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Abstract 

In this paper, we discuss the short-term (also known as zero-state mode) run-length theoretical 

properties of the four different types of synthetic and runs-rules 𝑋̅ monitoring schemes that were 

empirically analyzed in another paper. That is, we provide and point out how each corresponding type 

of the 2-of-(H+1) runs-rules and synthetic charts’ transition probabilities matrices (TPMs) differ from 

each other in zero-state, for any positive integer H. Next, using these general TPMs and the standard 

Markov chain formulae, we derive the general form of the average run-length (ARL) vectors and the 

corresponding zero-state ARL expressions for any shift value for each of the four different types of the 

synthetic and runs-rules 𝑋̅ monitoring schemes. Finally, we provide expressions to calculate the overall 

run-length performance for each of the schemes. While there is lots of literature available on empirical 

analysis of zero-state synthetic and runs-rules charts, there is very little on the corresponding 

theoretical analysis. We believe this paper will, in some part, fill this gap and encourage more research 

in this area. 

 

Keywords: Average run-length (ARL), Overall performance, Runs-rules charts, Synthetic charts, 

Transition probability matrix (TPM), Zero-state.  

 

1. Introduction 

The basic theory of statistical process control and monitoring (SPCM) was developed in the late 

1920’s by Dr. W. Shewhart, and was popularized worldwide by Dr. W.E. Deming – see for instance, 

Montgomery (2013) and Qiu (2014) for more details on the early development in the area of SPCM. 

According to Benneyan et al. (2003), Dr. Shewhart originally worked with manufacturing processes; 

however, he and Dr. Deming quickly realized that SPCM could be applied to a number of other 

processes. Wisner (2009) stated that SPCM is not merely a set of statistical tools but a management 

philosophy that helps organizations to improve performance and sustain high productivity. In an effort 

to improve productivity and reduce waste, supplementary runs-rules and synthetic 𝑋̅ monitoring 

schemes have been proposed in the literature to improve the performance of the basic Shewhart 𝑋̅ chart 

in detecting small and moderate shifts in a process for normally distributed observations. A w-of-(w+v) 

runs-rules chart is a monitoring scheme that requires at least w out of the last w+v consecutive plotting 

statistics to fall beyond the control limits before issuing an out-of-control (OOC) signal, where w and v 
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are integers, with 𝑤 ≥ 2 and v ≥ 0, see the review by Koutras et al. (2007). A synthetic chart is a 

monitoring scheme that combines the operation of the basic 𝑋̅ chart and the conforming run-length 

(CRL) chart; see Wu and Spedding (2000), the review by Khoo (2013) and some more recent 

publications, for example, Haq and Khoo (2016) and Shongwe and Graham (2018). Bourke (1991) 

defined a CRL chart as a monitoring scheme that plots the number of conforming samples between two 

nonconforming samples, inclusive of the nonconforming sample at the end. A CRL chart signals when 

a plotting statistic is greater or equal to the control limit, denoted by H, i.e. an integer greater or equal 

to 1. The connection between the runs-rules and synthetic charts was first pointed out by Davis and 

Woodall (2002), where the authors noticed that a synthetic chart is actually a 2-of-(H+1) runs-rules 

chart with a head-start feature. A head-start feature implies that we assume that the first sample is 

nonconforming; consequently, we need at least one other nonconforming sample within the next H 

plotting statistics for a 2-of-(H+1) runs-rules scheme to issue a signal. The Shewhart-type synthetic 

and runs-rules charts can be classified into four different types i.e. non-side-sensitive (NSS), standard 

side-sensitive (SSS), revised side-sensitive (RSS) and modified side-sensitive (MSS). These four 

charting regions are as shown in Figure 1 (where UCL, LCL and CL denote the upper control limit, 

lower control limit and center line, respectively). 

The NSS, SSS, RSS and MSS synthetic charts were proposed by Wu and Spedding (2000), Davis and 

Woodall (2002), Machado and Costa (2014) and Shongwe and Graham (2018) – we denote these by 

S1, S2, S3 and S4, respectively. The NSS, SSS, RSS and MSS runs-rules charts were proposed by 

Derman and Ross (1997), Klein (2000), (discussed in) Shongwe and Graham (2018) and Antzoulakos 

and Rakitzis (2008) – we denote these by RR1, RR2, RR3 and RR4, respectively. The operations of 

the different synthetic and runs-rules 𝑋̅ schemes are outlined in Tables 1 and 2, respectively. Since 

some of the operational elements of the synthetic and runs-rules charts are similar, in Table 2, we only 

listed those steps with operational elements that are different and the rest are the same as those given in 

Table 1. For a fair comparison with synthetic charts, moving forth, we only consider runs-rules with w 

= 2, so that v = H-1. 
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(a) Non-side-sensitive (NSS) regions 

 

 
(b) Standard / Revised side-sensitive (SSS / RSS) regions 

 

 
(c) Modified side-sensitive (MSS) regions 

 

Figure 1: Charting regions of the different types of synthetic and runs-rules schemes 
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Table 1: Operation of the four different synthetic 𝑋̅ charts 

Step S1 scheme S2 scheme S3 scheme S4 scheme 

(1) Set the control limit of the CRL sub-chart (i.e. H).  

(2) Compute the corresponding k so that the target ARL0 is attained. Hence the control limits of the 𝑋̅ sub-chart are UCL/LCL = 𝜇0 ± 𝑘𝜎0. 

(3) Wait until the next inspection time, take a random sample of size n and calculate the sample mean 𝑋̅𝑖. 

(4) If LCL < 𝑋̅𝑖 < UCL, the ith sample is conforming, hence return to Step (3); otherwise go to Step (5). 

(5) If 𝑋̅𝑖 ≤ LCL or 𝑋̅𝑖 ≥ UCL go to Step (6). 
If 𝑋̅𝑖 ≤ LCL go to Step (6a), or 

if 𝑋̅𝑖 ≥ UCL go to Step (6b). 

If 𝑋̅𝑖 ≤ LCL go to Step (6a), or 

if 𝑋̅𝑖 ≥ UCL go to Step (6b). 

If 𝑋̅𝑖 ≤ LCL go to Step (6a), or 

if 𝑋̅𝑖 ≥ UCL go to Step (6b). 

(6) 
Calculate CRLS1 and if CRLS1 ≤ H go to 

Step (7); otherwise return to Step (3). 

(6a) Calculate 𝐶𝑅𝐿𝐿
𝑆2 and if 

𝐶𝑅𝐿𝐿
𝑆2  ≤ H go to Step (7); 

otherwise return to Step (3). 

 

(6b) Calculate 𝐶𝑅𝐿𝑈
𝑆2 and if 

𝐶𝑅𝐿𝑈
𝑆2  ≤ H go to Step (7); 

otherwise return to Step (3). 

(6a) Calculate 𝐶𝑅𝐿𝐿
𝑆3 and if 

𝐶𝑅𝐿𝐿
𝑆3  ≤ H go to Step (7); 

otherwise return to Step (3). 

 

(6b) Calculate 𝐶𝑅𝐿𝑈
𝑆3 and if 

𝐶𝑅𝐿𝑈
𝑆3  ≤ H go to Step (7); 

otherwise return to Step (3). 

(6a) Calculate 𝐶𝑅𝐿𝐿
𝑆4 and if 

𝐶𝑅𝐿𝐿
𝑆4  ≤ H go to Step (7); 

otherwise return to Step (3). 

 

(6b) Compute 𝐶𝑅𝐿𝑈
𝑆4 and if 

𝐶𝑅𝐿𝑈
𝑆4  ≤ H go to Step (7); 

otherwise return to Step (3). 

(7) Issue an OOC signal and then take necessary corrective action to find and remove the assignable causes. Then return to Step (3). 

 

____________________________________________  
𝐶𝑅𝐿𝑆1: Number of conforming samples that fall in region ‘O’; which are in between any two consecutive nonconforming samples that fall on region ‘U’, see Figure 1(a). 

𝐶𝑅𝐿𝐿
𝑆2: Number of (either conforming or nonconforming) samples that fall in regions ‘O’ and ‘A’; which are in between the two consecutive nonconforming samples that fall on region 

‘D’, see Figure 1(b). 

𝐶𝑅𝐿𝑈
𝑆2: Number of (either conforming or nonconforming) samples that fall in regions ‘O’ and ‘D’; which are in between the two consecutive nonconforming samples that fall on region 

‘A’, see Figure 1(b). 

𝐶𝑅𝐿𝐿
𝑆3: Number of conforming samples that fall in region ‘O’; which are in between the two consecutive nonconforming samples that fall on region ‘D’, see Figure 1(b). 

𝐶𝑅𝐿𝑈
𝑆3: Number of conforming samples that fall in region ‘O’; which are in between the two consecutive nonconforming samples that fall on region ‘A’, see Figure 1(b). 

