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Many studies, mostly in temperate regions of the northern hemisphere, have demonstrated that agricul
tural practices affect the composition and diversity of soil microbial communities. However, very little is 
known about the impact of agriculture on the microbial communities in other regions of the world, most 
particularly on the African continent. In this study, we used MiSeq amplicon sequencing of bacterial 16S 
rRNA genes and fungal ITS regions to characterise microbial communities in agricultural and natural 
grassland soils located in the Mpumalanga Province of South Africa. Nine soil chemical parameters were 
also measured to evaluate the effects of edaphic factors on microbial community diversity. Bacterial and 
fungal communities were significantly richer and more diverse in natural grassland than in agricultural 
soils. Microbial taxonomic composition was also significantly different between the two habitat types. 
The phylum Acidobacteria was significantly more abundant in natural grassland than in agricultural soils, 
while Actinobacteria and the family Nectriaceae showed the opposite pattern. Soil pH and phosphorus 
significantly influenced bacterial communities, whereas phosphorus and calcium influenced fungal 
communities. These findings may be interpreted as a negative impact of land-use change on soil 
microbial diversity and composition.

Significance:
•	 This report is the first of the effect of land-use changes on the diversity of the soil microbial communities 

in African grassland soils.

•	 Land-use changes influence the diversity and structure of soil microbial communities in the Grassland 
Biome of South Africa.

•	 This study serves as a baseline for future studies on South African soil microbial diversity.

Introduction
Soils represent a reservoir for a wide diversity of microorganisms such as bacteria, fungi and viruses.1 Bacteria and 
bacteriophages are typically the most abundant microorganisms present in soils, although their prevalence is highly 
variable and affected by edaphic factors such as soil mineral content and pH1,2 and by local plant biodiversity3. 
Soil microbial communities are important drivers of ecosystem functioning and climate change mitigation through 
the fixation, immobilisation and cycling of greenhouse gases.4 Plants synthesise organic matter via photosynthetic 
activities and provide energy to soil microbes through root exudates.5,6 In return, soil microorganisms provide the 
plants with critical ‘services’, including decomposition of organic matter, mineral cycling and biocontrol of soil-
borne pathogens.4,7

Land use, such as the modification of a natural ecosystem for agriculture purposes, has been proven to have 
significant effects on soil microbial communities by changing the physical and chemical properties of the soil. Such 
effects on the microbial community include changes in microbial species abundance, richness and diversity.8-11 
The effect of changing land use on the diversity of soil microbes has also been observed in grassland ecosystems. 
For example, Acosta-Martinez et al.12 studied soil bacteria diversity in a single soil type in Texas, USA. They found 
much higher bacteria diversity in soils under agriculture than in natural grassland soils, providing evidence of the 
positive influence of land use on soil bacterial diversity. The overall bacterial community diversity and composition 
in different grassland soils from across South and North America were significantly influenced with soil pH.13 
Similar results were reported in a study of bacterial communities in German grassland and forest soils.14,15 In a 
more recent study, both bacterial and fungal communities exhibited contrasting beta diversity among two types of 
European subalpine/alpine grasslands, and both bacterial and fungal communities were influenced by grassland 
type.16 However, most of these studies have been conducted in temperate northern hemisphere grasslands and 
none is directly relevant to the unique and defined biomes of South Africa.17 We argue that more geographically 
diverse comparative analyses are required in order to better understand how microbial communities are altered by 
land use.

