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Abstract

The hindered-settling velocity function for the modelling, simulation and control of sec-

ondary settling tanks can be determined from batch tests. The conventional method is to

measure the velocity of the descending sludge-supernatant interface (sludge blanket) as the

change in height over time in a vessel with constant cross-sectional area. Each such exper-

iment provides one point on the flux curve since, under idealizing assumptions (monodis-

perse suspension, no wall-effects), the concentration of sludge remains constant just below

the sludge blanket until some wave from the bottom reaches it. A newly developed method

of estimation, based on the theory of nonlinear hyperbolic partial differential equations, is

applied to both synthetic and experimental data. The method demonstrates that a sub-

stantial portion of the flux function may be estimated from a single batch test in a conical

vessel. The new method takes into consideration that during an ideal settling experiment in

a cone, the concentration just below the sludge blanket increases with time since the mass

of suspended solids occupy a reduced volume over time.

Keywords: identification, inverse problem, partial differential equation, sedimentation

˚Corresponding author
Email addresses: rburger@ing-mat.udec.cl (Raimund Bürger), julio.careaga@math.lth.se (Julio

Careaga), stefan.diehl@math.lth.se (Stefan Diehl), U26015383@tuks.co.za (Ryan Merckel),
jesus.zambrano@mdh.se (Jesús Zambrano)
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1. Introduction

The simulation and control of sedimentation in primary and secondary settling tanks in 

water resource recovery facilities relies on calibrated models. The time variation of the 

physical properties of biological sludge makes it necessary to recalibrate repeatedly. This 

limitation calls for efficient methods that are based on simple experiments. Calibration of a 

model requires solving an inverse problem, which means that given the initial data and the 

solution of a differential equation, unknown material-specific model parameters or even entire 

constitutive functions appearing in the equation are determined. In the present paper, we use 

observations from an experiment as inputs to the inverse problem to estimate the unknown 

flux function of a partial differential equation (PDE). This is what we call a method of 

estimation. The unknown batch-settling flux function is the product of the hindered-settling 

velocity and concentration, and it appears in any model of sedimentation in any dimension.

Inverse problems are sensitive to measurement errors and often ill-posed; different sets of 

parameter values may produce the same output. In practice, measured data are compared to 

the outputs of the model. The most common way is a perform a batch test of an initially 

homogeneous suspension in a cylindrical vessel (Torfs et al., 2016b) and measure the position 

of the sludge blanket level (SBL) as a function of time. After a possible short induction 

period, when stirring turbulence has ceased and some flocculation may have occurred, the 

SBL descends at constant velocity corresponding to a straight line in a height-versus-time 

plot. This gives the hindered-settling velocity for the concentration below the SBL, which is 

equal to the initial concentration unless this is so high that compression is present already 

from the start. Such standard tests are used for fitting parameters of some appropriate 

settling-velocity function, the most common being the exponential function by Vesilind 

(1968) or the modified function by Tak´acs et al. (1991); see e.g. (Vesilind, 1968; Ozinsky and 

Ekama, 1995; Vanderhasselt and Vanrolleghem, 2000; Zhang et al., 2006; Iritani et al., 2009; 

Mancell-Egala et al., 2016). Compared to the many publications on sedimentation in a 

cylindrical vessel, very few exist in the case of a conical vessel (White and Verdone, 2000).
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Ramin et al. (2014) report batch experiments with measurements both of the SBL and the 

bottom concentration, which gives valuable information on how to estimate not only the 

settling flux, but also the compression function. They obtained good agreement with data 

with a model consisting of exponential functions for the hindered-settling flux and a power-

law function for the compression function. Unfortunately, the model parameters depend on 

the initial concentration C0, which makes the model difficult to use fo r continuous 

sedimentation. The difficulty of finding a compression function that is independent of the 

batch test itself is a problem not yet resolved; see also (De Clercq et al., 2005; Diehl, 2015) 

and this is out of the scope of this article.

