GARCH models could have also been 

used to analyze the impact of disaster risks on oil returns and/or volatility, but these 
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approaches rely on conditional-mean based estimation, and hence fail to capture the entire 

conditional distribution of oil returns and volatility – something we can do with our approach. 

In the process, our test is a more general procedure of detecting causality in both returns and 

volatility simultaneously at each point of the respective conditional distributions. Hence, we 

are able to capture existence or non-existence of causality at various phases (bear (lower 

quantiles), normal (median) and bull (upper quantiles)) of the oil market. Being a more 

general test, our method is more likely to pick up causality when conditional mean-based 

tests might fail to do so.  In addition, since we do not need decide on the number of regimes 

as in a Markov-switching model, and can test for causality at each point of the conditional 

distribution characterizing specific regimes, our test also does not suffer from any 

misspecification in terms of specifying and testing for the optimal the number of regimes. 

Finally, the volatility process and its relationship with the disaster risks, based on GARCH 

models, would be model contingent depending upon which model of the GARCH family we 

use and would not be model-free as in our nonparametric approach, where the relationship 

between, returns and volatility with disaster risks is purely data-driven.      

Given the argument by Wachter (2013) that time-varying disaster risks contribute to 

excess returns and volatility in the form of a jump component in the price process, the 

nonparametric causality tests that we employ in our empirical tests provide an appropriate 

approach as it allows us to test for the impact of disaster risks on both oil returns and 

volatility, while accounting for possible nonlinearities in the relationship between oil market 

movements and changes in disaster probabilities. To the best of our knowledge, this is the 

first paper that evaluates the predictive power of rare disaster risks for crude oil returns and 

volatility based on a nonparametric causality-in-quantiles framework. Consistent with the 

evidence for the stock market, we show that rare disaster risk proxies strongly predict both 

returns and volatility for oil, with stronger causal effects observed at the lower ends of their 
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respective conditional distributions, suggesting that rare disaster risks potentially contribute 

to jump risk in oil returns. The findings also suggest that the effect of oil price shocks on 

stock market return dynamics could partially be channelled via the time-variation in disaster 

risk probabilities that commonly affects both the stock and oil price processes. 

The rest of this paper is organized as follows: Section 2 describes the econometric 

frameworks involving the higher-moment nonparametric causality-in-quantiles test, and the 

(GARCH-based) measure of volatility. Section 3 presents the data and discusses the 

empirical results. Finally, Section 4 concludes. 

2. Econometric Framework 

In this section, we briefly present the methodology for the detection of nonlinear causality 

via a hybrid approach as developed by Balcilar et al. (2016a), which in turn is based on the 

frameworks of Nishiyama et al. (2011) and Jeong et al. (2012). We start by denoting oil 

returns by yt and the predictor variable (in our case, the dummies capturing various types of 

rare disaster risk-related events- discussed in detail in the next section) as xt. We further let 

),...,( 11 pttt yyY   , ),...,( 11 pttt xxX   , ),( ttt YXZ   and ),( 1| 1  ttZy ZyF
tt  

and 

),( 1| 1  ttYy YyF
tt

 denote the conditional distribution functions of ty  given 1tZ  and 1tY , 

respectively. If we let denote )|()( 11   ttt ZyQZQ   
and )|()( 11   ttt YyQYQ  , we have 

 
}|)({ 11| 1 ttZy ZZQF

tt
 with probability one. As a result, the (non)causality in the q -th 

quantile hypotheses to be tested are: 

                                H0 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}=1,    (1) 

                                H1 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}<1.   (2) 

Jeong et al. (2012) use the distance measure )}()|({ 11  tzttt ZfZEJ  , where t  is the 

regression error term and )( 1tz Zf  is the marginal density function of 1tZ . The regression 
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error t  emerges based on the null hypothesis in (1), which can only be true if and only if 

   }]|)({1[ 11 ttt ZYQyE  or, expressed in a different way, ttt YQy    )}({1 1 , where 

1{×}  is the indicator function. Jeong et al. (2012) show that the feasible kernel-based sample 

analogue of J  has the following format: 
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where )(K  is the kernel function with bandwidth h , 𝑇 is the sample size, 𝑝 is the lag order, 

and ê
t
is the estimate of the unknown regression error, which is given by 

                                                êt =1{yt £Qq (Yt-1)}-q .   (4) 

)(ˆ
1tYQ  is an estimate of the  th

 conditional quantile of ty  given 1tY , and we estimate  

)(ˆ
1tYQ  using the nonparametric kernel method as 

                                                )|(ˆ)(ˆ
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 ,   (5) 

where )|(ˆ
1| 1  ttYy YyF

tt
 is the Nadarya-Watson kernel estimator given by 
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,       (6) 

with )(L  denoting the kernel function and h  the bandwidth.  

As an extension of Jeong et al. (2012)'s framework, Balcilar et al. (2016a) develop a 

test for the second moment which allows to test the causality between the various disaster 

risk-related dummies and oil return volatility. Adapting the approach in Nishiyama et al. 

(2011), higher order quantile causality can be specified in terms of the following hypotheses 

as: 

  H0 : P{F
yt
k |Zt-1

{Qq (Yt-1) | Zt-1} =q} =1       for Kk ,...,2,1             (7) 
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  H1 : P{F
yt
k |Zt-1

{Qq (Yt-1) | Zt-1} =q} <1       for Kk ,...,2,1             (8) 

We can integrate the entire framework and test whether tx  Granger causes ty  in 

quantile   up to the kth moment using Eq. (7) to construct the test statistic in Eq. (6) for each 

k . The causality-in-variance test can then be calculated by replacing yt in Eqs. (3) and (4) 

with yt
2
- measuring the volatility of oil returns. However, one can show that it is difficult to 

combine the different statistics for each Kk ,...,2,1  into one statistic for the joint null in Eq. 

(7) because the statistics are mutually correlated (Nishiyama et al., 2011). Balcilar et al. 

(2016a), thus, propose a sequential-testing method as described in Nishiyama et al. (2011). 