𝐶𝑅𝐿𝐿
𝑆4: Number of conforming samples that fall in region ‘C’; which are in between the two consecutive nonconforming samples that fall on region ‘D’, see Figure 1(c). 

𝐶𝑅𝐿𝑈
𝑆4: Number of conforming samples that fall in region ‘B’; which are in between the two consecutive nonconforming samples that fall on region ‘A’, see Figure 1(c). 

Note that each computation of the CRL value above, includes the nonconforming sample at the end, so that the absence of any nonconforming sample means CRL = 1. 
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Table 2: Operation of the four different w-of-(w+v) runs-rules 𝑋̅ charts 

 

Step RR1 scheme RR2 scheme RR3 scheme RR4 scheme 

(1) Specify the desired values of w and v.  

(6) 

 Out of the next (w+v−1) consecutive samples – consider Figures 1(a), (b), (c): 

If (𝑤 − 1) nonconforming 

samples fall in region U which are 

separated by v conforming 

samples in region O, go to Step 

(7); otherwise return to Step (3). 

 

 

 

 

 

 

 

 

 

- See Figure 1(a) 

(6a) If (𝑤 − 1) nonconforming 

samples fall in region D and are 

separated by at most v samples 

(conforming or nonconforming) that 

fall in regions O and A, go to Step 

(7); otherwise return to Step (3). 

 

(6b) If (𝑤 − 1) nonconforming 

samples fall in region A and are 

separated by at most v samples 

(conforming or nonconforming) that 

fall in regions O and D, go to Step 

(7); otherwise return to Step (3). 

 

- See Figure 1(b) 

(6a) If (𝑤 − 1) nonconforming 

samples fall in region D and are 

separated by at most v conforming 

samples that fall in region O, then go 

to Step (7); otherwise return to Step 

(3). 

 

(6b) If (𝑤 − 1) nonconforming 

samples fall in region A and are 

separated by at most v conforming 

samples that fall in region O, then go 

to Step (7); otherwise return to Step 

(3). 

 

- See Figure 1(b) 

(6a) If (𝑤 − 1) nonconforming 

samples fall in region D and are 

separated by at most v conforming 

samples that fall in region C, then 

go to Step (7); otherwise return to 

Step (3). 

 

(6b) If (𝑤 − 1) nonconforming 

samples fall in region A and are 

separated by at most v conforming 

samples that fall in region B, then 

go to Step (7); otherwise return to 

Step (3).  

 

- See Figure 1(c) 
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A control chart is usually evaluated using either a zero-state or the steady-state run-length properties. 

In this paper (i.e. Part I), we focus on the zero-state mode and the steady-state mode has been 

investigated and reported in Part II of this work.  A zero-state mode is used to characterize short term 

run-length properties of a monitoring scheme. Hence, the zero-state run-length is the number of 

sampling points at which the chart first signals given it begins in some specific initial state and it is 

assumed that the mean shift always takes place at the beginning of the process, see Zhang and Wu 

(2005). So, under this assumption, and also assuming that the mean is a fixed and known quantity, the 

most used quantity in SPCM, to measure the performance of a specific size of a shift (𝛿), is the zero-

state average run-length (ZSARL), which is given by   

𝑍𝑆𝐴𝑅𝐿(𝛿) = 𝐪(1×𝑀) ∙ 𝑨𝑹𝑳(𝑀×1)(𝛿) = 𝐪(1×𝑀) ∙ (𝐈(𝑀×𝑀) − 𝐐(𝛿)(𝑀×𝑀))
−1 ∙ 𝟏(𝑀×1) (1) 

where 𝐪(1×𝑀) and 𝑨𝑹𝑳(𝑀×1) are the zero-state initial probabilities and ARL vectors, respectively, with 

𝐈(𝑀×𝑀), an identity matrix, 𝟏(𝑀×1) a vector of ones  and 𝐐(𝛿)(𝑀×𝑀), an essential transition probability 

matrix (TPM) at some specific size of 𝛿 and M is the dimension of the essential TPM discussed in 

Section 2.  

More recently, a number of researchers (see Reynolds and Lou (2010), Ryu et al. (2010), Machado and 

Costa (2014), Huh (2014, Chapter 4) and some of the references therein) have argued that, if a control 

chart is designed based on one specific size of a shift, say by means of Equation (1), it would perform 

poorly when the actual size of a mean shift is significantly different from the assumed size. Thus, they 

instead recommended that monitoring schemes should be designed in terms of the overall performance 

run-length metric. Such overall performance run-length functions are called quality loss functions. A 

quality loss function depicts a relationship between the shift size and the quality loss. That is, the lower 

the quality loss function value, the better is that particular monitoring scheme. Ryu et al. (2010) 

observed the uncertainty in 𝛿, and hence, they designed their monitoring scheme to rather minimize 

quality loss, which is measured by a quantity called the expected weighted run-length (EWRL) which is 

given by  

𝐸𝑊𝑅𝐿 = 𝐸[𝑤(𝛿) × 𝐴𝑅𝐿(𝛿)] = ∫ (𝑤(𝛿) × 𝐴𝑅𝐿(𝛿))

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

× 𝑓(𝛿)𝑑𝛿 (2) 

where 𝛿 follows some probability distribution function with a density function 𝑓(𝛿) and a range [𝛿𝑚𝑖𝑛, 

𝛿𝑚𝑎𝑥], where 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are the lower and upper bound of the range of 𝛿, and 𝑤(𝛿) is a weight 

function associated with 𝛿.  

Note that the EWRL in Equation (2) is a generalized quality loss function and when we assign different 

weight functions, it yields the following different common quality loss function names: (i) extra 
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quadratic loss (EQL) if 𝑤(𝛿) = 𝛿2, (ii) expected ARL if 𝑤(𝛿) = 1, (iii) expected / average relative ARL 

(ERARL / ARARL) if 𝑤(𝛿) =
1

𝐴𝑅𝐿opt(𝛿)
, where 𝐴𝑅𝐿opt(𝛿) is the ARL at a given 𝛿 for some other 

specified benchmark monitoring scheme; etc. While Ryu et al. (2010) had used the EWRL function as a 

design function, Shongwe and Graham (2018) had used it to compute the EQL, ARARL and the 

performance comparison index (PCI, which is the ratio of the EQL of some competing scheme and the 

EQL of the specified benchmark scheme) and implemented these as an additional evaluation tool. 

Although it is not the scope of this paper, it is worth mentioning that the effectiveness of traditional 

performance measures should be revisited. Even as far back as 1986, Woodall (1986) had started to 

highlight weaknesses in the designs of control charts and there is still room for improvement. We do 

not wish to degrade the significance of traditional control charting performance measuring techniques, 

however, the key common characteristic of these previous methods is to keep the control charting 

design parameters (including 𝛿) fixed and recent literature is now advocating the use of newer, more 

flexible, performance measures. The exploration into the fact that making use of traditional measures 

can be misleading is currently under investigation and will be reported on in a separate paper. 

In this paper, we make a further contribution to the theory of zero-state synthetic and runs-rules 𝑋̅ 

monitoring schemes by:   

i. Giving the general form of each of the scheme’s TPM for any H > 0;  

ii. We derive the zero-state closed-form expressions of 𝐪(1×𝑀) and ARL(M×1), so that we formulate 

the zero-state ARL and EWRL expressions.  

The rest of the paper is organized as follows: In Section 2, we describe the Markov chain imbedding 

technique and give the general form of the TPMs for each of the schemes. In Section 3, we provide the 

general form of the ARL vectors for each scheme. In Sections 4 and 5, we derive the zero-state run-

length characteristics pertaining to synthetic and runs-rules charts, respectively. Overall performance 

measures pertaining to Eq. (2) are discussed in Section 6. For a build-up to Part II of this work, in 

Section 7, we give discuss the importance of understand both the zero-state and the steady-state modes. 

Finally, in Sections 8 and 9, we give some concluding remarks and future recommendations, 

respectively. 

2. General transition probability matrices (TPMs) 

To construct the TPMs using a Markov chain imbedding technique, we need to first define the 

absorbing simple patterns that result in an OOC event as this denotes the waiting time (denoted by W) 

until the first occurrence of an OOC signal, see Fu and Lou (2003). Then from the distinct absorbing 

simple patterns, we need to extract the corresponding distinct non-absorbing sub-patterns as well as 
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clearly define the initial state. Therefore, the state space (denoted by Ω) of the Markov chain 

imbedding technique is made up of three components: 

(i) absorbing state ( i.e. the union of all possible absorbing simple patterns) - in order to reduce 

the dimension of the TPM for the components corresponding to the states which signal the 

entrance of the Markov chain to each of the distinct simple absorbing patterns may be 

substituted by ‘OOC’; 

(ii) sub-patterns of the absorbing states; 

(iii) IC conforming region state i.e. the sub-patterns that denotes the IC conforming region in 

Figure 1. 

