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Abstract

Structural equation modelling (SEM) is carried out with the aim of testing hypotheses

on the model of the researcher in a quantitative way, using the sampled data. Although

SEM has developed in many aspects over the past few decades, there are still numerous

advances which can make SEM an even more powerful technique. We propose represent-

ing the final theoretical SEM by a Bayesian Network (BN), which we would like to call a

Probabilistic Structural Equation Model (PSEM). With the PSEM, we can take things

a step further and conduct inference by explicitly entering evidence into the network and

performing different types of inferences. Because the direction of the inference is not an

issue, various scenarios can be simulated using the BN. The augmentation of SEM with

BN provides significant contributions to the field. Firstly, structural learning can mine

data for additional causal information which is not necessarily clear when hypothesising

causality from theory. Secondly, the inference ability of the BN provides not only insight

as mentioned before, but acts as an interactive tool as the ‘what-if’ analysis is dynamic.
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Chapter 1

Introduction

Structural equation modelling (SEM) is carried out with the aim of testing hypotheses on

the model of the researcher in a quantitative way, using the sampled data [31]. Although

this sampled data consists solely of observed measures, the variables in the model can be

unobserved constructs as well [16]. Due to its flexibility, SEM is preferred by researchers

in situations where one cannot simply design and conduct experiments, for example,

because of ethical concerns, or when data is not observable [1]. Although SEM has

developed in many aspects over the past few decades, there are still numerous advances

which can make SEM an even more powerful technique.

1.1 Motivation

SEM and Bayesian networks (BN) are graphical models. However, there is limited

literature on the relationship between these two techniques. While Xu et al. have used

the goodness-of-fit measures from SEM to select the best BN for their analysis [34], we

aim to augment SEM using BN. Making the connection between these two ideas in this

way can provide SEM researchers with an additional technique for analysis. Additionally,

SEM is most often used as a tool for hypothesis testing only and not for inference. By

having a BN to work with, we add prediction to the capabilities of SEM.

1
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1.2. OBJECTIVES 2

1.2 Objectives

The objectives of this dissertation are as follows:

• Address the basic aspects of SEM

• Establish a link between SEM and BN from the perspective of graph theory

• Represent classical SEM as Probabilistic SEM (PSEM) which is by definition a BN

• Conduct inferences for SEM research questions using its BN analogue

1.3 Contributions

By clarifying an additional link between SEM and BN, this dissertation provides the

SEM practitioners with another avenue with which they can conduct their research.

Furthermore, by having a BN representation of the data, practitioners can interact with

the data further through the use of what-if analysis. The BN structure for this analysis

can be based on the knowledge of the expert or can be mined from the data, using

unsupervised learning techniques.

1.4 Dissertation Outline

The outline for the rest of the dissertation is as follows:

• Chapter 2 sets the scene for SEM and BN, showing developments as well as areas

of application for SEM.

• Chapter 3 covers basic aspects of SEM by discussing its building blocks and how

they all come together to form SEM.

• Chapter 4 deals with graphical structure learning, which looks at how a graph-

ical structure can be learned from data and how this structure is a probabilistic

perspective on the data.
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1.4. DISSERTATION OUTLINE 3

• Chapter 5 applies PSEM and other types of BNs to a dataset on advertisement

and social media.

• Chapter 6 wraps everything up and gives conclusions.

The following items are discussed in the appendices:

• Appendix A describes the algorithm for MWST, using a simple step-by-step

example.

• Appendix B provides the list of questions in the Facebook dataset

• Appendix C shows the SEM on the Facebook data which was done in SPSS

AMOS
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Chapter 2

Literature review

Structural Equation Modelling (SEM) has been used by a growing number of social

scientists in the recent years. Since its inception in 1970s, SEM has been put together as

a field on its own and has seen many developments [16]. This includes applying Bayesian

methods to SEM [19], connecting SEM to causal structure, and integrating generalised

linear models and multilevel models into SEM, to name a few [16].

In this chapter we investigate the history SEM, such as how it had developed and

what it is used for. Furthermore, we look at the research fields which are applicable

to this dissertation and the work that has been done so far. Section 2.1 gives a brief

overview of the history of SEM, section 2.2 shows applications for SEM aside from the

typical social science field and section 2.3 gives discussion regarding recent extensions in

SEM, which extends SEM further into different areas.

2.1 History of SEM

Different aspects of SEM have evolved from different fields of study and their respective

challenges faced: path analysis from population genetics, factor analysis from psychology

and simultaneous equation models from economics [26].

Matsueda traced the origins of path analysis to genetics and biology [26]. A geneticist

by the name of Sewall Wright wanted to see a causal structure in his model of bone sizes

in rabbits and thus developed path analysis to achieve this task. This work, published in

4
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2.2. MODERN APPLICATIONS OF SEM 5

1918, was the first application of its kind. Factor analysis, which is a method of finding

latent variables that summarises the information of the original variables, was developed

in psychology. The aim is to obtain fewer variables which explain the covariance of

the original variables as a whole. Spearman is considered to be the developer of this

technique [32, 26]. Lastly, simultaneous equations were necessary in economics in order

to estimate parameters for demand and supply equation which feed values into each

other. This development was a work of many researchers, Haavelmo and the Cowles

Foundation (formerly known as the Cowles Commission) [26].

In 1970, the Conference on Structural Equation Models was held, which was attended

by economists, statisticians, psychologists, sociologists and political scientists [26]. The

SEM which combines path analysis, factor analysis and simultaneous equation models

started to come together in this period by academics such as Hauser and Goldberger [15]

and Jöreskog [17]. The next progress in SEM was made in the area of discrete outcomes,

which allowed for items to be measured in dichotomous or discrete scales.

Recent development in SEM has been in a multitude of areas, such as latent growth

and latent class growth models, Bayesian application to SEM, combining generalised

linear models and mixed models into SEM, as well as discovering and dealing with

causality within the SEM framework.

2.2 Modern applications of SEM

SEM is a very well-known and popular technique of choice in the field of social and

business science. However, it has been applied successfully to other fields which shows

that SEM can become an important tool for many other researchers.

Although finance, economics and accounting have not seen active use of SEM [3],

there are a few researchers who see the value which SEM can add to these fields. Kohn

et al. investigated the relationships between various economic variables (CPI, mortgage

rate, personal income) and housing prices to study the components which lead to housing

bubble in the U.S [21]. Since many of these variables are co-dependent, traditional

regression analysis can encounter the problem of multicollinearity, while SEM is able to

overcome the issue by capturing this dependency into the structural model [21]. Titman
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2.3. BEYOND CLASSICAL SEM 6

et al. paved the way for using SEM in the field of corporate finance in 1988 to analyse

the determinants of capital structure but could not obtain convincing results [33]. Chang

et al. continued this work with a different model and more data and found that growth

in firms is the strongest determinant in its capital structure [3].

Golob et el. used SEM to model how households with multiple vehicles use them,

based on the characteristics of the household and the vehicles as well as the drivers

[12]. This was done in order to be able to predict vehicle emissions as well as provide a

baseline to forecast demand for alternative fuels. Other applications of SEM in modelling

travel behaviour and travel demand can be found in [11]. In the context of education,

the effects of using social media for teaching purposes in tertiary education has been

studied by Cao et al. using partial least squares (PLS) SEM. Their findings suggest that

the use of social media “has a positive effect on student’s learning outcomes and their

satisfaction.” [2]. The continued expansion of use in SEM makes this topic an exciting

and a relevant one to study.

SEM is a graphical model consisting of directed arcs between nodes. The broader

research field of graphical models provides the opportunity to explore adaptation and

augmentation of SEM using the theory of graph theory

2.3 Beyond classical SEM

2.3.1 Learning structure

For this discussion, we depart momentarily from SEM and move into the field of Bayesian

Network (BN), which is explained in section 4.1. Hypothesising and finding the correct

structure for the measurement model as well as the structural model is what the re-

searcher wants to achieve by using a SEM. This involves extensive knowledge regarding

the data on hand as well as the broader field from which the data is acquired. Once a

suitable structure is given, the researcher can use softwares to estimate the parameters

in the model as well as the model goodness-of-fit to determine whether the hypothesised

structure is truly reflected by the data.

With a BN, there is no defined measure of goodness-of-fit, unlike a SEM. However,

both can be represented visually using a diagram. In [34], Xu et al. have drawn up simple
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2.3. BEYOND CLASSICAL SEM 7

BN structures and changed it into SEM by adding disturbance terms and evaluated the

goodness-of-fit in a Bayesian approach to select the model with the best fit. This is

slightly different from the aim of our research, where we investigate the possibility of

finding networks for SEM using BN. The topic of graphical model structure learning is

covered in chapter 4. For a more comprehensive discussion of BN and graphical structure

learning, see [28].

2.3.2 Probabilistic approach

When parameters are estimated in a SEM, their point estimates are obtained along with

the parameter variance, which is same as obtaining estimates in a regression context.

However, unlike a regression analysis where the model is often used for prediction, SEM

usually stops at the parameter estimation stage, for hypothesis testing.

Conrady et al. makes use of Bayesian Network to construct a graphical structure

similar to that of a SEM, where the observed variables are connected to “factors” (or

latent variables)and the “factors” are connected to each other [4]. These methods are

explained in section 4.4. By changing the network into a BN the network can be used

to perform inference, which is discussed in section 4.4.5. In a frequentistic approach,

parameters and their variances are estimated for building confidence intervals and sig-

nificance testing. In a Bayesian approach the parameter can belong to a number of states

with certain probabilities, and these probabilities change according to instantiation of

different variables in the network. In Bayesian perspective, a credibility interval exists,

which is similar to the confidence interval in a frequentist approach [16]. For more details

regarding the field of BN, [6], [22] and [24] are a few of many literatures available, which

provide a complete tool-kit for BN.

2.3.3 Bayesian SEM

With improving technology and computation power, many statistical techniques have

been developed and improved in the last few decades: Bayesian Statistics is no exception.

