
 

  
Abstract — Cognitive radio and dynamic spectrum access can 

reform the way that radiofrequency spectrum is accessed. 
Problems of spectrum scarcity, coexistence and unreliable 
wireless communication that affect industrial wireless networks 
can be addressed. In this paper, a game theoretic dynamic 
spectrum access algorithm that improves upon on a hedonic 
coalition formation algorithm for spectrum sensing and access is 
presented. The modified algorithm is tailored for faster 
convergence and scalability and makes use of a novel 
simultaneous multi-channel sensing and access technique. Results 
to demonstrate the performance improvements of the adapted 
algorithm are presented and the use of different decision rules 
are investigated revealing that a conservative decision rule for 
exploiting spectrum opportunities performs better than an 
aggressive decision rule in most scenarios. The algorithm that 
was developed could be a key enabler for future cognitive radio 
networks. 
 

Index Terms — cognitive radio, industrial wireless, spectrum 
management. 
 

I. INTRODUCTION 
he radiofrequency spectrum is regulated by government 
agencies worldwide, using a fixed spectrum assignment 

policy, whereby usage of spectrum is controlled and certain 
sections of the spectrum are assigned to license holders or to 
certain services [1]. Most of the spectrum is used on an on-
and-off basis, and usage tends to be congested in certain 
sections of the spectrum. There are cases of real and artificial 
spectrum scarcity [2] that call for more efficient use of 
radiofrequency spectrum. 

The situation, in which spectrum is used inefficiently, can 
be overcome by adopting opportunistic approaches to 
accessing spectrum. These approaches to reforming the way 
spectrum is accessed are referred to as Dynamic Spectrum 
Access (DSA) strategies. DSA is an important feature of 
Cognitive Radio (CR), a revolutionary new communication 
paradigm where wireless radios can sense, learn and adapt. 
Cognitive radio networks (CRNs) show promise in providing 
good quality service communication wherever and whenever 
required, be it in the home, the office or harsh industrial 
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networks [3]. CRs enable the co-existence of co-located 
dissimilar wireless networks that must operate reliably and 
with minimal latency, as is the case in industrial wireless 
networks and smart utility networks. These capabilities are 
key for applications such as factory and industrial automation, 
distributed control systems, automotive systems and process 
monitoring [3, 4]. CR is suitable for challenging environments 
such as underground monitoring [5], tele-intensive care units 
[6] or ambient environment monitoring [7].  

CR allows unlicensed, secondary users (SUs) to use 
spectrum that has been allocated to licensed, primary users 
(PUs) opportunistically. This is particularly attractive in cases 
where PUs are not using the full spectrum, which results in 
spectrum opportunities known as spectrum holes or 
whitespaces. Different methods can be devised for CRs to 
make use of spectrum holes and share spectrum. Game theory 
lends itself to the problem of spectrum sharing in CRNs, as it 
provides an established structure to analyse the action and 
behavior of network users; this arises out of the fact that game 
theory is a mathematical tool for analyzing strategic 
interactions between several decision makers [8]. It also 
makes available measures that can be used to determine the 
most desirable solution to spectrum sharing.  

Game theory has been used extensively in CR and in all 
categories of games: cooperative, non-cooperative, stochastic, 
economic, auction and mechanism design.  Game theory was 
used for energy efficient communications in multi-hop 
networks in [9]. It has been used for spectrum pooling, using a 
joint optimisation framework [10]. In [11] and [12], 
cooperative spectrum sharing was investigated. The case of 
spectrum access using game theory was investigated using a 
pricing based model in [13] and surveyed in [14]. Sharing in 
MIMO CRNs using cooperative game theory was investigated 
in [15]. Power control is another application of game theory in 
CR, as shown in [16] and [17]. Game theory has also been 
used for CR security: in [18] and [19], it was used for anti-
jamming defense; in [20], it was used for intelligent jamming 
of CR. A Bayesian hierarchical mechanism design for CRNs 
was studied in [21] and a Stackelberg model for opportunistic 
sensing was developed by [22]. Joint sensing and access has 
also been studied, for example in: [23], where an evolutionary 
game was used; and in [24], where Bayesian social learning 
with negative externality was investigated. 