Once the three components of the state space have been clearly defined, then for any positive integer 

M, the TPM is given by 

𝑷(𝑀+1)×(𝑀+1) = (

𝐐(𝑀×𝑀)
−

𝟎′(1×𝑀)
   
|
−
|
    

𝒓(𝑀×1)
−

1(1×1)
 ) (3) 

where the vector 𝐫(𝑀×1) satisfies 𝐫 = 𝟏 − 𝐐𝟏 with 𝟏(𝑀×1) = (1 1 …  1)
′ , 𝟎(𝑀×1) = (0 0 …  0)

′. The 

elements of the TPM in Equation (3) are computed using the probabilities of the plotting statistics 

falling in each of the regions given in Figure 1. That is, let {𝑋̅𝑖; i = 1, 2,…} be a sequence of i.i.d. trials 

taking values in the set 𝜁1 = {O, U}, 𝜁2 = {A, O, D} and 𝜁3 = {A, B, C, D} for the (RR1, S1), (RR2, 

S2, RR3, S3) and (RR4, S4) schemes, respectively. Suppose that the values of 𝜇0 and 𝜎0
2 are known, 

then the probabilities of a plotting statistic falling in a specific region are given by 

𝑝𝐴(𝛿) = 𝑃𝑟(𝑋̅𝑖 ∈ 𝐴) = 𝑃𝑟(𝑋̅ ≥ 𝑈𝐶𝐿) = 1 − Φ(𝑘 − 𝛿√𝑛), 

𝑝𝐵(𝛿) = 𝑃𝑟(𝑋̅𝑖 ∈ 𝐵) = 𝑃𝑟(𝐶𝐿 ≤ 𝑋̅ < 𝑈𝐶𝐿) = Φ(𝑘 − 𝛿√𝑛) − Φ(−𝛿√𝑛), 

𝑝𝐶(𝛿) = 𝑃𝑟(𝑋̅𝑖 ∈ 𝐶) = 𝑃𝑟(𝐿𝐶𝐿 < 𝑋̅ ≤ 𝐶𝐿) = Φ(−𝛿√𝑛) − Φ(−𝑘 − 𝛿√𝑛), 

𝑝𝐷(𝛿) = 𝑃𝑟(𝑋̅𝑖 ∈ 𝐷) = 𝑃𝑟(𝑋̅ ≤ 𝐿𝐶𝐿) = Φ(−𝑘 − 𝛿√𝑛), 

𝑝𝑂(𝛿) = 𝑃𝑟(𝑋̅𝑖 ∈ 𝑂) = 𝑃𝑟(𝐿𝐶𝐿 < 𝑋̅ < 𝑈𝐶𝐿) = 𝑝𝐵(𝛿) + 𝑝𝐶(𝛿), i.e. ‘O’ ≡ ‘B∪C’, 

𝑝𝑈(𝛿) = 𝑃𝑟(𝑋̅𝑖 ∈ 𝑈) = 𝑃𝑟(𝑋̅ ≥ 𝑈𝐶𝐿) + 𝑃𝑟(𝑋̅ ≤ 𝐿𝐶𝐿) = 𝜃𝐴(𝛿) + 𝜃𝐷(𝛿), i.e. ‘U’ ≡ ‘A∪D’, 

(4) 

respectively; where Φ(∙) denotes the cumulative distribution function (cdf) of the standard normal 

distribution, 𝛿 is the shift parameter expressed in terms of the standard deviation units, n is the sample 

size. To preserve writing space, we denote ‘𝑝𝐴(𝛿)’ by ‘𝑝𝐴’ without writing the ‘𝛿’ – this is done 

throughout the whole paper. 

Suppose that the sequences of conforming and nonconforming samples, say Λ𝑡 = ABBA, to be the tth 

simple pattern denoting a sequence of states shown in Figure 1. Then, we define Λ as a compound 
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pattern if it is the union of 𝜔 distinct simple patterns i.e. Λ =  Λ1 ∪ Λ2 ∪ …∪ Λ𝜔. Next, given that an 

absorbing simple pattern is given by Λ1={ABBA} then the corresponding non-absorbing sub-pattern is 

given by 𝜂1={ABB}. Let W denote the waiting time for the first occurrence of Λ, i.e. the waiting time 

until the first occurrence of one of the patterns, Λ1,…, Λ𝜔. Hence, 𝜂1,…, 𝜂𝜏 are the distinct sub-

patterns of the simple absorbing patterns Λ1,…, Λ𝜔, without the last element, where 𝜏 ≤ 𝜔. Note that 

one of these 𝜂𝑖 is equal to the transient state, denoted by 𝜙, corresponding to the IC conforming region 

in Figure 1 for each respective chart. Thus, for the runs-rules charts, the Ω is made up of: (i) ‘OOC’ ≡ 

Λ1,…, Λ𝜔; (ii) the sub-patterns i.e. 𝜂1,…, 𝜂𝜏; (iii) the IC conforming region state, 𝜙. 

 

Table 3: Components of the state space of the 2-of-(H+1) runs-rules and synthetic 𝑋̅ charts when H = 

1 and 2  

H Type Λ Ψ 𝜙 𝜂 𝜓 Ω 

1 

 
RR1 

S1 
Λ1={UU} None 𝜂1={O} 𝜂2={U} None {𝜙,𝜂2;OOC} 

RR2 

Λ1={AA}, Λ2={DD} None 
𝜂2={O} 

𝜂1={A}, 𝜂3={D} None {𝜂1,𝜙,𝜂3;OOC} RR3 

RR4 𝜂2={B,C} 

S2 

Λ1={AA}, Λ2={DD} Ψ1={±A}, 

Ψ2={±D} 

𝜂2={O} 
𝜂1={A}, 𝜂3={D} 𝜓1={±} {𝜂1,𝜙,𝜂3;𝜓1;OOC} S3 

S4 𝜂2={B,C} 

2 RR1 

S1 
Λ1={UU}, Λ2={UOU} None 𝜂1={O} 𝜂2={U}, 𝜂3={UO} None {𝜙,𝜂2,𝜂3;OOC} 

RR2 

Λ1={ADA}, Λ2={AOA}, 

Λ3={AA}, Λ4={DD},  

Λ5={DOD}, Λ6={DAD} 

None 

𝜂4={O} 
𝜂1={AD}, 𝜂2={AO},  

𝜂3={A}, 𝜂5={D},  

𝜂6={DO}, 𝜂7={DA} 

None {𝜂1,𝜂2,𝜂3,𝜙,𝜂5,𝜂6,𝜂7;OOC} 

S2 

Ψ1={±A}, 

Ψ2={±D}, 

Ψ3={±OA}, 

Ψ4={±OD} 

𝜓1={±}, 

𝜓2={±O} 
{𝜂1,𝜂2,𝜂3,𝜙,𝜂5,𝜂6,𝜂7,𝜓1,𝜓2;OOC} 

RR3 

Λ1={AOA}, Λ2={AA},  

Λ3={DD}, Λ4={DOD} 

None 

𝜂3={O} 
𝜂1={AO}, 𝜂2={A}, 

𝜂4={D}, 𝜂5={DO} 

None {𝜂1,𝜂2,𝜙,𝜂4,𝜂5;OOC} 

S3 

Ψ1={±A}, 

Ψ2={±D}, 

Ψ3={±OA}, 

Ψ4={±OD} 

𝜓1={±}, 

𝜓2={±O} 
{𝜂1,𝜂2,𝜙,𝜂4,𝜂5,𝜓1,𝜓2;OOC} 

RR4 

Λ1={ABA}, Λ2={AA},  

Λ3={DD}, Λ4={DCD} 

None 

𝜂3={B,C} 
𝜂1={AB}, 𝜂2={A}, 

𝜂4={D}, 𝜂5={DC} 

None {𝜂1,𝜂2,𝜙,𝜂4,𝜂5;OOC} 

S4 

Ψ1={±A}, 

Ψ2={±D}, 

Ψ3={±BA}, 

Ψ4={±CD} 

𝜓1={±}, 

𝜓2={±B}, 

𝜓3={±C} 

{𝜂1,𝜂2,𝜙,𝜂4,𝜂5,𝜓1,𝜓2,𝜓3;OOC} 
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Table 4: TPMs of the 2-of-(H+1) runs-rules and synthetic 𝑋̅ charts when H = 1 and 2 

 

H = 1 

S1, RR1  S2, S3, S4, RR2, RR3, RR4  

 𝜙 𝜂2 OOC 

𝜙 𝑝𝑂 𝑝𝑈  

𝜂2 𝑝𝑂  𝑝𝑈 
OOC   1 

 