At its simplest, Bayesian estimation comes down to rearranging conditional probability

formula and calculating the probability of finding the variable of interest in a certain
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2.4. SUMMARY 8

state (known as the posterior distribution), given the data on hand. An example is

given in section 4.4.5.

The estimation of parameters is done by Markov chain Monte Carlo (MCMC) sam-

pling technique. The idea is to “instead of attempting to analytically solve for the

moments and quantiles of the posterior distribution, MCMC instead draws specially

constructed samples from the posterior distribution of the model parameters” [16]. The

sampling process is repeated for many iterations, until the range of values around which

the parameters fluctuate stabilises. Once this stabilisation occurs, the necessary statis-

tics, such as the posterior means and standard deviations are calculated, based on the

stable set of values [16]. Bayesian SEM comes with its own metrics for goodness-of-fit,

such as posterior predictive checks and deviance information criterion [16]. It is also one

way of dealing with missing values in SEM [19].

Bayesian SEM, as can be seen, has to do with estimation of SEM parameters by

following a Bayesian perspective. This is quite different from what this dissertation aims

to do, since the work here is more about graphically connecting SEM to a BN.

2.4 Summary

In this chapter, we had a brief look at some of the current research around SEM and BN

and how it differs from what this dissertation is set to investigate. In the next chapter,

we go to the basic building blocks of SEM and establish what type of information is

gathered by performing a SEM.
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Chapter 3

Classical Structural Equation

Modelling

SEM is a multidisciplinary field which has been developed by combining elements from

Genetics, Psychology and Economics. It is a model which consists of both observed and

unobserved variables and depicts the relationship graphically to make the interpretation

easier. The graphical depiction of the model which uses arrows to connect variables is

known as a path diagram. In this chapter we provide an operational overview of SEM,

such as why it was developed and what it is used for. The development of a SEM is a

systematic process which consists of several elements. We cover the basic elements of

SEM in isolation to see what purpose they serve when used as a part in SEM.

Section 3.1 discusses Factor Analysis (FA), Path Analysis (PA), simultaneous-equation

models, Confirmatory Factor Analysis (CFA) and SEM. Section 3.2 looks at how to de-

termine whether the developed model is adequate and in Section 3.4 we wrap up the

contents of the chapter.

3.1 Elements of SEM

SEM is often used in the field of social science, business and marketing [28] to model

abstract concepts such as intelligence, attitude, and inclination. Typically an observable

dataset consists of a test or a survey that measures different aspects of an unobservable

9
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3.1. ELEMENTS OF SEM 10

concept. Although we cannot directly measure someone’s inclination towards becoming

an entrepreneur we can be fairly confident that a person is inclined to become an en-

trepreneur if we know that the respondent strongly agrees to being his/her own boss

and taking a lot of risk, when given a survey. The SEM practitioner then performs

exploratory factor analysis to determine the appropriate number of factors to include

in the model. It takes sufficient knowledge of the data to understand what each factor

represents as well as to establish the path between the factors. The model is then fitted

and evaluated and the practitioner can interpret the result. A schematic representation

of the overall process of conducting a SEM is shown in figure 3.1.

Factor analysis

Define latent variables

Define path (structural model)

Estimate and evaluate 
various coefficients

Expert task

Figure 3.1: Schematic representation of modelling process.

3.1.1 Factor Analysis

Factor analysis is a statistical technique that allows one to derive latent (unobservable)

variables from manifest or indicator (observed) variables. This is done by measuring

the correlation or covariance matrix of the manifest variables to see if certain sets of

variables tend to move together. Once this is confirmed, one can reason that a variable

which is not measured in the data (latent variable) can cause a number of variables to all

increase or decrease. These latent variables are also known as factors, hence it is called

factor analysis.
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3.1. ELEMENTS OF SEM 11

3.1.1.1 Latent Variables

Typically in Statistical modelling, one would work with data that was directly observable

that could be measured in some units, such as currency, time or any other quantity. With

factor analysis, we aim to infer the presence and effect of variables which are unobservable

or not directly measurable. These unobservable variables are known as latent variables

and they can be used to explain the covariation of manifest variables [30]. Although it

is not covered here, it is perhaps worth mentioning that factor analysis can be used as a

dimension reduction technique [16]. If there are many observed variables that are highly

correlated, they can possibly be summarised into a few factors and make the model

parsimonious and handle multicollinearity at the same time. This technique is known as

factor analysis regression [23].

3.1.1.2 Exploratory Factor Analysis

There are two kinds of factor analysis - exploratory factor analysis and confirmatory

factor analysis [16]. The latter will be elaborated later in the chapter, for now we will

focus on the former. As the word exploratory implies, this kind of factor analysis is used

to explore the data: one would not know how many factors are appropriate for the data

and would thus look for the suitable number of factors to include in the model. This will

typically not form a part of a SEM, as one of the theories tested in a SEM is whether the

factors are well represented their manifest variables in the confirmatory factor analysis.

Hence optimising the model based on the results of EFA and moving on to SEM will

artificially improve the results. Nevertheless, the researcher can use EFA to get a better

idea of the data on hand.

Typically, one would hypothesize that the factors are the underlying causes of the

variations in manifest (indicator) variables. This can be seen in Figure 3.2 as the arrows

are drawn from ovals to rectangles. This would be the case when the manifest variables

are highly correlated and are called reflective indicators [14]. For example, a person

who is generally clean (factor) is expected to have a clean house, dress neatly and be

hygienic (indicator variables). Of course, the reverse relationship is also possible where

the indicator variables determine the factor. In such cases the indicator variables do not

necessarily have to be highly correlated. For example, being physically healthy (factor)
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3.1. ELEMENTS OF SEM 12

F1

F2

V1

V2

V3

V4

U1

U2

U3

U4

b11

b21

b32

b42

d1

d2

d3

d4

Figure 3.2: 4 variable, 2-factor model.

is a product of a number of conditions, such as exercising often, getting sufficient sleep

and limiting consumption of high calorie food products (indicator variables). In this case

the manifest variables are called formative indicators [14].

It is convention to represent latent variables in ovals and manifest variables in rectan-

gles. F1 and F2 are known as common factors, since they have influence over more than

one manifest variable. V1 − V4 are the manifest variables and U1 − U4 are called unique

factors. These unique factors capture all the influence to a single manifest variable,

which is not captured by the common factors and can include disturbance terms.

It can be seen that the arrows for common factors are accompanied by the coefficients

such as b11, b21, .... These coefficients are known as factor loadings and the two numbers in

bxy indicate “the factor loading from factor Fy to variable Vx”. For example, b32 indicates

that this is the value of factor loading from F2 to V3 [30]. When one assumes that the

factors are orthogonal, or uncorrelated, these coefficients can be seen as standardized

regression coefficients (all variables have variance of 1), correlation coefficients (since the

factors, which are the predictor variables, are standardized and orthogonal) and path

coefficients.
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3.1. ELEMENTS OF SEM 13

3.1.2 Path Analysis

Path analysis offers the graphical and causal aspect to SEM. One could view path analysis

as SEM with only manifest variables. Its first application can be traced to Sewall Wright

in 1918 [26]. Path analysis can be thought of as an extension of multiple regression and

can be estimated by using ordinary least squares (OLS), maximum likelihood (ML) or

Two-Stage Least Squares (2SLS), which is a more developed version of OLS [9].

In figure 3.3, arrows from one variable to another indicate the causal paths. Naturally,

the direction of causation is from the variable at the base of the arrow to the tip of it.

For example, in figure 3.3 we can say that A causes D while B also causes D via C. Any

variable with the tip of the arrow towards it is called an endogenous variable, while any

variable with no arrow pointing towards it (with the exception of error terms) is called

an exogenous variable. A and B are exogenous, while C and D are endogenous. The

double-headed arrow indicates correlation or covariance between exogenous variable and

we can see that there A and B covary in figure 3.3.

A

B

D

C

Figure 3.3: Recursive path diagram

The path from A to D is known as a direct path, while the path from B to D is

an indirect path, since an intervening endogenous variable is in the path [9]. A path

coefficient can be determined for each of these paths, which is a standardized regression

coefficient that shows the direct effect of the explanatory variable on the response variable

[9]. Note that in figure 3.3 there are no loops created by single-headed arrows. This type

of model is referred to as a recursive model [30]. In contrast, there is a cycle in figure

3.4, where C feeds into A, A feeds into D and D feeds into C. These models are referred

to as non-recursive models and working with them poses additional challenges.
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3.1. ELEMENTS OF SEM 14

A

B

D

C

Figure 3.4: Non-recursive path diagram

3.1.3 Simultaneous-Equation Models

While path analysis offers a way to visualise the model, simultaneous-equation model

offers the technical capability of parameter estimation. Often in SEM, identification is

a crucial topic, which is defined as ”going to the known information to the unknown

parameters.” A model with p variables has p(p+ 1)/2 known information. The unknown

parameters here include all parameters in the model, such as structural coefficients,

variances and covariances [16]. Identification has to do with whether a parameter or a

coefficient can be determined. When there are more variables than equations, the system

of equations are under-identified and a unique solution cannot be obtained. When there

are same number of equations as the variables, the system is just-identified and it will

always result in the same solution. When there are more number of equations than

variables, the system is over-identified and typically this is the preferred case, since

confirmatory tests can be performed the answers for parameters [20].

When working with recursive models, the model will always be identified and specif-

ically over-identified as long as not all variables are linked to every other variables by a

single or a double-headed arrow [30]. Figure 3.5 is an altered form of figure 3.3 so that

all variables are connected. There are 5 path coefficients and 1 covariance parameter

to be calculated. Additionally, the variance of each exogenous variable as well as error

variance of each endogenous variable must be obtained, hence there are 10 parameters

to be calculated in this diagram. With 4 variables, the number of known information is

4(4 + 1)/2 = 10, therefore there are as many unknowns as the knowns and this model is

just-identified. Typically we restrict certain paths to have a coefficient of 0, effectively

eliminating the path from the diagram and then the model would be over-identified.
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3.1. ELEMENTS OF SEM 15

A

B

D

C

VAR?