First, as in Balcilar et al. (2016a), we test for the nonparametric Granger causality in the first 

moment )1 ..( kei . Nevertheless, failure to reject the null for 1k  does not automatically 

lead to no-causality in the second moment. Thus, we can still construct the test for 2k , as 

discussed in detail in Balcilar et al. (2016a).  

The empirical implementation of causality testing via quantiles entails specifying three 

key parameters: the bandwidth h , the lag order p , and the kernel type for )(K  and )(L . We 

use a lag order based on the Schwarz information criterion (SIC), which is known to select a 

parsimonious model as compared with other lag-length selection criteria. The SIC criterion 

helps to overcome the issue of the over-parameterization that typically arises in studies using 

nonparametric frameworks. For each quantile, we determine the bandwidth parameter (h) by 

using the leave-one-out least-squares cross validation method. Finally, for 𝐾(∙) and 𝐿(∙), we 

use Gaussian kernels. 

Given the evidence in Sadorsky (2006) that a GARCH(1,1) model fits very well with 

crude oil price volatility, we also decided to check for the robustness of our results in terms of 

volatility. Hence, we first recover a measure of conditional volatility from a GARCH(1,1) 

model and then apply the causality-in-quantiles test to this measure of volatility. The basics 
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of GARCH(1,1) model is as follows: 

  𝑦𝑡 = 𝜇 + 𝜀𝑡,                                                                                                                (9)                              

ℎ𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽ℎ𝑡−1,                                                                                           (10)                               

where 𝑦𝑡 represents the oil returns series and 𝜀𝑡 is the stochastic disturbance term that is 

assumed to be normally distributed with zero mean. The conditional variance ℎ𝑡 depends on 

the mean volatility level (𝜔), the lagged error (𝜀𝑡−1
2 ), and the lagged conditional variance 

(ℎ𝑡−1).  

3. Data 

The empirical analysis utilizes monthly data for WTI oil prices and the dummy variables 

capturing various types of disaster risks over the period of 1918:01 to 2013:12. The start and 

end dates are governed purely by the availability of data on disaster risks. Oil price data is 

sourced from the Global Financial Database, with returns computed as the monthly 

logarithmic change of oil prices multiplied by 100 to convert the returns into percentages. 

Since WTI oil price data is available from 1859:09, we do not lose the first observation while 

computing oil returns. Figures 1(a) and 1(b) present the plot of monthly oil returns and the 

histogram of the series along with the summary statistics, respectively. We observe that the 

oil return data is skewed to the left with excess kurtosis, resulting in the null of normality 

under the Jarque-Bera test being overwhelmingly rejected at the highest level of significance. 

The non-normal distribution, in turn, provides preliminary motivation for relying on a 

quantiles-based approach for our analysis.  

Next we turn our attention to our measure of disaster risks of rare events as obtained from the 

International Crisis Behavior (ICB) database. ICB database started in 1975 and covers 

comprehensive information regarding 464 international political crises that occurred during 

the period of 1918 to 2013 at monthly frequency, involving 1,036 crisis actors. Brecher and 

Wilkenfeld (1997) provide detail discussion on the ICB database, definition and construction 
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of variables. The ICB data has been used in series of books and empirical research papers in 

many disciplines, including economics, war and political sciences (see for example, 

Blomberg, et al., (2004); Berkman, et al., (2011, 2017); Huang et al., (2015))1. The 

underlying motive of the ICB database is to develop a comprehensive list of international 

political crisis since World War I. As per the ICB database, the breakpoint of a crisis is an 

event, act or changes characterized by following three conditions: (a) a threat to basic value, 

(b) excessive chances of involvement in military hostilities, and (c) time pressure for 

response. ICB database covers a wide range of alternatives to measure the severity of any 

crisis and, consequently gives us more information to identify the seriousness of the crisis. 

Note that, to the best of our knowledge, the ICB database is the only available source that 

compiles data on all major international international political crises, which are likely to 

cause changes in perceived rare disaster probabilities. 

The ICB database distinguishes each crisis on the basis of 81 dimensions including the 

control variables and crisis mediation, with the possibility of tracing the background of each 

crisis in detail from the website of ICB database. Further, the ICB database considers those 

crises only in which the crisis actor is a sovereign entity and has significant participation in 

any of political conflict. As indicated above, the ICB database covers comprehensive 

dimensions of each crisis and we take into account many of these dimensions, following 

Berkman, et al., (2011, 2017), to analyze the impact of international political risk on oil 

returns and volatility. The foremost variable of our study is total number of crisis (Crisis) in 

any month t. Some crisis can be more severe than others, therefore it is expected that more 

devastating crisis may have stronger effect. Following the Berkman, et al., (2011, 2017), we 

created the following crisis variables: (1) violent break (Violent Break) includes all the crisis 

that starts with violent act, (2) violent (Violent) crisis includes all the crisis that comprises 

                                                           
1 The ICB web site (https://sites.duke.edu/icbdata/) provides an overview of studies that used its data. 

https://sites.duke.edu/icbdata/
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either serious clashes or full scale war, (3) war (War) includes all the crisis that involves full-

scale wars, (4) all crisis that involves grave value threats (Grave Threat), (5) protracted 

conflicts (Protracted) includes all the crisis with protracted conflict, protracted and crisis 

outside this conflict, and (6) major power (Major Power) includes the crisis only if at least 

one superpower or great power is there in both side of conflict. Finally, we also construct a 

crisis severity index (Crisis Severity Index) that summarizes different aspects of crisis 

severity into one measure by aggregating the six variables above. Figure 1(c) plots the 

various rare disaster risks used in this paper.   

For all the above crisis variables, we created the dummy variables, which is equal to 1 if the 

crisis in that group occurs in a specific month, and zero otherwise. The dummy variables are 

normalized to have a mean of zero and variance of unity, so that we can compare the strength 

of predictability across the various disaster risks. In other words, we also want to understand, 

which type of disaster risks carry more information in predicting oil returns and volatility. 