More advanced methods of measuring batch tests giving accurate information on the 

concentration as function of location and time also below the SBL (De Clercq et al., 2005; 

Locatelli et al., 2015; Fran¸cois et al., 2016) provide much more information on hindered 

settling at intermediate concentrations and compression at higher concentrations. These 

accurate findings have led to the conclusion that the common hindered-settling function by 

Vesilind is not satisfactory when compression is taken into account (De Clercq et al., 2005; 

Diehl, 2015; Torfs et al., 2017). Although these works recommend a hindered-settling 

velocity function of the power-law type for activated sludge, it is difficult to draw any definite 

conclusion for all types of sludges. Improved estimation methods that do not rely on any 

predefined functional relationship of the settling velocity function, or equivalently, the 

settling flux function, are therefore required. One such example is the graphical method of 

Kynch (1952), by which a convex part of the flux function can be estimated from one batch 

test. Kynch’s graphical method was later expressed by means of parametric and explicit 

formulae by Diehl (2007), who also presented a new settling experiment to identify the 

concave part of the flux for lower concentrations. These methods were developed further by 

Bu¨rger and Diehl (2013). A drawback of that new settling experiment is that a special 

equipment is needed. Similar results on the estimation of a portion of the flux function from a 

conventional batch test without assuming any particular form and by utilizing piecewise 

rational functions were presented by Grassia et al. (2011); see also references therein.

Whatever the batch experiment, the procedure for estimating the flux during every-day
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Figure 1: (from Bürger et al., 2018) Conventional method (above) and new method (below) of estimating

the settling flux function. The blue scale in the vessels corresponds to concentrations obtained by numerical

simulation of the model PDE.

operation means that the SBL is measured as a function of time. A novel method by using an

off-the-shelf camera, image analysis and a multivariate shape-constrained spline model for the

automatic registration of the SBL is presented by Derlon et al. (2017). Their method could

preferably be used also for batch settling in a cone, not only for automation, but also where

accurate measurements are needed.

We here validate a novel method of estimation, which under idealizing conditions re-

quires the measurement of the SBL as a function of time during only one batch-settling test in

a conical vessel. The method (solution of the inverse problem) for vessels of different shapes

was derived mathematically by Burger et al. (2018). This in turn uses the knowl-

edge of the exact solution by the method of characteristics for first-order hyperbolic PDE

presented by B¨urger et al. (2017a), who were inspired by the work of Anestis (1981). Unfor-

tunately, this could only be done under the restricted assumption that only hindered settling

is present. The new method utilizes that under idealizing assumptions (monodisperse sus-

pension, homogeneous concentration at each height, no wall effects, etc.), the concentration

just below the SBL increases with time already from the start in a conical vessel, whereas

it is constant (for a while) in a cylindrical vessel (Figure 1).
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The purpose of this work is to validate the new method on experimental data with

activated sludge and conclude by means of synthetic data that the method can be applied

to low concentrations below which there is no compression.

2. Theoretical method

Batch sedimentation in a vessel with varying cross-sectional area Apxq,  where x is the

height measured from the bottom of the vessel, can be modelled by the following conservation

of mass PDE, where t is time and C “ Cpx, tq is the solids concentration:

Apxq
BC

Bt
“
B

Bx
Apxq fpCq ` dpCq

BC

Bx

ˆ ˆ ˙˙
. (1)

Here, fpCq “ CvhpCq is the hindered-settling flux function, where vhpCq is the hindered-

settling velocity (positive downwards, i.e., in the negative x-direction). Furthermore, dpCq “

KvhpCqdσe{dC is the compression function, where K is a constant and σepCq the effective

solids stress function which is zero below a critical concentration Ccrit, i.e., compression

occurs above Ccrit. Hence, vhpCq appears in both terms of the PDE corresponding to hin-dered

and compressive settling (B¨urger et al., 2011), and this function can also be used for

modelling discrete settling (Torfs et al., 2016a).

We now describe the solution of the PDE and two methods of solution of the inverse

problem of estimating (a portion of) the flux function f. In theory, both methods give the

same result. Consider first the PDE solution describing the traditional batch test in a

cylindrical vessel with homogeneous initial concentration C0, where we assume C0 ă Ccrit.