 In this paper, a scalable fast converging dynamic spectrum 
access algorithm is developed, which allows for opportunistic 
spectrum access. It builds and improves on a previously 
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developed hedonic coalition formation game for cooperative 
spectrum sensing and channel access [25]. The original 
algorithm was attractive in that it is more practical than other 
previous work, considers multiple licensed channel scenarios 
as opposed to just single licensed channel scenarios, and takes 
energy consumption into account. In addition, it makes us of 
cooperative spectrum sensing which outperforms local 
spectrum sensing approaches. The contribution of this paper 
is: 
• Direct comparison of two different decision rules, the 

conservative OR rule which prioritises protecting PUs, 
and the aggressive AND rule which maximises spectrum 
access opportunities for SUs. In cases where the number 
of licensed channels and SUs are closely matched it is 
possible for the OR rule to provide better average utility. 
We show that in cases where the number of SUs is 
considerably larger than the number of licensed channels 
then the OR rule results in higher average utility. 

• A proposed fast convergence spectrum sensing and access 
algorithm that is scalable and can reach the Nash-stable 
partition of coalitions much faster than the original 
algorithm on which it is based. This is through a novel 
technique for contention free simultaneous multiple-
channel sensing and access. Each node senses and 
accesses spectrum if it has the highest priority to do so in 
both it's incumbent channel and target channel. Fast 
convergence is important to achieve high scalability and 
has not been comprehensively addressed in past work.  

II. SYSTEM MODEL 

A. Network Architecture 
The network architecture is composed of two types of users: 

PUs that are licensed; and SUs that are unlicensed transmitter–
receiver pairs. The SUs opportunistically use spectrum bands 
that are licensed for use by PUs. The spectrum bands are 
divided into a number of channels with each having a fixed 
frequency bandwidth. There are 𝐶	non-overlapping licensed 
channels in total and 𝐷 SUs in the network	(𝐷	 ≥ 𝐶). The set 
of PUs is 𝒫 ∈ 1,… , 𝐶  and the set of SUs is	𝒟	 ∈ 1, … , 𝐷 . 
Each licensed channel has a PU operating in it that can either 
be active or inactive - denoted by 𝑃𝑈/, 𝑖 ∈ 𝒫 - and the channel 
bandwidth is	𝐵/. An example network configurations is shown 
in Fig. 1. 

 
Fig. 1. Network with 5 PUs and 10 SU pairs. 

B. Channel Occupancy Model 
The status of each channel is represented using an ON-OFF 

usage channel model in which the channel switches status 
between ON (busy) and OFF (idle). To detect spectrum holes 
and avoid causing interference to PUs, it is necessary for SUs 
to perform spectrum sensing before transmission, a SU can 
only access a channel when the channel is in the OFF state. 
The transition rate for channel 𝑖 from the ON to the OFF state 
is denoted by 𝜂/ and 𝜌/ denotes the opposite transition. The 
sojourn times in the ON and OFF states for channel 𝑖 are 
𝑇56/ = 1 𝜂/ and	𝑇588/ = 1 𝜌/. The status of a given channel, 𝑖, 
is described in the Markov chain shown in Fig. 2. 

ρi

ηi

IdleBusy

 
Fig. 2. Markov chain for channel status. 
 

The SUs are located in the vicinity of the PUs and each SU 
is denoted by	𝑆𝑈:, 𝑗	 ∈ 𝒟. A SU accesses one of the 𝐶 channels 
only when it is idle. If PUi is present in the channel of 
interest	𝑖, 𝑖 ∈ 𝒫 this is denoted by 𝐻=,/; if PUi is absent, this is 
denoted by	𝐻?,/. An assumption is made that a SU always has 
data to send. Another assumption is that each user has a single 
transceiver that operates in half duplex mode in a single 
channel at any instance. Each SU is required to have spectrum 
agility and to be capable of dynamic frequency selection and 
able to change channels with minimal latency. The probability 
that 𝑃𝑈/ is active is denoted as 𝑃@A,B; the probability that it is 
idle is	denoted	as	𝑃@J,B. It follows that	𝑃@A,B + 𝑃@J,B = 1.  

III. SPECTRUM SENSING 

A. Individual Spectrum Sensing 
To determine the status of channels, spectrum sensing is 

performed. Energy detection is used as the spectrum sensing 
technique, due to its low implementation complexity and 
minimal runtime overhead [26]. When using energy detection 
for spectrum sensing, and given a detection threshold 𝜀 with 
test statistic y, the probability of detection and the probability 
of false alarm are defined as: 

 
 𝑃𝑑 = Pr 𝑦 > 	𝜀 𝐻1,𝑖), 

𝑃𝑓 = Pr 𝑦 > 	 𝜀|𝐻0,𝑖 . 