When the predictors, in our case the dummy variables, have been standardized (i.e., their 

inherent variability is the same), the higher the test statistic indicating a stronger rejection of 

the null hypothesis of no-causality, the stronger is the predictability of that particular disaster 

risk variable. Hence, via this normalization, we not only want to analyze whether the disaster 

risks can predict oil returns and volatility, but also which disaster risk is comparatively more 

informative in this regard. 

4. Empirical Findings 

Before we begin our discussion of the findings from the causality-in-quantiles tests, for 

the sake of completeness and comparability, we first provide the findings from the standard 

linear Granger causality tests with null hypothesis that a specific rare disaster risk does not 

affect oil returns. As shown in Table 1, the standard linear Granger causality tests yield no 

evidence of causality that goes from any of the disaster risk variables to oil returns. 
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Therefore, standard linear tests imply no significant causal relationships between rare disaster 

risks and oil returns. 

Given the insignificant results obtained from linear causality tests, next we statistically 

examine the presence of nonlinearity in the relationship between oil returns and the predictor 

variables representing rare disaster risks. For this purpose, we apply the Brock et al., (1996, 

BDS) test on the residuals from the return equation used in the linear causality tests involving 

the rare disaster risk dummies. The results of the BDS test of nonlinearity presented in Table 

2 provide strong evidence of rejection of the null hypothesis of i.i.d. residuals at various 

embedded dimensions (𝑚). Thus, we conclude that there exists nonlinearity in the 

relationship between oil returns and the rare disaster risk dummies. This evidence also 

indicates that the findings based on the linear Granger causality test as presented in Table 1 

cannot be deemed robust and reliable.  

In addition to the BDS test, we also apply the Bai and Perron (2003) tests of multiple 

structural breaks on the oil return equation used to test linear Granger causality based on the 

various types of disaster risks. Using the powerful UDmax and WDmax tests, and allowing 

for a maximum of five breaks with fifteen percent endpoint trimming as well as 

heterogeneous error distributions across breaks, we detect three breaks (1941:07, 1971:12, 

and 1986: 04) in all cases.2 The presence of these breaks further confirms our earlier findings, 

based on nonlinearity tests, that the linear model is misspecified.  

Given the strong evidence of nonlinearity and regime changes in the relationship 

between oil returns and the crises dummies, we now turn our attention to the causality-in-

quantiles test, which is robust to possible misspecification due to nonlinearity and structural 

breaks given its nonparametric (i.e. data-driven) structure.  

Table 3 presents the findings from the causality-in-quantiles tests estimated over the 

                                                           
2 Complete details of the Bai and Perron (2003) tests of structural breaks are available upon request from the 

authors. 
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quantile range from 0.10 to 0.90. Panels A and B present the findings for WTI oil returns and 

volatility (squared returns) respectively and the null hypothesis is that rare disaster risk 

dummies (in columns) do not Granger cause oil returns and volatility. Unlike the insignificant 

findings from linear tests reported in Table 1, we observe in Table 3 that the null is 

consistently rejected, implying strong evidence of predictability running from all the various 

disaster risks dummies to both returns and volatility in the oil market. These findings are in 

line with the evidence for stock market returns in Barro (2006, 2009), Gourio (2008a, b, 

2012), Berkman et al. (2011, 2017), Gabaix (2012), among others and suggest that disaster 

probabilities associated with consumption and/or investment shocks commonly affect stock 

and oil price processes. 

Interestingly however, we see that causality is particularly strong at the lower end of 

the respective conditional distributions, while the strongest effect on volatility is observed at 

quantile of 0.10 with the same observed at the quantile of 0.30 in the case of oil return. We 

also see that this pattern is consistent across the various disaster risk proxies. These findings 

suggest that, while the predictive power of rare disaster risks over oil market dynamics is 

statistically significant for the entire conditional distributions of returns and volatility, the 

causal effect is strongest when the returns and volatility are in the lowest quantile, 

corresponding to negative oil returns coupled with low return volatility. It can thus be argued 

that rare disaster risks relate to negative jumps, i.e. large instantaneous changes, in oil prices 

(implied by lower quantiles), while these jumps are not necessarily associated with high 

volatility, possibly due to lower trading activity or other factors driving investor behaviour. 

The high degree of nonlinearity in the relationship between time varying disaster risks and oil 

return dynamics reported in Table 3 is in line with the model for an endowment economy 

proposed by Weitzman (2007) based on non-normal consumption growth rate such that the 

conditional distribution of consumption growth becomes highly non-normal when a disaster 
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is relatively likely. To that end, the findings imply that the effect of disaster risks on oil return 

dynamics is primarily channeled via aggregate consumption shocks in the economy. 

Furthermore, the high degree of causality particularly at the lower end of the 

conditional distributions for oil return and volatility supports Wachter (2013)’s mixed jump-

diffusion process for consumption growth in which disasters are captured by a Poisson 

process, which allows for large instantaneous changes, i.e. jumps, in aggregate consumption. 

Maheu et al. (2013) define jumps as large changes in daily returns. Similarly, Wachter (2013) 

models jumps as large instantaneous changes in the price process and shows that excess stock 

returns are partially driven by a jump component that is due to the time variation in disaster 

risks. Recently, Guo et al. (2016) decompose the jump component of realized stock market 

volatility to negative (bad) and positive (good) jumps and show that jump risk has 

asymmetric effects on the conditional stock market excess returns. Given that our focus is oil 

returns and volatility, we refrain from labelling positive and negative jumps in the oil price 

process as good or bad jumps; however, capture this asymmetry via the quantile specification 

in our tests. Nevertheless, our findings point to an asymmetry in the effect of time varying 

disasters risks on jumps in oil returns and volatility. Given the finding by Larsson and 

Nossman (2011) that jumps are an essential factor needed to correctly capture the time series 

properties of oil prices, our findings have significant implications for hedging and the pricing 

of oil derivatives. 