The concentration in a region below the discontinuity representing the SBL is constant C0,

the settling velocity is vhpC0q and one point on the flux curve can be obtained by measuring

the velocity of the descending SBL (Figure 1). Another test with a different initial

concentration gives another point on the curve, etc. In a downward-contracting vessel, the

solution of the PDE has an increasing concentration just below the SBL discontinuity from t
“ 0. In reality, this corresponds to the fact that the particles are forced to move together

when settling. The new estimation method utilizes this phenomenon and, under the

assumption that no compression is present, i.e. dpCq ” 0 in (1), the flux fpCq can
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be estimated on the entire interval C0 ď C ď Cmax, where Cmax is the maximum packing 

concentration for the material (Figure 1). Assuming that no compression is present is 
equivalent to assuming Ccrit “ Cmax.

One advantage of this new method is that, at least in theory, only one batch experiment 
needs to be performed. Another advantage is that a large part of the flux function fpCq is 

obtained without assuming any specific functional expression. As with many  methods of 

solution of inverse problems, the proposed method is sensitive to inaccurate measurements 

and noise. Another insufficiency is that it can only be used before the region of compression 
influences the SBL, which implies that it can estimate fpCq only up to some concentration 

below Ccrit. We demonstrate this by the example below using synthetic data.

Theoretically, the smaller the initial concentration C0 is, the larger the C-interval be-

comes for which the flux function can be estimated. The formulas we present here are valid 

for the most advantageous case of vessel, namely a full cone with a vertex at the bottom for 

the suspension to fill out, i.e., there should be no small flat bottom. Truncated cones, 

including other shapes of vessel, can be handled (Burger et al., 2018); however, the formulas 

are more involved and, more importantly, they are only valid up to a certain time point when 

a certain wave of concentration from the bottom reaches the SBL and this time point seems 

to be very difficult to establish experimentally.

Method of estimation

1. Perform a batch-settling test in a vessel such that the suspension fills out a cone with its 

vertex at the bottom (cf. Figure 1) and with the initial homogeneous concentration C0. 

Let H be the height of the suspension surface above the bottom vertex. Collect data 
points ptj , xj q, j “ 1, . . . , N, along the descending SBL, i.e., xj is its height at time tj .

2. Fit a curve x “ hptq to the data set ptj, xjq, j “ 1, . . . , N , for example, with a

least-squares method. In this work, hptq consists of several piecewise cubic poly-

nomials, whose coefficients are obtained from the optimization problem described

in AppendixA.
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3. The estimated portion of the flux function is given by the following parametrization:

$
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’

&

’

’

%

C “
C0H

3

hptq2 phptq ´ th1ptqq

fparpCq “ ´
C0H

3

hptq2 phptq ´ th1ptqq
h1ptq

for 0 ď t ď tN . (2)

This gives the shape of the flux function in the interval rC0, CptN qs. To obtain a full

flux, the representation in the interval r0, C0s can be a second-order polynomial ppCq

satisfying pp0q “ fparp0q “ 0, ppC0q “ fparpC0q and p1pC0q “ fp
1 

arpC0q and for the 

interval rCptN q, Cmaxs, a straight line can be fitted.

4. An approximate and explicit representation of the flux function can be obtained by a

nonlinear fit to the parametric representation fpar given by (2).

Comments and practical considerations

The core of the estimation method is formula (2), which was derived by B¨urger et al.

(2018). It gives the exact solution of the inverse problem of estimating (a part of) the flux

function f when the effective solids stress function is zero and when the data in step 1 come

from the solution of PDE (1). We emphasize that the shape of the flux as a function of C is

theoretically independent of the initial data C0, despite the parametrization (2) contains C0 

explicitly. The explanation is that also hptq depends on C0 in such a way that the entire

expression is independent of C0. This follows from the derivation by B¨urger et al. (2018).

Hence, a new experiment with a different value of C0 will only result in a change in the left

endpoint of the interval of concentrations for which the flux is estimated. The results by

B¨urger et al. (2018) also state that as long as any curve fitting function hptq that satisfies

h1ptq ă 0 and h2ptq ą 0 is used, then the parametrization (2) is indeed the graph of a function

fparpCq. The regularity of this function is of one degree less than hptq. For example, h P C2 

(twice continuously differentiable function) implies that f P C1.

The additional nonlinear curve fittings in steps 2 and 4 can be made in different (stan-

dard) ways with different functional expressions depending on the materials of the suspen-
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sion. The final estimated flux is sensitive to the accuracy of the fit x “ hptq in step 2.