(1) 

 

The case under consideration is that of complex valued 
Phase Shift keying (PSK) signals, Circularly Symmetric 
Complex Gaussian (CSCG) noise that is an independent and 
identically distributed random process in each channel 𝑖, 𝑖 ∈ 𝒫 
with a mean of zero and a variance of	𝜎W,/X  [27]. The bandwidth 
of each channel is 𝐵/ and the power spectral density is 𝑁?, 
which gives	𝜎W,/X = 	𝑁?𝐵/. Each PU signal 𝑃𝑈/, 𝑖 ∈ 𝒫 is an 



 

independent and identically distributed random process, with a 
zero mean and a variance of	𝜎Z,/X . The signal to noise ratio of 
𝑃𝑈/ measured by a given secondary user, 𝑆𝑈:, 𝑗	 ∈ 𝒟, under 
the hypothesis 𝐻=,/; an average channel gain between 𝑃𝑈/ and 
𝑆𝑈: of 𝑔/,:

X
 is given by	𝛾/,: = 	 𝑔/,:

X
𝜎Z,/X 𝜎W,/X .  

Narrowband sensing is considered where each SU senses 
one channel per time frame. Each frame has a duration of T 
and each SU has a sensing duration 𝛿, which is non-zero and 
less than T. The time left for data transmission is therefore	𝑇 −
𝛿. The sampling frequency for received signals is 𝑓Z and the 
sensing duration and frame duration are multiples of the 
sample time, i.e. =

_̀
. It follows that the number of samples 

during spectrum sensing is 𝛿𝑓Z. 
Given the above, the probability of false alarm for a channel 

𝑖, 𝑖 ∈ 𝒫 and 𝑆𝑈:, 𝑗	 ∈ 𝒟 is given by 
 𝑃_,/,: 𝜀, 𝛿, 𝜎W,/X = Pr 𝑦:,/ > 𝜀|𝐻?,/ 	

= 𝑄( 𝜀 𝜎W,/X − 1 𝛿𝑓Z). 

(2) 

 

In the above equation: 𝑄(. ) is the complementary 
distribution function of the standard Gaussian; and 𝑦:,/ is the 
test statistic for the energy detector of 𝑆𝑈: in channel	𝑖 ∈ 𝒫. 
Given the same sensing duration 𝛿 and detection threshold 𝜀 
for all SUs and the same bandwidth 𝐵/ for all PUs, then the 
probability of false alarm 𝑃_,/,: 𝜀, 𝛿, 𝜎W,/X 	is the same for all 
channels and all SUs, i.e. ∀𝑖 ∈ 𝒫, ∀𝑗 ∈ 𝒟. The probability of 
detection for a channel 𝑖, 𝑖 ∈ 𝒫 and 𝑆𝑈:, 𝑗	 ∈ 𝒟 given by 
 𝑃c,/,: 𝜀, 𝛿, 𝜎W,/X , 𝛾/,: = Pr 𝑦:,/ > 𝜀|𝐻=,/ 	 

= 𝑄( 𝜀 𝜎W,/X − 𝛾/,: − 	1 𝛿𝑓Z (2 𝛾/,: + 1)). 

(3) 

The receiver operating characteristic (ROC) curve for 
energy detector based spectrum sensing is shown in: Fig. 3 for 
different SNR values; Fig. 4 for different values of sensing 
duration, where a higher sensing duration implies that a higher 
number of samples is collected. It can be seen that a higher 
SNR and a greater number of samples results in better 
performance of the energy detector. 

B. Cooperative Spectrum Sensing 
Cooperative Spectrum Sensing (CSS), where SUs cooperate 

with one another, can be used to increase the performance of 
spectrum sensing [28]. CSS can help overcome the problems 
of fading, shadowing and hidden terminals. Each channel has 
a decision node (DN) that is selected in each time frame on 
expiry of the sensing period. The decision node is selected 
from among the SUs in a given channel	𝑖, the set of which is 
denoted by 𝒜/ with 𝒜/ ⊆ 𝒟, ∀𝑖 ∈ 𝒫	and	 𝒜//∈𝒫 = 𝒟. 
𝐷𝑁/, 𝑖 ∈ 𝒫	is responsible for determining whether the 
channel	𝑖, is busy or idle, based on sensing results from other 
SUs that sense the channel. Different decision fusion rules can 
be used including the: AND rule, OR rule, soft combination 
rule, majority rule, and the k-out-of-n rule [29]. The k-out-of-n 
rule becomes the AND rule, OR rule and majority rule when k 
is 1, n and ≥ n/2 respectively.  