 𝜂1 𝜙 𝜂3 𝜓1 OOC 

𝜂1  𝑝𝑂 𝑝𝐷  𝑝𝐴 

𝜙 𝑝𝐴 𝑝𝑂 𝑝𝐷   

𝜂3 𝑝𝐴 𝑝𝑂   𝑝𝐷 

𝜓1  𝑝𝑂   𝑝𝐴+𝑝𝐷 

OOC     1 
 

H = 2 

S1, RR1  S2, RR2  

 𝜙 𝜂2 𝜂3 OOC 

𝜙 𝑝𝑂 𝑝𝑈   

𝜂2   𝑝𝑂 𝑝𝑈 
𝜂3 𝑝𝑂   𝑝𝑈 

OOC    1 
 

 𝜂1 𝜂2 𝜂3 𝜙 𝜂5 𝜂6 𝜂7 𝜓1 𝜓2 OOC 

𝜂1      𝑝𝑂    𝑝𝐴 + 𝑝𝐷 

𝜂2    𝑝𝑂 𝑝𝐷     𝑝𝐴 

𝜂3 𝑝𝐷 𝑝𝑂        𝑝𝐴 

𝜙   𝑝𝐴 𝑝𝑂 𝑝𝐷      

𝜂5      𝑝𝑂 𝑝𝐴   𝑝𝐷 

𝜂6   𝑝𝐴 𝑝𝑂      𝑝𝐷 

𝜂7  𝑝𝑂        𝑝𝐴 + 𝑝𝐷 

𝜓1         𝑝𝑂 𝑝𝐴 + 𝑝𝐷 

𝜓2    𝑝𝑂      𝑝𝐴 + 𝑝𝐷 
OOC          1 

 

S3, RR3  S4, RR4  

 𝜂1 𝜂2 𝜙 𝜂4 𝜂5 𝜓1 𝜓2 OOC 

𝜂1   𝑝𝑂 𝑝𝐷    𝑝𝐴 

𝜂2 𝑝𝑂   𝑝𝐷    𝑝𝐴 

𝜙  𝑝𝐴 𝑝𝑂 𝑝𝐷     

𝜂4  𝑝𝐴   𝑝𝑂   𝑝𝐷 

𝜂5  𝑝𝐴 𝑝𝑂     𝑝𝐷 

𝜓1       𝑝𝑂 𝑝𝐴 + 𝑝𝐷 

𝜓2   𝑝𝑂     𝑝𝐴 + 𝑝𝐷 
OOC        1 

 

 𝜂1 𝜂2 𝜙 𝜂4 𝜂5 𝜓1 𝜓2 𝜓3 OOC 

𝜂1   𝑝𝐵 + 𝑝𝐶 𝑝𝐷     𝑝𝐴 

𝜂2 𝑝𝐵  𝑝𝐶 𝑝𝐷     𝑝𝐴 

𝜙  𝑝𝐴 𝑝𝐵 + 𝑝𝐶 𝑝𝐷      

𝜂4  𝑝𝐴 𝑝𝐵  𝑝𝐶    𝑝𝐷 

𝜂5  𝑝𝐴 𝑝𝐵 + 𝑝𝐶      𝑝𝐷 

𝜓1       𝑝𝐵 𝑝𝐶 𝑝𝐴 + 𝑝𝐷 

𝜓2   𝑝𝐵 + 𝑝𝐶 𝑝𝐷     𝑝𝐴 

𝜓3  𝑝𝐴 𝑝𝐵 + 𝑝𝐶      𝑝𝐷 
OOC         1 

 

 

Similar to the 2-of-(H+1) runs-rules schemes, the synthetic schemes have these compound patterns: 

Λ =  Λ1 ∪ Λ2 ∪ …∪ Λ𝜔; in addition, the synthetic schemes consists of compound patterns with a head-

start feature. That is, let Ψ𝑟 to be rth simple pattern with the sequence of states starting with a head-start 

state, say Ψ𝑟 = {±OOA}, where ‘±’ indicates that a plotting statistic either falls above the UCL or 

below the LCL. Hence, we define Ψ as a compound pattern if it is the union of 𝜐 distinct simple 

patterns i.e. Ψ = Ψ1 ∪Ψ2 ∪ …∪Ψ𝜐. Thus, for the synthetic schemes, W denote the waiting time for 

the first occurrence of either Λ or Ψ, i.e. the waiting time until the first occurrence of one of the 

patterns, Λ1,…, Λ𝜔, Ψ1,…, Ψ𝜐. If Ψ1={±OOA} then the corresponding  transient sub-pattern is given 

by 𝜓1={±OO}. Hence, 𝜂1,…, 𝜂𝜏 and 𝜓1,…, 𝜓𝜅 are the distinct sub-patterns of the simple absorbing 

patterns Λ1,…, Λ𝜔 and Ψ1,…, Ψ𝜐, where 𝜏 ≤ 𝜔 and 𝜅 < 𝜐. In essence, we first define Λ and Ψ, and 

then extract the corresponding 𝜂’s and 𝜓’s as well as  𝜙. Then using the Ω elements described in Table 
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3, we construct each of the corresponding TPMs in Table 4 when H = 1 and 2 for the synthetic and 

runs-rules (by removing the shaded elements or states) schemes, respectively. 

In part from Tables 3 and 4, we deduced that: (i) by removing the head-start element (i.e. the shaded 

elements or states in Table 4) of the S2, S3 and S4 schemes yields the TPMs of the 2-of-(H+1) RR2, 

RR3 and RR4 schemes; (ii) the TPM of the S1 scheme is the same as that of RR1 scheme; (iii) the 

dimension of the TPMs for any H > 0 are given by 

M =  {
𝜏       for RR1, RR2, RR3, RR4 
𝜏 + 𝜅         for S1, S2, S3, S4    

 (5) 

where  

𝜏 =  {
𝐻 + 1                              for RR1, S1 

 𝐻2 + 𝐻 + 1                  for RR2, S2  
2𝐻 + 1             for RR3, RR4, S3, S4

       and          𝜅 =  {
0                  for   S1 
𝐻            for S2, S3 
2𝐻 − 1         for S4. 

  (6) 

Note that to obtain TPMs with an obvious recursive pattern for any H > 0, we define the Ω as follows, 

RR1 & S1: Ω = {𝜂1 ≡ 𝜙,𝜂2,… , 𝜂𝜏; OOC} 

RR2, RR3, RR4: Ω = {𝜂1,…, 𝜂(𝜏+1)
2
−1

, 𝜂(𝜏+1)
2

≡ 𝜙, 𝜂(𝜏+1)
2
+1

, …, 𝜂𝜏; OOC} 

S2, S3, S4: Ω = {𝜂1,…, 𝜂(𝜏+1)
2
−1

, 𝜂(𝜏+1)
2

≡ 𝜙, 𝜂(𝜏+1)
2
+1

, …, 𝜂𝜏; 𝜓1, …, 𝜓𝜅; OOC}. 

(7) 

Therefore, from Equations (3) to (7) as well as Tables 3 and 4, it follows that for any H > 0, the TPMs 

of each of the schemes are as shown in Table 5, Panels (a) to (d). 

 

Table 5: The general form of the TPMs of the synthetic and runs-rules 𝑋̅ schemes 

(a) S1 & RR1 schemes 

 𝜙 𝜂2 𝜂3 𝜂4 𝜂5 ⋯ 𝜂𝜏−3 𝜂𝜏−2 𝜂𝜏−1 𝜂𝜏 OOC 

𝜙 𝑝𝑂 𝑝𝑈    ⋯      

𝜂2   𝑝𝑂   ⋯     𝑝𝑈 

𝜂3    𝑝𝑂  ⋯     𝑝𝑈 

𝜂4     𝑝𝑂 ⋯     𝑝𝑈 

⋮      ⋱     ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱    ⋮ 

𝜂𝜏−3        𝑝𝑂   𝑝𝑈 

𝜂𝜏−2         𝑝𝑂  𝑝𝑈 

𝜂𝜏−1          𝑝𝑂 𝑝𝑈 

𝜂𝜏 𝑝𝑂          𝑝𝑈 
OOC           1 

  

(b) S2 (removing the shaded elements yields RR2) scheme 

For the S2 & RR2 schemes we need to define the following dummy variables to facilitate in easily 

writing the general form of the TPM:  

𝑎 = 𝐻 

𝑏 = 𝐻 + (𝐻 − 1) 
𝑐 = 𝐻 + (𝐻 − 1) + (𝐻 − 2) 
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𝑑 = 𝐻 + (𝐻 − 1) + (𝐻 − 2) + (𝐻 − 3) 
⋮ 

𝑙 =
𝜏 + 1

2
 

⋮ 
𝑥 = (𝜏 + 1) − 𝑐 
𝑦 = (𝜏 + 1) − 𝑏 

𝑧 = (𝜏 + 1) − 𝑎. 
 