Although the parametric representation of the flux function fpCq in step 3 can be used in

a simulation program, an explicit representation of fpCq (step 4) is preferred. Many such

functions have been suggested for different materials (Zeidan et al., 2003; Torfs et al., 2017).

As for preparing the experiment (step 1), a small initial concentration C0 is preferable

from a theoretical point of view since the flux fpCq can only be estimated for co  ncentrations

above C0. A small initial concentration will also reduce or avoid the often seen initial

induction period, during which turbulence due to initial stirring ceases and some flocculation

occurs. This induction period is ignored in our present method. A small C0 has, however,

practical difficulties, such as to detect the SBL.

3. Estimation using synthetic data with and without compression

We demonstrate the estimation method in Section 2 on synthetic data that are obtained

by numerical simulations of a batch test in a conical vessel by the numerical method of

B¨urger et al. (2017b) that handles the varying cross-sectional area down to zero. The flux

function is thus known (the dashed black curve in Figure 2(c)) and the method can be

evaluated with respect to its sensitivity for measurement errors and performance when

compression is present. The height is set to H “ 0.383 m (the same as in the experiments

below) and the following constitutive functions are used (Diehl, 2015; Torfs et al., 2017):

vhpCq “
v0

1` pC{C̄qn
´

v0

1` pCmax{C̄qn
, (3)

σepCq “

$

’

&

’

%

0 for 0 ď C ď Ccrit,

αpC ´ Ccritq for C ą Ccrit,

where the following parameters were chosen to be the same as in Section 4; see Figure 6: v0 “

6.2153ˆ 10´4 m{s, C̄ “ 2.3124 kg{m3 and n “ 3.8699, whereas the following parameters

were chosen without reference to any data: α “ 0.1 m2{s2, Ccrit “ 8 kg{m3 and Cmax “

30 kg{m3. The reason for the second constant term of vhpCq is only to define this function

to be zero at a high concentration Cmax. This is essential when compression is set to zero and
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Figure 2: The estimation method applied to synthetic data obtained by numerical simulations (a) with and 

(b) without compression in the model. Plots (a) and (b) show iso-concentration lines (black, marked with 
concentrations) of the simulations and markers (coloured circles) where the data points ptj , xj q are selected. 

Plot (c) shows the estimated fluxes together with the known flux function.

a power-law function for vhpCq is used, since the solution of the corresponding hyperbolic

PDE will take the maximum value at the bottom of the vessel. This feature does not appear

for numerical solutions with an exponential function like Vesilind’s, since such a function

decreases to zero very fast.
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The result of the estimation method is shown in Figure 2. From the simulation with

compression shown in Figure 2(a), 94 data points were selected along the SBL, and from the

simulation without compression shown in Figure 2(b), 98 data points were selected. In step 2
of the estimation method, the fitted curves x “ hptq consist in both cases of 19 piecewise cubic

polynomials. In Figure 2(a), the critical concentration Ccrit “ 8 kg{m3 can be traced as the 

rightmost straight line joining the origin and the SBL at time  t « 1 h. To the right of this

straight line (and below the SBL) compression occurs, which can be seen from the curved iso-

concentration contours.

Plot (c) shows the anticipated result that the estimated flux in the case of no compres-sion

is the more accurate one. The estimated flux when taking compression into account deviates

from the true flux for concentrations over 7.5 kg{m3, which is slightly less than Ccrit “ 8 

kg{m3. An important observation is that the estimated flux function tends to zero already at 

about 10 kg{m3, which is much lower than the true Cmax “ 30 kg{m3. Moreover, for low 

concentrations, the deviations between the true and the estimated fluxes demon-strate the

sensitivity of the method for these concentrations. One possible reason for this phenomenon is
that the entire part of the estimated flux function for concentrations below 5 kg{m3 

corresponds to a small time interval in the beginning of the x “ hptq curve, where it is

descending fast.