VAR?

E?

E?
C?

P?

P?
P?

P?

P?

Figure 3.5: Just-identified path diagram

Following the notations of Murphy [28], equation 3.1 represents how a SEM is defined

xi = µi +
∑
j 6=i

wijxj + εi (3.1)

where x are the variables in the model, µ are mean of each variable, wij is the coefficient

from variablej to i and ε are measurement error for each variable, where ε ∼ N(0,Ψ).

This model can be rewritten in matrix form as follows

x = Wx + µ+ ε

x−Wx = µ+ ε

x(I−W) = µ+ ε

x = (I−W)−1(µ+ ε)

(3.2)

The joint distribution is then given by p(x) = N(µ,
∑∑∑

) where∑∑∑
= (I−W)−1Ψ(I−W)−T (3.3)

where (I−W)−T is the transpose of (I−W)−1

This model implied variance-covariance matrix
∑∑∑

is then compared with the sample

covariance matrix S and the aim is to reduce the difference between the two matrices

as much as possible. A number of techniques, including but not limited to, maximum

likelihood, least squares estimation and the Bayesian method, exist to perform this task

[16].
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3.1. ELEMENTS OF SEM 16

3.1.4 Confirmatory Factor Analysis

A SEM consists of two parts: measurement model and structural model. The mea-

surement model looks at the relationship between the latent variables and their man-

ifest variables while the structural model looks at the relationship between the latent

variables[16]. In conducting a CFA, we are interested in seeing whether the the observed

variables represent the latent variables sufficiently well, before moving on to test the

relationships between the latent variables in SEM.

In figure 3.6, which is similar to figure 3.2 the two factors are assumed to covary.

When performing a CFA, covariance is estimated for each pair of factors. Furthermore,

the variance of each error term E must be calculated and the significance of the factor

loadings, variances and covariances are tested at the evaluation step.

F1

F2

V1

V2

V3

V4

E1

E2

E3

E4

b11

b21

b32

b42

C

Figure 3.6: Confirmatory factor analysis

3.1.5 Structural Equation modeling

Once a satisfactory measurement model has been obtained, the structural model is esti-

mated and evaluated. While the latent variables were all simply correlated to each other

in CFA, they are dependent on each other in SEM, meaning that their relationships are

assumed to have a certain direction [30]. These directional assumptions should come

from extensive knowledge in the data and the field of study. Ultimately, a researcher

performs SEM to fit the measurement and structural model to the data and obtain a
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3.2. EVALUATION 17

good fit so that it can be used for interpretation [30].

It is perhaps worth mentioning that there are two kinds of SEM in use: covariance-

based “traditional” SEM and variance-based Partial Least Squares (PLS) SEM. In PLS,

the aim is to maximise the variance of dependent variables explained by the independent

variables. One instance where it is helpful to use PLS is where latent variables have many

indicator variables [14].

Figure 3.7 shows a very simple SEM which is developed from figure 3.6. Typically

the latent variables are arranged so that the direction of influence is from left to right.

Also, it is advised that each factor gets at least 3 indicator variables. Here, only two

manifest variables are used for compact illustration purposes. In the estimation stage

of SEM, the measurement models are once again validated, the manifest endogenous

variances (denoted by E) as well as the latent endogenous variances (denoted by D) is

estimated and evaluated. Additionally, all structural paths (directional paths between

latent variables) are estimated and evaluated.

F1F2

V1

V2

V3

V4

E1

E2

E3

E4

b11

b21

b32

b42

D1

Figure 3.7: Structural equation model

3.2 Evaluation

When working with models with latent variables in social sciences, their reliability is

typically confirmed using average variance explained (AVE) and composite reliability

(CR). Reliability is a measure which quantifies the percentage of variance in an observed

variable explained by the latent variable [30]. If there are little measurement errors, the

reliability coefficient will be high. The minimum recommended values are 0.5 and 0.7

for AVE and CR, respectively.

With both CFA and SEM, the significance of factor loading in the measurement
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3.2. EVALUATION 18

model should be tested using the t-statistic. One would hope to see values higher than

1.96 in absolute value for significance at 5% or higher than 2.58 in absolute value for

significance at 1% [30].

There are many indices to measure model goodness-of-fit for SEMs. Here we present

the most frequently reported few.

3.2.1 Goodness-of-fit indices

Chi-square test tests for significance between actual covariance matrix and estimated

covariance matrix. Null hypothesis assumed no significant difference between the two.

This is rarely met because of sample size sensitivity (small difference is seen as significant

in large samples). It also requires the condition of multivariate normality, hence it is no

longer seen as viable option [30].

Three types of indices are reported frequently: absolute fit index, incremental fit

index and parsimony-adjusted index. Absolute index takes on values between 0 and 1 and

it can be thought of as an R2. But instead of measuring how much variance is explained

by the model, it measures how much the variance-covariance matrices correspond to

each other [20]. Naturally, values closer to 1 are preferred. Incremental fit index shows

how the model has improved relative to the ”baseline model” which essentially assumes

the value of 0 for covariances [20]. Parsimony index, as the name suggests, allows us to

identify the simpler model among the available models. If all models yield satisfactory

results that are of similar level, parsimony index prefers the simplest model[20].

Bentler’s CFI is a popular incremental index, where a value of > 0.94 suggests good

fit, although values between 0.9 and 0.94 are sufficient. Root mean square error of

approximation (RMSEA) is a good choice for parsimony index where values < 0.09 are

considered good, and values < 0.055 are actually more ideal. The 90% confidence interval

for RMSEA is often accompanied in the report and an interval between 0.09 and 0 is

adequate, though an interval between 0.054 and 0 preferred. Standardized root mean

square residual (SRMR) is more preferred as absolute index over chi-squared. Although

it is an absolute index, the value should be interpreted in reverse, that is, the closer the

SRMR is to 0, the better. This should be intuitive since a model which obtains a good

fit should have correspondingly low value of residuals. The ideal threshold values are
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3.3. DEFINITIONS 19

thus same as that of RMSEA [16].

In evaluating the parameter significance, bootstrapping can be used as a non-parametric

measure. This is done by sampling random observations with replacement to obtain a

new sample or dataset. A model can be fitted and parameter estimation can take place,

and all these values can be stored. This can take place many times, say 500 times, each

time resulting in different values. Then an empirical distribution can be constructed for

each collected parameter and one can verify whether a value of 0 lies within the empirical

distribution. If 0 is not in the interval, a conclusion can be made that the parameter is

significant [16].

3.3 Definitions

Table 3.1: Definitions for SEM related terminologies

Latent variable Variable which is not directly observable, also called a factor or

construct social network

Manifest variable Observable variable which can be directly measured, also called

indicator variable

Measurement model The model which depicts the relationships between the factors and

their manifest variables

Structural model The model which depicts the relationships between and among the

factors

3.4 Summary

In this chapter we introduced SEM by going through its operational steps. EFA is used

to find a suitable number of factors, path analysis and simultaneous-equation models

are used to graphically represent and mathematically estimate the parameters in the

model, CFA is used to validate the measurement model and SEM is used to validate

the structural model. The model is then evaluated using a number of indices and if it

survives a disapproval it is seen as a valid model. Appendix C shows an example of
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a SEM conducted using SPSS AMOS. In the next chapter we take a look at graphical

model structure learning, a perspective which is based different ideas but aims to achieve

the same goal of finding the right model.
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Chapter 4

Graphical Model Structure Learning

Structural equation modelling is often carried out by first building a model based on a

set of assumptions or opinions from the researcher or an expert about the structure. The

model is then tested against various criteria, such as model goodness-of-fit and parameter

significance. If no satisfactory model has been obtained, structural changes will be made

with the expectation that the alternative model will perform better. But without any

assumptions or knowledge of the field, one may not be able to find a good starting point

for creating the model. Additionally, it may be useful to have a tool to validate whether

the model which was constructed by the expert could have been obtained by another

method. In this chapter, we cover the topic of graphical model structure learning, which

provides us with methods to address the two shortcomings that have been mentioned.

A SEM is a graphical model, more specifically, a directed acyclic graph when it has

no loops or cycles. It is possible for them to contain a cycle, which can be interpreted

as a feedback loop [28]. Therefore, if we want to investigate structural learning for SEM

from the data-mining perspective, we can turn to the field of graph theory for valuable

insight.

Graphical models offer a condensed visualisation of complicated models by making

use of nodes and arcs (which are used to connect nodes) to show how variables interact

with each other. An important aspect of using a graphical model is to obtain a meaningful

structure which explains the connection as well as the direction of influence between

variables. Structure learning involves a data driven process to find the optimal network

21
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4.1. BAYESIAN NETWORKS 22

and does not rely on expert knowledge. This is not an easy task, as there are two major

issues with regards to learning structures of a graphical model: dealing with immense

number of possible networks and differentiating among equivalence classes of network

structures [24].

Section 4.1 covers the basics of Bayesian Networks which is a form of a graphical

model. The challenges in learning the structure are covered in section 4.2 and the

solutions to those challenges are discussed in 4.3. The application of the ideas are done

in section 4.4 using a dataset on survey data for perfumes and the chapter is concluded

in section 4.5.