South Africa is one of the world’s biodiversity hotspots, and is ranked third in the global list; it is composed of 
nine biomes which together contain between 250  000 and 1  000  000 species including animals and plants, 
many of which are endemic to the country.17 However, while higher eukaryotes have been intensively studied 
in southern Africa, there has been only very limited focus on the biodiversity of soil microbial communities in 
any of South Africa’s major biomes. Mpumalanga is a province in the northeast of South Africa, much of which 
is designated as Grassland Biome.17 The Grassland Biome is the cornerstone of commercial maize cropping, 
and many grassland areas have been converted to arable production. Sorghum, wheat and sunflowers are also 
farmed in the region but on a smaller scale.18 Agriculture is, therefore, one of the important economic sectors in 
Mpumalanga, with significant contributions toward national economic growth19, but with major modifications to 
much of the original natural grassland habitat.
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In this study, we evaluated the differences in bacterial and fungal com
munities across a series of paired agricultural and natural grassland 
soils in the Mpumalanga Province, South Africa. We used an amplicon 
sequencing based approach to characterise the soil bacterial and fungal 
communities and to quantify their differences across 15 sites, and related 
these differences to measured soil chemical parameters. Inventories of 
the composition and differences in the bacterial and fungal communities 
in Mpumalanga’s agricultural and natural grassland soils will contribute 
to the body of knowledge, and can provide a description of the core soil 
microbial communities in the unmodified grassland.

Materials and methods
Sample collection
The study sites are situated on the Highveld escarpment in the 
Mpumalanga Province, which makes up 6.5% of South Africa’s land 
area, and form part of the Grassland Biome.20 The climatic conditions of 
the Grassland Biome of South Africa span a rainfall gradient from about 
400 mm to >1200 mm per year, a temperature gradient from frost-free 
to snow-bound in winter, and an altitude from sea level to >3300 m; a 
spectrum of soil types occurs in the Grassland Biome, from humic clays 
to poorly structured sands.21 In April 2016, 15 paired agricultural and 
natural sites in the Grassland Biome were localised using a geographic 
information system (GIS) technology (Supplementary table  1). The 
distance between sampling sites spanned 18–240  km, and at each 
sampling site, the sampling points between the two habitat types 
(agricultural vs natural grassland soil) were approximately 200 m apart. 
At each GPS-located sampling site, five pseudo-replicate soil samples 
(50–200 mm depth) were recovered from within a 10 x 10 m quadrat. 
All pseudo-replicate samples from each habitat type (agricultural vs 
natural grassland soil) were bulked into a single sample. This process 
was repeated for all 15 sampling sites, resulting in a total of 30 soil 
samples (15 agricultural and 15 grassland soils). The samples were 
transported to the laboratory at 5 °C and stored at -20 °C for subsequent 
DNA extraction.

Analysis of the soil chemical parameters
Nine soil chemical parameters were analysed to evaluate their influence 
on the structure and composition of the soil bacterial and fungal 
communities. Soil pH was measured using a Crison pH meter (Crison 
Instruments, Barcelona, Spain) from the supernatants of 1:2.5 (g/g) soil/
deionised water suspensions, after soil particles had settled after 2 min 
of vigorous shaking.22 Total inorganic phosphate was measured from the 
supernatant of 4 g of soil in 39 mL of the Bray-1 solution after 1 min of 
vigorous shaking and filtration through Whatman paper.23,24 Extractable 
cations (K, Ca, Na, Mg) were measured from the supernatants of 
1:10 (g/g) soil/ammonium acetate suspensions.24 Total carbon content 
was determined by oxidation with potassium dichromate and sulfuric 
acid as described previously.24 Total ammonium (NH4) and nitrate (NO3) 
contents were analysed by Bemlab (Pty) Ltd (Strand, Western Cape, 
South Africa) using standard protocols.

Genomic DNA extraction, amplification and high-throughput 
sequencing
Genomic DNA was extracted from 0.25 g soil (dry weight) using the 
PowerSoil DNA Isolation Kit (Mo Bio Laboratories Inc., Carlsbad, CA, 
USA) within 48 h of sampling, following the manufacturer’s instructions. 
Soil samples were ground with an electric Powerlyser (Mo Bio 
Laboratories Inc.) before further processing. Aliquots of 5 µL of genomic 
DNA were premixed with GelRedTM Nucleic Acid Gel Stain (Biotium, 
Hayward, CA, USA), separated on 1% agarose gels and visualised under 
UV light to determine the success of the extraction.