In order to further confirm the causal effects of rare disaster risks on oil return 

volatility, we present in Table 4, the findings for the tests of causality from the disaster risk 

dummies to the conditional volatility estimates obtained from the GARCH(1,1) model 

discussed earlier. Again, barring three individual exceptions (i.e. the quantile of 0.60 and 

0.50-0.60 for ‘War’ and ‘Grave Threat’, respectively), we observe strong evidence of 

predictability for the GARCH-based volatility measures emanating from the rare disaster risk 
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dummies. As observed for squared returns in Table 3, we see again that the dummy capturing 

all possible crises tends to be the strongest predictor, consistently at all quantiles. However, 

unlike the findings reported in Table 3, we see that the causal effects are not necessarily the 

strongest at lower quantiles of the respective conditional distributions. It must, however, be 

noted that Balcilar et al. (2016b) suggests that one should rely on the results obtained under 

squared returns as a measure of volatility, rather than a model-based measure of the same, 

since the analysis for the squared returns follows directly from the k-th order test of 

nonparametric causality-in-quantiles.  

As explained earlier in the data description, the findings reported in Tables 3 and 4 

utilize dummy variables that represent various definitions of rare disaster risks. In addition to 

these dummy variables, the ICB dataset also provides the monthly count for the risk variables 

under the various categories as well as information on their start and end dates, i.e. the span 

of the crisis. Therefore, as a robustness check, we repeat our analysis using the monthly 

counts for various risk categories instead. The findings in Table 5 further confirm our 

previous results in Table 3 that are based on the crisis dummy variables, indicating strong 

evidence of predictability for both oil returns and volatility over the entirety of the respective 

conditional distributions. The causal effects from rare disaster risks are found to be 

significant irrespective of what phase the month is classified as, i.e. start, end and duration of 

the crisis. Furthermore, we observe that the pattern of the strength of the causal relationship 

with the count data is similar to that observed when the dummies are used as predictors, 

along with the importance of the predictive ability of the predictor variable capturing all the 

crises. In short, our findings yield significant evidence of a causal relationship between rare 

disaster risks and oil return and volatility with the effect being particularly strong at low 

quantiles of the conditional distribution representing periods of negative oil returns. 

As additional robustness checks, we also used the news-based measures of implied 
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volatility (NVIX) as developed by Manela and Moreira (2017)3 and geopolitical risks (GPRs) 

of Caldara and Iacoviello (2017)4, as possible alternative measures of rare disaster risks. The 

NVIX and the GPRs indexes also contain information about possible disaster risks (see, 

Footnotes 3 and 4 respectively in this regard) and hence, serves as an alternative to the ICB 

database. The NVIX and the GPRs are used to check for the robustness of our results 

obtained using the ICB database, which in turn, is popularly used for capturing rare disaster 

risks in the associated literature. Even though the NVIX and GPR indexes are based on news 

on various types of risks in the US newspapers, they do cover global disaster news as well 

and hence, is likely to be important for a global market like oil. Also note, since we are 

analyzing the WTI market, US-based risks should also matter, besides global disaster risks, 

which the ICB aims to capture.     

As can be seen from the results reported in Tables A1 (covering the period of 1889:07 

to 2016:03) and A2 (over the period of 1899:01 to 2017:06) in the Appendix of the paper, 

there is strong evidence of predictability for oil returns and volatility (squared returns) due to 

aggregate measures of NVIX and GPR and their respective components, (i.e., uncertainty 

associated with government policy, intermediation, natural disaster, securities markets, war 

                                                           
3 The news dataset to construct the NVIX includes the title and abstract of all front-page articles of the Wall 

Street Journal. Manela and Moreira (2017) focus on front-page titles and abstracts in order to ensure feasibility 

of data collection, and also because these are manually edited and corrected following optical character 

recognition, which in turn, improves their earlier sample reliability. The NVIX data is found to peak during 

stock market crashes, times of policy-related uncertainty, world wars, and financial crises. The reader is referred 

to Manela and Moreira (2017) for further details, who also discuss how they decompose the aggregate NVIX 

into its components. The NVIX components capture uncertainty stemming from (with the words searched for in 

brackets) government policy (tax, money, rates, government, plan), intermediation (banks, financial, business, 

bank, credit), natural disaster (fire, storm, aids, happening, shock), securities markets/stock markets (stock, 

market, stocks, industry, markets), and wars (war, military, action,world war, violence). There is also available 

data for an “unclassified” component (U.S., special, Washington, treasury, gold). The data is available for 

download from: http://apps.olin.wustl.edu/faculty/manela/data.html.  
4 Caladara and Iacoviello (2017) construct a long-span monthly GPR index dating back to 1899, based on terms 

related to geopolitical risks covered in three newspapers namely, the New York Times, Chicago Tribune, and 

the Washington Post. The phrases considered for constructing the index are: “geopolitical risk(s)", “geopolitical 

concern(s)", “geopolitical tension(s)", “geopolitical uncertainty(ies)", “N/3” (“crisis” OR “uncertain”)), “war 

risk(s)" (OR “risk(s) of war"), state of war” OR “declaration of war”, “war” OR “military” and “military 

threat(s)", “terrorist threat(s)", “terrorist act(s)", “Middle East AND tensions". The data can be downloaded 

from: https://www2.bc.edu/matteo-iacoviello/gpr.htm.  

 

 

http://apps.olin.wustl.edu/faculty/manela/data.html
https://www2.bc.edu/matteo-iacoviello/gpr.htm
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and unclassified events under the NVIX, and GPR acts and GPR threats under GPRs) 

respectively. Note that, the pattern associated with strength of causality is similar to those 

reported for the rare-disaster risks. 

5. Conclusion 

This paper extends the literature on the effect of rare disaster risks on financial market returns 

to the commodity market, in particular crude oil. Unlike other applications to stock and bond 

returns, we provide a novel perspective to the predictive ability of rare disaster risks for 

returns and volatility in the WTI oil market using a k-th order nonparametric quantile-based 

methodology that allows to capture nonlinear causal effects. Using monthly data on oil 

returns and various disaster risk proxies for the period of 1918:01 to 2013:12, we first show 

that standard linear causality tests yield insignificant results in terms of the predictive power 

of rare disasters over WTI returns. However, additional tests reveal strong evidence of 

nonlinearity and regime changes in the relationship between oil returns and the rare disaster 

risk proxies, indicating that the linear Granger causality test is misspecified, thus the results 

cannot be relied on.  