4.1 Bayesian Networks

Before we address challenges with structure learning, we introduce basic graphical model

terminology, as well as Bayesian network and related concepts.
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4.1. BAYESIAN NETWORKS 23

4.1.1 Definitions

Table 4.1: Definitions for BN related terminologies

Tree a graph with no cycles or loops

Node a visual representation of a single variable

Edge a line or an arrow connecting two nodes, also referred to as an arc

DAG directed acyclic graph. A visual representation of a network which

uses arrows and does not contain a loop. A recursive model in SEM

terminology

Parent node nodes which have the base of the arrow attached to it. In figure

4.4c, node B is the parent node of A and C

Child node nodes which have the tip of the arrow attached to it. In figure 4.4b,

node B is the child node of A and node C is the child node of B

Root node a node with no parent nodes

Leaf node a node with no children nodes

Instantiate to set evidence onto a node

4.1.2 Introduction

A Bayesian Network (BN) is a graphical model with nodes as variables and arcs (arrows

or edges) representing causal connections [22]. Each node has a number of states, which

are the possible values the variable can take on. The field of graphical models was

developed from graph theory and probability theory [24], and accordingly a BN consists

of two parts: graphical part which indicates local dependencies through the use of arcs

and probabilistic part which shows the relationship between the two connected nodes [5].

The graphical part, which is the structure of the BN, is also called the directed acyclic

graph (DAG)[24].

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.1. BAYESIAN NETWORKS 24

A

B C

Figure 4.1: A simple DAG

Figure 4.1 is an example of a DAG. Once this is accompanied by a probability table

for each node, it becomes a BN. Because node A is a parent node (it does not depend on

any other node) the probability table for A will be marginal, meaning that it will only

consist of probabilities of observing its states. Nodes B and C are child nodes, since

they depend on node A, so the probability of their states will depend on what the state

of node A is. Hence their probability tables will be conditional.

A simple illustration of how to use a BN is given in section 4.4.5.

It is possible for independent events to become dependent given new evidence and

vice versa. Mathematically, event α is conditionally independent of event β given event

γ if and only if Pr(α|β, γ) = Pr(α|γ) [6]. In other words, when event γ is known, event

β does not add any more information. This idea of conditional independence is what

makes BNs computationally feasible and is further explored in section 4.1.3.

4.1.3 d-separation

A chain of nodes can be categorised into 3 groups: chain, fork or v-structure [28].

• chain: The arcs flow in the same direction (X → Y → Z)

• fork: the arcs diverge from a node (X ← Y → Z), as shown in figure 4.1

• v-structure: the arcs converge into a node (X → Y ← Z)

The nodes X and Z are conditionally independent given that node Y contains evi-

dence (node Y has been set to a specific state), in a chain and a fork. In other words,
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4.2. CHALLENGES WITH STRUCTURE LEARNING 25

information cannot flow between X and Z if Y has been set to a particular state. How-

ever, X and Z are conditionally independent in a v-structure if neither Y nor any of its

descendants contain evidence. This principle is known as d-separation [28]. Of course,

multiple nodes can be entered in the place of X, Y and Z in the above example. One

must simply find all paths leading from X to Z to confirm whether they are d-separated.

When checking for d-separation in a DAG structure, only the directions of arcs for v-

structures must be kept- chains and forks can be plain edges without an arrowhead and

this can make the graphical verification easier. Building onto this idea, a set of nodes

that d-separates a node m from all other nodes in the network is known as m’s Markov

blanket[28]. Figure 4.2 shows the markov blanket (nodes with red dotted border) for the

node V ar3.

Var1

Var4

Var5

Var8

Var3

Var2

Var6

Var7

Figure 4.2: Markov blanket of V ar3

4.2 Challenges with structure learning

4.2.1 Search Space

The first problem encountered in learning the structure of graphical models is that the

possible number of graphs increases super exponentially as the number of nodes increases.
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The formula is given by a recursive formula [29]:

N(d) =
d∑
i=1

(−1)i+1

(
d

i

)
2i(d−i)N(d− i) (4.1)

where d = number of nodes and N(d)= possible number of networks based on d

nodes. Table 4.2 shows the values of N(d) for values of d = 0 to 7.

Table 4.2: Possible number of networks for different values of d.

d N(d)

0 1

1 1

2 3

3 25

4 543

5 29281

6 3781503

7 1138779265

With so many possible networks, it would be impossible to store all the different

structures to be analysed, let alone go through all possibilities to obtain the global

optimum [28].

4.2.2 Markov equivalence

Two graphs which are Markov equivalent contain the same conditional independence

assumptions. This means the graphs which are Markov equivalent belong to the same

Markov equivalence class and this happens when the undirected skeleton and the v-

structures of the graphs are the same. Put differently, “different graphs that share exactly

the same d-separation properties are said to be Markov equivalent” [24]. In figure 4.3, we

have 3 DAGs which would look identical if their edges were to be undirected. However,

the edges going from A to D and B to D should remain as directed, since they represent

what is known as a v-structure, where two arrows are going into a single node. In such a
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4.3. STRUCTURE LEARNING SOLUTIONS 27

case we can say that A and B are independent, but conditionally dependent given their

common child node, D.

Figure 4.3a and figure 4.3b belong to the same equivalence class. Even though the

direction of the edge from A to C has changed, it did not result in any creation of a new

v-structure, hence contains the same conditional independence information as figure 4.3a.

However, we cannot say the same for figure 4.3c as this has created new v-structures,

A→ D ← E and B → D ← E.

Therefore, while we will be able to distinguish between figures 4.3a and 4.3b with

figure 4.3c in terms of scores, we will not be able to distinguish between figure 4.3a and

4.3b. This is because “Bayesian networks belonging to the same equivalence class have

the same scores” [27]. Hence we say that the structure of the DAG can be learned “up

to Markov equivalence” [28].

A B

C D

E

(a)

A B

C D

E

(b)

A B

C D

E

(c)

Figure 4.3: a and b are Markov equivalent DAGs while c is not

In the next section, we introduce algorithms for structure learning, that can be used

to overcome these challenges.

4.3 Structure learning solutions

4.3.1 Maximum Weight Spanning Tree (MWST)

In order to overcome the challenge of finding the proverbial needle in a haystack, a clever

algorithm can be used to find a tree (a graph without cycles) structure for the network

which restricts the number of parents for each node to 1, making the search much simpler.
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This algorithm is known as the Chow-Liu algorithm or Kruskal’s algorithm [24].

A B

C

(a)

A B

C

(b)

A B

C

(c)

Figure 4.4: Directed and undirected trees.

Note that a tree may be directed or undirected, as shown in figure 4.4. Undirected

trees use lines to show connections between different nodes and as such do not assume any

directional influence, while directed trees use arrows to show probabilistic relationships in

the direction of the arrow. Naturally, structures typically found in measurement models

and structural models are directed, since directional relationships are displayed between

a factor and its indicator variables and among factors using arrows. However, when

SEM as a whole is viewed, exogenous latent variables are allowed to covary, hence it is

a partially directed acyclic graph (PDAG). Murphy [28] defines the joint distribution of

a directed tree with a single root node r as follows:

p(x|T ) =
∏
t∈V

p(xt|xpa(t)) (4.2)

which simply means that the joint distribution of a directed tree is simply the product

of probability of all V nodes xt, given their respective parent nodes xpa(t). In figure 4.4

b and c, we have

p(xa, xb, xc|T ) = p(xa)p(xb|xa)p(xc|xb)
= p(xb)p(xa|xb)p(xc|xb)

(4.3)

where the first expansion is for figure 4.4b and the second expansion is for figure 4.4c.

The same can be represented for an undirected tree as follows:

p(x|T ) =
∏
t∈V

p(xt)
∏

(s,t)∈E

p(xs, xt)

p(xs)p(xt)
(4.4)
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where (s, t) denotes two nodes which are connected by an edge, and E number of

edges are present in the network T . In figure 4.4 a, we have

p(xa, xb, xc|T ) = p(xa)p(xb)p(xc)
p(xa,xb)
p(xa)p(xb)

p(xb,xc)
p(xb)p(xc)

= p(xa, xb)
p(xb,xc)
p(xb)

= p(xa)p(xb|xa)p(xc|xb)
= p(xb)p(xa|xb)p(xc|xb)

(4.5)

hence they are all equivalent due to the fundamental rule for probability calculus.

Using an undirected tree is preferred for structure learning, because it is symmetric and

gives a more general expression. We can turn equation 4.4 into a log-likelihood for a tree

as follows:

log p(D|θ, T ) =
∑
t

∑
k

Ntk log p(xt = k|θ) +
∑
s,t

∑
j,k

Nstjk log p(xs=j,xt=k|θ)
p(xs=j|θ)p(xt=k|θ) (4.6)

where D is the data matrix, Ntk is the number of times node t is in state k and Nstjk

is the number of times nodes s and t are in state j and k, respectively.

These values can be written in terms of the observed probability, or the empirical

probability distribution: Nstjk = Np̂(xs = j, xt = k) and Ntk = Np̂(xt = k). Setting θ

to its maximum likelihood estimates, this becomes

log p(D|θ,T )
N

=
∑
t∈V

∑
k

p̂(xt = k) log p̂(xt = k) +
∑

(s,t)∈ε(T )
MI(xs, xt|θ̂st) (4.7)

where MI(xs, xt|θ̂st) ≥ 0 is the mutual information between xs and xt given the

empirical distribution:

MI(xs, xt|θ̂st) =
∑
j

∑
k

p̂(xs = j, xt = k) log
p̂(xs = j, xt = k)

p̂(xs = j)p̂(xt = k)
(4.8)

Which is none other than the Kullback-Leibler divergence between p(xs = j, xt = k) and

p(xs = j)p(xt = k) that is used to measure mutual information between xs and xt [24].