DNA amplification was done at MRDNA (www.mrdnalab.com, Shallo
water, TX, USA) sequencing facility in a 30-cycle PCR, using the 
HotStarTaq Plus Master Mix Kit (Qiagen, Germantown, MD, USA). For 
bacteria, 16S rRNA gene V4 variable region PCR primers 515/80625 were 
used. For fungi, internal transcribed spacer region (ITS) primers ITS1f 
and ITS426 were used. The thermal cycling conditions for amplification 
of the two gene regions were as follows: 94  °C for 3 min, followed 

by 28 cycles of 94 °C for 30 s, 53 °C for 40 s and 72 °C for 1 min, 
with a final elongation step at 72 °C for 5 min. After amplification, PCR 
products were checked on 2% agarose gels to determine the success of 
amplification and the relative intensity of bands. Multiple samples were 
pooled together (e.g. 30 samples) in equal proportions based on their 
molecular weight and DNA concentrations. Pooled samples were purified 
using calibrated Ampure XP beads. Pooled and purified PCR products 
were used to prepare DNA libraries following the Illumina TruSeq DNA 
library preparation protocol. High throughput sequencing was performed 
at MRDNA on a MiSeq platform following the manufacturer’s guidelines.

Sequence analysis
Sequences were processed using Qiime V1.9.1.27 Bacterial and fungal 
sequences were analysed independently. Firstly, the mapping file was 
checked to ensure that it is formatted correctly. Barcodes were extracted 
from the sequence reads. The split libraries command was used to 
demultiplex the fastq file and assign sequence reads to their respective 
sample according to their corresponding barcodes, using sample 
mapping information (Supplementary tables 2 and 3) at the default 
parameter implemented in Qiime. Chimeric sequences were screened 
and then removed using the USEARCH software28 and the Greengenes-
derived 16S reference database implemented in Qiime29 for archaea 
and bacteria, respectively, and the UNITE-INSD (release 7) derived ITS 
reference database for fungi. High-quality reads were clustered into 
operational taxonomic units (OTUs) at 97% sequence similarity and 
assigned taxonomy using blast search against the Greengenes database 
(for archaea and bacteria) and the UNITE-INSD database (for fungi), 
respectively. Sequences identified as singletons were removed before 
sub-sampling to a depth of 3001 (for bacteria) and 12 358 (for fungi) 
sequences per sample to ensure equal sampling effort across samples. 

Data access
The DNA sequences from this study were deposited in the Sequence 
Read Archive (SRA) of the National Center for Biotechnology Information 
(NCBI) database, with accession numbers SRR5341506 and 
SRR5341505 for bacterial 16S and fungal ITS, respectively.

Statistical analyses
All statistical analyses were conducted in R version 3.2.1.30 Differences 
in community composition were visualised using non-metric multidimen
sional scaling with Hellinger-transformed Bray–Curtis dissimilarities. 
Abiotic data were standardised (mean=0, SD=1) and the resulting data 
matrices were used to perform principal component analysis to evaluate 
differences in soil chemistry between agricultural soils and natural 
grassland soils. An analysis of similarity (ANOSIM) was performed 
to determine whether differences between habitats (agricultural vs 
natural grassland soils) were statistically significant (999 permutations, 
α<0.05). The number of shared OTUs between communities or samples 
was visualised using Venn diagrams. Differences in means for bacterial 
and fungal diversities metrics (species richness, Shannon–Wiener index, 
Simpson index and Pielou’s evenness), phyla abundance and abiotic data 
were compared using paired two-tailed Student’s t-tests. The compositions 
of major bacterial and fungal phyla were visualised using a heatmap with 
unweighted pair group method with arithmetic mean (UPGMA) clustering 
on Bray–Curtis distances after Hellinger transformation. Distance-based 
redundancy analysis was used to evaluate the effects of the environment 
on microbial community composition.31 

Results and discussion
We evaluated and compared the compositions of the bacterial and fungal 
communities in agricultural and natural grassland soils from 15 sites in 
the Mpumalanga Province in the Grassland Biome of South Africa using 
deep amplicon sequencing. We also evaluated the effect of edaphic 
factors on the patterns of the bacterial and fungal communities in the 
two habitats.