For convenience, let ‘A’, ‘D’ and ‘O’ denote ‘𝑝𝐴’, ‘𝑝𝐷’ and ‘𝑝𝑂’, respectively.  
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                            𝜙                               OOC 

𝜂1                                                O           A+D 

𝜂2                                           O                A+D 
𝜂3                                       O                    A+D 
⋮                                    ⋰                       ⋮ 

𝜂𝑎−2                                O                           A+D 
𝜂𝑎−1                              O                             A+D 
𝜂𝑎                            O D                              A 

𝜂𝑎+1 O                                                          A+D 
𝜂𝑎+2  O                                                         A+D 
𝜂𝑎+3   O                                                        A+D 
⋮    ⋱                                                       ⋮ 

𝜂𝑏−1     O                                                      A+D 

𝜂𝑏      D O                                                    A 

𝜂𝑏+1        O                                                   A+D 

⋮         ⋱                                                  ⋮ 

𝜂𝑐−1          O                                                 A+D 

𝜂𝑐           D O                                               A 

𝜂𝑐+1             O                                              A+D 

⋮              ⋱                                             ⋮ 

⋮               ⋱                                            ⋮ 

𝜂𝑙−7                D O                                          A 

𝜂𝑙−6                  O                                         A+D 
𝜂𝑙−5                   O                                        A+D 
𝜂𝑙−4                    D O                                      A 

𝜂𝑙−3                      O                                     A+D 

𝜂𝑙−2                       D O                                   A 

𝜂𝑙−1                         D O                                 A 

𝜙                           A O D                               

𝜂𝑙+1                              O A                            D 

𝜂𝑙+2                                O A                          D 

𝜂𝑙+3                                  O                         A+D 

𝜂𝑙+4                                   O A                       D 

𝜂𝑙+5                                     O                      A+D 
𝜂𝑙+6                                      O                     A+D 
𝜂𝑙+7                                       O A                   D 

⋮                                         ⋱                  ⋮ 

⋮                                          ⋱                 ⋮ 

𝜂𝑥−1                                           O                A+D 

𝜂𝑥                                            O A              D 

𝜂𝑥+1                                              O             A+D 

⋮                                               ⋱            ⋮ 

𝜂𝑦−1                                                O           A+D 

𝜂𝑦                                                 O A         D 

𝜂𝑦+1                                                   O        A+D 

⋮                                                    ⋱       ⋮ 

𝜂𝑧−1                                                     O      A+D 

𝜂𝑧                           A O                               D 

𝜂𝑧+1                          O                                 A+D 
𝜂𝑧+2                        O                                   A+D 
⋮                      ⋰                                     ⋮ 

𝜂𝜏−2                 O                                          A+D 
𝜂𝜏−1            O                                               A+D 
𝜂𝜏       O                                                    A+D 
𝜓1                                                       O    A+D 
𝜓2                                                        O   A+D 
⋮                                                         ⋱  ⋮ 
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𝜓𝜅−1                                                          O A+D 
𝜓𝜅                            O                               A+D 

OOC                                                           1 

 

 

 

 (c) S3 (removing the shaded elements yields RR3) scheme 

  𝜂1 𝜂2 ⋯ 𝜂𝑙−4 𝜂𝑙−3 𝜂𝑙−2 𝜂𝑙−1 𝜙 𝜂𝑙+1 𝜂𝑙+2 𝜂𝑙+3 𝜂𝑙+4 ⋯ 𝜂𝜏−2 𝜂𝜏−1 𝜂𝜏 𝜓1 𝜓2 𝜓3 𝜓4 ⋯ 𝜓𝜅−2 𝜓𝜅−1 𝜓𝜅 OOC 

𝜂1        𝑝𝑂 𝑝𝐷                𝑝𝐴 

𝜂2 𝑝𝑂        𝑝𝐷                𝑝𝐴 

𝜂3  𝑝𝑂       𝑝𝐷                𝑝𝐴 

⋮   ⋱      ⋮                ⋮ 
𝜂𝑙−3    𝑝𝑂     𝑝𝐷                𝑝𝐴 

𝜂𝑙−2     𝑝𝑂    𝑝𝐷                𝑝𝐴 

𝜂𝑙−1      𝑝𝑂   𝑝𝐷                𝑝𝐴 

𝜙       𝑝𝐴 𝑝𝑂 𝑝𝐷                 

𝜂𝑙+1       𝑝𝐴   𝑝𝑂               𝑝𝐷 

𝜂𝑙+2       𝑝𝐴    𝑝𝑂              𝑝𝐷 

𝜂𝑙+3       𝑝𝐴     𝑝𝑂             𝑝𝐷 

⋮       ⋮      ⋱            ⋮ 
𝜂𝜏−3       𝑝𝐴       𝑝𝑂           𝑝𝐷 

𝜂𝜏−2       𝑝𝐴        𝑝𝑂          𝑝𝐷 

𝜂𝜏−1       𝑝𝐴         𝑝𝑂         𝑝𝐷 

𝜂𝜏       𝑝𝐴 𝑝𝑂                 𝑝𝐷 

𝜓1                  𝑝𝑂       𝑝𝐴+𝑝𝐷 

𝜓2                   𝑝𝑂      𝑝𝐴+𝑝𝐷 

𝜓3                    𝑝𝑂     𝑝𝐴+𝑝𝐷 

⋮                     ⋱    ⋮ 
𝜓𝜅−3                      𝑝𝑂   𝑝𝐴+𝑝𝐷 

𝜓𝜅−2                       𝑝𝑂  𝑝𝐴+𝑝𝐷 

𝜓𝜅−1                        𝑝𝑂 𝑝𝐴+𝑝𝐷 

𝜓𝜅        𝑝𝑂                 𝑝𝐴+𝑝𝐷 

OOC                         1 
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(d) S4 (removing the shaded elements yields RR4) scheme 

 𝜂1 𝜂2 ⋯ 𝜂𝑙−3 𝜂𝑙−2 𝜂𝑙−1 𝜙 𝜂𝑙+1 𝜂𝑙+2 𝜂𝑙+3 ⋯ 𝜂𝜏−2 𝜂𝜏−1 𝜂𝜏 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 ⋯ 𝜓𝜅−3 𝜓𝜅−2 𝜓𝜅−1 𝜓𝜅 OOC 

𝜂1       𝑝𝐵 + 𝑝𝐶 𝑝𝐷                 𝑝𝐴 

𝜂2 𝑝𝐵      𝑝𝐶 𝑝𝐷                 𝑝𝐴 

𝜂3  𝑝𝐵     𝑝𝐶 𝑝𝐷                 𝑝𝐴 

⋮   ⋱    ⋮ ⋮                 ⋮ 
𝜂𝑙−2    𝑝𝐵   𝑝𝐶 𝑝𝐷                 𝑝𝐴 

𝜂𝑙−1     𝑝𝐵  𝑝𝐶 𝑝𝐷                 𝑝𝐴 

𝜙      𝑝𝐴 𝑝𝐵 + 𝑝𝐶 𝑝𝐷                  

𝜂𝑙+1      𝑝𝐴 𝑝𝐵  𝑝𝐶                𝑝𝐷 

𝜂𝑙+2      𝑝𝐴 𝑝𝐵   𝑝𝐶               𝑝𝐷 

⋮      ⋮ ⋮    ⋱              ⋮ 
𝜂𝜏−3      𝑝𝐴 𝑝𝐵     𝑝𝐶             𝑝𝐷 

𝜂𝜏−2      𝑝𝐴 𝑝𝐵      𝑝𝐶            𝑝𝐷 

𝜂𝜏−1      𝑝𝐴 𝑝𝐵       𝑝𝐶           𝑝𝐷 

𝜂𝜏      𝑝𝐴 𝑝𝐵 + 𝑝𝐶                  𝑝𝐷 

𝜓1                𝑝𝐵 𝑝𝐶        𝑝𝐴+𝑝𝐷 

𝜓2       𝑝𝐶 𝑝𝐷          𝑝𝐵       𝑝𝐴 

𝜓3      𝑝𝐴 𝑝𝐵            𝑝𝐶      𝑝𝐷 

⋮      ⋮ ⋮             ⋱     ⋮ 
𝜓𝜅−5       𝑝𝐶 𝑝𝐷             𝑝𝐵    𝑝𝐴 

𝜓𝜅−4      𝑝𝐴 𝑝𝐵               𝑝𝐶   𝑝𝐷 

𝜓𝜅−3       𝑝𝐶 𝑝𝐷               𝑝𝐵  𝑝𝐴 

𝜓𝜅−2      𝑝𝐴 𝑝𝐵                 𝑝𝐶 𝑝𝐷 

𝜓𝜅−1       𝑝𝐵 + 𝑝𝐶 𝑝𝐷                 𝑝𝐴 

𝜓𝜅      𝑝𝐴 𝑝𝐵 + 𝑝𝐶                  𝑝𝐷 
OOC                         1 
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3. Average run-length vectors 

Here, we formulate the ARL(M×1) vectors in Equation (1) for each of the schemes. This procedure is 

conducted recursively and, based on the patterns of these expressions as H increases, we use 

mathematical or complete induction to formulate the general form of the ARL vectors.  