Another way to interpret the Kullback-Leibler divergence is that it measures dissimilarity

between two distributions and the smaller this value, the closer the two distributions,

with a value of 0 indicating that the two distributions are identical [28]. Using the

mutual information between every pair of nodes, the maximum weight spanning tree is

created. The algorithm is given in algorithm 4.1
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for i = 1 to d(d− 1)/2 do (d=number of nodes)

Calculate the Kullback-Leibler divergence for nodes (i, j),

where i 6= j , (i, j) ∈ d(d− 1)/2 (each edge between every pair of nodes)

Denote these as b1, b2, b3, ..., bd(d−1)/2 respectively and store them into a vector b.

end for

Sort the vector b largest to smallest

Create a path into the graph structure denoted as the first element in the vector b

for i = 2 to d(d− 1)/2 do

if no path exists between node i, j

Create a path denoted as the ith element in the vector b

end for

Algorithm 4.1: Maximum weight spanning tree algorithm

Once a structure has been obtained we can induce small changes to the network in

order to find the local maximum. These small changes are defined as adding, removing or

reversing an edge to the network, while making sure that no cycles are created by these

changes [6]. It is not guaranteed that a better network will be found after all the local

modifications have been performed, in which case the initial network is considered the

best network. Alternatively, one can use techniques such as random restarts [6] which

starts off the process of local modification with a different initial network (possibly by

adding a small noise to the data) to see if many different starting points lead to the same

or similar local optimal network.

The main disadvantage of using MWST algorithm is its tree structure. That is, it

does not allow networks with more than one parent node per child node. Although this

is precisely the reason why MWST algorithm is very fast, it implies that the result-

ing network cannot arrive at complex scenarios where multiple causes are expected to

influenced a single variable.
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4.3.2 EQ algorithm

In section 4.2.2, it was noted that networks within the same equivalence class cannot be

distinguished, while networks of different equivalence class can be distinguished. We can

use this fact to narrow our search space, which entails exploring the space of equivalence

classes of BN as opposed to the entire space of BN [27]. Essentially, we are searching

for a group of networks that belong to the same family, instead of directly looking for

the single best network. By doing so, we can bypass many redundant calculations and

only go into detailed modifications once we have obtained the optimum equivalence class.

After the optimum equivalence class has been found, we can search for the local optimum

by adding or removing directed or undirected edges [27]. The EQ algorithm can be used

alongside the MWST algorithm, on a fully unconnected dataset. If both algorithms

return the same network, it is quite possible that the network obtained is the optimal

network.

4.4 Application

Here we see how graphical model structure learning can be applied to a data for ex-

ploration. This is carried out in 4 stages, as proposed by BayesiaLab: Unsupervised

Learning (manifest variables), Variable Clustering, Multiple Clustering and Unsuper-

vised Learning (latent variables) [5]. BayesiaLab is a software platform which employs

the algorithms mentioned earlier to learn graphical structures from data. The application

was thus implemented in BayesiaLab.

The dataset comes from a French market research survey on perfumes and is available

from www.bayesia.us/perfume. There are 1320 observations, 40 variables which measure

different aspects of the perfume (39 on 1-10 scale and 1 on 1-5 scale) and 1 variable for

Purchase Intent (measured on 1-6 scale).

Figure 4.5 shows how the data appears in BayesiaLab after it has been imported.

All variables which are measured on 1-10 scale have 10 states, which can be condensed

for a faster and simpler model. BaysiaLab has the function to discretise continuous

variables during the import process and here, equal distance discretisation was used with

5 intervals, since they are all measured on the same scale. Because Purchase Intent only
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Figure 4.5: Perfume data: imported into BayesiaLab

has 6 states originally, it is classified as a discrete variable and left at 6 states. Another

variable which did not change is the variable Intensity, which only has 5 states and is

one of the 40 variables that measures the aspect of the perfume.

4.4.1 Initial network

Initially, a network structure should be found which will be used for clustering purpose.

Finding the optimal network can be a challenge, as the number of possible networks

increases super-exponentially according to the increases in the number of nodes. This

relationship is given in equation 4.1. Since heuristic search algorithms can only find local

optimum we cannot be certain that we will find the global optimum- hence it is advisable

to use different learning algorithms and use cross-validation techniques.

A simple, data driven method of finding a network structure is to use MWST which

was discussed in 4.3.1. Of course, using different algorithms for structure learning will

most likely lead to slightly different models suggested by each algorithm. The minimum

description length (MDL) for each model can be evaluated to select the best model. MDL

operates under the logic that regularities within the data can be compressed, meaning
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certain symbols can be used to describe the data in a more compact way than the actual

data. Highly regular data can therefore be highly compressed [13].

4.4.1.1 MDL

MDL is consists of two parts as stated in the following equation:

MDL(B,D) = αDL(B) +DL(D|B) (4.9)

where B is the model (Bayesian Network) and D is the observed data, hence DL(B)

is the complexity (number of bits) of the suggested model and DL(D|B) is the number

of bits to describe the log-likelihood of the data given (with the help of) the model,

which is none other than the error [13]. Equation 4.9 states that the MDL score is the

sum of the complexity of the model and the complexity of the errors. Generally, if the

model is highly accurate it will need much description (as it will have many terms) but

the resulting error will be small. Conversely, if the model is very simple, its description

will be very short but we will need a lot of information to describe its errors. The α is a

structural coefficient, or simply a weight, which we can use to reduce the impact of model

complexity. Even if the model is highly complex and DL(B) is high, by making α small,

model complexity will have reduced impact on the overall MDL [5]. A fully unconnected

network will translate to the minimum value for DL(B) and a fully connected network

will translate th the minimum value for DL(D|B). Thus obtaining minimum MDL finds

the right balance between the two extremes. If we start off with a blank network, an

edge will connect two nodes only if the decrease in DL(D|B) is larger than the increase

in DL(B) [5].

Cross-validation should be performed to confirm whether the model obtained can be

improved. Section 4.3.1 mentioned random restarts where the objective was to see if the

final network obtained remains the same when starting from different initial networks.

Here, since the initial network is a set of fully unconnected nodes, we add noise to

the data and see if the same structure and MDL are obtained. This process of data

perturbation serves as a cross-validation step for finding the structure of the network.

As discussed in 4.3, we can employ MWST or EQ algorithm to learn the structure of

the data. For now, we do not want purchase intent to be included in the network, since
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Figure 4.6: Perfume data: Initial network learned using MWST

we are interested in how it interacts with the factors. The resulting learned network is

shown in figure 4.6. The MDL score of this network is 98,606.572 and this score is also

obtained using the EQ algorithm. Performing data perturbation also returns this score,

hence we can proceed to the next step of finding the clusters.

4.4.2 Variable Clustering

Here, the nodes within the network are clustered, based on the Arc Force (Kullback-

Leibler Divergence), using hierarchical agglomerate clustering. The Arc Force is calcu-

lated for every pair of nodes, which measures how close a node is to every other. At the

start of the process, the nodes are all treated as a cluster on its own and two clusters

with the smallest “distance” are joined into a single cluster. This process is repeated

either until a satisfactory number of clusters have been obtained or until no clusters

are deemed “close enough” to be joined into one cluster. This is similar to performing
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Figure 4.7: Perfume data: Clustering result, max 5 variables per cluster

an exploratory factor analysis where the researcher tries to find the optimal number of

factors within the data.

Just as we performed cross-validation on the network, we can perform cross-validation

to check whether the clustering groups the same nodes together frequently. To do this we

would simply start off by adding small noise to the data, create the network structure,

perform clustering on the network and repeat this process many times. If the results

show that same nodes are clustered into the same group many times over the iterations,

we can safely assume that it is indeed the most likely scenario of clustering outcome.

Pair-wise Kullback-Leibler divergence is calculated for all variables in the network

and those values are used to perform hierarchical clustering, which returns the following

colour-coded network. By imposing the restriction of maximum 5 variables per cluster,

we obtain a 15-cluster solution which is shown in figure 4.7.
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Figure 4.8: Perfume data: Inducing a factor into each cluster

4.4.3 Multiple Clustering

We are now interested in finding factors from the clustering data, with as many factors

being introduced into the model as the number of clusters. This process entails inducing

factors with discrete states for each cluster, making sure that the factors have high

mutual information with their children nodes [28]. The imputing of factor state to each

observation can be done using maximum likelihood [18].

This is done by using the Multiple Clustering function of BayesiaLab and it returns

each cluster on its own with the factor at the centre. The resulting outcome is shown in

figure 4.8. Here, the lines connecting the factors and their manifest variables are dotted

to indicate that they are fixed and should not be altered when finding the structural

model.

The representative values for each state can be obtained by calculating the weighted

average of the manifest variables’ means given the specific states, where the weights
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are relative significance in relation to the factor. The relative significance is defined as

follows:

RSi =
I(Mi, F )

max
j
I(Mj, F )

(4.10)

Table 4.3: Example of calculating a weighted average for a state.

Manifest var Mutual information Relative significance Mean Value

V1 0.35 1 2.13

V2 0.33 0.943 2.10

V3 0.30 0.857 2.25

V4 0.29 0.829 1.99

V5 0.28 0.8 2.07

In table 4.3 the highest value for mutual information is 0.35. The relative significance

is then each mutual information divided by 0.35. Suppose that the mean values shown

here are those of the lowest state for each manifest variable. Then the value for the

lowest state of the factor is obtained by (
∑

Relative Sig×Mean Val)/
∑

Relative Sig =

9.34/4.43 = 2.11.

A measure of quality for each factor can be examined using Contingency Table Fit

(CTF), which has the following formula:

CTF (B) =
l̄l(Bu)− l̄l(B)

l̄l(Bf )− l̄l(B)
(4.11)

where l̄l(B) is the mean log-likelihood of the data given the current network B,

l̄l(Bu) is the mean log-likelihood of the data given the fully unconnected network (or

the worst case scenario) and l̄l(Bf ) is the mean log-likelihood of the data given the

fully connected network (or the best case scenario) [5]. Thus, the CTF takes on the

value 100 if the current network is able to produce an exact representation of the fully

connected joint probability distribution, while it is equal to 0 if the network represents

a fully unconnected network, where all variables are marginally independent [5]. The

ideal value of CTF depends on the number of variables, the number of states for each
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variables and the number of states for the factor. For example, a factor with 4 states

should be able to fully account for 2 variables with binary states, thus a value of 100

should be expected. However, for 8 variables with 4 states, a factor of 4 states obtaining

a CTF of 50% implies that the factor manages to represent JPD of 48 cells with a quality

of 50% using just 4 states. [5]. On the individual level between each manifest variable

and the factor, a test of independence is conducted as to confirm whether it is sensible

to create the network with the clustered manifest variable. The G-test is used to obtain

the statistic and the p-value, where we conclude that the variable and the factor are not

independent if the p-value is low.