Considering the OR rule, if at least one SU presumes that a 

PU is present in a channel, then the channel is considered to be 
busy. In this case, for channel 𝑖, 𝑖 ∈ 𝒫, the probability of 
detection and the probability of false alarm are defined as 

 
 𝑃_,/ = 1 −	 1 − 𝑃_,/,: 𝜀, 𝛿, 𝜎W,/X

:∈𝒜B

, (4) 

 𝑃c,/ = 1 −	 1 − 𝑃c,/,: 𝜀, 𝛿, 𝜎W,/X , 𝛾/,: .
:∈𝒜B

 (5) 

 

 
Fig. 3. ROC for spectrum sensing at different values of SNR. 
 

 
Fig. 4. ROC for spectrum sensing at different values of sensing duration. 
 

Considering the AND rule, there needs to be consensus 
among SUs that a PU is present in a channel to consider it as 
being busy. For a channel 𝑖, 𝑖 ∈ 𝒫 the probability of detection 
and probability of false alarm are defined as 
 𝑃_,/ = 𝑃_,/,: 𝜀, 𝛿, 𝜎W,/X

:∈𝒜B

, (6) 

 𝑃c,/ = (𝑃c,/,: 𝜀, 𝛿, 𝜎W,/X , 𝛾/,: )
:∈𝒜B

. (7) 

The OR rule is suitable for a conservative approach where 
high priority is placed on protecting PUs, whereas the AND 



 

rule is suitable for an aggressive approach that seeks to 
maximise spectrum access opportunities for SUs. Making use 
of the OR rule gives a higher probability of detection, whereas 
making use of the AND rule gives a lower probability of false 
alarm. If 𝐷𝑁/ decides that 𝑃𝑈/ is active, then all 
SUs,	𝑆𝑈:, ∀𝑗 ∈ 𝒜/ operating in the channel are not permitted 
to transmit during the time-frame period. If, on the other hand, 
𝐷𝑁/ decides that the channel is idle, then all the SUs operating 
in the channel have an equal opportunity to access the channel, 
i.e. the probability of transmitting for each SU, 𝑆𝑈:, ∀𝑗 ∈ 𝒜/ is 
1/|𝒜/|. 

IV. SPECTRUM SHARING  

A. Hedonic Coalition Formation 
In [25], the authors present a multi-channel coalition 

formation game for spectrum sensing and access, which 
terminates at a final partition that is individually stable and 
Nash stable. Considering a channel 𝑖 with a SU transmit 
power of Psu, a SU sensing power of Pss, a noise power of	𝜎W,/X , 
and an average channel gain of |ℎ:,/| between a SU transmitter 
and receiver pair j in channel	𝑖, the rate of transmission can be 
represented as [25]: 
 

𝑅:,/ = 𝐵	𝑙𝑜𝑔X 1 + |ℎ:,/|X
𝑃Zl
𝜎W,/X

. 
(8) 

For a set 𝒜/, the payoff is the difference between the 
reward and the penalty, where: the reward is defined as the 
amount of data that is transmitted by the SUs in 𝒜/; and the 
penalty is given by 𝜆, where 𝜆 > 0 is defined as the unity 
penalty factor per second that is applied when a PU 
transmission is interfered with. The 4 possible scenarios in 
channel 𝑖 regarding the decision of DNi and the activity of PUi 
are:  
1. DNi makes a decision that channel 𝑖 is idle and PUi is 

silent, i.e. a true negative, which occurs with 

probability	𝑃?|?,/ = 	𝑃@J,B(1 − 𝑃_,/). 

2. DNi makes a decision that channel 𝑖 is busy and PUi 

is silent, i.e. a false positive, which occurs with 

probability	𝑃=|?,/ = 	𝑃@J,B𝑃_,/. 

3. DNi makes a decision that channel 𝑖 is idle and PUi is 

active, i.e. a false negative, which occurs with 

probability	𝑃?|=,/ = 	𝑃@A,B(1 − 𝑃c,/). 

4. DNi makes a decision that channel 𝑖 is busy and PUi 

is active, i.e. a true positive, which occurs with 

probability	𝑃=|=,/ = 	𝑃@A,B𝑃c,/. 