After quality filtering, removal of chimeras and singletons and sub-sampling, 
90 030 bacterial and 370 740 fungal sequences remained, clustering into 
42 866 bacterial and 9730 fungal OTUs (Figure 1, Table 1), respectively. 
Although the relative numbers of bacterial versus fungal taxa cannot be 

http://www.sajs.co.za
http://dx.doi.org/10.17159/sajs.2018/20170288/suppl
http://www.mrdnalab.com/
http://dx.doi.org/10.17159/sajs.2018/20170288/suppl


3South African Journal of Science  
http://www.sajs.co.za

Volume 114 | Number 5/6 
May/June 2018

quantified from our data, our results suggest that natural grassland soils 
are richer in bacterial taxa than in fungal taxa, which is in agreement 
with previous studies showing that soil microbial biomass in natural 
grasslands is usually strongly dominated by bacteria.32,33

Bacterial alpha diversity metrics (Shannon and Simpson diversity 
indices and Pielou’s evenness) revealed no significant difference 
(paired t-test, p>0.05) between agricultural and natural grassland soils 
(Table  1). However, natural grassland soils were significantly richer 
(paired t-test, p<0.05) in bacterial OTUs than were agricultural soils 
(Table 1), confirming the effects of land-use perturbation in decreasing 
soil microbial diversity.34,35 However, this finding contradicts previous 
studies on grassland soils, in which higher bacterial diversity was 
associated with land-use changes.11,36,37 The high level of bacterial 
genotypic richness detected in natural grassland may be explained 
by the influence of the high diversity of plant species in the grassland 
ecosystem, compared to the monoculture of agricultural crops.8,38 Plant 
species differ in the quantity and variety of their root exudates, as well 
as in the range of organic compounds in plant litter detritus: both factors 
are potential drivers of the higher microbial diversity often associated 
with more diverse plant communities.34,39-41 Our results are therefore 

consistent with the view that plant diversity promotes soil microbial 
diversity in grassland ecosystems.3

Fungal alpha diversity metrics (species richness, Shannon and Simpson 
diversity indices, and Pielou’s evenness) were significantly higher 
(paired t-test, p<0.05) in natural grassland soils than in agricultural 
soils (Figure 1, Table 1), which is also consistent with previous studies 
on grasslands.11,36,37 The relatively low fungal diversity detected in 
agricultural soils is probably as a result of land-use management 
processes such as tillage. Tillage has been shown to damage fungal 
mycelia, leading to a reduction in fungal abundance and diversity in 
the soil.42,43 However, these results should be treated with caution as 
rarefaction curves obtained for both bacteria and fungi (Supplementary 
figures 1 and 2) did not plateau, indicating that the diversity of bacteria 
and fungi in both agricultural and natural grassland soils had not been 
fully sampled.

Differences in microbial diversity in managed agricultural soils, as 
compared to natural grassland soils, have been disputed in several studies. 
Some studies reported high bacterial diversity in conventionally managed 
arable soils as well as grassland soils.32,33,36,37 Others have shown that 
extensively managed grassland soils are richer in fungi than bacteria.37,44 

Natural grassland

Agriculture

18 544 4628

1611

3491

6526

17 796

Agriculture

Natural grassland

a b

Figure 1:	 Venn diagrams of shared and unique (a) bacterial and (b) fungal operational taxonomic units between agricultural and natural grassland 
soil communities.