So far we have only dealt with how the observed variables interact with factors. This

is what is known as the measurement model in the field of SEM [16]. We will now move

onto the structural part which deals with how latent variables interact with each other.

4.4.4 Exploratory Bayesian Network (EBN)

Here we must find the relationships between the factors while keeping the relationship

between factors and their manifest variables intact. In order to enforce this restriction,

we must resort to using the Taboo (also known as Tabu) algorithm, which searches

for the local optimum while verifying at every step that it does not belong to a set of

restricted networks [10]. Establishing the relationships between the factors returns the

structural part of the model and this completes the network structure learning of the

data and we can proceed to verify this structure using the classical SEM method and

use the what-if analysis for further investigations. Because this network is not based on

any input from a researcher, it is only an exploratory result, hence we propose the name

of Exploratory Bayesian Network.

The structural model is found by using the Taboo algorithm specifically, since this is

the only algorithm that can keep the relationship between the factors and their manifest

variables fixed. Here, we bring back the variable Purchase Intent because we now want

to see the relationship it has with the factors. In figure 4.9 we see that the network has

kept the relationships for the measurement model and added the structural model onto

it in solid black arrows. We also see that Purchase Intent is directly influenced by factor

2. This structure can be redrawn in SPSS AMOS for traditional SEM analysis. Keep in
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Figure 4.9: Perfume data: Exploratory Bayesian Network
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Table 4.4: Conventional SEM model fit indices for Perfume data

CFI 0.904

SRMR 0.0424

RMSEA 0.072

RMSEA upper 90 0.074

RMSEA lower 90 0.071

mind that the ‘Perfume’ dataset illustrates the structural learning algorithms discussed

in this chapter. There is no existing theory to be hypothesised as is the case with SEM.

It is, however, interesting to test the reaction of SEM metrics on the learned structure.

This by itself also serves as some type of validation for the unsupervised learned structure

and parametrisation. The estimation of the model returned coefficients and variances

which are all highly significant. Table 4.4 shows some of the model fit indices, which

also indicate a satisfactory model fit.

4.4.5 What-if analysis

Typically, researchers using SEM are interested in seeing whether the model they pro-

posed is valid and if so, they want to know what the coefficient values, and interpret

them and the analysis comes to an end. By having a Bayesian network representation of

SEM, we can take a step further and conduct inference by explicitly entering evidence

into the network to see how it changes the value of other variables. The beauty of using

Bayesian network is that we can instantiate any variable, regardless of being concerned

about the direction of influence. Note that:

P (A|B) =
P (A ∩B)

P (B)
, P (B|A) =

P (A ∩B)

P (A)
(4.12)

therefore,

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A) (4.13)

This is because the network is probabilistic, as opposed to deterministic, hence it

comes down to rearranging the variables for conditional probability calculation. Thus
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we are not limited to only substituting values for the independent or exogenous variables,

we can assign a state to the dependent or endogenous variables and see how that changes

behaviour of the remaining variables. When the evidence for a parent node is given, the

posterior probability for the child node is simply read off the conditional probability

table. We can obtain the opposite, the posterior probability of the parent node given

evidence for the child node. Let A denote the parent node and B denote the child node.

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A)

P (A|B) = P (B|A)P (A)
P (B)

= αP (A)λ(A)

(4.14)

where α = 1
P (B)

is a normalising constant, P(A) is the prior and λ(A) = P (B|A) is

the likelihood [22]. This is the famous Bayes Theorem.

Consider a small example from [22], with two variables Flu and HighTemp, where

the direction of influence is Flu→ HighTemp. The known probability values are prior

P (Flu = T ) = 0.05 and CPT values P (HighTemp = T |Flu = T ) = 0.9, P (HighTemp =

T |Flu = F ) = 0.2. For a more complete representation, the probability tables are shown

in tables 4.5 and 4.6

Table 4.5: Marginal probability of having flu

True False

P (Flu) 0.05 0.95

Table 4.6: Conditional probability of high temperature given flu

P (HighTemp|Flu) True False

Flu = T 0.9 0.1

Flu = F 0.2 0.8

Let Bel(A) denote the posterior probability, or belief. If the evidence on HighTemp

is set to True, then the beliefs are calculated as follows:
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Bel(Flu = T ) = αP (Flu = T )λ(Flu = T )

= α× 0.05× 0.9

= 0.045α

Bel(Flu = F ) = αP (Flu = T )λ(Flu = T )

= α× 0.95× 0.2

= 0.19α

(4.15)

According to the Total probability theorem, Bel(Flu = T ) +Bel(Flu = F ) = 1 [22].

Therefore
1 = 0.045α + 0.19α

1 = 0.235α

α = 1
0.235

(4.16)

Substituting this α back to 4.15,

Bel(Flu = T ) = 0.045
0.235

= 0.1915

Bel(Flu = F ) = 0.19
0.235

= 0.8085

(4.17)

Thus, if it is observed that a person has a fever, the probability would be 0.1915 that

it is due to flu. Conversely, if it is observed that a person does not have fever, there

is a 0.9935 probability that the person does not have flu. There are softwares which

can perform such calculations and offer an intuitive graphical interface. The output in

figure 4.10 is obtained by using Hugin (www.hugin.com). Although BayesiaLab produces

same inference results, Hugin can present the posterior probabilities in a convenient and

intuitive way alongside the network.

In figure 4.10, the evidence is entered into the parent node for 4.10a and 4.10b, in

other words, the direction of inference is from cause to symptom. This is what is known

as a predictive reasoning [22]. Inference in the opposite direction is called a diagnostic

reasoning [22] and this helps us to see what causes would have led to a certain outcome.

These are shown in 4.10c and 4.10d Another type of inference is called ‘prescriptive’ and

this takes diagnostic reasoning a step further by finding out what the causes should be

for the optimal outcome to take place [7].
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100.00
0.00

90.00
10.00

(a)

0.00
100.00

20.00
80.00

(b)

19.15
80.85

100.00
0.00

(c)

0.65
99.35

0.00
100.00

(d)

Figure 4.10: Inference by setting evidence on different states

Thereafter we can perform inference on the obtained BN, should we wish to further

explore. Figure 4.11 shows the network from figure 4.9, where only the factors and

Purchase Intent have been carried over to Hugin along with their conditional probabili-

ties. Next to each node there are small windows which show the probability distribution

visually as well as numerically: the column of numbers on the right lists the different

states of the nodes and the column on the left lists the respective default probability of

belonging to the state.

As an example of a predictive inference, an evidence is set to the node Pleasure

to its highest state in figure 4.12 and we can see how it affects the rest of the net-

work. Compared to figure 4.11, we can see that the distribution has generally shifted

towards the higher states. In particular, the probability is 0 that two lowest states in

Purchase Intent will be observed and the probability of observing the highest state has

tripled. Next we can set evidence to Purchase Intent for a diagnostic inference. Figure

4.13 shows that in general, the distribution has now shifted towards the lower values of

the states. For a prescriptive inference, we change the evidence on Purchase Intent to

its highest state as shown in figure 4.14. The result, which has a posterior distribution

with 86% probability of encountering the highest state in the node Pleasure, looks quite
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Figure 4.11: Bayesian Network representation of the perfume data

similar to figure 4.12.

4.5 Summary

In this chapter we introduced graphical models, specifically DAGs and BNs. We dis-

cussed the workings of a BN briefly by covering the basic concepts with simple examples.

The challenges have been identified and solution algorithms have been given with regards

to graphical model structure learning from data. The mathematical framework has been

applied to a real dataset to show how one can use this as a tool to explore the data.

After obtaining the full network with factors, different ways of performing inference was

discussed. In the next chapter, we investigate different strategies to arrive at a BN by

using the data and the expert knowledge.
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Figure 4.12: What-if analysis: predictive

Figure 4.13: What-if analysis: diagnostic
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Figure 4.14: What-if analysis: prescriptive
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Chapter 5

Probabilistic SEM

A SEM starts out as a theoretical model representing causal paths between variables.

The SEM researcher then designs an experiment and collects data to see whether the

theoretical model they proposed is valid and if so, they want to know what the coefficient

values are and interpret them. In practice, the original theoretical model structure might

be adapted slightly based on SEM evaluation results as the process of fitting the data

to the models provides new information. This involves checking the model fit as well as

parameter estimates and making adjustments (which should be supported by the litera-

ture) if the measurement model is unsatisfactory in the CFA. Once the model structure is

stabilised and the SEM produces satisfactory results, the calculated coefficients become

the discussion points and drives arguments relating back to the theoretical model.

We propose representing the final theoretical SEM by a BN, which we would like

to call a Probabilistic Structural Equation Model (PSEM). With the PSEM, we can

take things a step further and conduct inference by explicitly entering evidence into the

network and performing different types of inferences as listed in 4.4.5. The beauty of

using BNs is that we can instantiate any variable, regardless of being concerned about

the direction of influence. This was discussed in section 4.4.5.

One can arrive to the BN phase purely from a structure hypothesised from theory,

which is then validated and confirmed with data. This is done using classical SEM

techniques as discussed in Chapter 3. As we acknowledge the structure as a SEM, the

resulting BN is then called a probabilistic SEM (PSEM).

47
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Theory

Data Mining

SEM

Factors

Graphical Structure

PSEM

EBN

Semi-PSEM

Figure 5.1: Process of obtaining different BNs

The other side of the spectrum is a completely data-driven approach (section 4.4) -

assuming no theory driving the structure. This is an explanatory approach and can be

useful in scenarios where data exist but no extensive theory is available. The resulting

BN is then also called an explanatory BN (EBN), rather than a PSEM as the structure

is not based on theory as is the case with SEM.