Applying the nonparametric quantile-causality test, which is robust to misspecification due 

to nonlinearity and structural breaks, we show that rare disaster risk proxies strongly predict 

both returns and volatility for oil, with stronger causal effects observed at the lower ends of 

their respective conditional distributions. We argue that rare disaster risks potentially 

contribute to jump risk in oil returns (more significantly to negative jumps in this case) that 

has been documented in several previous studies (Larsson and Nossman, 2011;  

Christoffersen et al., 2016; and Baum and Zerilli, 2016). The findings also suggest that the 

effect of oil price shocks on stock market return dynamics could partially be channelled via 

the time-variation in disaster risk probabilities that commonly affects both the stock and oil 

price processes. 
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From the perspective of an academic, our results tend to suggest that the WTI market 

cannot be categorized as weakly efficient. Furthermore, the finding of strong asymmetric 

causal effects on oil returns, particularly at low quantiles, suggests that models of jump risk 

as well as jump diffusion models with stochastic volatility for crude oil dynamics can be 

improved by integrating proxies of rare disaster risks. From a pricing perspective, following 

the evidence by Christoffersen et al. (2016) that jumps command a premium in crude oil 

derivatives prices, our findings suggest that rare disaster risk proxies can be integrated in 

pricing models in order to improve forecasting models for crude oil prices.   

From a policy making perspective, considering the suggestion by Barro, (2006, 2009), 

Gourio (2012) and Wachter (2013) that if uncertainty regarding the probability and size of 

disasters leads to a great deal of uncertainty in terms of investment growth or consumption 

patterns, the strong evidence of a rare disaster effect on crude oil return and volatility 

suggests that policy makers who are worried about the potential negative impact of oil price 

fluctuations on the real economy should build rare disaster risk proxies into their forecasting 

models. Given that time varying disaster risks affect risk and return dynamics in both the 

stock and oil market, one can argue that disaster risks represent a component of uncertainty 

that relates to the real economy, either via investment or aggregate consumption patterns. It 

would thus make sense to supplement forecasting models for the real economy with proxies 

of rare disaster risks. This is particularly important given the evidence in the paper that causal 

effects are especially strong at the lower quantiles of the conditional distribution of oil 

returns. However, it must be noted that nonlinearity and possible structural breaks must be 

taken into account in order to correctly capture the effect of rare disaster risks on oil returns 

as our results show that using a linear model is likely to lead to incorrect inferences.  

Overall, our results highlight the importance of testing for nonlinearity and structural 

changes, and if it exists, use a data-driven nonlinear approach to analyze causal relationships. 
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The results also highlight the importance of having a nonlinear pricing framework that 

integrates disaster risks in the pricing model, perhaps via models that utilize higher order 

moments. As part of future research, it would be interesting to extend our analysis to a 

forecasting exercise, as in Bonaccolto et al. (2018), since in-sample predictability does not 

guarantee the same over- and out-of-sample.    
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Figure 1(a). Monthly Oil Returns 
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Figure 1(b). Histogram and Summary Statistics for Monthly Oil Returns 
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Figure 1(c). Rare Disaster Risks 

  

  

  

  
 
Note: Violent Break includes all the crisis that starts with violent act; Violent crisis includes all the crisis that 

comprises either serious clashes or full scale war; War includes all the crisis that involves full-scale wars; 

Grave Threat involves all crisis that involves grave value threats; Protracted includes all the crisis with 

protracted conflict, protracted and crisis outside this conflict; Major Power includes the crisis only if at least 

one superpower or great power is there in both side of conflict; Crisis Severity Index summarizes different 

aspects of crisis severity into one measure by aggregating the six variables above; All corresponds to the sum of 

the numbers involved in the six types of crises, i.e., All Crises. 
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Table 1. Linear Granger Causality Test for WTI Returns. 

Predictor Variable F-stat p-value 

All 0.248 0.619 

Violent 0.257 0.612 

War 0.393 0.531 

Violent Break 0.657 0.418 

Protracted 0.187 0.665 

Major Power 0.130 0.719 

Grave Threat 3.681 0.055 

Crisis Severity Index 1.375 0.241 

Note: The null hypothesis is that a specific rare disaster-risk does not affect WTI returns. 

 

 

Table 2. Brock et al. (1996) (BDS) Test of Nonlinearity. 

Predictor Variable Dimension 

2 3 4 5 6 

All 11.930*** 14.668*** 16.648*** 18.965*** 22.139*** 

Violent 11.800*** 14.612*** 16.711*** 19.048*** 22.215*** 

War 11.955*** 14.705*** 16.867*** 19.189*** 22.293*** 

Violent Break 11.968*** 14.667*** 16.744*** 19.056*** 22.144*** 

Protracted 11.861*** 14.694*** 16.813*** 19.114*** 22.287*** 

Major Power 11.599*** 14.351*** 16.516*** 18.849*** 21.986*** 

Grave Threat 12.159*** 14.753*** 16.772*** 19.101*** 22.181*** 

Crisis Severity Index 11.918*** 14.654*** 16.639*** 18.967*** 22.053*** 

Notes: The table reports the z-statistic of the BDS test corresponding to the null of i.i.d. residuals, with the 

test applied to the residuals recovered from the oil returns equation used to test linear Granger causality. *** 

indicates rejection of the null hypothesis at the 1 per cent level of significance. 
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Table 3. Causality-in-Quantiles Test for WTI Returns and Volatility (Squared Returns). 