Table 1:	 Characteristics of sequences, diversity and richness between agricultural soils and natural grassland soils

Bacteria Fungi

Agriculture Grassland Agriculture Grassland

Raw sequences 1 910 115 1 537 765 674 574 502 509

Post pre-processing 80 112 82 105 605 544 453 965

Post sub-sample and filter† 45 015 45 015 185 370 185 370

Number of operational taxonomic units 25 070 24 322 5102 6239

Unclassified 5663 (22.6%) 5015 (20.6%) 104 (2.04%) 116 (1.9%)

Richness 2116a ±242.1 2250b ±105.4 556.4a ±176.3 748.5b ±137.8

Shannon index 7.38a ±0.37 7.54a ±0.11 3.48a ±0.8 4.09b ±0.6

Simpson index 1.00a ±0.005 1.00a ±0.0004 0.88a ±0.12 0.93a ±0.006

Pielou’s evenness 0.96a ±0.04 0.98a ±0.009 0.55a ±0.11 0.62a ±0.009

†Sub-sample depth was at 3001 (for bacteria) and 12 358 (for fungi) sequences per sample. Values are the mean ± standard deviation.

Diversity indices followed by different superscript letters are significantly different (agricultural vs grassland soils) according to paired Student’s t-tests (p<0.05).
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The contrasting pattern of bacterial and fungal diversity in agricultural 
compared to natural grassland soils has been explained by the difference 
in nutrient availability in the two ecosystems.45,46 In extensively managed 
agricultural soils, high fertility and nutrient availability derived from the 
input of fertiliser favour bacterial communities, while the low soil fertility 
characteristics of natural grassland soils favour the fungal communities.45,46 
In comparison, the factors that shape the differences in bacterial and fungal 
diversity in managed soils are still largely unknown. The bacterial and fungal 
taxa unique to agricultural soils and natural grassland soils accounted for 
the majority of the raw sequences (Figure 1, Table 1). In addition, more than 
20% of the bacterial sequences and about 2% of the fungal sequences could 
not be classified (Table 1), suggesting that these soils remain understudied.

A total of 13 prokaryotic phyla (12 bacterial phyla and 1 archaeal 
phylum) were detected in the two habitats (Figure 2), of which 
Actinobacteria, Proteobacteria and Acidobacteria were the most 
abundant (Supplementary table 4). These three bacterial phyla are 
the most dominant taxa found in soils worldwide and make up the 
large proportion of bacterial 16S rRNA sequences available in public 
databases.47,48 Seven fungal phyla were detected in the two habitats 
(Figure 3), of which Ascomycota accounted for the majority of the 
sequences (71.6% and 63.4%) in agricultural and natural grassland soil 
samples, respectively (Supplementary table 4). Both the bacterial and 
fungal phyla identified are typically ubiquitous in soils and are thought 
to be important role players in soil geochemical cycling processes.3,14

Species of the phylum Acidobacteria were significantly more abundant 
(paired t-test, p<0.05) in natural grassland soils than in agricultural 
soils (Figure 2, Supplementary table 4). Acidobacteria abundance 
is commonly reduced in soils under conventional tillage11,49, which 

may explain this pattern. This phylum includes many environmentally 
important species, which provide a wide range of functions including the 
biodegradation of cellulose, hemicelluloses and chitin, nitrate and nitrite 
reduction, and the production of antimicrobial compounds.50

The most abundant bacterial and fungal taxa accounted for at least 
10% of the total number of sequences in both agricultural and natural 
grassland soil samples. Analysis of these sequences at class, order, 
family and genus levels is shown in Supplementary table 4. At the 
class and order levels, Actinobacteria were significantly more abundant 
(paired t-test, p<0.05) in agricultural soils than in natural grassland 
soils (Supplementary table 4). These results suggest that land-use 
changes favour Actinobacteria abundance, which contradicts the 
results of previous related studies on non-African grassland soils, which 
suggested that Actinobacteria are more abundant in non-disturbed 
grassland soils than in agricultural managed soils.11,12 Actinobacteria are 
major producers of extracellular enzymes and secondary metabolites, 
and are thought to play significant roles in carbon cycling, plant disease 
suppression and enhancement of plant growth.51,52