Using Equation (1) and the TPM in Table 5, Panel (a), the ARL vector of the S1 and RR1 is given by 

Equation (8). 

𝑨𝑹𝑳(𝛿) = (𝐈 − 𝐐(𝛿))−1𝟏 =

(

 
 
 
 
 
 
 

𝜙 = 𝜍1(𝛿)

𝜍2(𝛿)

𝜍3(𝛿)

𝜍4(𝛿)
⋮

𝜍𝐻−2(𝛿)

𝜍𝐻−1(𝛿)

𝜍𝐻(𝛿)

𝜍𝐻+1(𝛿) )

 
 
 
 
 
 
 

=
1

1 − 𝑝𝑂 − 𝑝𝑂
𝐻 + 𝑝𝑂

𝐻+1

(

 
 
 
 
 
 
 

2 − 𝑝𝑂
𝐻

1
1 + 𝑝𝑂

𝐻−1 − 𝑝𝑂
𝐻

1 + 𝑝𝑂
𝐻−2 − 𝑝𝑂

𝐻

⋮
1 + 𝑝𝑂

4 − 𝑝𝑂
𝐻

1 + 𝑝𝑂
3 − 𝑝𝑂

𝐻

1 + 𝑝𝑂
2 − 𝑝𝑂

𝐻

1 + 𝑝𝑂 − 𝑝𝑂
𝐻 )

 
 
 
 
 
 
 

. (8) 

While the TPM of the S1 scheme is exactly equivalent to that of the RR1 scheme, this is not the case 

for the other schemes, that is, to obtain the TPMs of the RR2, RR3 and RR4 schemes from the TPMs 

of the S2, S3, S4 schemes, we need to remove the components that correspond to the head-start 

feature. Consequently, to derive the 𝑨𝑹𝑳1×𝜏
RR  (ARL vector of runs-rules (RR) scheme) from the 

𝑨𝑹𝑳1×(𝜏+𝜅)
synth

 (ARL vector of synthetic scheme), we need to remove the 𝑨𝑹𝑳1×𝜅
HS  (the components 

corresponding to the head-start (HS) feature), that is, assume that ‘//’ denotes the vertical concatenation 

operator, then it is easy to see that: 

𝑨𝑹𝑳1×(𝜏+𝜅)
synth

≡ 𝑨𝑹𝑳1×𝜏
RR //𝑨𝑹𝑳1×𝜅

HS . (9) 

Note that great attempts to obtain the closed-form expressions of the S2 and RR2 schemes were made; 

however, we concluded that these are impossible as we were unable to obtain any apparent recursive 

relationship. Next, for the S3 and RR3 schemes, 𝔇(𝛿) = 1 − 𝑝𝑂 − 𝑝𝐴𝑝𝑂
𝐻 − 𝑝𝐷𝑝𝑂

𝐻 − 𝑝𝐴𝑝𝐷 ∑ 𝑝𝑂
𝑖2𝐻−1

𝑖=0  

and 𝐐(3𝐻+1)×(3𝐻+1) is given in Table 5, Panel (c) and then using Equations (1) and (9), the  

𝑨𝑹𝑳1×(𝜏+𝜅)
synth

≡ 𝑨𝑹𝑳1×𝜏
RR //𝑨𝑹𝑳1×𝜅

HS = (𝐈 − 𝐐(3𝐻+1)×(3𝐻+1))
−1
𝟏  yields Equation (10). 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜍1(𝛿)

𝜍2(𝛿)
⋮

𝜍𝐻−3(𝛿)

𝜍𝐻−2(𝛿)

𝜍𝐻−1(𝛿)

𝜍𝐻(𝛿)

𝜙 = 𝜍𝐻+1(𝛿)

𝜍𝐻+2(𝛿)

𝜍𝐻+3(𝛿)

𝜍𝐻+4(𝛿)

𝜍𝐻+5(𝛿)
⋮

𝜍2𝐻(𝛿)

𝜍2𝐻+1(𝛿)

𝜓1 = 𝜍2𝐻+2(𝛿)

𝜍2𝐻+3(𝛿)

𝜍2𝐻+4(𝛿)

𝜍2𝐻+5(𝛿)
⋮

𝜍3𝐻(𝛿)

𝜍3𝐻+1(𝛿) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

𝔇(𝛿)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1 + 𝑝𝐴𝑝𝑂∑𝑝𝑂
𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝑂
2∑𝑝𝑂

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐴𝑝𝑂
𝐻−3∑𝑝𝑂

𝑖

2

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝑂
𝐻−2∑𝑝𝑂

𝑖

1

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝑂
𝐻−1)(1 + 𝑝𝐷∑𝑝𝑂

𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐷∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

(1 + 𝑝𝐴∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐴∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

(1 + 𝑝𝐷𝑝𝑂
𝐻−1)(1 + 𝑝𝐴∑𝑝𝑂

𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝑂
𝐻−2∑𝑝𝑂

𝑖

1

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝑂
𝐻−3∑𝑝𝑂

𝑖

2

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐷𝑝𝑂
2∑𝑝𝑂

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝑂∑𝑝𝑂
𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

1 − 𝑝𝐴𝑝𝐷 (∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

2

1 + 𝑝𝐴𝑝𝑂
𝐻−1 + 𝑝𝐷𝑝𝑂

𝐻−1 − 𝑝𝐴𝑝𝐷 [1 + 𝑝𝑂 (2 + 𝑝𝑂 (3 + 𝑝𝑂 (…((𝐻 − 2) + 𝑝𝑂 ((𝐻 − 1) + 𝑝𝑂 ((𝐻 − 2) + 𝑝𝑂(… (3 + 𝑝𝑂(2 + 𝑝𝑂 − 𝑝𝑂
3))… ))))…)))]

1 + 𝑝𝐴𝑝𝑂
𝐻−2∑𝑝𝑂

𝑖

1

𝑖=0

+ 𝑝𝐷𝑝𝑂
𝐻−2∑𝑝𝑂

𝑖

1

𝑖=0

+ 𝑝𝐴𝑝𝐷 ( ∑ 𝑝𝑂
𝑖

𝐻−1

𝑖=𝐻−2

−∑𝑝𝑂
𝑖

𝐻−3

𝑖=0

)(∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐴𝑝𝑂
𝐻−3∑𝑝𝑂

𝑖

2

𝑖=0

+ 𝑝𝐷𝑝𝑂
𝐻−3∑𝑝𝑂

𝑖

2

𝑖=0

+ 𝑝𝐴𝑝𝐷 ( ∑ 𝑝𝑂
𝑖

𝐻−1

𝑖=𝐻−3

−∑𝑝𝑂
𝑖

𝐻−4

𝑖=0

)(∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

⋮

1 + 𝑝𝐴𝑝𝑂
2∑𝑝𝑂

𝑖

𝐻−3

𝑖=0

+ 𝑝𝐷𝑝𝑂
2∑𝑝𝑂

𝑖

𝐻−3

𝑖=0

+ 𝑝𝐴𝑝𝐷 (∑𝑝𝑂
𝑖

𝐻−1

𝑖=2

−∑𝑝𝑂
𝑖

1

𝑖=0

)(∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐴𝑝𝑂∑𝑝𝑂
𝑖

𝐻−2

𝑖=0

+ 𝑝𝐷𝑝𝑂∑𝑝𝑂
𝑖

𝐻−2

𝑖=0

+ 𝑝𝐴𝑝𝐷 (∑𝑝𝑂
𝑖

𝐻−1

𝑖=1

−∑𝑝𝑂
𝑖

0

𝑖=0

)(∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

…………(10)  )     

For the S4 and RR4 schemes, using Equations (1) and (9), the ARL vector is given by Equation (11), where 

𝐐(4𝐻)×(4𝐻) is given in Table 5, Panel (d) and  

𝔇(𝛿) = 1 − 𝑝𝐴 (𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

) − 𝑝𝐵 (1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

) − 𝑝𝐶 − 𝑝𝐴𝑝𝐵
𝐻 (1 + 𝑝𝐷∑𝑝𝐶

𝑖

𝐻−1

𝑖=0

) − 𝑝𝐷𝑝𝐶
𝐻 − 𝑝𝐴∑𝑝𝐵

𝑗

𝐻−1

𝑗=1

(𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

). 
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𝑨𝑹𝑳1×(𝜏+𝜅)
synth

≡ 𝑨𝑹𝑳1×𝜏
RR //𝑨𝑹𝑳1×𝜅

HS = (𝐈 − 𝐐(4𝐻)×(4𝐻))
−1
𝟏 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜍1(𝛿)