 

Panel A: Returns 

Quantile All Violent War 

Violent 

Break Protracted Major Power 

Grave 

Threat 

Crisis Severity 

Index 

0.1 7.2167*** 5.9849*** 5.4766*** 5.7708*** 7.7755*** 6.1204*** 5.4457*** 6.9386*** 

0.2 19.5019*** 17.1903*** 14.4331*** 15.7936*** 19.2176*** 14.8955*** 14.3119*** 18.6151*** 

0.3 279.2003*** 238.5665*** 208.7500*** 213.8353*** 243.1471*** 210.4238*** 217.6757*** 275.6247*** 

0.4 173.4119*** 149.0373*** 129.4330*** 132.5578*** 152.2913*** 130.6833*** 135.0629*** 171.4894*** 

0.5 102.5227*** 88.6373*** 76.3466*** 78.2232*** 91.2805*** 77.2979*** 79.6206*** 101.6765*** 

0.6 53.6906*** 47.1067*** 40.0197*** 40.8640*** 48.9061*** 40.7026*** 41.6172*** 53.5231*** 

0.7 29.0606*** 25.8022*** 21.5436*** 22.6722*** 27.0010*** 22.1472*** 22.6865*** 29.3225*** 

0.8 16.1053*** 14.5167*** 11.7761*** 12.5703*** 14.7595*** 12.0140*** 12.2454*** 16.1916*** 

0.9 5.7863*** 5.2800*** 4.1152*** 4.6741*** 5.3899*** 4.4439*** 4.3940*** 6.1935*** 

 

Panel B: Volatility (Square Returns) 

Quantile All Violent War 

Violent 

Break Protracted Major Power 

Grave 

Threat 

Crisis Severity 

Index 

0.1 631.1909*** 539.6444*** 466.3895*** 481.3387*** 556.0854*** 473.1998*** 478.6326*** 621.0273*** 

0.2 349.2724*** 299.6418*** 257.6132*** 265.9864*** 309.8051*** 261.8596*** 263.9420*** 344.0051*** 

0.3 213.4727*** 184.0816*** 157.0160*** 162.3453*** 191.2074*** 160.1548*** 160.6011*** 210.5786*** 

0.4 128.8988*** 111.9472*** 94.5197*** 97.7984*** 117.1264*** 96.8104*** 96.3064*** 127.4379*** 

0.5 72.3227*** 63.5989*** 52.7842*** 54.7027*** 67.3249*** 54.5118*** 53.4791*** 71.7795*** 

0.6 34.3296*** 30.9207*** 24.9338*** 25.8610*** 33.5145*** 26.2367*** 24.9599*** 34.3277*** 

0.7 24.7935*** 23.1330*** 18.1842*** 19.5660*** 25.7776*** 18.3414*** 18.3407*** 24.8117*** 

0.8 14.1292*** 13.3836*** 10.1449*** 11.2249*** 14.9017*** 10.3858*** 10.2733*** 14.1644*** 

0.9 6.0922*** 5.5954*** 4.2872*** 4.9774*** 6.3375*** 4.5782*** 4.3707*** 6.4134*** 
Note: Entries correspond to the quantile causality test statistic for the null hypothesis that various disaster risk dummies (in separate 

columns) does not Granger cause oil returns and volatility; ***, **, * indicates rejection of null of no-causality at 1, 5, and 10 percent 

levels respectively. 
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Table 4. Causality-in-Quantiles Test for GARCH(1,1)-based WTI Volatility Estimates. 

 

Volatility (GARCH (1,1) Model-Based) 

Quantile All Violent War 

Violent 

Break Protracted 

Major 

Power 

Grave 

Threat 

Crisis Severity 

Index 

0.1 5.2345*** 4.3334*** 4.0593*** 4.2123*** 4.7818*** 4.3514*** 4.1827*** 5.1350*** 

0.2 8.4311*** 6.5370*** 6.2099*** 6.4308*** 6.4431*** 6.4207*** 7.2190*** 8.2695*** 

0.3 5.0632*** 4.4685*** 4.2592*** 4.2502*** 3.9384*** 4.0504*** 4.8567*** 5.0498*** 

0.4 3.6314*** 3.7429*** 4.5695*** 4.1455*** 4.3216*** 4.6548*** 2.7718*** 3.8262*** 

0.5 2.5816*** 2.6178*** 4.0084*** 5.3662*** 4.1678*** 6.0842*** 1.7399* 2.8590*** 

0.6 2.2468** 2.0950** 1.5835 4.7149*** 2.4144** 2.1570** 1.9013* 1.9956** 

0.7 5.7037*** 6.1404*** 3.9138*** 9.6417*** 8.8365*** 7.0366*** 4.3595*** 5.2521*** 

0.8 6.3596*** 6.6967*** 5.2354*** 5.1396*** 6.6526*** 6.1611*** 5.0586*** 6.0322*** 

0.9 4.6533*** 4.0788*** 3.4723*** 3.4463*** 4.2418*** 3.6229*** 3.5172*** 4.4707*** 
Note: Entries correspond to the quantile causality test statistic for the null hypothesis that various disaster risk dummies (in separate 

columns) does not Granger cause GARCH-based oil volatility; ***, **, * indicates rejection of null of no-causality at 1, 5, and 10 

percent levels respectively. 
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Table 5. Causality-in-Quantiles Test for WTI Returns and Volatility Based on the Monthly Counts of Rare Disaster Risks over Different Phases. 