4. Estimation using experimental data

Activated sludge was collected from the wastewater treatment plant in V¨aster˚as,

Sweden. The plant treats sewage from a population equivalent to 118,000. The treatment

process involves screening, pre-precipitation with iron sulphite, and biological treatment of

the raw municipal wastewater. Four batch tests were conducted in a 1-litre full conical vessel

with a vertex at the bottom, i.e., the horizontal cross-sectional area is zero at the bottom. The

height is H “ 383 mm and the top diameter 100 mm. The raw data of the samples are shown

in Table 1.

Figure 3(a) contains the data points (red circles) of the SBL of Experiment 1 together

with the fitted curve x “ hptq (blue), which consists of 6 cubic polynomials. The coefficients
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Table 1: Data of the sampled sludge. Each experiment was made in two replicas (a and b) and the initial

concentraiton C0 was chosen as the average of the two samples.

Exp. Dilution Filtration Total Sample Sample Conc. C0 (aver.)

(%) paper (g) mass (g) (g) (ml) (g/m3) (g/m3)

1a 48.8 0.0888 0.1008 0.0120 10.0 1200
1230

1b 48.8 0.0905 0.1031 0.0126 10.0 1260

2a 39.0 0.0897 0.1001 0.0104 10.0 1040
1045

2b 39.0 0.0885 0.0990 0.0105 10.0 105
0

3a 29.3 0.0920 0.0976 0.0056 10.0 560
570

3b 29.3 0.0900 0.0958 0.0058 10.0 580

4a 19.5 0.0900 0.0945 0.0045 10.0 450
388

4b 19.5 0.0895 0.0927 0.0032 9.8 327

of these polynomials are given in Table 2 and are obtained as the solution of a nonlinear least-

squares problem with constraints that require the function hptq to be twice contin-uously

differentiable, see Appendix AppendixA. According to the theory, the estimated flux function

is then (only) continuously differentiable. Since a cubic polynomial has four coefficients, at

least four data points in each time interval are needed. Figure 3(b) shows the estimated flux

function (blue) and its complemented parts (dashed) for low and high concentrations; see step

3 of the estimation method. The straight line for high concentra-tions has been drawn from

the last point on the blue flux curve to the chosen maximum concentration Cmax “ 30 kg{m3. 

The flux function in (b) was then used for the simulation of the four batch tests shown in plots

(c)–(f) together with the data points of the respective experiment.

The similar procedure was carried out for Experiment 4 (Figure 4). (We do not provide

the coefficients of all cubic polynomials that make up the fitted hptq.) Naturally, the best

agreement between simulation and data is obtained for the experiment that was used for

the estimation; see Figure 3(c) for Experiment 1 and Figure 4(f) for Experiment 4. The

reproductions of the other data sets were also found to be acceptable.
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Table 2: Polynomial coefficients of the fitted curve hptq “ ajt
3 ` bjt

2 ` cjt ` dj , t P Ij , where Ij is time

subinterval j “ 1, . . . , 6, for Experiment 1; see Figure 3(a).

Interval no. j Subinterval Ij [h] aj [m/h3] bj [m/h2] cj [m/h] dj [m]

1 r0, 0.06666s -0.000000 10.690564 -2.432308 0.393941

2 r0.06666, 0.13333s -48.423468 20.375258 -3.077954 0.408289

3 r0.13333, 0.2s -2.961595 2.190508 -0.653321 0.300528

4 r0.2, 0.26666s -1.481030 1.302169 -0.475653 0.288683

5 r0.26666, 1.0s -0.052430 0.159289 -0.17088
5

0.261593

6 r1.0, 5.0s -0.000157 0.002470 -0.014066 0.209319

We have earlier promised that h P C2 implies an estimated flux f P C1, i.e., there should be 

no cusps along the graph of f. That this is indeed the case also for the graph of f in Figure 
4(b) can be seen in Figure 5, which shows a zoomed view near the concentration C “ 4.8 

kg{m3.

In Figure 6, the estimated fluxes from the four experiments are shown together with a 

nonlinear least-squares fit of the Vesilind hindered-settling velocity v0e
´rVC as well as that of 

Diehl (3). If Cmax in (3) is used as a parameter in the least-squares fit, together with v0, C¯ and 
n, then the value Cmax « 12 kg{m3 is obtained. This is in agreement with the synthetic test 

where compression was used in the model; see Figure 2(c), which shows that the estimated 

flux erroneously becomes zero at a too low concentration. Since we expect some compression 
in the real data, we choose a large fixed value of Cmax “ 30 kg{m3 before the nonlinear fit was 

obtained with the remaining three parameters (v0, C¯ and n).