In the first scenario, which corresponds to a true negative 
decision by the decision node, the SU transmission proceeds 
successfully and there is no penalty, since no PU transmission 
is interfered with. The payoff in this scenario for set 𝒜/	is 

𝑟?|? 𝒜/ = 	
( op,B)(qrs)p∈𝒜B

|𝒜B|
 and the energy consumption for 

the set is	𝑒?|? 𝒜/ = 𝑃ZZ|𝒜/|𝛿 + 𝑃Zl(𝑇 − 𝛿). 
In the second scenario, which corresponds to a false 

positive decision being made by the decision node, there is no 
SU transmission, resulting in no reward, and there is no 
penalty, since no PU transmission is interfered with. The 
payoff in this scenario for set 𝒜/is 𝑟=|? 𝒜/ = 	0 and the 
energy consumption for the set is	𝑒=|? 𝒜/ = 𝑃ZZ|𝒜/|𝛿. 

In the third scenario, which corresponds to a false negative 
decision being made by the decision node, the SU 
transmission proceeds at the same time as PU transmission 
and they interfere with one another. As a result, there is no 
reward and a penalty is applied. The payoff in this scenario for 
set 𝒜/	is 𝑟?|= 𝒜/ = −𝜆(𝑇 − 𝛿) and the energy consumption 
for the set is	𝑒?|= 𝒜/ = 𝑃ZZ|𝒜/|𝛿 +	𝑃Zl(𝑇 − 𝛿). 

In the fourth scenario, which corresponds to a true positive 
decision being made by the decision node, there is no SU 
transmission and PU transmission proceeds with no 
interference. As a result, there is no reward or penalty. The 
payoff in this scenario for set 𝑆/is 𝑟=|= 𝒜/ = 0 and the energy 
consumption for the set is	𝑒=|= 𝒜/ = 𝑃ZZ|𝒜/|𝛿. 

The payoff that is expected in each time-frame, when 
considering all four scenarios, is:  
 

𝑟 𝒜/ = 	 𝑃u|v,/𝑟u|v 𝒜/

=

vw?

=

uw?

	

= 	𝑃?|?,/
𝑅:,/:∈𝒜B

𝒜/
	 𝑇 − 𝛿

− 𝑃?|=,/𝜆 𝑇 − 𝛿 . 

(9) 

The expected energy consumption per time-frame is as 
follows, when taking into account all four scenarios:  

 
 

𝑒 𝒜/ = 𝑃u|v,/𝑒u|v 𝒜/

=

vw?

=

uw?

	

= 𝑃ZZ 𝒜/ 𝛿 + 𝑃?|?,/ + 𝑃?|=,/ 𝑃Zl 𝑇 − 𝛿 . (10) 

The value function of set 𝒜/ is defined as the ratio of the 
expected payoff to the expected energy consumption; this is 
given by: 

 
 

	𝑣 𝒜/ ≜ 	
𝑟 𝒜/

𝑒 𝒜/
	

=
𝑃?|?,/ 𝑅:,/:∈𝒜B 𝑇 − 𝛿 − 𝒜/ 𝑃?|=,/𝜆 𝑇 − 𝛿

𝒜/ 	𝑃ZZ 𝒜/ 𝛿 + 𝑃?|?,/ + 𝑃?|=,/ 𝑃Zl 𝑇 − 𝛿
. 

(11) 

Since all SUs in a given channel sense and access the 
channel with the same probability, the utility that they receive 
is the same, and the utility function is defined as: 

 
 

𝑢:
𝒜B = 	

𝑣 𝒜/

|𝒜/|
. 

(12) 

   



 

B. Coalition Formation Algorithm 
The problem of cooperative multi-channel spectrum sensing 

and access can be modeled using coalition game theory. The 
set 𝒜/ represents coalition 𝑖 and there are C coalitions in total. 
Each SU is a member of one coalition and there is one 
coalition per channel. The basic components of the game are 
as follows: 
• A set of 𝒟 players, which are the SUs	𝑆𝑈:, 𝑗	 ∈ 𝒟. 

• A set of strategies for each SU, which is the channel it 

decides to sense and access. 

• A utility function, which is given in (12) for each SU. 

The algorithm for channel sensing and access is given 
below. 