𝜍2(𝛿)
⋮

𝜍𝐻−3(𝛿)

𝜍𝐻−2(𝛿)

𝜍𝐻−1(𝛿)

𝜍𝐻(𝛿)

𝜙 = 𝜍𝐻+1(𝛿)

𝜍𝐻+2(𝛿)

𝜍𝐻+3(𝛿)

𝜍𝐻+4(𝛿)

𝜍𝐻+5(𝛿)
⋮

𝜍2𝐻(𝛿)

𝜍2𝐻+1(𝛿)

𝜓1 = 𝜍2𝐻+2(𝛿)

𝜍2𝐻+3(𝛿)

𝜍2𝐻+4(𝛿)

𝜍2𝐻+5(𝛿)

𝜍2𝐻+6(𝛿)

𝜍2𝐻+7(𝛿)

𝜍2𝐻+8(𝛿)
⋮

𝜍4𝐻−3(𝛿)

𝜍4𝐻−2(𝛿)

𝜍4𝐻−1(𝛿)

𝜍4𝐻(𝛿) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

𝔇(𝛿)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1 + 𝑝𝐴𝑝𝐵∑𝑝𝐵

𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
2∑𝑝𝐵

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐴𝑝𝐵
𝐻−3∑𝑝𝐵

𝑖

2

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
𝐻−2∑𝑝𝐵

𝑖

1

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
𝐻−1)(1 + 𝑝𝐷∑𝑝𝐶

𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

(1 + 𝑝𝐷𝑝𝐶
𝐻−1)(1 + 𝑝𝐴∑𝑝𝐵

𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶
𝐻−2∑𝑝𝐶

𝑖

1

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶
𝐻−3∑𝑝𝐶

𝑖

2

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐷𝑝𝐶
2∑𝑝𝐶

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶∑𝑝𝐶
𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

1 − 𝑝𝐴𝑝𝐷 (∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)(∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
𝐻−1)(1 + 𝑝𝐷∑𝑝𝐶

𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶
𝐻−1)(1 + 𝑝𝐴∑𝑝𝐵

𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
𝐻−2∑𝑝𝐵

𝑖

1

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶
𝐻−2∑𝑝𝐶

𝑖

1

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
𝐻−3∑𝑝𝐵

𝑖

2

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶
𝐻−3∑𝑝𝐶

𝑖

2

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐴𝑝𝐵
2∑𝑝𝐵

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶
2∑𝑝𝐶

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵∑𝑝𝐵
𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐷∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶∑𝑝𝐶
𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (11) 
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4. Synthetic chart’s run-length expressions 

In this section, we provide the initial probability vectors and formulate the ZSARL expressions of 

the synthetic schemes in Table 1.  

4.1 Initial probabilities vectors 

The 𝐪(1×𝑀) has a value of one in the component associated with the state in which the chart 

begins and each of the other components are zero. For the synthetic charts, the ‘𝜂2’ denotes the 

initial state of the S1 scheme and ‘𝜓1’ denotes the initial state of the S2, S3 and S4 schemes – 

see Section 2. Therefore, given the state space in Equation (7), the initial state probability 

vectors, for each of the schemes, are given by  

  S1: 𝐪(1×𝑀) = (0 1 0 … 0) i.e. the 2nd one, 

S2, S3, S4: 𝐪(1×𝑀) = (0 0 …0 1(𝜏+1) …0) i.e. the (𝜏+1)th one.  
(12) 

4.2 Average run-length expressions 

The ZSARLs are the product of the 𝐪’s (in Equation (12)) and the ARLs (in Section 3), that is, 

𝑍𝑆𝐴𝑅𝐿 = 𝐪 ∙ 𝑨𝑹𝑳(𝛿) yields the closed-form expressions as given below: 

S1: 
1

1 − 𝑝𝑂 − 𝑝𝑂
𝐻 + 𝑝𝑂

𝐻+1, 

S2: Does not exist, 

S3: 
1 − 𝑝𝐴𝑝𝐷(∑ 𝑝𝑂

𝑖𝐻−1
𝑖=0 )

2

1 − 𝑝𝑂 − 𝑝𝐴𝑝𝑂
𝐻 − 𝑝𝐷𝑝𝑂

𝐻 − 𝑝𝐴𝑝𝐷 ∑ 𝑝𝑂
𝑖2𝐻−1

𝑖=0

, 

S4: 
1 − 𝑝𝐴𝑝𝐷(∑ 𝑝𝐵

𝑖𝐻−1
𝑖=0 )(∑ 𝑝𝐶

𝑖𝐻−1
𝑖=0 )

1 − 𝑝𝐴(𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 ) − 𝑝𝐵(1 + 𝑝𝐷 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 ) − 𝑝𝐶 − 𝑝𝐴𝑝𝐵
𝐻(1 + 𝑝𝐷 ∑ 𝑝𝐶

𝑖𝐻−1
𝑖=0 ) − 𝑝𝐷𝑝𝐶

𝐻 − 𝑝𝐴 ∑ 𝑝𝐵
𝑗𝐻−1

𝑗=1 (𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 )
. 

To this point, only the closed-form expression of the S1 scheme had existed, see Wu and 

Spedding (2000) – note though, while theirs is exactly equivalent to the one given above, it is 

derived and written in a different manner.  

 

5. Runs-rules chart’s run-length expressions  

In this section, we provide the initial probability vectors and formulate the ZSARL expressions of 

the runs-rules schemes in Table 2. 
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5.1 Initial probabilities vectors 

The 𝐪(1×𝜏) has a value of one in the component associated with the state in which the chart 

begins and each of the other components are zero. The ‘𝜙’ state denotes the initial state of all the 

four runs-rules schemes and from the state space in Equation (7), the initial state probability 

vectors for each of the schemes are given by  

RR1: 𝐪(1×𝜏) = (1 0 0 … 0) i.e. the 1st one, 

RR2, RR3, RR4: 𝐪(1×𝜏) = (0 0 … 1(𝜏+1)
2

 …0 0) i.e. the (
𝜏+1

2
)th one. 

(13) 

5.2 Average run-length expressions 

The ZSARLs are the product of the 𝐪’s (in Equation (13)) and the ARLs (in Section 3 and 

keeping in mind Equation (9)), that is, 𝑍𝑆𝐴𝑅𝐿 = 𝐪 ∙ 𝑨𝑹𝑳(𝛿) yields the closed-form expressions 

given by: 

RR1: 
2 − 𝑝𝑂

𝐻

1 − 𝑝𝑂 − 𝑝𝑂
𝐻 + 𝑝𝑂

𝐻+1, 

RR2: Does not exist, 

RR3: 
(1 + 𝑝𝐴 ∑ 𝑝𝑂

𝑖𝐻−1
𝑖=0 )(1 + 𝑝𝐷 ∑ 𝑝𝑂

𝑖𝐻−1
𝑖=0 )

1 − 𝑝𝑂 − 𝑝𝐴𝑝𝑂
𝐻 − 𝑝𝐷𝑝𝑂

𝐻 − 𝑝𝐴𝑝𝐷 ∑ 𝑝𝑂
𝑖2𝐻−1

𝑖=0

, 

RR4: 
(1 + 𝑝𝐴 ∑ 𝑝𝐵

𝑖𝐻−1
𝑖=0 )(1 + 𝑝𝐷 ∑ 𝑝𝐶

𝑖𝐻−1
𝑖=0 )

1 − 𝑝𝐴(𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 ) − 𝑝𝐵(1 + 𝑝𝐷 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 ) − 𝑝𝐶 − 𝑝𝐴𝑝𝐵
𝐻(1 + 𝑝𝐷 ∑ 𝑝𝐶

𝑖𝐻−1
𝑖=0 ) − 𝑝𝐷𝑝𝐶

𝐻 − 𝑝𝐴 ∑ 𝑝𝐵
𝑗𝐻−1

𝑗=1 (𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 )
. 

To the best of our knowledge, none of these simple closed-form expressions currently exist in the 

literature. 

 

6. Overall run-length performance measures 

The overall performance measures (i.e. zero-state EQL, ARARL and PCI) for each of the 

synthetic and runs-rules schemes that were used by Shongwe and Graham (2018) as empirical 

evaluation tools can be computed using the zero-state EWRL expressions presented in Table 6, 

which, for future research purpose, we intend to use as the design optimization functions. 