At family level, Nectriaceae (Hypocreales) was the most abundant fungal 
family with 17.4% and 8.7% of all the fungal raw sequences in agricultural 
soils and natural grassland soils, respectively (Supplementary table 4). 
However, species of the family were significantly more abundant 
(paired t-test, p<0.05) in agricultural soils than in natural grassland 
soils (Supplementary table 4). The family Nectriaceae includes species 
of both economic and health importance. Species of the genus 
Fusarium produce mycotoxin and are both crop and opportunistic 
human pathogens.53,54
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Figure 2:	 Heatmap displaying the bacteria and archaea phyla detected. Paired-site samples are clustered based on the per cent relative abundance. Each 
row was scaled so that the mean of each taxonomic group across samples was calculated and coloured by the corresponding z-score of each 
cell. Sample names starting with A were obtained from agricultural soils while those starting with G were from grassland soils.
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Non-metric multidimensional scaling analysis showed that bacterial and 
fungal communities in agricultural soils were distinct from those of the 
natural grassland soils (Supplementary figures 3 and 4). These results 
were confirmed by an analysis of similarity (ANOSIM: Rbacteria=0.46, 
p=0.001; Rfungi=0.16, p=0.001). A principal component analysis 
showed a clear discrimination of soil chemistry between agricultural 
soils and natural grassland soils. Soil pH and Ca concentrations tended 
to be higher in natural grassland soils, while NH4, NO3, K, C, P and 
Na concentrations were higher in agricultural soils (Supplementary 
figure  5). However, only three of the chemical parameters evaluated 
(Ca, P, pH) were significantly different (paired t-test, p<0.05) between 
the two habitats (Supplementary table 5). The high concentration of 
phosphorus observed in agricultural soils may be explained by mineral 
fertilisation commonly used in agriculture practices to improve plant 
performance.55,56 Members of the soil microbial community, particularly 
bacteria, are capable of solubilising soil phosphate minerals into a usable 
form for plant uptake, which may influence the mineral concentration in 
the soil.57 The differences observed in the composition and pattern of 
the bacterial and fungal communities (according to ANOSIM analyses) 
in agricultural soils compared with those in natural grassland soils, can 
potentially be explained by the differences in the soil chemistry of the 
two habitats. In previous studies on grassland soils, soil fertilisation and 
land-use intensification have both been linked to shifts in richness and 
diversity of soil microbial communities.55,56

Using distance-based redundancy analysis, we found that the composition 
and pattern of the bacterial communities in agricultural soils compared 

to natural grassland soils were influenced significantly by both soil pH 
(R=0.008, p=0.002) and phosphorus concentrations (R=0.013, 
p=0.002) (Supplementary figure 6). Our results are in agreement with 
previous studies which have shown that soil pH and nutrient availability 
shaped soil bacterial diversity.2,9,13-15 In contrast, the differences found 
in the composition and pattern of the fungal communities between the 
two habitats were better explained by calcium (R=0.019, p=0.01) 
and phosphorus (R=0.01, p=0.004) concentrations (Supplementary 
figure 7), and corroborated previous studies.9,58

In summary, our results have shown that bacterial and fungal communities 
were significantly influenced by land-use changes, with agricultural soils 
containing distinct bacterial and fungal communities compared with 
natural grassland soils. Natural grassland soils consistently exhibited 
higher numbers of OTUs than did agricultural soils. The differences in 
microbial communities between the two habitat types were influenced 
by differences in soil chemical properties, supporting the concept that 
both soil chemical properties and microbial community compositions 
and diversities are altered after a conversion from a natural to an 
agricultural ecosystem. 

This study was focused on a single economically important biome and 
represents the first demonstration of the effect of land-use changes on 
the diversity and structure of the soil microbial communities in African 
grassland soils. The study therefore serves as the benchmark for future 
studies on South African soil microbial diversity, and for monitoring 
future changes in soil microbial communities resulting from changing 
land use and climate.
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