 
Algorithm 1 Coalition formation algorithm 
Executed by 𝑆𝑈:, 𝑗	 ∈ 𝒟 
1:  Initialisation: 𝒜=

? ≔ 𝒟,𝒜|
? ≔ ∅, ∀𝑙 ∈ 𝒫\{1} 

2:  for iteration r:= 1 to LIMIT do 
3:  𝒜/

(�) ≔ 𝒜/
�r= , 	𝛽: ≔ 𝑖, where 𝑖 ∈ 𝒫 and 𝑗 ∈ 𝒜/

(�) 
4:  𝑆𝑈:	broadcasts its measured SNR information 𝛾/,:

(�) and 

transmission rate 𝑅:,/ to other SUs, 𝑆𝑈W, ∀𝑛 ∈ 𝒜/
� \{𝑗} 

5:  𝑆𝑈:	receives the measured SNR information 𝛾/,W
(�) and 

transmission rate 𝑅W,/  from other 𝑆𝑈W, ∀𝑛 ∈ 𝒜/
� \{𝑗} 

6:  s:=arg max�∈𝒜B
(�)𝛾/,�

(�) 

7:  𝐷𝑁/
(�) ≔ 𝑆𝑈Z 

8:  𝑆𝑈:	generates 𝜃:	which is a standard normal random 
variable 

9:  𝑆𝑈:	selects a random channel 𝛼:	other than its current 
channel 𝛽: such that 𝛼: ∈ 	𝒫	and 𝛼: ≠ 	𝛽: 

10:  𝑆𝑈:	broadcast details on 𝜃:, 𝛼: and 𝛽: to other SUs, 
𝑆𝑈�, ∀𝑘 ∈ 𝒟, 𝑘 ≠ 𝑗 

11:  𝑆𝑈: receives details on 𝜃�, 𝛼� and 𝛽�  from other SUs, 
𝑆𝑈�, ∀𝑘 ∈ 𝒟, 𝑘 ≠ 𝑗 

12:  𝑆𝑈:	determines 𝒜|
� ∀𝑙 ∈ 𝒫, 𝑙 ≠ 𝑖 from 𝛽�, ∀𝑘 ∈

𝒟, 𝑘 ≠ 𝑗  
13:  m:=arg maxw 𝜃�, ∀𝑤 ∈ 𝒜/

(�) 
14:  if 𝑆𝑈: = 	 𝑆𝑈�	then 
15:  𝒵 ≔ ∅ 
16:  𝒵 ≔ 𝒵 ∪ 𝑞 ,			q:=arg maxq𝜃�, ∀𝑞 ∈ 𝒜|

� , ∀𝑙 ∈
𝒫, 𝑙 ≠ 𝑖 

17:  𝒵 ≔ 𝒵\{𝑝}, ∀𝑝 ∈ 𝒵, 𝜃� < 	𝜃: 
18:  if 𝛽: 	≠ 𝛼�∀𝑘 ∈ 𝒵	then 
19:  if 	𝛼: ≠ 𝛼�∀𝑘 ∈ 𝒵	then 
20:  

𝑆𝑈:	computes 𝑢:
𝒜B
(�)

≔ 𝑣(𝒜/
� )/|𝒜/

� | 
21:  𝒜/

� ≔ 	𝒜/
� \{𝑗} 

22:  𝑆𝑈: requests and obtains the information of 

𝒜�p
�  from 𝐷𝑁�p

�  

23:  𝒜�p
� ≔ 	𝒜�p

� ∪ {𝑗} 
24:  if 𝒜�p

� ∈ ℎ(𝑗) then 
25:  𝒜�p

� :=	𝒜�p
� \{𝑗} 

26:  𝒜/
� ≔ 𝒜/

� ∪ {𝑗} 
27:  else 
28:  

𝑆𝑈:	computes 𝑢:
𝒜�p

�

≔ 𝑣(𝒜�p
� )/|𝒜�p

� | 
29:  

if 𝑢:
𝒜�p

�

≤ 𝑢:
𝒜B
(�)

then 
30:  𝒜�p

� :=	𝒜�p
� \{𝑗} 

31:  𝒜/
� ≔ 𝒜/

� ∪ {𝑗} 
32:  end if 
33:  end if 
34:  end if 
35:  end if 
36:  end if 
37:  𝑆𝑈:	adds its current coalition to ℎ(𝑗) 
38:  end for 

 
The algorithm above provides some improvements to the 

hedonic coalition formation algorithm on which it is based. 
The key improvement is faster convergence time. This is 
achieved by allowing multiple SUs to perform channel sensing 
and access during one time frame. Priority is based on the 
generation of a standard normal random variable, with a 
higher number denoting higher priority. The original 
algorithm allows only the SU with the highest priority to sense 
and access a channel in a time frame. The updated algorithm 
allows any SU to do so provided: 
1. It has the highest priority in its channel’s coalition. 
2. There is no SU with a higher priority that has selected its 

current channel as a target for sensing and access. 
3. The target channel it has selected for sensing and access 

does not have a higher priority SU in its coalition. 
 