   

Panel A: Returns 

   

Quantile 

   

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Predictor 

Variable 

All 

Start 5.17*** 12.97*** 206.52*** 127.35*** 74.60*** 38.54*** 20.37*** 12.29*** 4.14*** 

During 3.71*** 9.65*** 142.82*** 88.94*** 52.90*** 28.30*** 15.63*** 9.38*** 3.47*** 

End 5.16*** 13.84*** 210.58*** 130.65*** 77.07*** 40.43*** 21.20*** 11.41*** 4.07*** 

Violent 

Start 5.62*** 14.16*** 241.88*** 149.40*** 87.77*** 45.59*** 24.38*** 14.60*** 4.83*** 

During 4.67*** 10.65*** 168.35*** 105.30*** 63.13*** 34.19*** 18.96*** 10.52*** 3.82*** 

End 6.07*** 16.01*** 246.15*** 152.86*** 90.60*** 47.77*** 25.84*** 13.93*** 5.23*** 

War 

Start 6.37*** 16.41*** 261.47*** 161.34*** 94.61*** 49.04*** 26.42*** 15.16*** 5.11*** 

During 5.54*** 12.49*** 187.79*** 115.55*** 67.53*** 34.85*** 18.86*** 10.34*** 3.55*** 

End 6.75*** 17.14*** 270.59*** 168.06*** 99.51*** 52.36*** 28.50*** 15.58*** 5.46*** 

Violent 

Break 

Start 5.92*** 15.36*** 255.08*** 158.01*** 93.13*** 48.54*** 26.28*** 15.51*** 5.23*** 

During 5.26*** 12.47*** 189.42*** 117.48*** 69.50*** 36.53*** 19.39*** 11.00*** 4.18*** 

End 6.22*** 16.12*** 250.39*** 154.81*** 90.63*** 46.93*** 24.08*** 13.26*** 4.66*** 

Protracted 

Start 5.81*** 14.81*** 226.87*** 139.41*** 81.20*** 41.56*** 21.84*** 12.59*** 4.32*** 

During 4.14*** 10.30*** 150.53*** 91.90*** 53.22*** 27.27*** 14.72*** 8.57*** 3.04*** 

End 5.68*** 14.78*** 232.08*** 143.77*** 84.50*** 44.17*** 23.20*** 12.29*** 4.49*** 

Major Power 

Start 6.29*** 16.84*** 248.50*** 152.70*** 88.95*** 45.57*** 24.34*** 13.95*** 4.52*** 

During 4.86*** 12.15*** 187.87*** 115.20*** 66.10*** 34.25*** 18.69*** 11.33*** 3.50*** 

End 6.39*** 16.41*** 252.58*** 156.41*** 92.24*** 48.29*** 25.90*** 14.49*** 4.99*** 

Grave Threat 

Start 6.58*** 16.14*** 238.91*** 146.58*** 85.11*** 43.24*** 22.76*** 12.85*** 4.54*** 

During 5.65*** 13.34*** 186.14*** 115.84*** 68.83*** 36.40*** 18.83*** 10.59*** 3.47*** 

End 6.38*** 16.54*** 247.64*** 153.62*** 90.83*** 47.65*** 25.23*** 13.49*** 4.82*** 

Crisis 

Severity 

Start 4.83*** 11.68*** 195.72*** 120.57*** 70.60*** 36.41*** 19.13*** 12.07*** 3.80*** 

During 4.22*** 9.47*** 125.33*** 77.13*** 45.62*** 24.41*** 13.57*** 7.91*** 3.25*** 

End 4.63*** 12.25*** 197.64*** 122.34*** 71.89*** 37.61*** 19.34*** 10.47*** 3.79*** 
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Panel B: Volatility  (Squared Returns) 

   

Quantile 

   

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Predictor 

Variable 

All 

Start 460.64*** 253.44*** 153.52*** 91.71*** 50.61*** 23.46*** 16.89*** 9.74*** 4.14*** 

During 318.95*** 177.12*** 109.04*** 66.53*** 38.06*** 18.99*** 13.34*** 7.51*** 3.19*** 

End 464.36*** 256.65*** 156.36*** 94.21*** 52.72*** 25.10*** 17.69*** 9.16*** 3.84*** 

Violent 

Start 533.50*** 293.43*** 177.49*** 105.90*** 58.29*** 26.90*** 19.11*** 10.38*** 4.19*** 

During 368.64*** 204.32*** 125.42*** 76.31*** 43.49*** 21.67*** 15.43*** 8.56*** 3.52*** 

End 542.76*** 300.08*** 182.74*** 110.15*** 61.64*** 29.21*** 21.14*** 11.33*** 4.51*** 

War 

Start 580.97*** 319.76*** 194.02*** 115.89*** 63.91*** 29.48*** 21.51*** 11.45*** 4.63*** 

During 414.01*** 227.38*** 137.68*** 81.95*** 44.93*** 20.61*** 14.88*** 8.04*** 3.57*** 

End 589.23*** 325.07*** 197.86*** 118.73*** 65.95*** 30.79*** 23.37*** 12.58*** 5.31*** 

Violent 

Break 

Start 571.19*** 315.29*** 191.52*** 115.01*** 63.98*** 29.99*** 21.38*** 12.21*** 4.74*** 

During 417.92*** 230.68*** 140.47*** 84.42*** 47.05*** 22.22*** 16.13*** 9.33*** 3.86*** 

End 557.87*** 307.69*** 186.71*** 111.94*** 62.10*** 28.95*** 19.73*** 11.05*** 4.38*** 

Protracted 

Start 512.07*** 281.77*** 170.50*** 101.78*** 56.08*** 25.88*** 18.24*** 10.29*** 4.25*** 

During 333.10*** 182.56*** 110.29*** 65.59*** 36.11*** 17.04*** 12.50*** 7.11*** 3.23*** 

End 509.70*** 281.32*** 170.96*** 102.68*** 57.12*** 26.84*** 18.98*** 9.89*** 4.26*** 

Major Power 

Start 556.40*** 305.64*** 184.42*** 109.65*** 60.03*** 27.32*** 21.02*** 11.69*** 4.77*** 

During 410.01*** 224.81*** 135.80*** 80.51*** 43.95*** 20.10*** 15.43*** 8.96*** 3.57*** 

End 563.43*** 311.34*** 189.40*** 113.97*** 63.61*** 30.05*** 22.65*** 12.03*** 4.82*** 

Grave Threat 

Start 539.88*** 296.54*** 178.96*** 106.40*** 58.23*** 26.50*** 18.10*** 10.81*** 4.69*** 

During 424.37*** 235.69*** 144.74*** 88.17*** 50.16*** 24.56*** 17.13*** 9.03*** 3.60*** 

End 555.35*** 307.41*** 187.46*** 113.21*** 63.58*** 30.32*** 21.63*** 11.09*** 4.59*** 

Crisis 

Severity 

Start 430.87*** 236.76*** 143.01*** 85.23*** 46.89*** 21.65*** 15.72*** 9.20*** 4.00*** 

During 180.39*** 99.54*** 60.71*** 36.81*** 20.99*** 10.80*** 7.10*** 5.08*** 2.52** 

End 429.03*** 236.75*** 143.68*** 86.27*** 48.03*** 22.67*** 15.85*** 8.03*** 3.16*** 
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Note: Entries correspond to the quantile causality test statistic for the null hypothesis that various disaster risk counts at its start, during 

and end phases does not Granger cause oil returns and volatility; ***, **, * indicates rejection of null of no-causality at 1, 5, and 10 

percent levels respectively. 