The two flux functions were then used for the simulation and comparison of the four 

expriments (Figures 7 and 8).

5. Discussion and conclusions

A newly developed method for estimating a large part of the hindered-settling flux func-

tion has been validated with synthetic and experimental data. The input data are measure-

ments of the descending SBL during a single batch sedimentation test in a conical vessel
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Figure 3: Experiment 1: (a) Height data of the SBL and fitted curve x “ hptq. The vertical dashed lines show

the division of the time subintervals Ij , j “ 1, . . . , 6, in which hptq equals a cubic polynomial; cf. Table 2. (b)

Identified flux function. (c)–(f) Simulation results using the estimated flux compared with data of the four

experiments: (c) C0 “ 1.230 kg{m3 (d) C0 “ 1.045 kg{m3, (e) C0 “ 0.570 kg{m3 and (f) C0 “ 0.388 kg{m3.

in which the suspension occupies a perfect cone with its vertex at the bottom. Another

advantage of the estimation method is that no advanced equipment is needed. The method
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Figure 4: Experiment 4: (a) Height data of the SBL and fitted curve x “ hptq. The vertical dashed lines

show the division of the time subintervals Ij , j “ 1, . . . , 6, in which hptq equals a cubic polynomial. (b)

Identified flux function. (c)–(f) Simulation results using the estimated flux compared with data of the four

experiments: (c) C0 “ 1.230 kg{m3 (d) C0 “ 1.045 kg{m3, (e) C0 “ 0.570 kg{m3 and (f) C0 “ 0.388 kg{m3.

has been developed for ideal suspensions that exhibit no compressive behaviour and can

therefore only be used to estimate the flux function for concentrations below the critical
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Figure 6: Estimated fluxes from Experiments 1–4 and fitted to these four are two parametrized flux functions 

(Vesilind and Diehl). The resulting parameters are for the Diehl flux (where Cmax “ 30 kg{m3 is set 

beforehand): v0 “ 6.2153 ˆ 10´4 m{s, C “ 2.3124 kg{m3, n “ 3.8699, and for the Vesilind flux: v0 “ 1.5129 ˆ 

10´3 m{s, rV “ 0.7559 m3{kg.

concentration where hindered settling is the dominant process. The initial short time pe-

riod, where the concentration increases rapidly just below the SBL, corresponds to a large

part of the flux that is estimated. Hence, the method is sensitive to measurement errors,
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Figure 7: Simulations (black) with the Vesilind flux function compared to the data (red) of Experiments 1–4 

shown in (a)–(d), respectively.

in particular, at the beginning of an experiment. This is confirmed by the examples using 

synthetic data, which can be seen as ideal: there is not a complete agreement between the 

estimated flux and known flux for low concentrations (Figure 2(c)).

Furthermore, it is very difficult to start a batch experiment with a homogeneous suspen-

sion where all particles are at rest at time t “ 0. The stirring before the start causes an 

induction period, during which time other phenomena may also occur, such as flocculation.

Induction periods in data from batch tests in cylindrical vessels can be averted via transfor-

mation (Diehl, 2015); however, it is not obvious how to do this when the cross-sectional area

varies with the height. Induction periods were also present in the reported experiments. The

length of the induction period increases with the initial concentration. Other well-known

sources of non-ideal one-dimensional behaviour are attributed to polydispersivity and wall
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Figure 8: Simulations (black) with the Diehl flux function compared to the data (red) of Experiments 1–4 

shown in (a)–(d), respectively.

effects. The experiments showed a prominent concave meniscus up to 0.7 mm in height from 

the floor of the interface.

Despite these theoretical and experimental inherent difficulties, straightforward use of the 

estimation method gave promising results. The method needs however to be developed fur-

ther both theoretically and experimentally. One theoretically-based recommendation would 

be to obtain an estimated flux with higher regularity and with only one inflection point.