Thus, multiple SUs can perform channel sensing and access 

in the same time frame resulting in greater spectrum usage and 
there is no contention or instability in the network. The 
updated algorithm involves more processing steps that the 
original one. A study on the computational complexity of the 
new and updated algorithms and other similar algorithms will 
be useful. During message passing, apart from SUs sharing a 
standard random standard normal number that they each 
generate, they also share details on their incumbent and target 
channels. The random number can be sent in single precision 
floating point format that requires 4 bytes and the channel 
information can be sent as 1 byte unsigned integers to support 
up to 256 channels. Therefore, an extra 2 bytes of information 
will be sent.  For each time frame, there is an incumbent 
channel and a target channel for a SU that is part of a 
coalition, an example is shown in Fig. 5. for the original 
algorithm. 
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Fig. 5. Channel sensing and access by time frame with original algorithm. 

 
An example for channel sensing and access when using the 

updated algorithm is shown in Fig. 6. 
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Fig. 6. Channel sensing and access by time frame with updated algorithm. 

V. PERFORMANCE 

A. Simulation Parameters 
The nodes in the network were randomly distributed in a 

square area with dimensions 100m x 100m. The original 
algorithm was compared to the adapted algorithm for dynamic 
spectrum sensing and access. The main metric used for 
comparison was the average utility of SUs in the network. 
Different simulation parameters were varied to determine their 
effect on the average network SU utility. The default 
simulation parameters that were used are shown in Table I.  

When investigating the effect of the number of iterations on 
the average network utility, the algorithms were run up to 300 
iterations, where it was observed that they were close to 
converging to a point of equilibrium where the average utility 
remains stable. The simulations were run 1000 times and the 
results were averaged. When investigating the effects of 
varying some of the simulation parameters, the algorithms 
were run to 200 iterations, where it was observed that they 
were not yet close to a point of equilibrium and the benefit of 
using one algorithm over the other was more pronounced.  

A comparison follows below of the new fast convergence 
dynamic spectrum sensing and access algorithm (DSA-FC) to 
the original dynamic spectrum sensing and access (DSSA) 
algorithm [25]. A variation of the new algorithm that makes 
use of the AND decision rule (DSA-FC*) is also compared to 
the original algorithm with the same change in decision rule 
(DSSA*) 

TABLE I 
SIMULATION PARAMETERS 

Parameter Description Value 

𝐶 Number of channels 50 

𝐷 Number of secondary users 100 

𝐵 Channel bandwidth 10 MHz 

𝑇 Frame duration 100 ms 

𝑓Z Sample frequency 1 kHz 

𝑃Zl SU transmit power 100 mW 

𝜎Z,/X  PU transmit power 100 mW 

𝑃ZZ SU sensing power 100 mW 

𝜀 Detector threshold 0.2 mW 

𝜎W,/X  Noise power 0.1 mW 

𝑃@A,B  Probability 𝑃𝑈/  is active 0.8 

𝛿 Sensing duration 5 ms 

𝜆 Unit penalty per second 100 

𝑔/,:
X
 

Average channel gain between 𝑃𝑈/  and 𝑆𝑈:  
with a distance of 𝑑/,:  between them and a 
path loss exponent 𝛾 set to 2 

1
𝑑/,:
�  

ℎ/,:
X
 

Average channel gain between secondary 
user transmitter receiver pair 𝑆𝑈:  in channel 
𝑖 with a distance of 𝑑:,/  between them and a 
path loss exponent 𝛾 set to 2 

1
𝑑:,/
�  

B. Coalitions 
The number of coalitions available to join corresponds with 

the number of channels available. Nodes in the same coalition 
operate in the same channel. Fig. 7 shows the coalitions that 
were formed for a network with 10 PUs and 30 SUs using the 
DSA-FC algorithm. The color of the node depicts the coalition 
the node is a part of. 

Initially, all SUs are in the same coalition. As more 
iterations of the algorithm are run, the SUs get spread out 
among the different coalitions. The distribution of SUs among 
the different coalitions is shown in Fig. 8 for a network with 
10 coalitions and 300 SUs for the different algorithms. This is 
an indication of how many SUs are in each coalition, but does 
not show which SUs are in each coalition. The organisation of 
SUs across the coalitions is what the spectrum sensing and 
access algorithm seeks to optimise and is reflected in the 
average utility of the network. 

 



 

 
Fig. 7. Coalitions formed in network with 10 PUs and 30 SU pairs. 
 

 
Fig. 8. Membership of coalitions formed in network with 10 PUs and 300 SU 
pairs. 
 