Finally, we consider the case where the factors are created according to the theory

but the structural paths are learned using data. The resulting BN is then called a

semi-probabilistic SEM. Figure 5.1 diagrammatically illustrates the process of obtaining

different BNs.

5.1 Application

Social Networking Sites (SNS) represent a great opportunity today for companies to ad-

vertise their products and services as well as target and personalise their messages based

on the data people declared online. However, how people perceive the new advertising

methods employed in SNS is still largely unknown, as well as whether they consider such

advertisements to be an intrusion on their private, although social, space. In addition,

very little empirical research of causal relationships exists, leaving unanswered questions

about how SNS users perceive advertisements posted on their own online social profile.

The conceptual framework is based on Theory of Planned Behaviour (TPB). The
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components of TPB are four general constructs: behavioural intention (BI), attitude (A),

subjective norm (SN) and perceived behavioural control (PBC). Following the TPB, we

thus predict that behaviour towards SNS advertising will be influenced by the users atti-

tude towards SNS advertising, the subjective norms and perceived behavioural control.

The attitude is itself dependent on four main beliefs: trust, attitudes towards adver-

tising in general, advertising value and advertising intrusiveness, which are themselves

dependent on other antecedent variables as described in the literature.

The study population comprised of active adult (18 years and older) Facebook users.

The survey was developed in English for both (South Africa and Australia) countries and

delivered online. Sampling in both countries involved the use of market research firms

holding consumer panels where the firms’ provided a link to the survey. Participants

were incentivised by the market research firms in accordance with their normal practices

and a sample of 401were realised in both countries respectively, resulting in a total of

802 respondents.

There are 9 factors in this SEM, namely:

• Privacy Concern

• Trust

• Ad intrusiveness

• Behaviour towards brand

• Behaviour towards ad

• Perceived behaviour control

• Attitude towards ads

• Attitude towards FB ad

• Ad values

The different softwares used are as follows: SPSS AMOS was used for classical SEM,

BayesiaLab was used for EBN and Semi-PSEM, and Hugin was used for performing
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inference with PSEM, EBN and Semi-PSEM. The results of SEM using SPSS AMOS

can be found in appendix C.

5.2 Probabilistic SEM

Here, the path between factors and manifest variables are all specified according to

the relevant theory and the theoretical or expert-developed SEM is turned into a BN for

inference. Figure 5.2 shows the PSEM for the Facebook data. Although the EBN (which

is discussed next) has not played a role in developing this network, factors such as Trust,

Privacy concern and Attitude towards ads are based on the same variables as the EBN in

figure 5.10. The corresponding PSEM is shown in figure 5.3. The probabilities, when the

network structure is specified, are learned by maximum likelihood, where the occurrence

of the variable states are simply counted [5]. Learning probabilities in this manner also

makes the network less responsive to changes, as the conditional probabilities will only

reflect the changes if there are observations in the data which possess the given state

value for the variable.
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Figure 5.2: Facebook data: PSEM

For the remainder of the chapter, we restrict the focus of our discussion mostly to

the nodes that represent Attitude towardsFB ad, Behavior towards ad and

Behavior towards brand, for compactness. We now proceed to inference to see what

can be learned from the PSEM. Figure 5.4 shows changes to the network, given that

Attitude towardsFB ad is at its lowest state. The biggest changes occurred to the

nodes Behavior towards ad and Behavior towards brand, where the probability of find-
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ing them in low-valued states have increased drastically. Figure 5.5 illustrates the oppo-

site case, when Behavior towards ad and Behavior towards brand have been set to the

highest states. This in accordance with the results from SPSS AMOS in appendix C,

where the path coefficients from Attitude towardsFB ad to Behavior towards ad and

Behavior towards brand are positive.
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Figure 5.3: Facebook data: PSEM (Factors)
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Figure 5.4: Facebook data: PSEM predictive inference
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Figure 5.5: Facebook data: PSEM prescriptive inference

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5.3. EXPLORATORY BAYESIAN NETWORK (EBN) 54

Q8Q1

Q8Q2

Q8Q3

Q8Q4

Q8Q5

Q8Q6

Q9Q1

Q9Q2

Q9Q3

Q9Q4

Q9Q5

Q9Q6

Q11Q1

Q11Q2

Q11Q3

Q11Q4

Q11Q5

Q11Q6

Q12Q2

Q12Q3

Q12Q4

Q12Q11

Q12Q12

Q12Q13

Q14Q1

Q14Q2

Q14Q3

Q14Q4

Q16Q1

Q16Q2

Q16Q3

Q16Q4

Q16Q5

Q16Q6

Q16Q7

Q16Q8

Q16Q9

Q17Q1

Q17Q2

Q17Q3

Q20Q1

Q20Q2

Q20Q3

Q20Q4

Q20Q5

Q20Q6

Figure 5.6: Facebook data imported into BayesiaLab

5.3 Exploratory Bayesian Network (EBN)

Figure 5.6 shows how the manifest variables appear upon importing into BayesiaLab.

The initial network, shown in figure 5.7 is learned using MWST with MDL score of

66,037.546. This score is obtained when using the EQ algorithm as well and using data

perturbation, hence it can be seen as the optimal value.

Next we cluster the nodes based on their Arc Force. The number of clusters can vary.

Here, 8 clusters were selected to result in each cluster having 4 to 7 manifest variables.

This is shown in figure 5.8. The next step is to induce a factor for each cluster that

represents the cluster. After the factor induction we obtain 8 factors as shown in figure

5.9. It is interesting to see that factors 0,1,2,3,5 and 6 are all based on the same group of

questions. This can serve as an indication that the question are well structured. Because

some variables are clustered differently from the theoretical structure, the factors are not

given specific names. The last step in obtaining the EBN is to learn the structure between

the factors. Using the Taboo algorithm the network as shown in figure 5.10 is found.
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Figure 5.7: Facebook data: Initial network learned using MWST
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Figure 5.8: Facebook data: Clustering result, max 5 variables per cluster
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Figure 5.9: Facebook data: Inducing a factor into each cluster
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Figure 5.10: Facebook data: Exploratory Bayesian Network
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We can take this network and see what happens to the distribution of each factors

to better understand the data. Figure 5.11 shows the default probability distributions

for each factors. Table 5.1 shows the breakdown of the factors. Notice that the default

probabilities are different from that of figure 5.3 because the structure also needed to be

learned in EBN. Factor 6 which is comprised of items from question 11, can be seen as

the representative factor for Attitude towardsFacebook advertisements.

In figure 5.12, we set evidence onto Factor 6, and see how it influences other factors

in the network. The factors which are influenced the most are Factor 1, Factor 3 and

Factor 7. Their distributions have shifted much towards the higher-value states- this is

similar to the result we observed for PSEM in figure 5.5. Linking them to the questions,

we can conclude that people with a positive attitude towards Facebook advertisements

tend to be more trusting, and show favourable behaviours towards the brand and the

advertisements while finding the advertisement to be valuable.

It is possible to utilise knowledge from both the data and the theory in order to

create a BN; this idea is explored next.
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Figure 5.11: Bayesian Network representation of the Facebook data (factors)
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Table 5.1: Approximate factors for EBN based on majority manifest variables

Node Manifest Variables Closest Theoretical Factor

Factor0 Q20Q1-Q20Q6 Privacy Concern

Factor1 Q8Q1-Q8Q6 Trust

Factor2 Q16Q1-Q16Q6, Q16Q9 Ad intrusiveness

Factor3 Q12Q2-Q12Q4, Q12Q11-Q12Q13 Behaviour towards brand, ad

Factor4 Q14Q1-Q14Q4, Q16Q7-Q16Q8 Perceived behaviour control

Factor5 Q9Q1-Q9Q6 Attitude towards ads

Factor6 Q11Q2-Q11Q6 Attitude towards FB ad

Factor7 Q17Q1-Q17Q3, Q11Q1 Ad values

4.16
17.00
11.42
30.97
36.45

15.91
15.91
25.00
11.36
31.82

0.00
0.00
0.00
0.00

100.00

4.55
2.27
4.55

29.55
59.09

11.36
4.55

11.37
11.36
61.36

0.00
9.09
4.54

40.91
45.46

10.08
11.96
11.64
36.73
29.59

14.83
25.38
8.28

27.70
23.80

Figure 5.12: Facebook data: Exploratory Bayesian Network inference

5.4 Semi-Probabilistic SEM

In section 5.2 the network was specified completely by the expert, while the network

from section 5.3 was learned in a completely data-driven process. It is possible to have a
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mixture of the two, where the factors are specified according to the literature and theory

while the relationship between the factors are learned from the data. This can provide

additional perspectives which the researcher may not have thought of. As can be seen in

figure 5.13, the factors are based on the manifest variables of figure 5.2, but the network

structure between the factors is different.
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Figure 5.13: Facebook data: Semi-PSEM
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Figure 5.14: Facebook data: Semi-PSEM (factors)

Once again we can perform inference by setting evidence onto the nodes of interest. To

make the analysis comparable to EBN, we set evidence for the nodeAttitude towardsFB ad.

In figure 5.12, the nodes for Behavior towards ad and Behavior towards brand are com-

bined into one node, Factor3 and its highest-valued state, 6.57, has the highest posterior

probability of 0.6136. At first glance, it may seem that this is not reflected in figure

5.15, where Behavior towards ad and Behavior towards brand only exhibit probability

of around 30% for their highest-valued states. However, it is important to note that the

highest state values in figure 5.15 for Behavior towards ad and Behavior towards brand

are 7.283 and 7.45, respectively. Thus having different bins for the states can severely

alter how the results appear to be. The sum of the highest 2 states in both nodes give a

probability value higher than 0.5, which is now closer to the value of 0.6136 from figure

5.12.