Moreover, Shongwe and Graham (2018) only considered the case where 𝛿 follows a uniform 

distribution and parameters are specified. We intend to investigate the effect of: (i) the use of a 

variety of distributions of 𝛿; (ii) parameter estimation; and (iii) the use of some other run-length 

metric instead of Equations (1) and (2), for instance, the percentile or median run-length.   
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Table 6: The zero-state EWRL expressions of the 2-of-(H+1) runs-rules and synthetic 𝑋̅ charts 

RR1: ∫ 𝑤(𝛿) × (
2 − 𝑝𝑂

𝐻

1 − 𝑝𝑂 − 𝑝𝑂
𝐻 + 𝑝𝑂

𝐻+1) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿 

RR2: ∫ 𝑤(𝛿) × (𝐪(1×(𝐻2+𝐻+1)) ∙ (𝐈 − 𝐐((𝐻2+𝐻+1)×(𝐻2+𝐻+1)))
−1

∙ 𝟏) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿 

RR3: ∫ 𝑤(𝛿) × (
(1 + 𝑝𝐴∑ 𝑝𝑂

𝑖𝐻−1
𝑖=0 )(1 + 𝑝𝐷 ∑ 𝑝𝑂

𝑖𝐻−1
𝑖=0 )

1 − 𝑝𝑂 − 𝑝𝐴𝑝𝑂
𝐻 − 𝑝𝐷𝑝𝑂

𝐻 − 𝑝𝐴𝑝𝐷 ∑ 𝑝𝑂
𝑖2𝐻−1

𝑖=0

) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿 

RR4: ∫ 𝑤(𝛿) × (
(1 + 𝑝𝐴∑ 𝑝𝐵

𝑖𝐻−1
𝑖=0 )(1 + 𝑝𝐷 ∑ 𝑝𝐶

𝑖𝐻−1
𝑖=0 )

1 − 𝑝𝐴(𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 ) − 𝑝𝐵(1 + 𝑝𝐷 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 ) − 𝑝𝐶 − 𝑝𝐴𝑝𝐵
𝐻(1 + 𝑝𝐷 ∑ 𝑝𝐶

𝑖𝐻−1
𝑖=0 ) − 𝑝𝐷𝑝𝐶

𝐻 − 𝑝𝐴 ∑ 𝑝𝐵
𝑗𝐻−1

𝑗=1 (𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 )
)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

× 𝑓(𝛿)𝑑𝛿 

S1: ∫ 𝑤(𝛿) × (
1

1 − 𝑝𝑂 − 𝑝𝑂
𝐻 + 𝑝𝑂

𝐻+1) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿 

S2: ∫ 𝑤(𝛿) × (𝐪(1×(𝐻2+2𝐻+1)) ∙ (𝐈 − 𝐐((𝐻2+2𝐻+1)×(𝐻2+2𝐻+1)))
−1

∙ 𝟏) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿 

S3: ∫ 𝑤(𝛿) × (
1 − 𝑝𝐴𝑝𝐷(∑ 𝑝𝑂

𝑖𝐻−1
𝑖=0 )

2

1 − 𝑝𝑂 − 𝑝𝐴𝑝𝑂
𝐻 − 𝑝𝐷𝑝𝑂

𝐻 − 𝑝𝐴𝑝𝐷∑ 𝑝𝑂
𝑖2𝐻−1

𝑖=0

) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿 

S4: ∫ 𝑤(𝛿) × (
1 − 𝑝𝐴𝑝𝐷(∑ 𝑝𝐵

𝑖𝐻−1
𝑖=0 )(∑ 𝑝𝐶

𝑖𝐻−1
𝑖=0 )

1 − 𝑝𝐴(𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 ) − 𝑝𝐵(1 + 𝑝𝐷 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 ) − 𝑝𝐶 − 𝑝𝐴𝑝𝐵
𝐻(1 + 𝑝𝐷 ∑ 𝑝𝐶

𝑖𝐻−1
𝑖=0 ) − 𝑝𝐷𝑝𝐶

𝐻 − 𝑝𝐴 ∑ 𝑝𝐵
𝑗𝐻−1

𝑗=1 (𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑ 𝑝𝐶
𝑖𝐻−1

𝑖=0 )
) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿 

 



22 
 

7. A comment on zero-state vs. steady-state mode 

As mentioned earlier, in this paper (i.e. Part I), we only focus on the zero-state mode. The steady-state mode 

is reported in a separate paper (i.e. Part II).  It is interesting to note that, in the literature, it seems that the 

trend is that researchers do not report on both the steady-state mode and the zero-mode under the same 

research (i.e. in the same paper). It seems that only one mode is selected upfront and investigated. For 

example, the zero-state mode of the Poisson GWMA chart is investigated in Chiu and Sheu (2008), whereas 

the steady-state mode is only investigated seven years later in Chiu and Lu (2015). And it is a continuing 

trend where authors have a publication on one mode and, only later, publish the results on the other mode. 

We strongly advise against this, since not only is it important to consider both modes, but it is of great 

importance to compare the zero-state performance and the steady-state performance of the proposed chart 

with that of competing charts. The reader is referred to the paper by Shongwe and Graham (2018) where both 

states are considered for all types of Shewhart synthetic and runs-rules 𝑋̅ schemes. It is of great importance to 

consider both modes, since both can realize in practice; the zero-state mode is the appropriate measure if the 

process shifts at the start of the process and the steady-state mode is the appropriate measure the shift occurs 

some random time in the future. There is some indication that current publications are considering both 

modes; see Haq and Khoo (2016) for another example where both states were reported for their newly 

proposed auxiliary-information-based synthetic chart. However, unfortunately, other recent publications only 

focus on one mode without even making any mention of the other mode; see for example Polunchenko 

(2016) where only the zero-state is mentioned. 

 

8. Concluding remarks 

Since there is very little research on theoretical work of synthetic and runs-rules schemes and the fact that 

some authors are not familiar with Markov chain and / or Monte Carlo simulation, the zero-state expressions 

derived here will ease the implementation as well as further academic research in the area of Shewhart-type 

synthetic and / or runs-rules 𝑋̅ monitoring schemes.   

Although we were unable to compute the closed-form expressions for the S2 and RR2 schemes, the ZSARL 

of the S2 and RR2 schemes can be directly computed for any H using some software (e.g. SAS®, Matlab®, 

Mathematica®, etc.) by using the standard Markov chain equation. Moreover, the zero-state ARLs, EQLs, 

PCIs and ARARLs of the S2 and RR2 schemes as well as those of the S3 and RR3 schemes are approximately 

equal as 𝛿 varies, however, with those of the S3 and RR3 schemes having zero-state ARLs, EQLs, PCIs and 

ARARLs that are uniformly smaller than those of the S2 and RR2 schemes, respectively. Moreover, the S3 

and RR3 schemes are much easier to evaluate as compared to the S2 and RR2 schemes, respectively. Thus, it 

follows that we need to re-think about the use of the S2 and RR2 schemes. 
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9. Future recommendations 

1. The results in this article are based on the assumption of i.i.d. normally distributed observations and 

as part of future research work; we intend to extend this similar investigation for other monitoring 

schemes as well as for nonparametric schemes.  

2. Researchers are urged to consider both zero-state and steady-state modes when designing a new 

control chart, since both can occur in practice. 

3. The effectiveness of traditional performance measures should be revisited and this is currently under 

investigation.  

4. Finally, it is worth mentioning that Shewhart synthetic chart (or more specifically, the S1 scheme of 

Wu and Spedding (2000)) has received a lot of criticism with most noticeably by Knoth (2016). 

While Knoth (2016) did prove that the EWMA and CUSUM schemes have a better performance than 

the Shewhart S1 scheme, we believe that the manner in which the author conducted his investigation 

was unfair as the EWMA-type and CUSUM-type schemes are generally known to have a better 

performance than many vastly sensitized Shewhart-type schemes. Moreover, we believe that the 

author’s argument would have been more convincing if he had shown that, say, the EWMA-type or 

CUSUM-type S1 scheme (see Scariano and Calzada (2009) and Haq et al. (2013)) has no 

improvement over the standard EWMA or CUSUM monitoring schemes, of which, according to the 

two latter articles actually does yield an improvement. In the case of Shewhart synthetic charts, Knoth 

(2016) only considered a single type of synthetic chart (termed here as S1), however, from Table 1, it 

is apparent that there are four types of these and it is empirically shown in Shongwe and Graham 

(2018) that the other three synthetic-type schemes have a better performance than the one considered 

in Knoth (2016). Based on this argument, it is our opinion that before we accept the recommendations 

in Knoth (2016) to abandon the synthetic design, that we should re-visit the investigations that were 

conducted in the following articles: Scariano and Calzada (2009), Haq et al. (2013), Shongwe and 

Graham (2018) – as there seem to be some contradictions with certain deductions given in Knoth 

(2016). Note though the authors of this paper are also in the process of investigating the performance 

of all (Shewhart-, EWMA- and CUSUM-) types of synthetic schemes. 
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