When considering how coalitions are formed, it can be seen 
that there is not an even distribution of SUs among the 
different coalitions; however, the number of SUs in each 
coalition is quite similar. This is likely because the utility that 
SUs will obtain is based on channel characteristics as well as 
coalition membership. A coalition in which the PU is far away 
from a particular SU is generally undesirable, because of the 
relatively low channel gain; however, should the channel be 
largely unoccupied, then this makes it attractive. There is, 
therefore, interplay between the channel gain and how 
congested a channel is. The net effect observed is that the 
Nash stable partition spreads SUs across the different channels 
fairly evenly, which suggests that SUs will be part of a 
coalition where the PU is closer to them and they receive a 
higher channel gain and therefore higher utility. 

C. Average Utility per Iteration 
The average SU utility per iteration is shown in Fig. 9. It 

can be seen that the adapted algorithm does converge faster 
than the original one. After several iterations, the partitions for 
both the adapted and the original algorithms are Nash stable 
and the utility is the same. The advantage here is fast 

convergence. When looking at the algorithm, this result it is to 
be expected, as going from just one SU performing channel 
sensing and access per time-frame to multiple SUs performing 
this action in a time-frame suggests that the coalition game 
should converge faster. Apart from fast convergence, the fact 
that the multi-user channel sensing and access is done in a way 
that ensures that there is no contention and instability in the 
coalition game is advantageous. What happens is that if a 
channel has members that are part of its coalition, one of them 
will have an opportunity to do sensing in that channel. This is 
in contrast with sensing being performed in one channel across 
the whole network. The adapted algorithm also ensures that 
there is no likelihood of a SU migrating to a channel that 
another SU has chosen to migrate to, which would result in 
contention and inaccurate expected utility in the new channel. 

 

 
Fig. 9. Average SU utility vs. iteration. 
 

The choice of decision rule is shown to have a marked 
difference in the results obtained. The OR rule is a more 
conservative rule to use that seeks to protect PUs more and it 
results in a much higher average utility than when using the 
AND rule. When using the AND rule, it can be seen that the 
fast convergence algorithm gives a rapid increase in utility in 
the early stages of the iterations, before dropping and finally 
settling to the Nash-stable partition. The highest utility is 
obtained before equilibrium is reached. 

D. Average Utility with Number of Channels 
The average SU utility for different number of channels is 

shown Fig. 10. The adapted fast convergence algorithm scales 
much better than the original one. Here the benefits of fast 
convergence are amplified. The original algorithm takes 
longer and longer to converge as the number of channels 
increases, and the difference in average utility after a given 
number of iterations keeps increasing as the number of 
channels increases. This shows clearly that the adapted 
algorithm scales well and out-performs the original one 
significantly in this regard. 



 

 
Fig. 10. Average SU utility vs. number of channels. 

E. Average Utility with Number of Secondary Users 
The average SU utility for different number of secondary 

users is shown in Fig. 11. When the number of SUs is low the 
adapted algorithm performs better but as the number of SUs 
increases the difference becomes less and eventually they 
converge to the same utility. 

 
Fig. 11. Average SU utility vs. number of SU pairs. 

F. Average Utility with Probability of Primary User 
Activity 
The average SU utility for different probabilities of primary 

users being active is shown in Fig. 12. When the primary user 
activity is low, a higher average utility is achieved using the 
original algorithm, whereas when its high, the adapted 
algorithm performs better.  

 
Fig. 12. Average SU utility vs. probability of primary users being active. 

G. Average Utility with Sensing Time 
The average SU utility for different sensing durations and 

thus different number of sensing samples collected is shown in 
Fig. 13. The sensing duration seems to have a minimal effect 
when comparing the two algorithms. 

 
Fig. 13. Average SU utility vs. sensing duration. 

VI. CONCLUSION 
In this paper, approaches to open spectrum sharing were 

outlined and detailed. A spectrum model for multi-channel 
dynamic spectrum access was presented and an in-depth 
analytical account of spectrum sensing was given. The details 
of a collaborative spectrum sharing game were then presented 
from an analytical perspective, and an adapted algorithm for 
fast convergence in a hedonic coalition game was given. 
Finally, the performance of the new algorithm was compared 
to the original algorithm and it was shown that the new 
algorithm outperforms the original one in terms of 
convergence time. This has strong implications in industrial 
settings because faster convergence time means shorter 
network setup time and greater scalability as the size of the 
network grows. Possible future work includes evaluating the 
algorithm with a dynamic channel occupancy model.  
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