Figure 5.16 mimics the analysis done in figure 5.5. Even though the probability values

are different in absolute terms (the actual probability values are different), both figures

have the same general shape and the ordering of the states. That is, both indicate that

the state with the highest posterior probability for the node Attitude towardsFB ad
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is 8.89 and thereafter 6.625, where these two states account for the majority of the

distribution in both instances.
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Figure 5.15: Facebook data: Semi-PSEM predictive inference
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Figure 5.16: Facebook data: Semi-PSEM prescriptive inference
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5.5 Summary

In this chapter we discussed three different types of BN which can be found from the

data. The PSEM takes the SEM developed from theory by the researcher and converts it

into a BN. This allows SEM practitioner to take a step forward by adding the capability

to perform what-if analysis onto the network. On the other hand we have the EBN,

which can be used without any prior knowledge regarding the data, as the process is

purely data-driven. This can assist the practitioner in dynamically exploring the data.

We can also generate a network that makes use of both the theory and data, called Semi-

PSEM, where factors are defined according to the theory and the structural paths are

constructed using a data-driven unsupervised approach. These BNs have been applied

to the Facebook advertisement data which are displayed once again in figures 5.17, 5.18,

5.19 for convenience. They have all given results which correspond with a SEM performed

with SPSS AMOS.

Figure 5.17: PSEM
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Figure 5.18: EBN

Figure 5.19: Semi-PSEM
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Chapter 6

Conclusions

This chapter summarises the main results of the work done in this dissertation. Section

6.1 wraps up the key points of the dissertation and section 6.2 considers future work

which can come from this dissertation.

6.1 Summary of Conclusions

Chapter 2 discussed the developments, both historic and current, as well as some inter-

esting applications of SEM in the form of a literature review. The topic of SEM was

followed in chapter 3, where the principles and processes behind SEM were covered. We

then moved on to the field of graph theory in chapter 4. In chapter 4, we concluded

that both SEM and BN are DAGs and it is possible for the structure of a SEM to be

learned from data, using algorithms such as maximum weight spanning tree (MWST)

and equivalence class (EQ) to find the initial network, cluster the variables according to

mutual information, induce a factor for each cluster and learn the network among factors

using Taboo algorithm to obtain an exploratory Bayesian Network (EBN).

This idea of EBN was applied along with other types of BNs in chapter 5. EBN is

a BN derived from a data-driven perspective, parallel to the researcher’s theory-based

SEM. The researcher need not necessarily use the information from EBN but instead

directly convert the SEM into a PSEM to conduct what-if analysis. It is also possible to

specify the factors according to the theory and determine the structural path using the

64
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data. This results in a semi PSEM.

These BNs can offer significant insight into the data, as the researcher can then

explore the data by instantiating on different nodes of the network (also called ‘what-if’

analysis). Because the direction of the inference is not an issue, various scenarios can be

simulated using the BN.

The augmentation of SEM with BN provides significant contributions to the field:

Firstly, structural learning can mine data for additional causal information which is

not necessarily clear when hypothesising causality from theory. This is particularly useful

when two opposing theories exist (for example, whether the brand or positive media

coverage is more effective in improving a company’s image) and the learned structure

can confirm one theory above the other.

Secondly, the inference ability of the BN provides not only insight as mentioned

before, but acts as an interactive tool as the ‘what-if’ analysis is dynamic. This has

been found to be a powerful knowledge transfer platform, specifically in participatory

research [8].

6.2 Future Work

Although using a tree structure can quickly find a network for the given variables, it

cannot assign more than one parent node for a child node. This implies that data-driven

methods such as MWST will not be able to suggest multiple causes for a single variable,

unlike theoretical models suggested by the researcher. Therefore a possible research topic

can be to find efficient algorithms which can offer network structures which are more

complex than tree structures, possibly cyclic [25]

Another way in which this work can be extended is to apply it in other research fields

as mentioned in section 2.2, such as finance, investment and economics. The theories

which have governed in these fields can, with the help of techniques covered here, be

confirmed or be given a new perspective [3].
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Appendix A

Maximum weight spanning tree

A.1 MWST example

Let us suppose there are 5 variables with which we want to create a MWST. The first

step we need to take is to calculate mutual information as given by equation 4.8 for all

possible pairs of variables.

Table A.1: Pairwise Mutual information, sorted descending

Var1,Var2 MI

B,C 0.83

A,B 0.71

A,C 0.63

C,E 0.58

B,E 0.22

A,E 0.19

C,D 0.15

A,D 0.13

B,D 0.11

D,E 0.08

Table A.1 shows a fictitious set of values for the mutual information of 5 variables,
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sorted descending according to their MI.

AC

D

B

E

(a) Starting the process of

MWST

AC

D

B

E

(b) First arc is added

AC

D

B

E

(c) Second arc is added

AC

D

B

E

Cycle Created!

(d) No arc should be drawn

from A to C since a path al-

ready exists

AC

D

B

E

(e) Third arc is added

AC

D

B

E

(f) Fourth arc is added

Figure A.1: Directed and undirected trees.

Initially we start off with a fully unconnected network as shown in figure A.1a. Next

we start connecting the pair of variables as we move down the rows of table A.1. The

highest value of MI is between variables B and C and so we draw an arc between those

two nodes, illustrated in figure A.1b. The next highest MI is present between A and B

so an arc is drawn to connect those two (figure A.1c).
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AC

D

B

E

Figure A.2: Final Tree

The next highest MI is between variables A and C but we should not connect those

two, as there is already a path between those two variables (throughB). Put differently,

drawing an arc between A and C creates a cycle with variables A,B and C as shown in

figure A.1d. Hence we do not change the network and proceed to the next highest MI.

The next arc added is between C and E. This means the next two paths (B,E & A,E)

will not be drawn (figure A.1e). Finally, an arc is drawn between C,D and this causes

all subsequent MIs to be forbidden (figure A.1f). The final tree is given by figure A.2.
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Appendix B

Facebook advertisement data

questionnaire

Table B.1: Questionnaire for Facebook advertisement

Q8Q1 Facebook is a trustworthy social network

Q8Q2 Facebook can be relied on to keep its promises

Q8Q3 Even if not mentioned, I would trust Facebook to do the job right

Q8Q4 I believe that Facebook would use my data only for purposes that I have approved

Q8Q5 I can count on Facebook to protect my privacy

Q8Q6 I can count on Facebook to protect my personal information from unauthorized use

Q9Q1 I consider advertising a good thing

Q9Q2 In general, I like advertising

Q9Q3 I consider advertising essential

Q9Q4 Having advertisements are important to me

Q9Q5 Advertisements in general are interesting to me

Q9Q6 I would describe my overall attitude towards advertising as favourable

Q11Q1 I consider ads on my Facebook page a good thing

Q11Q2 I like ads on my Facebook page

Q11Q3 I consider ads on my Facebook page essential

Q11Q4 Having ads on my Facebook page are important to me

Q11Q5 Ads on my Facebook page are interesting to me

Q11Q6 I would describe my overall attitude towards ads on my Facebook page as favourable
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Table B.2: Questionnaire continued

When I see an advertisement on my Facebook page, I generally

Q12Q2 click on the ad to find more information

Q12Q3 ‘like’ or ‘comment’ on the ad

Q12Q4 ‘share’ or ‘repost’ the ad to my friends

Q12Q11 become a fan of the company/brand

Q12Q12 visit the company/brands website

Q12Q13 purchase the advertised product/service

It is important to me that I can

Q14Q1 only receive ads on my Facebook page if I have previously provided permission

Q14Q2 control the permission to receive ads

Q14Q3 refuse to receive advertising on my Facebook page

Q14Q4 filter advertising on my Facebook page to match my needs

I find advertisements on my Facebook page

Q16Q1 distracting

Q16Q2 intruding on my privacy

Q16Q3 interfering

Q16Q4 invading my privacy

Q16Q5 deceptive

Q16Q6 confusing

Q16Q7 annoying

Q16Q8 irritating

Q16Q9 compromising my privacy

Facebook advertising is

Q17Q1 useful

Q17Q2 valuable

Q17Q3 important

Q20Q1 All things considered, the Internet causes serious privacy problems

Q20Q2 Compared to others, I am more sensitive about the way online companies handle

my personal information

Q20Q3 To me, it is very important to keep my privacy intact/unharmed from online com-

panies

Q20Q4 I believe other people are not concerned enough with online privacy issues

Q20Q5 Compared to other subjects on my mind, personal privacy is very important

Q20Q6 I am concerned about the threat to my personal privacy today
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Appendix C

Facebook data SEM using AMOS

C.1 Summary

Figure C.1 shows how the SEM for the Facebook data was constructed in SPSS AMOS.

All path coefficients as well as error variance were significant. Figure C.2 shows the

diagram with estimated standardised path coefficients and squared multiple correlation

for endogenous variables.

The value of -.13 between Advertising intrusiveness and Attitudes towardsFB ad

indicates that there is an inverse relationship, albeit relatively weak, between the two

variables, where an increase of 1 standard deviation in Advertising intrusiveness will

lead to a decrease of 0.13 standard deviations in Attitudes towardsFB ad. A strong pos-

itive relationship exists between Attitudes towardsFB ad and Behaviour towards ad,

indicated the coefficient value of .79. The value of .63 for squared multiple correlation of

Behaviour towards ad shows that Attitudes towardsFB ad explains 63% of the variance

in Behaviour towards ad. Other values in the diagram can be interpreted in the same

way.

Furthermore, table C.1 shows values for the model goodness of fit. CFI is larger

than 0.9 while RMSEA is less than 0.055, which are both indicative of an adequate

overall model fit.
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Table C.1: Goodness-of-fit Facebook data SEM

Model fit index Index value

CFI 0.926

TLI 0.922

RMSEA 0.051

RMSEA upr90 0.054

RMSEA lwr90 0.049

Figure C.1: Theoretical SEM for Facebook data, as drawn in SPSS AMOS
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Figure C.2: Estimated coefficients for Facebook data SEM
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