 

APPENDIX: 

Table A1. Causality-in-Quantiles Test for WTI Returns and Volatility (Squared Returns) Based on News-Based Measure of Disaster Risks 

(NVIX and Components) 

 

Returns 

 

Predictor Variable 

Quantile 
NVIX Government Intermediation 

Natural 

Disaster 

Securities 

Markets War Unclassified 

0.1 6.4206*** 4.9679*** 5.7493*** 4.0758*** 7.1407*** 4.3490*** 5.3588*** 

0.2 12.9224*** 10.6596*** 13.4384*** 10.5224*** 18.0269*** 11.5988*** 11.4614*** 

0.3 23.7779*** 18.0387*** 23.1145*** 19.6249*** 31.0261*** 20.6908*** 21.5147*** 

0.4 102.5567*** 79.8043*** 104.6187*** 106.6468*** 117.4449*** 113.2903*** 100.5753*** 

0.5 61.0115*** 46.5777*** 62.6492*** 60.1245*** 69.6136*** 62.2860*** 58.8065*** 

0.6 32.9857*** 25.2983*** 34.8826*** 29.6699*** 37.4304*** 30.3684*** 30.9819*** 

0.7 20.2650*** 16.9381*** 22.4840*** 19.1358*** 23.3822*** 19.5013*** 19.4769*** 

0.8 11.7443*** 10.1552*** 13.2996*** 10.8269*** 12.8133*** 11.9613*** 11.1295*** 

0.9 4.4747*** 4.4432*** 5.0132*** 4.1819*** 4.9108*** 4.1955*** 4.3027*** 

 

Volatility (Squared Returns) 

 

Predictor Variable 

Quantile 
NVIX Government Intermediation 

Natural 

Disaster 

Securities 

Markets War Unclassified 

0.1 45.7090*** 40.9852*** 46.3816*** 125.8735*** 50.9710*** 50.8902*** 45.6798*** 

0.2 28.1338*** 25.4910*** 28.2832*** 68.6608*** 30.8221*** 29.8482*** 27.9251*** 
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0.3 20.6017*** 18.9120*** 20.5306*** 41.6931*** 22.1305*** 20.7916*** 20.2640*** 

0.4 16.5782*** 15.4747*** 16.3745*** 25.5186*** 17.3983*** 15.9446*** 16.1374*** 

0.5 14.2497*** 13.5339*** 13.9418*** 15.0452*** 14.5919*** 13.1595*** 13.7264*** 

0.6 13.1642*** 12.9271*** 13.0136*** 9.5228*** 13.5086*** 12.1310*** 12.6522*** 

0.7 12.0080*** 11.8190*** 11.9256*** 7.5614*** 12.0319*** 11.1460*** 11.3894*** 

0.8 10.2668*** 10.0481*** 9.9955*** 5.0497*** 10.0523*** 9.1129*** 9.8164*** 

0.9 7.3948*** 7.4433*** 7.1194*** 2.8865*** 7.2265*** 6.3844*** 7.1151*** 
Note: Entries correspond to the quantile causality test statistic for the null hypothesis that aggregate and components of news-based 

volatility index (NVIX) does not Granger cause oil returns and volatility; ***, **, * indicates rejection of null of no-causality at 1, 5, 

and 10 percent levels respectively. 

 

Table A2. Causality-in-Quantiles Test for WTI Returns and Volatility (Squared Returns) Based on News-Based Measure of Geopolitical Risks  

 

Returns 

 

Predictor Variable 

Quantile 
GPR GPR Acts 

GPR 

Threats 

0.1 4.3612*** 4.7848*** 4.6160*** 

0.2 8.8046*** 10.3587*** 9.3838*** 

0.3 15.3373*** 20.1353*** 15.5939*** 

0.4 61.6984*** 86.2895*** 57.5383*** 

0.5 39.8033*** 54.1275*** 37.3023*** 

0.6 24.6144*** 31.7634*** 23.2817*** 

0.7 15.7158*** 20.0685*** 14.9661*** 

0.8 9.5360*** 11.3614*** 8.9023*** 

0.9 4.5662*** 4.6731*** 4.4975*** 

 

Volatility (Squared Returns) 

 

Predictor Variable 
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Quantile 
GPR GPR Acts 

GPR 

Threats 

0.1 54.9345*** 78.5399*** 54.8733*** 

0.2 32.3526*** 44.1667*** 32.7087*** 

0.3 22.3492*** 28.6157*** 22.8947*** 

0.4 16.6481*** 19.5465*** 17.3002*** 

0.5 13.2402*** 13.8711*** 13.9309*** 

0.6 11.4198*** 10.5223*** 12.1437*** 

0.7 10.7158*** 10.0206*** 11.0620*** 

0.8 9.0443*** 7.7320*** 9.2269*** 

0.9 6.3694*** 5.5274*** 6.6189*** 
Note: Entries correspond to the quantile causality test statistic for the null hypothesis that aggregate and components of news-based 

geopolitical risks (GPRs) does not Granger cause oil returns and volatility; ***, **, * indicates rejection of null of no-causality at 1, 5, 

and 10 percent levels respectively. 
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