Before this is done, and as we have presented here (step 4 of the estimation method), a final

fit with a standard nonlinear least-squares method can be performed to obtain parameters

of either the exponential Vesilind flux function or a power-law function. Simulations with

both fluxes reproduced the experiments satisfactorily, with the power-law function being in

slight favour, which is in agreement with the findings by Torfs et al. (2017).
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AppendixA. Fitting piecewise cubic polynomials to data

The given N pairs of data points representing the SBL x “ hptq, 0 ď t ď tN , are indexed as 

follows:

ptj, xjq, j “ 1, . . . , j2, . . . , j3, . . . , jn, . . . , N. (A.1)

Let j1 :“ 1 and jn`1 :“ N. Then the cubic polynomial no. i is fitted to the data points ji, . . . , 

ji`1 ´ 1 (and the additional last point no. N for the last subinterval no. n). We want to fit 

smooth functions hiptq that together make up the function hptq in the following way:

hptq “ hiptq “ ait
3
` bit

2
` cit` di

tji
ă t ď tji`1

, i “ 1, . . . , n, (A.2)

At the fitting points, we impose the continuity constraints

hi´1ptji
q “ hiptji

q, i “ 2, . . . , n, (A.3)

h1i´1ptji
q “ h1iptji

q, i “ 2, . . . , n, (A.4)

h2i´1ptji
q “ h2i ptji

q, i “ 2, . . . , n. (A.5)

In order to obtain a decreasing and convex hptq, it is sufficient to impose the following

constraints (Bürger and Diehl, 2013):

ai ă 0, bi ą 0, i “ 1, ..., n (A.6)

h1nptNq “ 3ant
2
N ` 2bntN ` cn ă 0, (A.7)

h2nptNq “ 6antN ` 2bn ą 0. (A.8)
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Let pi “ pai, bi, ci, diq
T and qptq “ pt3, t2, t, 1qT, such that hiptq “ pT

i qptq, and define the

vectors and matrices

p :“

¨

˚

˚

˚

˚

˚

˚

˝

p1

p2

...

pn

˛

‹

‹

‹

‹

‹

‹

‚

, xi :“

¨

˚

˚

˚

˚

˚

˚

˝

xji

xji`1

...

xji`1´1

˛

‹

‹

‹

‹

‹

‹

‚

, x “

¨

˚

˚

˚

˚

˚

˚

˝

x1

...

xn

xN

˛

‹

‹

‹

‹

‹

‹

‚

,

Qi “

¨

˚

˚

˚

˚

˚

˚

˝

qptji
qT

qptji`1q
T

...

qptji`1´1q
T

˛

‹

‹

‹

‹

‹

‹

‚

, Q “

¨

˚

˚

˚

˚

˚

˚

˝

Q1 0
. . .

0 Qn

0 qptNq
T

˛

‹

‹

‹

‹

‹

‹

‚

.

The equality constraints (A.3)–(A.5) can be written Rp “ 0 by means of the matrices

Ri “

´

qptji
q, q1ptji

q, q2ptji
q

¯T

,

R “

¨

˚

˚

˚

˝

R2 ´R2 0
. . . . . .

0 Rn ´Rn

˛

‹

‹

‹

‚

.

For the inequality constraints, we let ε ą 0 be a small number and 1mˆn denote an m ˆ n 

matrix full of ones. We define e1 “ p1, 0, 0, 0qT, e2 “ p0, 1, 0, 0qT, denote by In the n ˆ n 

identity matrix, and define

M “

¨

˚

˚

˚

˚

˚

˚

˝

In b eT
1

´In b eT
2

´

01ˆ4pn´1q q1ptNq
T

¯

´

01ˆ4pn´1q ´q2ptNq
T

¯

˛

‹

‹

‹

‹

‹

‹

‚

,

b “ ´ε
´

1T
2nˆ1, 0, 0

¯T

.

Then the inequality constraints Mp ď b imply (A.6)–(A.8). The parameters p are deter-

mined by the quadratic programming problem

minimize Jppq “ pQp´ zqTpQp´ zq
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subject to Rp “ 0, Mp ď b.

This problem has a unique solution (Bürger and Diehl, 2013).
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Novel method related to inverse problem of partial differential equation tested. 

Inputs are data of sludge blanket level of one batch settling test in a cone. 

Output is a large portion of the hindered-settling flux, or equivalently, velocity. 




